51
|
Sittadjody S, Saul JM, McQuilling JP, Joo S, Register TC, Yoo JJ, Atala A, Opara EC. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat Commun 2017; 8:1858. [PMID: 29208899 PMCID: PMC5717171 DOI: 10.1038/s41467-017-01851-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/20/2017] [Indexed: 01/07/2023] Open
Abstract
Safe clinical hormone replacement (HR) will likely become increasingly important in the growing populations of aged women and cancer patients undergoing treatments that ablate the ovaries. Cell-based HRT (cHRT) is an alternative approach that may allow certain physiological outcomes to be achieved with lower circulating hormone levels than pharmacological means due to participation of cells in the hypothalamus-pituitary-ovary feedback control loop. Here we describe the in vivo performance of 3D bioengineered ovarian constructs that recapitulate native cell-cell interactions between ovarian granulosa and theca cells as an approach to cHRT. The constructs are fabricated using either Ca++ or Sr++ to crosslink alginate. Following implantation in ovariectomized (ovx) rats, the Sr++-cross-linked constructs achieve stable secretion of hormones during 90 days of study. Further, we show these constructs with isogeneic cells to be effective in ameliorating adverse effects of hormone deficiency, including bone health, uterine health, and body composition in this rat model.
Collapse
Affiliation(s)
- Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - John P McQuilling
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School for Medicine, Winston-Salem, NC, 27157, USA.
- School of Biomedical Engineering and Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
52
|
Kim EJ, Lee J, Youm HW, Kim SK, Lee JR, Suh CS, Kim SH. Comparison of Follicle Isolation Methods for Mouse Ovarian Follicle Culture In Vitro. Reprod Sci 2017; 25:1270-1278. [DOI: 10.1177/1933719117737851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Eun Jung Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jaewang Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
- Jaewang Lee is now with Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hye Won Youm
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
53
|
Stocco C, Baumgarten SC, Armouti M, Fierro MA, Winston NJ, Scoccia B, Zamah AM. Genome-wide interactions between FSH and insulin-like growth factors in the regulation of human granulosa cell differentiation. Hum Reprod 2017; 32:905-914. [PMID: 28158425 DOI: 10.1093/humrep/dex002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Study question Is the genome-wide response of human cumulus cells to FSH and insulin-like growth factors (IGFs) comparable to the response observed in undifferentiated granulosa cells (GCs)? Summary answer FSH actions in human cumulus cells mimic those observed in preantral undifferentiated GCs from laboratory animals, and approximately half of the regulated genes are dependent on the simultaneous activation of the IGF1 receptor (IGF1R). What is known already Animal studies have shown that FSH and the IGFs system are required for follicle growth and maturation. In humans, IGF levels in the follicular fluid correlate with patients' responses to IVF protocols. The main targets of FSH and IGFs in the ovary are the GCs; however, the genomic mechanisms involved in the response of GCs to these hormones are unknown. Study design, size, duration Human cumulus cells isolated from IVF patients were cultured for 48 h in serum-free media in the presence of vehicle, FSH, IGF1R inhibitor or their combination. Participants/materials, setting, methods Discarded cumulus cells were donated to research by reproductive-aged women undergoing IVF due to non-ovarian etiologies of infertility at a university-affiliated clinic. The effect of FSH and/or IGF1R inhibition on cumulus cell function was evaluated using Affymetrix microarrays, quantitative PCR, western blot, promoter assays and hormone level measurements. Main results and the role of chance The findings demonstrate that human cumulus cells from IVF patients respond to FSH with the expression of genes known to be markers of the preantral to preovulatory differentiation of GCs. These results also demonstrate that ~50% of FSH-regulated genes require IGF1R activity and suggest that several aspects of follicle growth are coordinately regulated by FSH and IGFs in humans. This novel approach will allow for future mechanistic and molecular studies on the regulation of human follicle maturation. Large scale data Data set can be accessed at Gene Expression Omnibus number GSE86427. Limitations, reasons for caution Experiments were performed using primary human cumulus cells. This may not represent the response of intact follicles. Wider implications of the findings Understanding the mechanisms involved in the regulation of GC differentiation by FSH and IGF in humans will contribute to improving treatments for infertility. Study funding/competing interest(s) The project was financed by the National Instituted of Health grant number R56HD086054 and R01HD057110 (C.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We have no competing interests to declare.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Physiology and Biophysics, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Sarah C Baumgarten
- Department of Physiology and Biophysics, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Marah Armouti
- Department of Physiology and Biophysics, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Michelle A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Nicola J Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Bert Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - A Musa Zamah
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| |
Collapse
|
54
|
Abstract
SummaryGonadotropins are the key regulators of ovarian follicles development. They are applied in therapeutic practice in assisted reproductive technology clinics. In the present review we discuss the basic gonadotropic hormones – recombinant human follicle-stimulating hormone, its derivatives, luteinizing hormone and gonadotropin serum of pregnant mares, their origin, and application in ovarian follicle systems inin vitroculture systems.
