51
|
Aiba Y, Komiyama M. Introduction of disulfide bond to the main chain of PNA to switch its hybridization and invasion activity. Org Biomol Chem 2009; 7:5078-83. [PMID: 20024101 DOI: 10.1039/b917405b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to facilitate the removal of peptide nucleic acid (PNA), when necessary, from its duplexes and invasion complexes, a disulfide bond was introduced to its main chain. The disulfide bond was readily cleaved by various reducing agents (2-mercaptoethanol, dl-dithiothreitol, and tris(2-carboxyethyl)phosphine) even when the PNA was forming a duplex with its complementary DNA. The resultant two short PNA fragments were spontaneously removed from the DNA. Double-duplex invasion complexes of two disulfide-containing PNA strands were also promptly cleaved by the reducing agents. By using this modified PNA, a desired DNA fragment was picked up from DNA mixtures, and obtained in a pure form (free from the PNA) by the reductive treatment. Importantly, this separation was achieved at low temperatures (e.g., 37 degrees C), where all the DNAs (and other biomolecules if any) should be kept intact. Strong potential of the modified PNA for various biological applications has been indicated.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | |
Collapse
|
52
|
Miyajima Y, Ishizuka T, Yamamoto Y, Sumaoka J, Komiyama M. Origin of high fidelity in target-sequence recognition by PNA-Ce(IV)/EDTA combinations as site-selective DNA cutters. J Am Chem Soc 2009; 131:2657-62. [PMID: 19199631 DOI: 10.1021/ja808290e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double-duplex invasion of pseudocomplementary peptide nucleic acid (pcPNA) is one of the most important strategies for recognizing a specific site in double-stranded DNA (Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11804-11808). This strategy has recently been used to develop artificial restriction DNA cutters (ARCUTs) for site-selective scission of double-stranded DNA, in which a hot spot formed by double-duplex invasion of PNA was hydrolyzed by Ce(IV)/EDTA (Nat. Protoc. 2008, 3, 655-662). The present paper shows how and where the target sequence in double-stranded DNA is recognized by the PNA-Ce(IV)/EDTA combinations for site-selective scission. The mismatch-recognizing activities in both the invasion process and the whole scission process are evaluated. When both pcPNA additives are completely complementary to each strand of the DNA, site-selective scission is the most efficient, as expected. Upon exchange of one DNA base pair at the invasion site with another base pair, which introduces mismatches between the pcPNAs and the DNA, the site-selective scission by the ARCUT is notably diminished. Mismatches in (or near) the central double-invasion region are especially fatal, showing that Watson-Crick pairings of the DNA bases in this region with the pcPNA strands are essential for precise recognition of the target sequence. Both gel-shift assays and melting temperature measurements on the double-duplex invasion process have confirmed that the fidelity in this process primarily governs the fidelity of the DNA scission. According to these systematic analyses, the typical ARCUT involving two 15-mer pcPNAs precisely recognizes 14-16 base pairs in substrate DNA. This remarkable fidelity is accomplished at rather high salt concentrations that are similar to the values in cells.
Collapse
Affiliation(s)
- Yoshitaka Miyajima
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
53
|
Ishizuka T, Otani K, Sumaoka J, Komiyama M. Strand invasion of conventional PNA to arbitrary sequence in DNA assisted by single-stranded DNA binding protein. Chem Commun (Camb) 2009:1225-7. [PMID: 19240881 DOI: 10.1039/b813975j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of single-stranded DNA binding protein (SSB), conventional peptide nucleic acid (PNA) without chemical modifications efficiently invades into arbitrary sequences in DNA.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904 Tokyo, Japan
| | | | | | | |
Collapse
|
54
|
Sen A, Nielsen PE. Hydrogen bonding versus stacking stabilization by modified nucleobases incorporated in PNA.DNA duplexes. Biophys Chem 2008; 141:29-33. [PMID: 19162391 DOI: 10.1016/j.bpc.2008.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022]
Abstract
The effects of incorporation of the modified nucleobases, 2,6-diaminopurine (D) (substituting for adenine) and 7-chloro-1,8-naphthyridin-2-(1H)-one (bicyclic thymine, bT) (substituting for thymine), that stabilize PNA.DNA duplex formation by increasing hydrogen bonding and/or base pair stacking interactions have been studied by thermal denaturation in terms of thermodynamics. Although the stabilizing effect of the bT base (in contrast to that of D base) is abolished upon addition of dimethyl formamide, thereby indicating that the stabilization is predominantly due to hydrophobic stacking forces, duplex stabilization was found to be enthalpic for both nucleobases. Increased stabilization (although not fully linearly) was observed with increasing numbers of modified bases, and single base sequence discrimination was only slightly compromised, but showed significant dependence on the sequence context.
