51
|
Luo Z, Janssen BJ, Snowden KC. The molecular and genetic regulation of shoot branching. PLANT PHYSIOLOGY 2021; 187:1033-1044. [PMID: 33616657 PMCID: PMC8566252 DOI: 10.1093/plphys/kiab071] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 05/27/2023]
Abstract
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
52
|
Rehman NU, Li X, Zeng P, Guo S, Jan S, Liu Y, Huang Y, Xie Q. Harmony but Not Uniformity: Role of Strigolactone in Plants. Biomolecules 2021; 11:1616. [PMID: 34827614 PMCID: PMC8615677 DOI: 10.3390/biom11111616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional roles in plants and rhizosphere interactions, which stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. SLs have been broadly implicated in regulating root growth, shoot architecture, leaf senescence, nodulation, and legume-symbionts interaction, as well as a response to various external stimuli, such as abiotic and biotic stresses. These functional properties of SLs enable the genetic engineering of crop plants to improve crop yield and productivity. In this review, the conservation and divergence of SL pathways and its biological processes in multiple plant species have been extensively discussed with a particular emphasis on its interactions with other different phytohormones. These interactions may shed further light on the regulatory networks underlying plant growth, development, and stress responses, ultimately providing certain strategies for promoting crop yield and productivity with the challenges of global climate and environmental changes.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saad Jan
- Agriculture Department, Entomology Section Bacha Khan University, Charsadda 24420, Pakistan;
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
53
|
Andrew-Peter-Leon MT, Selvaraj R, Kumar KK, Muthamilarasan M, Yasin JK, Pillai MA. Loss of Function of OsFBX267 and OsGA20ox2 in Rice Promotes Early Maturing and Semi-Dwarfism in γ-Irradiated IWP and Genome-Edited Pusa Basmati-1. FRONTIERS IN PLANT SCIENCE 2021; 12:714066. [PMID: 34630462 PMCID: PMC8494130 DOI: 10.3389/fpls.2021.714066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/19/2021] [Indexed: 05/25/2023]
Abstract
Targeted mutagenesis is now becoming the most favored methodology to improve traits in popular rice cultivars selectively. Understanding the genetic basis of already available mutants could be the first step in designing such experiment. Improved White Ponni (IWP), a popularly grown South Indian rice variety, was subjected to γ irradiation to develop WP-22-2, an M6 line superior in semi-dwarfism, early flowering, and high yield, and it has grain qualities similar to those of IWP. The exogenous application of gibberellic acid (GA3) on WP-22-2 resulted in the elongation of shorter internodes to a level similar to IWP. The expression profiling of six genes regulating plant height showed their differential expression pattern at different time points post GA3 treatment. Furthermore, the sequencing of WP-22-2 and IWP genomes revealed several single nucleotide polymorphisms (SNPs) and large-scale deletions in WP-22-2. The conversion of functional codons to stop codons was observed in OsGA20ox2 and OsFBX267, which have been reported to have roles in regulating semi-dwarfism and early flowering, respectively. The loss of function of OsGA20ox2 and OsFBX267 in WP-22-2 resulted in reduced plant height as well as early flowering, and the same has been confirmed by editing OsGA20ox2 in the rice variety Pusa Basmati1 (PB1) using the CRISPR-Cas9 approach. The targeted editing of OsGA20ox2 in PB1 conferred shorter plant height to the edited lines compared with the wild type. Altogether, the study provides evidence on mutating OsGA20ox2 and OsFBX267 genes to develop early maturing and semi-dwarf varieties that can be released to farmers after functional characterization and field trials.
Collapse
Affiliation(s)
- M. T. Andrew-Peter-Leon
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Tuticorin, India
| | - Ramchander Selvaraj
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Tuticorin, India
| | - K. K. Kumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Tuticorin, India
| |
Collapse
|
54
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
55
|
Mizuno Y, Komatsu A, Shimazaki S, Naramoto S, Inoue K, Xie X, Ishizaki K, Kohchi T, Kyozuka J. Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha. THE PLANT CELL 2021; 33:2395-2411. [PMID: 33839776 PMCID: PMC8364241 DOI: 10.1093/plcell/koab106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.
Collapse
Affiliation(s)
- Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
- Author for correspondence:
| |
Collapse
|
56
|
Mostofa MG, Rahman MM, Nguyen KH, Li W, Watanabe Y, Tran CD, Zhang M, Itouga M, Fujita M, Tran LSP. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125589. [PMID: 34088170 DOI: 10.1016/j.jhazmat.2021.125589] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 05/23/2023]
Abstract
We explored genetic evidence for strigolactones' role in rice tolerance to arsenate-stress. Comparative analyses of roots of wild-type (WT) and strigolactone-deficient mutants d10 and d17 in response to sodium arsenate (Na2AsO4) revealed differential growth inhibition [WT (11.28%) vs. d10 (19.76%) and d17 (18.03%)], biomass reduction [(WT (33.65%) vs. d10 (74.86%) and d17 (60.65%)] and membrane damage (WT < d10 and d17) at 250 μM Na2AsO4. Microscopic and biochemical analyses showed that roots of WT accumulated lower levels of arsenic and oxidative stress indicators like reactive oxygen species and malondialdehyde than those of strigolactone-deficient mutants. qRT-PCR data indicated lower expression levels of genes (OsPT1, OsPT2, OsPT4 and OsPT8) encoding phosphate-transporters in WT roots than mutant roots, explaining the decreased arsenate and phosphate uptake by WT roots. Increased levels of glutathione and OsPCS1 and OsABCC1 transcripts indicated an efficient vacuolar-sequestration of arsenic in WT roots. Furthermore, higher activities (transcript levels) of SOD (OsCuZnSOD1 and OsCuZnSOD2), APX (OsAPX1 and OsAPX2) and CAT (OsCATA) corresponded to lower oxidative damage in WT roots compared with strigolactone-mutant roots. Collectively, these results highlight that strigolactones are involved in arsenic-stress mitigation by regulating arsenate-uptake, glutathione-biosynthesis, vacuolar-sequestration of arsenic and antioxidant defense responses in rice roots.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong St., Ha noi 100000, Vietnam.
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Minghui Zhang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China.
| | - Misao Itouga
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Kanagawa 230-0045, Japan; Japan Moss Factory Co., Ltd., WRIP408, 2-3-13, Minami, Wako, Saitama 351-0104, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock 79409, TX, USA.
| |
Collapse
|
57
|
Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia MD, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. THE NEW PHYTOLOGIST 2021; 231:1088-1104. [PMID: 33909299 DOI: 10.1111/nph.17427] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/18/2021] [Indexed: 05/08/2023]
Abstract
Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.