Collapse
|
55
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
56
|
Hardy K, Fenwick M, Mora J, Laird M, Thomson K, Franks S. Onset and Heterogeneity of Responsiveness to FSH in Mouse Preantral Follicles in Culture. Endocrinology 2017; 158:134-147. [PMID: 27819761 PMCID: PMC5412982 DOI: 10.1210/en.2016-1435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023]
Abstract
The obligatory role of follicle-stimulating hormone (FSH) in normal development and function of ovarian antral follicles is well recognized, but its function in preantral growth is less clear. The specific objective of this study was to investigate the response, in culture, to FSH of mouse preantral follicles of increasing size, focusing particularly on growth rate and gene expression. Preantral follicles were mechanically isolated from ovaries of C57BL/6 mice, 12 to 16 days postpartum, and single follicles cultured for up to 96 hours in medium alone (n = 511) or with recombinant human FSH 10 ng/mL (n = 546). Data were grouped according to initial follicle diameter in 6 strata ranging from <100 to >140 μm. Follicles of all sizes grew in the absence of FSH (P < 0.01, paired t test). All follicles grew at a faster rate (P < 0.0001) in the presence of 10 ng/mL FSH but larger follicles showed the greatest change in response to FSH. Even the smallest follicles expressed FSH receptor messenger RNA (mRNA). FSH-induced growth was inhibited by KT5720, an inhibitor of protein kinase A (PKA), implicating the PKA pathway in FSH-induced follicle growth. In response to FSH in vitro, FSH receptor mRNA (measured by quantitative polymerase chain reaction) was reduced (P < 0.01), as was Amh (P < 0.01), whereas expression of StAR (P < 0.0001) and the steroidogenic enzymes Cyp11a1 (P < 0.01) and Cyp19 (P < 0.0001) was increased. These results show heterogeneous responses to FSH according to initial follicle size, smaller follicles being less FSH dependent than larger preantral follicles. These findings strongly suggest that FSH has a physiological role in preantral follicle growth and function.
Collapse
Affiliation(s)
- Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | - Mark Fenwick
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | - Jocelyn Mora
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | - Mhairi Laird
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | - Kacie Thomson
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| |
Collapse
|
57
|
Oktem O, Oktay K. The Role of Extracellular Matrix and Activin-A in In Vitro Growth and Survival of Murine Preantral Follicles. Reprod Sci 2016; 14:358-66. [PMID: 17644808 DOI: 10.1177/1933719107303397] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix plays a key role in cell growth, survival, and differentiation in a wide array of tissue types through integrin-mediated signaling pathways and its interaction with growth factors. This study investigates the role of extracellular matrix and its interaction with activin-A on in vitro growth and survival of mouse preantral follicles. Preantral follicles isolated from 14-day-old immature mouse ovaries were cultured either 3 dimensionally using basement membrane matrix (growth factor - reduced matrigel) or 2 dimensionally on cover slips coated with a single component of extracellular matrix (fibronectin, collagen, or laminin), on polylysine (negative control), or in standard culture plates in a serum-free culture medium with or without activin-A for 7 days. Follicles cultured in matrigel maintained well their 3-dimensional structure compared to those cultured conventionally. This observation was confirmed by analyzing 3-dimensional images of follicles cultured in matrigel and standard culture plate using confocal microscopy. Furthermore, follicles displayed higher growth and survival rates and exhibited antral space formation as early as day 5 of culture when activin-A was added to matrigel; in contrast, the addition of activin-A had no effect on the growth and survival of follicles cultured on individual extracellular matrix components after 7 days of culture. These data may suggest that 3-dimensional culture with extracellular matrix and activin-A provides a better milieu for in vitro growth and survival of preantral follicles in immature mice.