Collapse
Affiliation(s)
- Anjana Sen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
55
|
Butler RS, Cohn P, Tenzel P, Abboud KA, Castellano RK. Synthesis, Photophysical Behavior, and Electronic Structure of Push−Pull Purines. J Am Chem Soc 2008; 131:623-33. [DOI: 10.1021/ja806348z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roslyn S. Butler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Pamela Cohn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Phillip Tenzel
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Khalil A. Abboud
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| |
Collapse
|
56
|
Komiyama M, Aiba Y, Yamamoto Y, Sumaoka J. Artificial restriction DNA cutter for site-selective scission of double-stranded DNA with tunable scission site and specificity. Nat Protoc 2008; 3:655-62. [PMID: 18388948 DOI: 10.1038/nprot.2008.7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
57
|
Komiyama M, Aiba Y, Ishizuka T, Sumaoka J. Solid-phase synthesis of pseudo-complementary peptide nucleic acids. Nat Protoc 2008; 3:646-54. [PMID: 18388947 DOI: 10.1038/nprot.2008.6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudo-complementary peptide nucleic acid (pcPNA) is a DNA analog in which modified DNA bases 2,6-diaminopurine (D) and 2-thiouracil (U(s)) 'decorate' a poly[N-(2-aminoethyl)glycine] backbone, together with guanine (G) and cytosine (C). One of the most significant characteristics of pcPNA is its ability to effect double-duplex invasion of predetermined DNA sites inducing various changes in the biological and the physicochemical properties of the DNA. This protocol describes solid-phase synthesis of pcPNA. The monomers for G and C are commercially available, but the monomers for D and U(s) need to be synthesized (or can be ordered to custom synthesis companies). Otherwise, the procedure is the same as that employed for Boc-strategy synthesis of conventional PNA. This protocol, if the synthesis of D and U(s) monomers is not factored in, takes approximately 7 d to complete.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
58
|
Ishizuka T, Yoshida J, Yamamoto Y, Sumaoka J, Tedeschi T, Corradini R, Sforza S, Komiyama M. Chiral introduction of positive charges to PNA for double-duplex invasion to versatile sequences. Nucleic Acids Res 2008; 36:1464-71. [PMID: 18203747 PMCID: PMC2275137 DOI: 10.1093/nar/gkm1154] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 11/12/2022] Open
Abstract
Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this 'double-duplex invasion', a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the alpha-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly G-C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes.
Collapse
Affiliation(s)
- Takumi Ishizuka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Junya Yoshida
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Yoji Yamamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Jun Sumaoka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Tullia Tedeschi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Roberto Corradini
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Stefano Sforza
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan and Department of Organic and Industrial Chemistry, University of Parma, Viale G.P. Usberti 17/a, University Campus, Parma, I-43100 Italy
| |
Collapse
|
59
|
Ohkubo A, Kasuya R, Aoki K, Kobori A, Taguchi H, Seio K, Sekine M. Efficient synthesis of functionalized oligodeoxyribonucleotides with base-labile groups using a new silyl linker. Bioorg Med Chem 2008; 16:5345-51. [PMID: 18439833 DOI: 10.1016/j.bmc.2008.02.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/22/2008] [Accepted: 02/23/2008] [Indexed: 11/26/2022]
Abstract
In this study, we developed new 3'-terminal deoxyribonucleoside-loading reagents 1 with a new silyl-type linker. These reagents could increase the efficiency of introduction of 3'-terminal deoxyribonucleoside components into polymer supports to a level of 17-29micromol/g. The efficiency was higher than that of previous T-loading reagents because reagents 1 contain a 4-aminobutyryl residue as a spacer. Moreover, we could synthesize not only unmodified DNA oligomers but also a base-labile modified DNA oligomer using resins 9a-d in the activated phosphite method without base protection.