Collapse
Affiliation(s)
- Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | | | - Mathieu Caradeuc
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - José Le Gourrierec
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Soulaiman Sakr
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université Angers, Angers, 49000, France
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
58
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
59
|
Bolortuya B, Kawabata S, Yamagami A, Davaapurev BO, Takahashi F, Inoue K, Kanatani A, Mochida K, Kumazawa M, Ifuku K, Jigjidsuren S, Battogtokh T, Udval G, Shinozaki K, Asami T, Batkhuu J, Nakano T. Transcriptome Analysis of Chloris virgata, Which Shows the Fastest Germination and Growth in the Major Mongolian Grassland Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:684987. [PMID: 34262584 PMCID: PMC8275185 DOI: 10.3389/fpls.2021.684987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Plants in Mongolian grasslands are exposed to short, dry summers and long, cold winters. These plants should be prepared for fast germination and growth activity in response to the limited summer rainfall. The wild plant species adapted to the Mongolian grassland environment may allow us to explore useful genes, as a source of unique genetic codes for crop improvement. Here, we identified the Chloris virgata Dornogovi accession as the fastest germinating plant in major Mongolian grassland plants. It germinated just 5 h after treatment for germination initiation and showed rapid growth, especially in its early and young development stages. This indicates its high growth potential compared to grass crops such as rice and wheat. By assessing growth recovery after animal bite treatment (mimicked by cutting the leaves with scissors), we found that C. virgata could rapidly regenerate leaves after being damaged, suggesting high regeneration potential against grazing. To analyze the regulatory mechanism involved in the high growth potential of C. virgata, we performed RNA-seq-based transcriptome analysis and illustrated a comprehensive gene expression map of the species. Through de novo transcriptome assembly with the RNA-seq reads from whole organ samples of C. virgata at the germination stage (2 days after germination, DAG), early young development stage (8 DAG), young development stage (17 DAG), and adult development stage (28 DAG), we identified 21,589 unified transcripts (contigs) and found that 19,346 and 18,156 protein-coding transcripts were homologous to those in rice and Arabidopsis, respectively. The best-aligned sequences were annotated with gene ontology groups. When comparing the transcriptomes across developmental stages, we found an over-representation of genes involved in growth regulation in the early development stage in C. virgata. Plant development is tightly regulated by phytohormones such as brassinosteroids, gibberellic acid, abscisic acid, and strigolactones. Moreover, our transcriptome map demonstrated the expression profiles of orthologs involved in the biosynthesis of these phytohormones and their signaling networks. We discuss the possibility that C. virgata phytohormone signaling and biosynthesis genes regulate early germination and growth advantages. Comprehensive transcriptome information will provide a useful resource for gene discovery and facilitate a deeper understanding of the diversity of the regulatory systems that have evolved in C. virgata while adapting to severe environmental conditions.
Collapse
Affiliation(s)
- Byambajav Bolortuya
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | | | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Asaka Kanatani
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sodnomdarjaa Jigjidsuren
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Tugsjargal Battogtokh
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Gombosuren Udval
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
60
|
Mapping QTLs for yield component traits using overwintering cultivated rice. J Genet 2021. [DOI: 10.1007/s12041-021-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
61
|
Zhang S, Zhu L, Shen C, Ji Z, Zhang H, Zhang T, Li Y, Yu J, Yang N, He Y, Tian Y, Wu K, Wu J, Harberd NP, Zhao Y, Fu X, Wang S, Li S. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. THE PLANT CELL 2021; 33:566-580. [PMID: 33955496 PMCID: PMC8136903 DOI: 10.1093/plcell/koaa037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 05/03/2023]
Abstract
The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Limei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengbo Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Ji
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Haipeng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Zhang
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Yu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510640, China
- Author for correspondence: ,
| | - Shan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Author for correspondence: ,
| |
Collapse
|
62
|
Jiang J, Yang G, Xin Y, Wang Z, Yan W, Chen Z, Tang X, Xia J. Overexpression of OsMed16 Inhibits the Growth of Rice and Causes Spontaneous Cell Death. Genes (Basel) 2021; 12:genes12050656. [PMID: 33925652 PMCID: PMC8145620 DOI: 10.3390/genes12050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
The Mediator complex transduces information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. Research on plant Mediator subunits has primarily been performed in Arabidopsis, while very few of them have been functionally characterized in rice. In this study, the rice Mediator subunit 16, OsMed16, was examined. OsMed16 encodes a putative protein of 1301 amino acids, which is longer than the version previously reported. It was expressed in various rice organs and localized to the nucleus. The knockout of OsMed16 resulted in rice seedling lethality. Its overexpression led to the retardation of rice growth, low yield, and spontaneous cell death in the leaf blade and sheath. RNA sequencing suggested that the overexpression of OsMed16 altered the expression of a large number of genes. Among them, the upregulation of some defense-related genes was verified. OsMed16 can regulate the expression of a wealth of genes, and alterations in its expression have a profound impact on plant growth, development, and defense responses in rice.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (J.J.); (G.Y.); (Y.X.); (Z.W.)
| | - Guangzhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (J.J.); (G.Y.); (Y.X.); (Z.W.)
| | - Yafeng Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (J.J.); (G.Y.); (Y.X.); (Z.W.)
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (J.J.); (G.Y.); (Y.X.); (Z.W.)
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China;
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China;
- Shenzhen Agricultural Technology Promotion Center, Shenzhen 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China;
- Correspondence: (X.T.); (J.X.)
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (J.J.); (G.Y.); (Y.X.); (Z.W.)
- Correspondence: (X.T.); (J.X.)
| |
Collapse
|
63
|
Wang Y, Yao R, Du X, Guo L, Chen L, Xie D, Smith SM. Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga. PLANT PHYSIOLOGY 2021; 185:1411-1428. [PMID: 33793945 PMCID: PMC8133601 DOI: 10.1093/plphys/kiaa048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/11/2020] [Indexed: 05/30/2023]
Abstract
Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
Collapse
Affiliation(s)
- Yupei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxi Du
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lvjun Guo
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Steven M Smith
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
64
|
Bouwmeester H, Li C, Thiombiano B, Rahimi M, Dong L. Adaptation of the parasitic plant lifecycle: germination is controlled by essential host signaling molecules. PLANT PHYSIOLOGY 2021; 185:1292-1308. [PMID: 33793901 PMCID: PMC8133609 DOI: 10.1093/plphys/kiaa066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 05/25/2023]
Abstract
Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.
Collapse
Affiliation(s)
- Harro Bouwmeester
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Changsheng Li
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Benjamin Thiombiano
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology group, Green Life Sciences cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
65
|
M. T. APL, Ramchander S, K. K. K, Muthamilarasan M, Pillai MA. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS One 2021; 16:e0245603. [PMID: 33449977 PMCID: PMC7810314 DOI: 10.1371/journal.pone.0245603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction of semi-dwarfism and early maturity in rice cultivars is important to achieve improved plant architecture, lodging resistance and high yield. Gamma rays induced mutations are routinely used to achieve these traits. We report the development of a semi-dwarf, early maturing and high-yielding mutant of rice cultivar ‘Improved White Ponni’, a popular cosmopolitan variety in south India preferred for its superior grain quality traits. Through gamma rays induced mutagenesis, several mutants were developed and subjected to selection up to six generations (M6) until the superior mutants were stabilized. In the M6 generation, significant reduction in days to flowering (up to 11.81% reduction) and plant height (up to 40% reduction) combined with an increase in single plant yield (up to 45.73% increase) was observed in the mutant population. The cooking quality traits viz., linear elongation ratio, breadthwise expansion ratio, gel consistency and gelatinization temperature of the mutants were similar to the parent variety Improved White Ponni. The genetic characterization with SSR markers showed variability between the semi-dwarf-early mutants and the Improved White Ponni. Gibberellin responsiveness study and quantitative real-time PCR showed a faulty gibberellin pathway and epistatic control between the genes such as OsKOL4 and OsBRD2 causing semi-dwarfism in a mutant. These mutants have potential as new rice varieties and can be used as new sources of semi-dwarfism and earliness for improving high grain quality rice varieties.
Collapse
Affiliation(s)
- Andrew-Peter-Leon M. T.
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, Tamil Nadu, India
| | - S. Ramchander
- Visiting Scientist (SERB–National Post-Doctoral Fellow), IRRI-South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Kumar K. K.