Collapse
Affiliation(s)
- Ozgur Oktem
- Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
58
|
Visser JA. Shaping up the function of anti-Müllerian hormone in ovaries of mono-ovulatory species. Hum Reprod 2016; 31:1403-5. [PMID: 27165619 DOI: 10.1093/humrep/dew101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
59
|
Cook-Andersen H, Curnow KJ, Su HI, Chang RJ, Shimasaki S. Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J Assist Reprod Genet 2016; 33:1067-77. [PMID: 27155601 DOI: 10.1007/s10815-016-0719-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Factors that differentially regulate oocyte and granulosa cell growth within the early preantral follicle and how these factors differ at each stage of follicle growth remain poorly understood. The aim of this study was to isolate and evaluate the effect of recombinant growth and differentiation factor 9 (GDF9) on oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle growth during in vitro culture. METHODS Primary stage follicles (diameters of 50-89 μm) and early secondary stage follicles (diameters of 90-120 μm) were isolated from immature mice, and individual, intact follicles were cultured in vitro in the presence and absence of recombinant GDF9. The effects of GDF9 on follicle growth were determined by the assessment of changes in the follicle volume during culture. The growth of the granulosa cell and oocyte compartments of the follicles was evaluated separately at each stage. RESULTS GDF9 significantly increased the growth of isolated follicles at both the primary and early secondary follicle stages. Independent evaluation of the granulosa cell and oocyte compartments revealed that, while GDF9 promoted granulosa cell growth at both stages of folliculogenesis, oocyte growth was stage specific. GDF9 promoted growth of the oocyte at the primary, but not the early secondary, follicle stage. CONCLUSIONS These findings demonstrate a stage-specific role for GDF9 in the regulation of oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle development.
Collapse
Affiliation(s)
- Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| | - Kirsten J Curnow
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - H Irene Su
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - R Jeffrey Chang
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| |
Collapse
|
60
|
Tepekoy F, Akkoyunlu G. The effect of FSH and activin A on Akt and MAPK1/3 phosphorylation in cultured bovine ovarian cortical strips. J Ovarian Res 2016; 9:13. [PMID: 26969445 PMCID: PMC4788891 DOI: 10.1186/s13048-016-0222-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/24/2016] [Indexed: 01/11/2023] Open
Abstract
Background rhFSH and rhActA have been used in mammalian ovarian follicle culture systems for activation of follicular growth in vitro and suggested to be responsible for primordial follicle survival through MAPK and Akt pathways. The aim of our study was to determine the effects of rhFSH and rhActA on Akt, pAkt, MAPK1/3 and pMAPK1/3 protein levels in bovine ovarian cortical strips cultured in vitro. Methods Ovarian cortical strips from heifers were cultured in the presence of rhFSH (50 ng/mL), rhActA (100 ng/mL) or combination of these factors for 6 days. The strips were embedded in paraffin for histological observations and homogenized for western blot to determine Akt, pAkt, MAPK1/3 and pMAPK1/3 protein levels after the culture. Determination of primordial, primary and secondary follicle proportions at the end of culture as well as comparison of healthy follicle for each developmental stage after the culture was performed to quantify follicle survival and activation. Results pAkt protein levels were significantly lower in rhFSH + rhActA group among the other groups, whereas pMAPK1/3 levels were not significantly changed. Follicular activation and survival was measured to be significantly lower in rhFSH + rhActA group. Percentage of healthy primordial follicles was higher in control group whereas healthy secondary follicle proportion was higher in both rhActA and rhFSH groups. rhActA alone had a better impact on follicular activation, since the percentage of the secondary follicles was significantly higher than other treatment groups. Conclusions The use of rhActA and rhFSH alone or in the combined form results in differential levels of Akt and MAPK proteins. Both rhActA and rhFSH alone has a remarkable contribution in survival and activation of the follicles in accordance with higher levels of these proteins. Thus, the manipulation of Akt and MAPK pathways with appropriate activators might contribute to proper activation and development of ovarian follicles in vitro.
Collapse
Affiliation(s)
- Filiz Tepekoy
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Campus, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Campus, Antalya, Turkey.