Collapse
Affiliation(s)
- Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology and CREST, JST (Japan Science and Technology Agency), Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Aiba Y, Yamamoto Y, Komiyama M. Activation of Double-stranded DNA by One pcPNA Strand for Its Site-selective Scission with CeIV/EDTA. CHEM LETT 2007. [DOI: 10.1246/cl.2007.780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
61
|
Yamamoto Y, Mori M, Aiba Y, Tomita T, Chen W, Zhou JM, Uehara A, Ren Y, Kitamura Y, Komiyama M. Chemical modification of Ce(IV)/EDTA-based artificial restriction DNA cutter for versatile manipulation of double-stranded DNA. Nucleic Acids Res 2007; 35:e53. [PMID: 17376805 PMCID: PMC1874645 DOI: 10.1093/nar/gkm052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A monophosphate group was attached to the terminus of pseudo-complementary peptide nucleic acid (pcPNA), and two of thus modified pcPNAs were combined with Ce(IV)/EDTA for site-selective hydrolysis of double-stranded DNA. The site-selective DNA scission was notably accelerated by this chemical modification of pcPNAs. These second-generation artificial restriction DNA cutters (ARCUTs) differentiated the target sequence so strictly that no scission occurred even when only one DNA base-pair was altered to another. By using two of the activated ARCUTs simultaneously, DNA substrate was selectively cut at two predetermined sites, and the desired fragment was clipped and cloned. The DNA scission by ARCUT was also successful even when the target site was methylated by methyltransferase and protected from the corresponding restriction enzyme. Furthermore, potentiality of ARCUT for manipulation of huge DNA has been substantiated by site-selective scission of genomic DNA of Escherichia coli (composed of 4,600,000 bp) at the target site. All these results indicate promising applications of ARCUTs for versatile purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Makoto Komiyama
- *To whom correspondence should be addressed. +81 3 5452 5200+81 3 5452 5209
| |
Collapse
|
62
|
Asadi A, Patrick BO, Perrin DM. Janus-AT bases: synthesis, self-assembly, and solid state structures. J Org Chem 2007; 72:466-75. [PMID: 17221963 DOI: 10.1021/jo061840k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high yielding synthesis of heterocycles with defined H-bond accepting and donating capabilities provides for the design of self-assembling structures and specific recognition of biological targets. Herein we report the syntheses and solid-state structures of three self-complementary uracil/thymine derivatives where each presents the standard ADA face inherently complementary to adenine and a synthetically appended DAD face complementary to uracil/thymine. These heterocycles, which have never before been reported or characterized, represent diaminopurine-uracil/thymine hybrids that, in two of the three cases, relate to previously reported heterocyclic hybrids of G and C. All three heterocycles crystallized to afford the first X-ray crystal structures of self-complementary heterocycles capable of ADA-DAD pairing. The potential use in DNA and RNA recognition are briefly discussed.
Collapse
Affiliation(s)
- Ali Asadi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T-1Z1, Canada
| | | | | |
Collapse
|
63
|
Seela F, Sirivolu V. Nucleosides and Oligonucleotides with Diynyl Side Chains: Base Pairing and Functionalization of 2′-Deoxyuridine Derivatives by the Copper(I)-Catalyzed AlkyneAzide ‘Click’ Cycloaddition. Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790055] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
64
|
Yamamoto Y, Uehara A, Watanabe A, Aburatani H, Komiyama M. Chemical-reaction-based site-selective DNA cutter for PCR-free gene manipulation. Chembiochem 2006; 7:673-7. [PMID: 16491499 DOI: 10.1002/cbic.200500402] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An artificial restriction DNA cutter (ARCUT), recently developed by the authors, was used to construct a fusion protein. The gene of WW-domain-containing oxidoreductase (WWOX) was cut by ARCUT just before its stop codon, and ligated to fuse the gene of enhanced green fluorescent protein (EGFP). The reading frames of two genes were adjusted to coincide each other. Throughout the manipulation, no PCR was employed. The fluorescent fusion protein was successfully expressed in mammalian cells, and showed entirely different subcellular localization from EGFP itself. Apparently, the DNA was kept completely intact during the manipulation. The man-made tool ARCUT has promising features for future biotechnology and molecular biology.