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - M. Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
66
|
Yu J, Xuan W, Tian Y, Fan L, Sun J, Tang W, Chen G, Wang B, Liu Y, Wu W, Liu X, Jiang X, Zhou C, Dai Z, Xu D, Wang C, Wan J. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:167-176. [PMID: 32710800 PMCID: PMC7769241 DOI: 10.1111/pbi.13450] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 05/06/2023]
Abstract
Increased use of nitrogen fertilizers has deleterious impact on the environment. Increase in yield potential at low nitrogen supply is regarded as a cereal breeding goal for future agricultural sustainability. Although natural variations of nitrogen transporters have been investigated, key genes associated with assimilation remain largely unexplored for nitrogen use efficiency (NUE) enhancement. Here, we identified a NIN-like protein NLP4 associated with NUE through a GWAS in rice. We found that OsNLP4 transactivated OsNiR encoding nitrite reductase that was critical in nitrogen assimilation in rice. We further constructed quadrupling NREs (Nitrate-responsive cis-elements) in the promoter of OsNiR (p4xNRE:OsNiR) and enhanced nitrogen assimilation significantly. We demonstrated that OsNLP4-OsNiR increased tiller number and yield through enhancing nitrogen assimilation and NUE. Our discovery highlights the genetic modulation of OsNLP4-OsNiR signalling cascade as a strategy for high NUE and yield breeding in rice.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze RiverNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Lei Fan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Juan Sun
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsu ProvinceChina
| | - Yan Liu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsu ProvinceChina
| | - Wei Wu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Cong Zhou
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Dayong Xu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsu ProvinceChina
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid‐lower Yangtze RiverMinistry of AgricultureJiangsu Plant Gene Engineering Research CentreNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
67
|
Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith SM, Chu J, Wang Y, Li J, Wang B. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. MOLECULAR PLANT 2020; 13:1784-1801. [PMID: 33038484 DOI: 10.1016/j.molp.2020.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/06/2020] [Accepted: 10/03/2020] [Indexed: 05/18/2023]
Abstract
Rice tillering is an important agronomic trait affecting grain yield. Here, we identified a high-tillering mutant tillering20 (t20), which could be restored to the wild type by treatment with the strigolactone (SL) analog rac-GR24. T20 encodes a chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites, SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering. We discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-β-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Fang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yonghong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
68
|
Carbonnel S, Torabi S, Griesmann M, Bleek E, Tang Y, Buchka S, Basso V, Shindo M, Boyer FD, Wang TL, Udvardi M, Waters MT, Gutjahr C. Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genet 2020; 16:e1009249. [PMID: 33370251 PMCID: PMC7808659 DOI: 10.1371/journal.pgen.1009249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/14/2021] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Karrikins (KARs), smoke-derived butenolides, are perceived by the α/β-fold hydrolase KARRIKIN INSENSITIVE2 (KAI2) and thought to mimic endogenous, yet elusive plant hormones tentatively called KAI2-ligands (KLs). The sensitivity to different karrikin types as well as the number of KAI2 paralogs varies among plant species, suggesting diversification and co-evolution of ligand-receptor relationships. We found that the genomes of legumes, comprising a number of important crops with protein-rich, nutritious seed, contain two or more KAI2 copies. We uncover sub-functionalization of the two KAI2 versions in the model legume Lotus japonicus and demonstrate differences in their ability to bind the synthetic ligand GR24ent-5DS in vitro and in genetic assays with Lotus japonicus and the heterologous Arabidopsis thaliana background. These differences can be explained by the exchange of a widely conserved phenylalanine in the binding pocket of KAI2a with a tryptophan in KAI2b, which arose independently in KAI2 proteins of several unrelated angiosperms. Furthermore, two polymorphic residues in the binding pocket are conserved across a number of legumes and may contribute to ligand binding preferences. The diversification of KAI2 binding pockets suggests the occurrence of several different KLs acting in non-fire following plants, or an escape from possible antagonistic exogenous molecules. Unexpectedly, L. japonicus responds to diverse synthetic KAI2-ligands in an organ-specific manner. Hypocotyl growth responds to KAR1, KAR2 and rac-GR24, while root system development responds only to KAR1. This differential responsiveness cannot be explained by receptor-ligand preferences alone, because LjKAI2a is sufficient for karrikin responses in the hypocotyl, while LjKAI2a and LjKAI2b operate redundantly in roots. Instead, it likely reflects differences between plant organs in their ability to transport or metabolise the synthetic KLs. Our findings provide new insights into the evolution and diversity of butenolide ligand-receptor relationships, and open novel research avenues into their ecological significance and the mechanisms controlling developmental responses to divergent KLs.
Collapse
Affiliation(s)
- Samy Carbonnel
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
- Technical University of Munich (TUM), TUM School of Life Sciences, Plant Genetics, Freising, Germany
| | - Salar Torabi
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
- Technical University of Munich (TUM), TUM School of Life Sciences, Plant Genetics, Freising, Germany
| | - Maximilian Griesmann
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
| | - Elias Bleek
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
| | - Yuhong Tang
- Noble Research Institute, Ardmore, Oklahoma, United States of America
| | - Stefan Buchka
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
| | - Veronica Basso
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka, Japan
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Trevor L. Wang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Michael Udvardi
- Noble Research Institute, Ardmore, Oklahoma, United States of America
| | - Mark T. Waters
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Caroline Gutjahr
- LMU Munich, Faculty of Biology, Genetics, Biocenter Martinsried, Martinsried, Germany
- Technical University of Munich (TUM), TUM School of Life Sciences, Plant Genetics, Freising, Germany
| |
Collapse
|
69
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
70
|
Hong SY, Sun B, Straub D, Blaakmeer A, Mineri L, Koch J, Brinch-Pedersen H, Holme IB, Burow M, Lyngs Jørgensen HJ, Albà MM, Wenkel S. Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling. Proc Natl Acad Sci U S A 2020; 117:26197-26205. [PMID: 33033229 PMCID: PMC7584889 DOI: 10.1073/pnas.2005198117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroProteins are small, often single-domain proteins that are sequence-related to larger, often multidomain proteins. Here, we used a combination of comparative genomics and heterologous synthetic misexpression to isolate functional cereal microProtein regulators. Our approach identified LITTLE NINJA (LNJ), a microProtein that acts as a modulator of jasmonic acid (JA) signaling. Ectopic expression of LNJ in Arabidopsis resulted in stunted plants that resembled the decuple JAZ (jazD) mutant. In fact, comparing the transcriptomes of transgenic LNJ overexpressor plants and jazD revealed a large overlap of deregulated genes, suggesting that ectopic LNJ expression altered JA signaling. Transgenic Brachypodium plants with elevated LNJ expression levels showed deregulation of JA signaling as well and displayed reduced growth and enhanced production of side shoots (tiller). This tillering effect was transferable between grass species, and overexpression of LNJ in barley and rice caused similar traits. We used a clustered regularly interspaced short palindromic repeats (CRISPR) approach and created a LNJ-like protein in Arabidopsis by deleting parts of the coding sentence of the AFP2 gene that encodes a NINJA-domain protein. These afp2-crispr mutants were also stunted in size and resembled jazD Thus, similar genome-engineering approaches can be exploited as a future tool to create LNJ proteins and produce cereals with altered architectures.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lorenzo Mineri
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Jonas Koch
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Henrik Brinch-Pedersen
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Inger B Holme
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- DynaMo Centre of Excellence, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08003 Barcelona, Spain
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
71
|
Kulkarni SR, Balachandran SM, Ulaganathan K, Balakrishnan D, Praveen M, Prasad ASH, Fiyaz RA, Senguttuvel P, Sinha P, Kale RR, Rekha G, Kousik MBVN, Harika G, Anila M, Punniakoti E, Dilip T, Hajira SK, Pranathi K, Das MA, Shaik M, Chaitra K, Rao PK, Gangurde SS, Pandey MK, Sundaram RM. Molecular mapping of QTLs for yield related traits in recombinant inbred line (RIL) population derived from the popular rice hybrid KRH-2 and their validation through SNP genotyping. Sci Rep 2020; 10:13695. [PMID: 32792551 PMCID: PMC7427098 DOI: 10.1038/s41598-020-70637-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
The study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23–22.76% of the phenotypic variance with LOD scores range of 6.5–10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybrids.
Collapse
Affiliation(s)
- Swapnil Ravindra Kulkarni
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - S M Balachandran
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India.
| | - K Ulaganathan
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, India
| | - Divya Balakrishnan
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Praveen
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - A S Hari Prasad
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - R A Fiyaz
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - P Senguttuvel
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Pragya Sinha
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Ravindra R Kale
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - G Rekha
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M B V N Kousik
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - G Harika
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Anila
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - E Punniakoti
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - T Dilip
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - S K Hajira
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - K Pranathi
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - M Ayyappa Das
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Mastanbee Shaik
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - K Chaitra
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - P Koteswara Rao
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - R M Sundaram
- Crop Improvement Section, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
72
|
Xu X, Feng G, Liang Y, Shuai Y, Liu Q, Nie G, Yang Z, Hang L, Zhang X. Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2020; 20:369. [PMID: 32758131 PMCID: PMC7409468 DOI: 10.1186/s12870-020-02582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
Collapse
Affiliation(s)
- Xiaoheng Xu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Shuai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxu Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Hang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
73
|
Wen YJ, Zhang YW, Zhang J, Feng JY, Dunwell JM, Zhang YM. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform 2020; 20:1913-1924. [PMID: 30032279 PMCID: PMC6917223 DOI: 10.1093/bib/bby058] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
In the genetic system that regulates complex traits, metabolites, gene expression levels, RNA editing levels and DNA methylation, a series of small and linked genes exist. To date, however, little is known about how to design an efficient framework for the detection of these kinds of genes. In this article, we propose a genome-wide composite interval mapping (GCIM) in F2. First, controlling polygenic background via selecting markers in the genome scanning of linkage analysis was replaced by estimating polygenic variance in a genome-wide association study. This can control large, middle and minor polygenic backgrounds in genome scanning. Then, additive and dominant effects for each putative quantitative trait locus (QTL) were separately scanned so that a negative logarithm P-value curve against genome position could be separately obtained for each kind of effect. In each curve, all the peaks were identified as potential QTLs. Thus, almost all the small-effect and linked QTLs are included in a multi-locus model. Finally, adaptive least absolute shrinkage and selection operator (adaptive lasso) was used to estimate all the effects in the multi-locus model, and all the nonzero effects were further identified by likelihood ratio test for true QTL identification. This method was used to reanalyze four rice traits. Among 25 known genes detected in this study, 16 small-effect genes were identified only by GCIM. To further demonstrate GCIM, a series of Monte Carlo simulation experiments was performed. As a result, GCIM is demonstrated to be more powerful than the widely used methods for the detection of closely linked and small-effect QTLs.
Collapse
Affiliation(s)
- Yang-Jun Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ya-Wen Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ying Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
74
|
Guo S, Zhang X, Bai Q, Zhao W, Fang Y, Zhou S, Zhao B, He L, Chen J. Cloning and Functional Analysis of Dwarf Gene Mini Plant 1 ( MNP1) in Medicago truncatula. Int J Mol Sci 2020; 21:E4968. [PMID: 32674471 PMCID: PMC7404263 DOI: 10.3390/ijms21144968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant 1 (mnp1) of the model legume plant Medicago truncatula. Our study found that both cell length and the cell number of internodes were reduced in a mnp1 mutant. Using the forward genetic screening and subsequent whole-genome resequencing approach, we cloned the MNP1 gene and found that it encodes a putative copalyl diphosphate synthase (CPS) implicated in the first step of gibberellin (GA) biosynthesis. MNP1 was highly homologous to Pisum sativum LS. The subcellular localization showed that MNP1 was located in the chloroplast. Further analysis indicated that GA3 could significantly restore the plant height of mnp1-1, and expression of MNP1 in a cps1 mutant of Arabidopsis partially rescued its mini-plant phenotype, indicating the conservation function of MNP1 in GA biosynthesis. Our results provide valuable information for understanding the genetic regulation of plant height in M. truncatula.
Collapse
Affiliation(s)
- Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuegenwang Fang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| |
Collapse
|
75
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
76
|
Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y. Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. MOLECULAR PLANT 2020; 13:851-863. [PMID: 32087371 DOI: 10.1016/j.molp.2020.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 05/24/2023]
Abstract
Tillering is a major determinant of rice plant architecture and grain yield. Here, we report that depletion of rice OsNRPD1a and OsNRPD1b, two orthologs of the largest subunit of RNA polymerase IV, leads to a high-tillering phenotype, in addition to dwarfism and smaller panicles. OsNRPD1a and OsNRPD1b are required for the production of 24-nt small interfering RNAs that direct DNA methylation at transposable elements (TEs) including miniature inverted-repeat TEs (MITEs). Interestingly, many genes are regulated either positively or negatively by TE methylation. Among them, OsMIR156d and OsMIR156j, which promote rice tillering, are repressed by CHH methylation at two MITEs in the promoters. By contrast, D14, which suppresses rice tillering, is activated by CHH methylation at an MITE in its downstream. Our findings reveal regulation of rice tillering by RNA-directed DNA methylation at MITEs and provide potential targets for agronomic trait enhancement through epigenome editing.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kun Yuan
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiangbing Meng
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Li
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
77
|
Wang Y, Shang L, Yu H, Zeng L, Hu J, Ni S, Rao Y, Li S, Chu J, Meng X, Wang L, Hu P, Yan J, Kang S, Qu M, Lin H, Wang T, Wang Q, Hu X, Chen H, Wang B, Gao Z, Guo L, Zeng D, Zhu X, Xiong G, Li J, Qian Q. A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice. MOLECULAR PLANT 2020; 13:923-932. [PMID: 32222483 DOI: 10.1016/j.molp.2020.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/04/2023]
Abstract
Plant architecture is a complex agronomic trait and a major factor of crop yield, which is affected by several important hormones. Strigolactones (SLs) are identified as a new class hormoneinhibiting branching in many plant species and have been shown to be involved in various developmental processes. Genetical and chemical modulation of the SL pathway is recognized as a promising approach to modify plant architecture. However, whether and how the genes involved in the SL pathway could be utilized in breeding still remain elusive. Here, we demonstrate that a partial loss-of-function allele of the SL biosynthesis gene, HIGH TILLERING AND DWARF 1/DWARF17 (HTD1/D17), which encodes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), increases tiller number and improves grain yield in rice. We found that the HTD1 gene had been widely utilized and co-selected with Semidwarf 1 (SD1), both contributing to the improvement of plant architecture in modern rice varieties since the Green Revolution in the 1960s. Understanding how phytohormone pathway genes regulate plant architecture and how they have been utilized and selected in breeding will lay the foundation for developing the rational approaches toward improving crop yield.
Collapse
Affiliation(s)
- Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longjun Zeng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shen Ni
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ping Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Kang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Minghao Qu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongqi Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guosheng Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
78
|
Yin P, Ma Q, Wang H, Feng D, Wang X, Pei Y, Wen J, Tadege M, Niu L, Lin H. SMALL LEAF AND BUSHY1 controls organ size and lateral branching by modulating the stability of BIG SEEDS1 in Medicago truncatula. THE NEW PHYTOLOGIST 2020; 226:1399-1412. [PMID: 31981419 PMCID: PMC7317789 DOI: 10.1111/nph.16449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Organ size is a major agronomic trait that determines grain yield and biomass production in crops. However, the molecular mechanisms controlling organ size, especially in legumes, are poorly understood. Using forward genetic approaches in a Tnt1 insertion mutant population of the model legume Medicago truncatula, we identified SMALL LEAF AND BUSHY1 (SLB1), which is required for the control of organ size and lateral branching. Loss of function of SLB1 led to reduced leaf and flower size but increased lateral branch formation in M. truncatula. SLB1 encodes an F-box protein, an orthologue of Arabidopsis thaliana STERILE APETALA (SAP), that forms part of an SKP1/Cullin/F-box E3 ubiquitin ligase complex. Biochemical and genetic analyses revealed that SLB1 controls M. truncatula organ growth and lateral branching by modulating the stability of BIG SEEDS1 (BS1). Moreover, the overexpression of SLB1 increased seed and leaf size in both M. truncatula and soybean (Glycine max), indicating functional conservation. Our findings revealed a novel mechanism by which SLB1 targets BS1 for degradation to regulate M. truncatula organ size and shoot branching, providing a new genetic tool for increasing seed yield and biomass production in crop and forage legumes.