Collapse
Affiliation(s)
- Yoji Yamamoto
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | | | | | |
Collapse
|
65
|
Zhou P, Dragulescu-Andrasi A, Bhattacharya B, O'Keefe H, Vatta P, Hyldig-Nielsen JJ, Ly DH. Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties. Bioorg Med Chem Lett 2006; 16:4931-5. [PMID: 16809033 DOI: 10.1016/j.bmcl.2006.06.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/16/2022]
Abstract
Guanidine-based peptide nucleic acid (GPNA) monomers and oligomers containing all four natural (adenine (A), cytosine (C), guanine (G), and thymine (T)) and two unnatural (2-thiouracil (sU) and 2,6-diaminopurine (D)) nucleobases have been synthesized. Thermal denaturation study showed that GPNA oligomers containing alternate D-backbone configuration bind sequence-specifically to DNA and, when incubated with mammalian cells, localized specifically to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Peng Zhou
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Jarikote DV, Köhler O, Socher E, Seitz O. Divergent and Linear Solid-Phase Synthesis of PNA Containing Thiazole Orange as Artificial Base. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500201] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
67
|
Köhler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. Chembiochem 2005; 6:69-77. [PMID: 15584015 DOI: 10.1002/cbic.200400260] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent base analogues in DNA are versatile probes of nucleic acid-nucleic acid and nucleic acid-protein interactions. New peptide nucleic acid (PNA) based probes are described in which the intercalator dye thiazole orange (TO) serves as a base surrogate. The investigation of six TO derivatives revealed that the linker length and the conjugation site decided whether a base surrogate conveys sequence-selective DNA binding and whether fluorescence is increased or decreased upon single-mismatched hybridization. One TO derivative conferred universal PNA-DNA base pairing while maintaining duplex stability and hybridization selectivity. TO fluorescence increased up to 26-fold upon hybridization. In contrast to most other probes, in which fluorescence is invariant once hybridization had occurred, the emission of TO-containing PNA probes is attenuated when forced to intercalate next to a mismatched base pair. The specificity of DNA detection is therefore not limited by the selectivity of probe-target binding and a DNA target can be distinguished from its single-base mutant under nonstringent hybridization conditions. This property should be of advantage for real-time quantitative PCR and nucleic acid detection within living cells.
Collapse
Affiliation(s)
- Olaf Köhler
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
68
|
Nielsen PE. The many faces of PNA. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
69
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
70
|
Yamamoto Y, Uehara A, Tomita T, Komiyama M. Site-selective and hydrolytic two-strand scission of double-stranded DNA using Ce(IV)/EDTA and pseudo-complementary PNA. Nucleic Acids Res 2004; 32:e153. [PMID: 15520462 PMCID: PMC528827 DOI: 10.1093/nar/gnh151] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By combining Ce(IV)/EDTA with two pseudo-complementary peptide nucleic acids (pcPNAs), both strands in double-stranded DNA were site-selectively hydrolyzed at the target site. Either plasmid DNA (4361 bp) or its linearized form was used as the substrate. When two pcPNAs invaded into the double-stranded DNA, only the designated portion in each of the two strands was free from Watson-Crick base pairing with the counterpart DNA or the pcPNA. Upon the treatment of this invasion complex with Ce(IV)/EDTA at 37 degrees C and pH 7.0, both of these single-stranded portions were selectively hydrolyzed at the designated site, resulting in the site-selective two-strand scission of the double-stranded DNA. Furthermore, the hydrolytic scission products were successfully connected with foreign double-stranded DNA by using ligase. The potential of these artificial systems for manipulation of huge DNA has been indicated.