Collapse
Affiliation(s)
- Pengcheng Yin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Qingxia Ma
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- College of Life ScienceShanxi UniversityTaiyuan030006China
| | - Hui Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
- Department of Plant and Soil SciencesInstitute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Dan Feng
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xianbing Wang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yanxi Pei
- College of Life ScienceShanxi UniversityTaiyuan030006China
| | - Jiangqi Wen
- Noble Research Institute, LLCArdmoreOK73401USA
| | - Million Tadege
- Department of Plant and Soil SciencesInstitute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Lifang Niu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Hao Lin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
79
|
Morales KY, Singh N, Perez FA, Ignacio JC, Thapa R, Arbelaez JD, Tabien RE, Famoso A, Wang DR, Septiningsih EM, Shi Y, Kretzschmar T, McCouch SR, Thomson MJ. An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLoS One 2020; 15:e0232479. [PMID: 32407369 PMCID: PMC7224494 DOI: 10.1371/journal.pone.0232479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.
Collapse
Affiliation(s)
- Karina Y. Morales
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Namrata Singh
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Francisco Agosto Perez
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - John Carlos Ignacio
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Juan D. Arbelaez
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Rodante E. Tabien
- Texas A&M AgriLife Research Center, Beaumont, TX, United States of America
| | - Adam Famoso
- Louisiana State University Ag Center, H. Rouse Caffey Rice Research Station, Rayne, LA, United States of America
| | - Diane R. Wang
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Tobias Kretzschmar
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Susan R. McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MJT); (SRM)
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (MJT); (SRM)
| |
Collapse
|
80
|
Gouda G, Gupta MK, Donde R, Mohapatra T, Vadde R, Behera L. Marker-assisted selection for grain number and yield-related traits of rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:885-898. [PMID: 32377039 PMCID: PMC7196572 DOI: 10.1007/s12298-020-00773-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 05/11/2023]
Abstract
Continuous rise in the human population has resulted in an upsurge in food demand, which in turn demand grain yield enhancement of cereal crops, including rice. Rice yield is estimated via the number of tillers, grain number per panicles, and the number of spikes present per panicle. Marker-assisted selection (MAS) serve as one of the best ways to introduce QTLs/gene associated with yield in the rice plant. MAS has also been employed effectively in dissecting several other complex agricultural traits, for instance, drought, cold tolerance, salinity, etc. in rice plants. Thus, in this review, authors attempted to collect information about various genes/QTLs associated with high yield, including grain number, in rice and how different scheme of MAS can be employed to introduce them in rice (Oryza sativa L.) plant, which in turn will enhance rice yield. Information obtained to date suggest that, numerous QTLs, e.g., Gn1a, Dep1, associated with grain number and yield-related traits, have been identified either via mapping or cloning approaches. These QTLs have been successfully introduced into rice plants using various schemes of MAS for grain yield enhancement in rice. However, sometimes, MAS does not perform well in breeding, which might be due to lack of resources, skilled labors, reliable markers, and high costs associated with MAS. Thus, by overcoming these problems, we can enhance the application of MAS in plant breeding, which, in turn, may help us in increasing yield, which subsequently may help in bridging the gap between demand and supply of food for the continuously growing population.
Collapse
Affiliation(s)
- Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005 India
| | - Ravindra Donde
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Trilochan Mohapatra
- Secretary (DARE) and Director General (ICAR), Government of India, New Delhi, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005 India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| |
Collapse
|
81
|
Choi J, Lee T, Cho J, Servante EK, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester HJ, Wallington EJ, Oldroyd G, Paszkowski U. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun 2020; 11:2114. [PMID: 32355217 PMCID: PMC7193599 DOI: 10.1038/s41467-020-16021-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Most plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fungi, and also detects the smoke constituent karrikin. D14L-dependent signalling mechanisms, underpinning AM symbiosis are unknown. Here, we present the identification of a negative regulator from rice, which operates downstream of the D14L receptor, corresponding to the homologue of the Arabidopsis thaliana Suppressor of MAX2-1 (AtSMAX1) that functions in karrikin signalling. We demonstrate that rice SMAX1 is a suppressor of AM symbiosis, negatively regulating fungal colonisation and transcription of crucial signalling components and conserved symbiosis genes. Similarly, rice SMAX1 negatively controls strigolactone biosynthesis, demonstrating an unexpected crosstalk between the strigolactone and karrikin signalling pathways. We conclude that removal of SMAX1, resulting from D14L signalling activation, de-represses essential symbiotic programmes and increases strigolactone hormone production. Signaling via the D14L karrikin receptor conditions rice roots for association with arbuscular mycorrhizal fungi. Here, Choi et al. show that SMAX1, a rice homolog of an Arabidopsis repressor of karrikin signaling, acts downstream of D14L to suppress mycorrhizal symbiosis and strigolactone biosynthesis.
Collapse
Affiliation(s)
- Jeongmin Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jungnam Cho
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.,CAS-JIC Centre of Excellence for Plant and Microbial Science, 200032, Shanghai, China
| | - Emily K Servante
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - William Summers
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sarah Bowden
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Mehran Rahimi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Kyungsook An
- Crop Biotech Institute, Kyung Hee University, Yongjin-si, 446-701, South Korea
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongjin-si, 446-701, South Korea
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Emma J Wallington
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Giles Oldroyd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
82
|
Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, Yu J, Ye Y, Li S, Chen J, Zhao Y, Wang J, Wu X, Wang M, Zhang Y, Liu B, Wu Y, Harberd NP, Fu X. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 2020; 367:367/6478/eaaz2046. [PMID: 32029600 DOI: 10.1126/science.aaz2046] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 01/22/2023]
Abstract
Because environmentally degrading inorganic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced nitrogen use efficiency. We found that genome-wide promotion of histone H3 lysine 27 trimethylation (H3K27me3) enables nitrogen-induced stimulation of rice tillering: APETALA2-domain transcription factor NGR5 (NITROGEN-MEDIATED TILLER GROWTH RESPONSE 5) facilitates nitrogen-dependent recruitment of polycomb repressive complex 2 to repress branching-inhibitory genes via H3K27me3 modification. NGR5 is a target of gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1)-promoted proteasomal destruction. DELLA proteins (characterized by the presence of a conserved aspartate-glutamate-leucine-leucine-alanine motif) competitively inhibit the GID1-NGR5 interaction and explain increased tillering of green revolution varieties. Increased NGR5 activity consequently uncouples tillering from nitrogen regulation, boosting rice yield at low nitrogen fertilization levels. NGR5 thus enables enhanced nitrogen use efficiency for improved future agricultural sustainability and food security.
Collapse
Affiliation(s)
- Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuansuo Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafeng Ye
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | | | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
83
|
Faizan M, Faraz A, Sami F, Siddiqui H, Yusuf M, Gruszka D, Hayat S. Role of Strigolactones: Signalling and Crosstalk with Other Phytohormones. Open Life Sci 2020; 15:217-228. [PMID: 33987478 PMCID: PMC8114782 DOI: 10.1515/biol-2020-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
Plant hormones play important roles in controlling how plants grow and develop. While metabolism provides the energy needed for plant survival, hormones regulate the pace of plant growth. Strigolactones (SLs) were recently defined as new phytohormones that regulate plant metabolism and, in turn, plant growth and development. This group of phytohormones is derived from carotenoids and has been implicated in a wide range of physiological functions including regulation of plant architecture (inhibition of bud outgrowth and shoot branching), photomorphogenesis, seed germination, nodulation, and physiological reactions to abiotic factors. SLs also induce hyphal branching in germinating spores of arbuscular mycorrhizal fungi (AMF), a process that is important for initiating the connection between host plant roots and AMF. This review outlines the physiological roles of SLs and discusses the significance of interactions between SLs and other phytohormones to plant metabolic responses.
Collapse
Affiliation(s)
- Mohammad Faizan
- Tree Seed Center, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing-210037, P.R. China
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
- E-mail:
| | - Ahmad Faraz
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Mohammad Yusuf
- Department of Biology, United Arab Emirates University, Al-Ain, UAE
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| |
Collapse
|
84
|
Fang Z, Ji Y, Hu J, Guo R, Sun S, Wang X. Strigolactones and Brassinosteroids Antagonistically Regulate the Stability of the D53-OsBZR1 Complex to Determine FC1 Expression in Rice Tillering. MOLECULAR PLANT 2020; 13:586-597. [PMID: 31837469 DOI: 10.1016/j.molp.2019.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Rice tillering, a key architecture trait determining grain yield, is highly regulated by a class of newly identified phytohormones, strigolactones (SLs). However, the whole SL signaling pathway from the receptor to downstream transcription factors to finally inhibit tillering remains unrevealed. In this study, we first found that brassinosteroids (BRs) strongly enhance tillering by promoting bud outgrowth in rice, which is largely different from the function of BRs in Arabidopsis. Genetic and biochemical analyses indicated that both the SL and BR signaling pathways control rice tillering by regulating the stability of D53 and/or the OsBZR1-RLA1-DLT module, a transcriptional complex in the rice BR signaling pathway. We further found that D53 interacts with OsBZR1 to inhibit the expression of FC1, a local inhibitor of tillering, and that this inhibition depends on direct DNA binding by OsBZR1, which recruits D53 to the FC1 promoter in rice buds. Taken together, these findings uncover a mechanism illustrating how SLs and BRs coordinately regulate rice tillering via the early responsive gene FC1.
Collapse
Affiliation(s)
- Zhongming Fang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; College of Agricultural Sciences, Guizhou University, Guiyang 550025 China
| | - Yuanyuan Ji
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China; Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438 China
| | - Jie Hu
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Renkang Guo
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement and Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
85
|
Yu L, Gao B, Li Y, Tan W, Li M, Zhou L, Peng C, Xiao L, Liu Y. The synthesis of strigolactone is affected by endogenous ascorbic acid in transgenic rice for l-galactono-1, 4-lactone dehydrogenase suppressed or overexpressing. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153139. [PMID: 32114415 DOI: 10.1016/j.jplph.2020.153139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Rice tillering, which determines the panicle number per plant, is an important agronomic trait for grain production. In higher plants, ascorbic acid (Asc) plays a major role in ROS-scavenging activity. l-Galactono-1, 4-lactone dehydrogenase (GalLDH, EC1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Previously, we have reported that homozygous L-GalLDH-suppressed transgenic rice plants (GI) display a reduced tiller number and a lower level of foliar carotenoids (Car) compared with wild type. Strigolactones (SL), which play an important role in the suppression of shoot branching, are synthesized in the roots of rice plant using Car as substrates. In this paper, the relationship between Asc, SL, the accumulation of H2O2, changes in antioxidant capacity, enzyme activities, and gene transcriptions related to the synthesis of SL were analyzed in transgenic rice plants for L-GalLDH suppressed (GI-1 and GI-2) and overexpressing (GO-2). The results showed that the altered level of Asc in the L-GalLDH transgenic rice plants leads to a change in redox homeostasis, resulting in a marked accumulation of H2O2 and decreased antioxidant capacity in GI-1 and GI-2, but lower H2O2 content and increased antioxidant capacity in GO-2. Meanwhile, the altered level of Asc also leads to altered enzyme activities and gene transcript abundances related to SL synthesis in L-GalLDH transgenics. These observations support the conclusion that Asc influences tiller number in the L-GalLDH transgenics by affecting H2O2 accumulation and antioxidant capacity, and altering those enzyme activities and gene transcript abundances related to SL synthesis.
Collapse
Affiliation(s)
- Le Yu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Bin Gao
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Yelin Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Weijian Tan
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Mingkang Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Liping Zhou
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Changlian Peng
- College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
86
|
Miyakawa T, Xu Y, Tanokura M. Molecular basis of strigolactone perception in root-parasitic plants: aiming to control its germination with strigolactone agonists/antagonists. Cell Mol Life Sci 2020; 77:1103-1113. [PMID: 31587093 PMCID: PMC11104851 DOI: 10.1007/s00018-019-03318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuqun Xu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
87
|
Shindo M, Yamamoto S, Shimomura K, Umehara M. Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:135. [PMID: 32158457 PMCID: PMC7052320 DOI: 10.3389/fpls.2020.00135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 05/24/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that are synthesized from β-carotene through sequential reactions catalyzed by DWARF (D) 27, D17, D10, and OsMORE AXILLARY GROWTH (MAX) 1 in rice (Oryza sativa L.). In rice, endogenous SL levels increase in response to deficiency of nitrogen, phosphate, or sulfate (-N, -P, or -S). Rice SL mutants show increased lamina joint (LJ) angle as well as dwarfism, delayed leaf senescence, and enhanced shoot branching. The LJ angle is an important trait that determines plant architecture. To evaluate the effect of endogenous SLs on LJ angle in rice, we measured LJ angle and analyzed the expression of SL-biosynthesis genes under macronutrient deficiencies. In the "Shiokari" background, LJ angle was significantly larger in SL mutants than in the wild-type (WT). In WT and SL-biosynthesis mutants, direct treatment with the SL synthetic analog GR24 decreased the LJ angle. In WT, deficiency of N, P, or S, but not of K, Ca, Mg, or Fe decreased LJ angle. In SL mutants, deficiency of N, P, or S had no such effect. We analyzed the time course of SL-related gene expression in the LJ of WT deficient in N, P, or S, and found that expression of SL-biosynthesis genes increased 2 or 3 days after the onset of deficiency. Expression levels of both the SL-biosynthesis and signaling genes was particularly strongly increased under -P. Rice cultivars "Nipponbare", "Norin 8", and "Kasalath" had larger LJ angle than "Shiokari", interestingly with no significant differences between WT and SL mutants. In "Nipponbare", endogenous SL levels increased and the LJ angle was decreased under -N and -P. These results indicate that SL levels increased in response to nutrient deficiencies, and that elevated endogenous SLs might negatively regulate leaf angle in rice.
Collapse
Affiliation(s)
- Masato Shindo
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
| | - Shu Yamamoto
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | | | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| |
Collapse
|
88
|
Plasma Membrane Ca 2+ Permeable Mechanosensitive Channel OsDMT1 Is Involved in Regulation of Plant Architecture and Ion Homeostasis in Rice. Int J Mol Sci 2020; 21:ijms21031097. [PMID: 32046032 PMCID: PMC7037369 DOI: 10.3390/ijms21031097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Plant architecture is an important factor for crop production. Plant height, tiller pattern, and panicle morphology are decisive factors for high grain yield in rice. Here, we isolated and characterized a T-DNA insertion rice mutant Osdmt1 (Oryza sativa dwarf and multi-tillering1) that exhibited a severe dwarf phenotype and multi-tillering. Molecular cloning revealed that DMT1 encodes a plasma membrane protein that was identified as a putative Ca2+ permeable mechanosensitive channel. The transcript expression level was significantly higher in the dmt1 mutant compared to wild type (WT). Additionally, the dmt1 homozygous mutant displayed a stronger phenotype than that of the WT and heterozygous seedlings after gibberellic acid (GA) treatment. RNA-seq and iTRAQ-based proteome analyses were performed between the dmt1 mutant and WT. The transcriptome profile revealed that several genes involved in GA and strigolactone (SL) biosyntheses were altered in the dmt1 mutant. Ca2+ and other ion concentrations were significantly enhanced in the dmt1 mutant, suggesting that DMT1 contributes to the accumulation of several ions in rice. Moreover, several EF-hand Ca2+ sensors, including CMLs (CaM-like proteins) and CDPKs (calcium-dependent protein kinases), displayed markedly altered transcript expression and protein levels in the dmt1 mutant. Overall, these findings aid in the elucidation of the multiply regulatory roles of OsDMT1/OsMCA1 in rice.