Collapse
Affiliation(s)
- Yoji Yamamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
71
|
Yamamoto Y, Komiyama M. Site-selective Scission of Double-stranded DNA by Combining Peptide Nucleic Acids and Ce(IV)/EDTA. CHEM LETT 2004. [DOI: 10.1246/cl.2004.920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
72
|
Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA (NEW YORK, N.Y.) 2003; 9:1034-48. [PMID: 12923253 PMCID: PMC1370469 DOI: 10.1261/rna.5103703] [Citation(s) in RCA: 652] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 06/16/2003] [Indexed: 05/18/2023]
Abstract
Various chemical modifications were created in short-interfering RNAs (siRNAs) to determine the biochemical properties required for RNA interference (RNAi). Remarkably, modifications at the 2'-position of pentose sugars in siRNAs showed the 2'-OHs were not required for RNAi, indicating that RNAi machinery does not require the 2'-OH for recognition of siRNAs and catalytic ribonuclease activity of RNA-induced silencing complexes (RISCs) does not involve the 2'-OH of guide antisense RNA. In addition, 2' modifications predicted to stabilize siRNA increased the persistence of RNAi as compared with wild-type siRNAs. RNAi was also induced with chemical modifications that stabilized interactions between A-U base pairs, demonstrating that these types of modifications may enhance mRNA targeting efficiency in allele-specific RNAi. Modifications altering the structure of the A-form major groove of antisense siRNA-mRNA duplexes abolished RNAi, suggesting that the major groove of these duplexes was required for recognition by activated RISC*. Comparative analysis of the stability and RNAi activities of chemically modified single-stranded antisense RNA and duplex siRNA suggested that some catalytic mechanism(s) other than siRNA stability were linked to RNAi efficiency. Modified or mismatched ribonucleotides incorporated at internal positions in the 5' or 3' half of the siRNA duplex, as defined by the antisense strand, indicated that the integrity of the 5' and not the 3' half of the siRNA structure was important for RNAi, highlighting the asymmetric nature of siRNA recognition for initiation of unwinding. Collectively, this study defines the mechanisms of RNAi in human cells and provides new rules for designing effective and stable siRNAs for RNAi-mediated gene-silencing applications.
Collapse
Affiliation(s)
- Ya-Lin Chiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
73
|
|
74
|
|
75
|
He J, Seela F. Propynyl groups in duplex DNA: stability of base pairs incorporating 7-substituted 8-aza-7-deazapurines or 5-substituted pyrimidines. Nucleic Acids Res 2002; 30:5485-96. [PMID: 12490717 PMCID: PMC140073 DOI: 10.1093/nar/gkf689] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligonucleotides incorporating the 7-propynyl derivatives of 8-aza-7-deaza-2'-deoxyguanosine (3b) and 8-aza-7-deaza-2'-deoxyadenosine (4b) were synthesized and their duplex stability was compared with those containing the 5-propynyl derivatives of 2'-deoxycytidine (1) and 2'-deoxyuridine (2). For this purpose phosphoramidites of the 8-aza- 7-deazapurine (pyrazolo[3,4-d]pyrimidine) nucleosides were prepared and employed in solid-phase synthesis. All propynyl nucleosides exert a positive effect on the DNA duplex stability because of the increased polarizability of the nucleobase and the hydrophobic character of the propynyl group. The propynyl residues introduced into the 7-position of the 8-aza-7-deazapurines are generally more stabilizing than those at the 5-position of the pyrimidine bases. The duplex stabilization of the propynyl derivative 4b was higher than for the bromo nucleoside 4c. The extraordinary stability of duplexes containing the 7-propynyl derivative of 8-aza-7- deazapurin-2,6-diamine (5b) is attributed to the formation of a third hydrogen bond, which is apparently not present in the base pair of the purin-2,6-diamine 2'-deoxyribonucleoside with dT.
Collapse
Affiliation(s)
- Junlin He
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | | |
Collapse
|
76
|
Nguyen A, Zhao C, Dorris D, Mazumder A. Quantitative assessment of the use of modified nucleoside triphosphates in expression profiling: differential effects on signal intensities and impacts on expression ratios. BMC Biotechnol 2002; 2:14. [PMID: 12150713 PMCID: PMC122072 DOI: 10.1186/1472-6750-2-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 07/31/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The power of DNA microarrays derives from their ability to monitor the expression levels of many genes in parallel. One of the limitations of such powerful analytical tools is the inability to detect certain transcripts in the target sample because of artifacts caused by background noise or poor hybridization kinetics. The use of base-modified analogs of nucleoside triphosphates has been shown to increase complementary duplex stability in other applications, and here we attempted to enhance microarray hybridization signal across a wide range of sequences and expression levels by incorporating these nucleotides into labeled cRNA targets. RESULTS RNA samples containing 2-aminoadenosine showed increases in signal intensity for a majority of the sequences. These results were similar, and additive, to those seen with an increase in the hybridization time. In contrast, 5-methyluridine and 5-methylcytidine decreased signal intensities. Hybridization specificity, as assessed by mismatch controls, was dependent on both target sequence and extent of substitution with the modified nucleotide. Concurrent incorporation of modified and unmodified ATP in a 1:1 ratio resulted in significantly greater numbers of above-threshold ratio calls across tissues, while preserving ratio integrity and reproducibility. CONCLUSIONS Incorporation of 2-aminoadenosine triphosphate into cRNA targets is a promising method for increasing signal detection in microarrays. Furthermore, this approach can be optimized to minimize impact on yield of amplified material and to increase the number of expression changes that can be detected.