Collapse
|
89
|
Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, Li S, Liang Z. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC PLANT BIOLOGY 2020; 20:47. [PMID: 31996144 PMCID: PMC6990564 DOI: 10.1186/s12870-020-2263-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/20/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Shoot branching is an important trait of plants that allows them to adapt to environment changes. Strigolactones (SLs) are newly identified plant hormones that inhibit shoot branching in plants. The SL biosynthesis genes CCD7 (carotenoid cleavage dioxygenase 7) and CCD8 have been found to regulate branching in several herbaceous plants by taking advantage of their loss-of-function mutants. However, the role for CCD7 and CCD8 in shoot branching control in grapevine is still unknown due to the lack of corresponding mutants. RESULTS Here we employed the CRISPR/Cas9 system to edit the VvCCD7 and VvCCD8 genes in the grape hybrid 41B. The 41B embryogenic cells can easily be transformed and used for regeneration of the corresponding transformed plants. Sequencing analysis revealed that gene editing has been used successfully to target both VvCCD genes in 41B embryogenic cells. After regeneration, six 41B plantlets were identified as transgenic plants carrying the CCD8-sgRNA expression cassette. Among these, four plants showed mutation in the target region and were selected as ccd8 mutants. These ccd8 mutants showed increased shoot branching compared to the corresponding wild-type plants. In addition, no off-target mutation was detected in the tested mutants at predicted off-target sites. CONCLUSIONS Our results underline the key role of VvCCD8 in the control of grapevine shoot branching.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Yuchen Guo
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Junhua Kong
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Fatma Lecourieux
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, Bordeaux, France
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Zhenchang Liang
- Institute of Botany, the Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 China
| |
Collapse
|
90
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
91
|
Uddin MN, Fukuta Y. A Region on Chromosome 7 Related to Differentiation of Rice ( Oryza sativa L.) Between Lowland and Upland Ecotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1135. [PMID: 32849696 PMCID: PMC7398126 DOI: 10.3389/fpls.2020.01135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/13/2020] [Indexed: 05/03/2023]
Abstract
Due to global population expansion and climate change impacts, the development of a stable yielding variety that adapts well to unfavorable conditions for rice cultivation, can contribute to sustainable and stable production in rice (Oryza sativa L.). Understanding genetic differentiations to ecotypes for rice cultivations, such as upland, rainfed lowland, and irrigated lowland, is very important to develop the breeding materials for adapting to each environmental condition. The upland landrace variety basically has low tiller/panicle numbers and a large panicle, and the plant architecture is different from that of the lowland variety. The tiller and panicle numbers have been considered as one of the most difficult traits for genetic changes artificially in rice breeding. A low tiller recessive gene ltn2 originated from a New Plant Type variety, IR 65600-87-2-23, harboring segments from an upland variety, Ketan Lumbu (Tropical Japonica Group), was found on chromosome 7, and the other QTLs for culm length, culm weight, panicle length, panicle weight, seed fertility, harvest index, and soil surface rooting were also detected in the same chromosome region. These low tiller genes and the other QTLs were estimated to play an important role in developing the architecture for upland rice. Some QTLs for root growth angle, DRO3 and qSFR7, were also found in the same chromosome region from upland varieties categorized into the Tropical Japonica Group, and the QTLs may also be relevant to upland adaptation together with other traits. Previous studies using high throughput re-sequencing (whole genome variation data) of a large batch of rice accessions could identify the ecotype differentiated genomic regions (EDRs) and Ecotype differentiated genes (EDGs) such as Os07g0449700, a type response regulator, which is critical in upland adaptation in the same region of chromosome 7. Two selective loci, E3735 and E4208, for upland and lowland differentiation, and their corresponding genes Os07g0260000 and Os07g0546500 were also detected on chromosome 7 by drought-responding EST-SSRs. These findings indicate that the region on chromosome 7 is highly possible to related to the plant shoot and root architecture in the upland rice variety that has an important role and differentiates between upland and lowland ecotypes.
Collapse
Affiliation(s)
- Md. Nashir Uddin
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Yoshimichi Fukuta
- Tropical Agricultural Research Front, Japan International Research Center for Agricultural Science (JIRCAS), Ishigaki, Japan
- *Correspondence: Yoshimichi Fukuta,
| |
Collapse
|
92
|
Hua W, Tan C, Xie J, Zhu J, Shang Y, Yang J, Zhang XQ, Wu X, Wang J, Li C. Alternative splicing of a barley gene results in an excess-tillering and semi-dwarf mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:163-177. [PMID: 31690990 DOI: 10.1007/s00122-019-03448-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
An excess-tillering semi-dwarf gene Hvhtd was identified from an EMS-induced mutant in barley and alternative splicing results in excess-tillering semi-dwarf traits. Tillering and plant height are important traits determining plant architecture and grain production in cereal crops. This study identified an excess-tillering semi-dwarf mutant (htd) from an EMS-treated barley population. Genetic analysis of the F1, F2, and F2:3 populations showed that a single recessive gene controlled the excess-tillering semi-dwarf in htd. Using BSR-Seq and gene mapping, the Hvhtd gene was delimited within a 1.8 Mb interval on chromosome 2HL. Alignment of the RNA-Seq data with the functional genes in the interval identified a gene HORVU2Hr1G098820 with alternative splicing between exon2 and exon3 in the mutant, due to a G to A single-nucleotide substitution at the exon and intron junction. An independent mutant with a similar phenotype confirmed the result, with alternative splicing between exon3 and exon4. In both cases, the alternative splicing resulted in a non-functional protein. And the gene HORVU2Hr1G098820 encodes a trypsin family protein and may be involved in the IAA signaling pathway and differs from the mechanism of Green Revolution genes in the gibberellic acid metabolic pathway.
Collapse
Affiliation(s)
- Wei Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinghuan Zhu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yi Shang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianming Yang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, 6150, Australia.
- Department of Primary Industry and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
93
|
Yu H, Cui H, Chen J, Li X. Regulation of Aegilops tauschii Coss Tiller Bud Growth by Plant Density: Transcriptomic, Physiological and Phytohormonal Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:1166. [PMID: 32849721 PMCID: PMC7403227 DOI: 10.3389/fpls.2020.01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
Aegilops tauschii Coss is one of the most hazardous weeds that severely infests wheat fields in China. The tillering ability of Ae. tauschii strongly affects the occurrence and spread by influencing its seed output. In this study, Ae. tauschii was sown at low plant density (LPD) and high plant density (HPD) to investigate the effect of plant density on tiller bud outgrowth and its potential regulators using RNA-Seq. Additionally, the chlorophyll content and photosynthesis, soluble sugar and phytohormone levels were also determined at different plant densities. The results showed that an increased plant density significantly inhibited the elongation of tiller buds in the axil of the first leaf at 15 days after planting, with 7.69 mm at LPD and 1.69 mm at HPD. A total of seven putative tiller-related genes were selected and validated using quantitative real-time PCR. Furthermore, chlorophyll levels, photosynthetic efficiency, and soluble sugar contents were distinctly inhibited by HPD in Ae. tauschii, which may be responsible for the restriction of tiller bud growth. In addition, differentially expressed genes (DEGs) were markedly enriched in indole-3-acetic acid (IAA), abscisic acid (ABA), and gibberellin metabolism and signaling. Accordingly, the levels of ABA and gibberellin A3 in Ae. tauschii were strikingly higher at HPD compared with those at LPD, yet the reverse tendency was observed for IAA. Undoubtedly, such results will be highly beneficial for illuminating the underlying regulators of the Ae. tauschii tillering response to plant density and may provide new ideas for the control of this weed in the future.
Collapse
|
94
|
Jamil M, Kountche BA, Wang JY, Haider I, Jia KP, Takahashi I, Ota T, Asami T, Al-Babili S. A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. FRONTIERS IN PLANT SCIENCE 2020; 11:434. [PMID: 32373143 PMCID: PMC7179673 DOI: 10.3389/fpls.2020.00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Strigolactones (SLs) are a group of carotenoid derived plant hormones that play a key role in establishing plant architecture and adapting it to environmental changes, and are involved in plants response to biotic and abiotic stress. SLs are also released into the soil to serve as a chemical signal attracting beneficial mycorrhizal fungi. However, this signal also induces seed germination in root parasitic weeds that represent a major global threat for agriculture. This wide spectrum of biological functions has made SL research one of the most important current topics in fundamental and applied plant science. The availability of SLs is crucial for investigating SL biology as well as for agricultural application. However, natural SLs are produced in very low amounts, and their organic synthesis is quite difficult, which creates a need for efficient and easy-to-synthesize analogs and mimics. Recently, we have generated a set of SL analogs, Methyl Phenlactonoates (MPs), which resemble the non-canonical SL carlactonoic acid. In this paper, we describe the development and characterization of a new series of easy-to-synthesize MPs. The new analogs were assessed with respect to regulation of shoot branching, impact on leaf senescence, and induction of seed germination in different root parasitic plants species. Some of the new analogs showed higher efficiency in inhibiting shoot branching as well as in triggering parasitic seed germination, compared to the commonly used GR24. MP16 was the most outstanding analog showing high activity in different SL biological functions. In summary, our new analogs series contains very promising candidates for different applications, which include the usage in studies for understanding different aspects of SL biology as well as large scale field application for combating root parasitic weeds, such as Striga hermonthica that devastates cereal yields in sub-Saharan Africa.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
95
|
Yoon J, Cho LH, Lee S, Pasriga R, Tun W, Yang J, Yoon H, Jeong HJ, Jeon JS, An G. Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice. Mol Cells 2019; 42:858-868. [PMID: 31771322 PMCID: PMC6939655 DOI: 10.14348/molcells.2019.0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.
Collapse
Affiliation(s)
- Jinmi Yoon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Lae-Hyeon Cho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
- Department of Plant Bioscience, Pusan National University, Miryang 50463,
Korea
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988,
Korea
| | - Richa Pasriga
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Win Tun
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Jungil Yang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Hyeryung Yoon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Hee Joong Jeong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
96
|
OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. Proc Natl Acad Sci U S A 2019; 117:727-732. [PMID: 31871204 PMCID: PMC6955233 DOI: 10.1073/pnas.1810968117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intine layer of pollen is essential for pollen grain maturation and pollen tube germination. Abnormal intine development causes pollen sterility and affects seed-setting; therefore, the identification of regulators of intine formation is important for elucidating the mechanisms of pollen formation and function, especially for crop breeding. Here, we report a microRNA, OsmiR528, which regulates pollen intine formation and male fertility in rice (Oryza sativa). OsmiR528 directly targets the uclacyanin family member OsUCL23 to regulate flavonoid metabolism and pollen intine development. This study revealed the function of OsmiR528 and an uclacyanin in pollen development. The intine, the inner layer of the pollen wall, is essential for the normal development and germination of pollen. However, the composition and developmental regulation of the intine in rice (Oryza sativa) remain largely unknown. Here, we identify a microRNA, OsmiR528, which regulates the formation of the pollen intine and thus male fertility in rice. The mir528 knockout mutant aborted pollen development at the late binucleate pollen stage, significantly decreasing the seed-setting rate. We further demonstrated that OsmiR528 affects pollen development by directly targeting the uclacyanin gene OsUCL23 (encoding a member of the plant-specific blue copper protein family of phytocyanins) and regulating intine deposition. OsUCL23 overexpression phenocopied the mir528 mutant. The OsUCL23 protein localized in the prevacuolar compartments (PVCs) and multivesicular bodies (MVBs). We further revealed that OsUCL23 interacts with a member of the proton-dependent oligopeptide transport (POT) family of transporters to regulate various metabolic components, especially flavonoids. We propose a model in which OsmiR528 regulates pollen intine formation by directly targeting OsUCL23 and in which OsUCL23 interacts with the POT protein on the PVCs and MVBs to regulate the production of metabolites during pollen development. The study thus reveals the functions of OsmiR528 and an uclacyanin during pollen development.
Collapse
|
97
|
Zhang X, Lin Z, Wang J, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Liu J, Lin Z. The tin1 gene retains the function of promoting tillering in maize. Nat Commun 2019; 10:5608. [PMID: 31811145 PMCID: PMC6898233 DOI: 10.1038/s41467-019-13425-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/09/2019] [Indexed: 11/29/2022] Open
Abstract
Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification. Unlike the other domesticated maize, sweet maize and popcorn retain tillering growth habit, but the underlying mechanism is unknown. Here, the authors identify a transcription factor tin1 that maintains outgrowth of tiller independent of tb1 and show its conservation in foxtail millet and rice.
Collapse
Affiliation(s)
- Xuan Zhang
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Zhelong Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Jian Wang
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Hangqin Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Leina Zhou
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Shuyang Zhong
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Can Zhu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Jiacheng Liu
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China
| | - Zhongwei Lin
- National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
98
|
Ferrero-Serrano Á, Cantos C, Assmann SM. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb Perspect Biol 2019; 11:a034645. [PMID: 31358515 PMCID: PMC6824242 DOI: 10.1101/cshperspect.a034645] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.
Collapse
Affiliation(s)
| | - Christian Cantos
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
99
|
Tan C, Zhang XQ, Wang Y, Wu D, Bellgard MI, Xu Y, Shu X, Zhou G, Li C. Characterization of genome-wide variations induced by gamma-ray radiation in barley using RNA-Seq. BMC Genomics 2019; 20:783. [PMID: 31664908 PMCID: PMC6819550 DOI: 10.1186/s12864-019-6182-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Artificial mutagenesis not only provides a new approach to increase the diversity of desirable traits for breeding new varieties but are also beneficial for characterizing the genetic basis of functional genes. In recent decades, many mutation genes have been identified which are responsible for phenotype changes in mutants in various species including Arabidopsis and rice. However, the mutation feature in induced mutants and the underlying mechanisms of various types of artificial mutagenesis remain unclear. Results In this study, we adopted a transcriptome sequencing strategy to characterize mutations in coding regions in a barley dwarf mutant induced by gamma-ray radiation. We detected 1193 genetic mutations in gene transcription regions introduced by gamma-ray radiation. Interestingly, up to 97% of the gamma irradiation mutations were concentrated in certain regions in chromosome 5H and chromosome 7H. Of the 26,745 expressed genes, 140 were affected by gamma-ray radiation; their biological functions included cellular and metabolic processes. Conclusion Our results indicate that mutations induced by gamma-ray radiation are not evenly distributed across the whole genome but located in several concentrated regions. Our study provides an overview of the feature of genetic mutations and the genes affected by gamma-ray radiation, which should contribute to a deeper understanding of the mechanisms of radiation mutation and their application in gene function analysis.
Collapse
Affiliation(s)
- Cong Tan
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.,Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yin Wang
- IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China
| | - Dianxin Wu
- IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China
| | - Matthew I Bellgard
- eResearch Office, Queensland University of Technology, Brisbane, 4000, Australia
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoli Shu
- eResearch Office, Queensland University of Technology, Brisbane, 4000, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.,Western Australia Department of Primary Industry and Regional Development, South Perth, WA, 6151, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia. .,IAEA Collaborating Center, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029, China. .,Western Australia Department of Primary Industry and Regional Development, South Perth, WA, 6151, Australia.
| |
Collapse
|
100
|
OsATG8c-Mediated Increased Autophagy Regulates the Yield and Nitrogen Use Efficiency in Rice. Int J Mol Sci 2019; 20:ijms20194956. [PMID: 31597279 PMCID: PMC6801700 DOI: 10.3390/ijms20194956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy, a conserved pathway in eukaryotes, degrades and recycles cellular components, thus playing an important role in nitrogen (N) remobilization. N plays an important role in the growth and development of plants, which also affects plant yield and quality. In this research, it was found that the transcriptional level of a core autophagy gene of rice (Oryza sativa), OsATG8c, was increased during N starvation conditions. It was found that the overexpression of OsATG8c significantly enhanced the activity of autophagy and that the number of autophagosomes, dwarfed the plant height and increased the effective tillers’ number and yield. The nitrogen uptake efficiency (NUpE) and nitrogen use efficiency (NUE) significantly increased in the transgenic rice under both optimal and suboptimal N conditions. Based on our results, OsATG8c is considered to be a good candidate gene for increasing NUE, especially under suboptimal field conditions.
Collapse
|