Collapse
Affiliation(s)
- Allen Nguyen
- Motorola Life Sciences, 4088 Commercial Avenue, Northbrook, Illinois 60062, USA
| | - Connie Zhao
- Motorola Life Sciences, 4088 Commercial Avenue, Northbrook, Illinois 60062, USA
| | - David Dorris
- Motorola Life Sciences, 4088 Commercial Avenue, Northbrook, Illinois 60062, USA
| | - Abhijit Mazumder
- Motorola Life Sciences, 4088 Commercial Avenue, Northbrook, Illinois 60062, USA
| |
Collapse
|
77
|
8-Aza-7-deazapurine–pyrimidine base pairs: the contribution of 2- and 7-substituents to the stability of duplex DNA. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00406-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Demidov VV, Protozanova E, Izvolsky KI, Price C, Nielsen PE, Frank-Kamenetskii MD. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci U S A 2002; 99:5953-8. [PMID: 11972051 PMCID: PMC122883 DOI: 10.1073/pnas.092127999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Accepted: 03/06/2002] [Indexed: 11/18/2022] Open
Abstract
If adenines and thymines in two mutually complementary mixed-base peptide nucleic acid (PNA) oligomers are substituted with diaminopurines and thiouracils, respectively, so-called pseudocomplementary PNAs (pcPNAs) are created. Pairs of pcPNAs have recently demonstrated an ability to highly selectively target essentially any designated site on double-stranded DNA (dsDNA) by forming very stable PNA-DNA strand-displacement complexes via double duplex invasion (helix invasion). These properties of pcPNAs make them unique and very promising ligands capable of denying the access of DNA-binding proteins to dsDNA. To elucidate the sequence-unrestricted mechanism of sequence-specific dsDNA recognition by pcPNAs, we have studied the kinetics of formation of corresponding PNA-DNA complexes at various temperatures by the gel-shift assay. In parallel, the conditions for possible self-hybridization of pcPNA oligomers have been assayed by mixing curve (Job plot) and thermal melting experiments. The data indicate that, at physiological temperatures ( approximately 37 degrees C), the equilibrium is shifted toward the pairing of corresponding pcPNAs with each other. This finding explains a linear concentration dependence, within the submicromolar range, of the pcPNA invasion rate into dsDNA at 37 degrees C. At elevated temperatures (>50 degrees C), the rather unstable pcPNA duplexes dissociate, yielding the expected quadratic dependence for the rate of pcPNA invasion on the PNA concentration. The polycationic character of pcPNA pairs, carrying the duplicated number of protonated terminal PNA residues commonly used to increase the PNA solubility and binding affinity, also explains the self-inhibition of pcPNA invasion observed at higher PNA concentrations. Melting of pcPNA duplexes occurs with the integral transition enthalpies ranged from -235 to -280 kJ.mol(-1), contributing to an anomalously high activation energy of approximately 150 kJ.mol(-1) found for the helix invasion of pcPNAs carrying four different nucleobases. A simplified kinetic model for pcPNAs helix invasion is proposed that interprets all unusual features of pcPNAs binding to dsDNA. Our findings have important implications for rational use of pcPNAs.
Collapse
Affiliation(s)
- Vadim V Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- P E Nielsen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
80
|
Seela F, Becher G. Pyrazolo[3,4-d]pyrimidine nucleic acids: adjustment of dA-dT to dG-dC base pair stability. Nucleic Acids Res 2001; 29:2069-78. [PMID: 11353076 PMCID: PMC55453 DOI: 10.1093/nar/29.10.2069] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2001] [Revised: 03/19/2001] [Accepted: 03/19/2001] [Indexed: 11/12/2022] Open
Abstract
Oligonucleotides incorporating 8-aza-7-deazapurin-2,6-diamine (pyrazolo[3,4-d]pyrimidin-4,6-diamine) nucleoside 2a or its 7-bromo derivative 2b show enhanced duplex stability compared to those containing dA. While incorporation of 2a opposite dT increases the T(m) value only slightly, the 7-bromo compound 2b forms a very stable base pair which is as strong as the dG-dC pair. Compound 2b shows a similar base discrimination in duplex DNA as dA. The base-modified nucleosides 2a,b have a significantly more stable N-glycosylic bond than the rather labile purin-2,6-diamine 2'-deoxyribonucleoside 1. Base protection with acyl groups, with which we had difficulties in the case of purine nucleoside 1, was effective with pyrazolo[3,4-d]-pyrimidine nucleosides 2a,b. Oligonucleotides containing 2a,b were obtained by solid phase synthesis employing phosphoramidite chemistry. Compound 2b harmonizes the stability of DNA duplexes. Their stability is no longer dependent on the base pair composition while they still maintain their sequence specificity. Thus, they have the potential to reduce the number of mispairs when hybridized in solution or immobilized on arrays.
Collapse
Affiliation(s)
- F Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
81
|
Püschl A, Boesen T, Zuccarello G, Dahl O, Pitsch S, Nielsen PE. Synthesis of pyrrolidinone PNA: a novel conformationally restricted PNA analogue. J Org Chem 2001; 66:707-12. [PMID: 11430086 DOI: 10.1021/jo001000k] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To preorganize PNA for duplex formation, a new cyclic pyrrolidinone PNA analogue has been designed. In this analogue the aminoethylglycine backbone and the methylenecarbonyl linker are connected, introducing two chiral centers compared to PNA. The four stereoisomers of the adenine analogue were synthesized, and the hybridization properties of PNA decamers containing one analogue were measured against complementary DNA, RNA, and PNA strands. The (3S,5R) isomer was shown to have the highest affinity toward RNA, and to recognize RNA and PNA better than DNA. The (3S,5R) isomer was used to prepare a fully modified decamer which bound to rU10 with only a small decrease in Tm (delta Tm/mod = 1 degree C) relative to aminoethylglycine PNA.
Collapse
Affiliation(s)
- A Püschl
- Center for Biomolecular Recognition, Department for Biochemistry and Genetics, Biochemistry Laboratory B, Panum Institute, Blegdamsvej 3C, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
82
|
Demidov VV, Broude NE, Lavrentieva-Smolina IV, Kuhn H, Frank-Kamenetskii MD. An artificial primosome: design, function, and applications. Chembiochem 2001; 2:133-9. [PMID: 11828437 DOI: 10.1002/1439-7633(20010202)2:2<133::aid-cbic133>3.0.co;2-l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Double-stranded (ds) DNA is capable of the sequence-specific accommodation of an additional oligodeoxyribonucleotide strand by the peptide nucleic acid(PNA)-assisted formation of a so-called PD-loop. We demonstrate here that the PD-loop may function as an artificial primosome within linear, nonsupercoiled DNA duplexes. DNA polymerase with its strand displacement activity uses this construct to initiate the primer extension reaction at a designated dsDNA site. The primer is extended by several hundred nucleotides. The efficiency of dsDNA priming by the artificial primosome assembly is comparable to the single-stranded DNA priming used in various assays. The ability of the PD-loop structure to perform like an artificial primosome on linear dsDNA may find applications in biochemistry, molecular biology, and molecular biotechnology, as well as for DNA diagnostics. In particular, multiple labels can be incorporated into a chosen dsDNA site resulting in ultrasensitive direct quantification of specific sequences. Furthermore, nondenaturing dsDNA sequencing proceeds from the PD-loop. This approach opens the way to direct isothermal reading of the DNA sequence against a background of unrelated DNA, thereby eliminating the need for purification of the target DNA.
Collapse
Affiliation(s)
- V V Demidov
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
83
|
Demidov VV, Frank-Kamenetskii MD. Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods 2001; 23:108-22. [PMID: 11181030 DOI: 10.1006/meth.2000.1112] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because of a set of exceptional chemical, physical, and biological properties, polyamide or peptide nucleic acids (PNAs) hold a distinctive position among various synthetic ligands designed for DNA-targeting purposes. Cationic pyrimidine PNAs (cpyPNAs) represent a special group of PNAs, which effectively form strand invasion triplexes with double-stranded DNA (dsDNA) also known as P-loops. Extraordinary stability of the invasion triplexes and high sequence specificity of their formation combined with local opening of the DNA double helix within the P-loops make these complexes very attractive for sequence-specific manipulation with dsDNA. Important for applications is the fact that the discrimination between correct and mismatched binding sites in dsDNA by cpyPNAs is a nonequilibrium, kinetically controlled process. Therefore, a careful choice of experimental conditions that are optimal for the kinetic discrimination of correct versus mismatched cpyPNA binding is crucial for sequence-specific recognition of dsDNA by cpyPNAs. The experimental and theoretical data presented make it possible to select those solution parameters and cpyPNA constructions that are most favorable for sequence specificity without compromising the affinity of dsDNA targeting.
Collapse
Affiliation(s)
- V V Demidov
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
84
|
Pedireddi VR, Ranganathan A, Ganesh KN. Cyanurate mimics of hydrogen-bonding patterns of nucleic bases: crystal structure of a 1:1 molecular complex of 9-ethyladenine and N-methylcyanuric acid. Org Lett 2001; 3:99-102. [PMID: 11429883 DOI: 10.1021/ol006811p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[figure: see text] 9-Ethyladenine forms a unique molecular complex with N-methylcyanuric acid consisting of homomeric and heteromeric hydrogen-bonding patterns. Also, the homomeric hydrogen bond pattern is different than that observed in its pure crystal structures.
Collapse
Affiliation(s)
- V R Pedireddi
- Division of Organic Chemistry, National Chemical Laboratory, Pune 411008, India.
| | | | | |
Collapse
|
85
|
Püschl A, Boesen T, Tedeschi T, Dahl O, Nielsen PE. Synthesis of (3R,6R)- and (3S,6R)-piperidinone PNA. ACTA ACUST UNITED AC 2001. [DOI: 10.1039/b103901f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Abstract
[structure: see text] The chemical synthesis and crystal structure of the peptide nucleic acid (PNA) monomer 11 having cyanuric acid as the nucleobase is reported. The crystal structure of 11 shows molecular tapes arising from continuous intermolecular dimeric hydrogen bonding, with successive tapes held by single hydrogen bonds in the backbone.
Collapse
Affiliation(s)
- G J Sanjayan
- Division of Organic chemistry (Synthesis), National Chemical Laboratory, Pune 411008, India
| | | | | |
Collapse
|
87
|
Heteroaromatic Modules for Self-Assembly Using Multiple Hydrogen Bonds. MOLECULAR SELF-ASSEMBLY ORGANIC VERSUS INORGANIC APPROACHES 2000. [DOI: 10.1007/3-540-46591-x_3] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
88
|
Lohse J, Dahl O, Nielsen PE. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci U S A 1999; 96:11804-8. [PMID: 10518531 PMCID: PMC18367 DOI: 10.1073/pnas.96.21.11804] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudocomplementary PNAs containing diaminopurine.thiouracil base pairs have been prepared and are shown to bind with high specificity and efficiency to complementary targets in double-stranded DNA by a mechanism termed "double duplex invasion" in which the duplex is unwound and both DNA strands are targeted simultaneously, each by one of the two pseudocomplementary peptide nucleic acids (PNAs). On the basis of our results we predict that (for decameric targets) more than 80% of all sequences can be targeted by straightforward Watson-Crick base pairing by using this approach in its present form. Targeting of pseudocomplementary PNAs to the promoter of the T7 phage RNA polymerase effectively inhibits transcription initiation. These results have important implications in the development of gene therapeutic agents as well as for genetic diagnostic and molecular biology applications.
Collapse
Affiliation(s)
- J Lohse
- Center for Biomolecular Recognition, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark
| | | | | |
Collapse
|
89
|
Affiliation(s)
- Peter E. Nielsen
- Center for Biomolecular Recognition, Department of Medical Biochemistry & Genetics, Biochemical Laboratory B, The Panum Institute, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| |
Collapse
|
90
|
Peptide nucleic acids. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1874-5113(99)80009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|