| |
Collapse
|
61
|
Dorati R, Genta I, Ferrari M, Vigone G, Merico V, Garagna S, Zuccotti M, Conti B. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. J Microencapsul 2016; 33:137-45. [DOI: 10.3109/02652048.2015.1134691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
62
|
Asgari F, Valojerdi MR, Ebrahimi B, Fatehi R. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue. Cryobiology 2015; 71:529-36. [PMID: 26586099 DOI: 10.1016/j.cryobiol.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
To evaluate the effects slow-freezing and vitrification on three dimensional in vitro culture of preantral follicles, ovaries of 12-14 days old female NMRI mice were isolated and randomly assigned to fresh control, slow-freezing and vitrification groups. Slow-freezing was performed using programmable freezer. Vitrification was carried out in a medium consisting of ethylene glycol (EG) and dimethyl sulphoxide (Me2SO) by needle immersion method. middle sized preantral follicles were mechanically isolated and cultured for 12 days in 0.7% sodium alginate gel. The follicles development and quantitative expression of oocyte specific genes (Bmp15, Gdf9, Fgf8) and the growth related genes (Igf1, Kit, Kit-l) were assessed after 1, 8 and 12 days of culture. Both cryopreserved groups showed reduction of follicular survival rates compared to the control group on days 8 and 12 of culture (P < 0.05). Antrum formation rates reduced in slow-freezing after 12 days of culture (P < 0.05). Evaluation of gene expression showed reduction of Bmp15, Gdf9, Fgf8, Kit and Kit-l during 12 days of culture (P < 0.05). Kit and Kit-l expression in slow-freezing group significantly reduced on day 8 of culture (p < 0.05). Igf1 expression was lower in slow-freezing group on 1st day of culture than vitrification and control groups (P < 0.05). Finally, intergroup comparison showed same expression pattern of genes after 12 days of culture. Thus, cryopreservation of mouse ovaries by both methods can preserve most developmental parameters and expression of maturation genes. However, vitrification is a better method for cryopreservation of mouse ovaries due to greater antrum formation and expression of growth related markers.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box14115-111, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box14115-111, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roya Fatehi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
63
|
Woodruff TK. Oncofertility: a grand collaboration between reproductive medicine and oncology. Reproduction 2015; 150:S1-10. [PMID: 26130814 PMCID: PMC4710491 DOI: 10.1530/rep-15-0163] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
Abstract
In 2007, I was asked by the University of Calgary to participate in a symposium called 'Pushing the Boundaries--Advances that Will Change the World in 20 Years'. My topic was oncofertility, a word I had just coined to describe the intersection of two disciplines--oncology and fertility--and I was thrilled to share my passion for this new field and help young women with cancer protect their future reproductive health. Fertility preservation in the cancer setting lacked a concerted effort to bridge the disciplines in an organized manner. In early 2015, I was delighted to deliver a presentation for the Society for Reproduction and Fertility titled 'Sex in Three Cities', where I gave an update on the oncofertility movement, a remarkable cross-disciplinary, global collaboration created to address the fertility preservation needs of young cancer patients. During my tour of the UK, I was impressed by the interest among the society and its members to engage colleagues outside the discipline as well as the public in a dialogue about cutting-edge reproductive science. In this invited review, I will describe the work of the Oncofertility Consortium to provide fertility preservation options in the cancer setting and accelerate the acceptance of this critical topic on a global scale. I hope that one day this word and field it created will change the world for women who had been left out of the equation for far too long.
Collapse
Affiliation(s)
- Teresa K Woodruff
- The Thomas J Watkins Professor of Obstetrics and GynecologyDepartment of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 10-250, Chicago, Illinois 60611, USA
| |
Collapse
|
64
|
George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction 2015; 150:383-94. [PMID: 26183893 DOI: 10.1530/rep-15-0226] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022]
Abstract
Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to FSH and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including STAR protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway.
Collapse
Affiliation(s)
- Rajani M George
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Katherine L Hahn
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Alan Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4 School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Jeanne Wilson-Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
65
|
Xu Y, Duncan FE, Xu M, Woodruff TK. Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening. Reprod Fertil Dev 2015; 28:RD14375. [PMID: 25689754 PMCID: PMC4540697 DOI: 10.1071/rd14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
Screening of pharmaceutical, chemical and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess these effects are needed. Herein we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with: (1) known fertotoxicity (i.e. toxicity to the reproductive system; cyclophosphamide and cisplatin); (2) no known fertotoxicity (nalbuphine); and (3) unknown fertotoxicity (Corexit EC 9500 A; CE, Nalco, Chicago, IL, USA). For each compound, we assayed follicle growth, hormone production and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. Cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. In the present study, CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool to assess the effects of chemical compounds on reproductive function and health.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| | - Min Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| |
Collapse
|
66
|
Abstract
Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology (A.J.W.H., Y.C.), Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317; Department of Obstetrics and Gynecology (K.K.), St. Mariana University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan; Department of Reproductive Medicine & Gynecology (B.C.J.M.F.), University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
67
|
Involvement of FoxO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death Dis 2014; 5:e1475. [PMID: 25321482 PMCID: PMC4237239 DOI: 10.1038/cddis.2014.400] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/23/2022]
Abstract
In mammalian ovaries, follicular atresia occurs periodically and destroys almost all the follicles in the ovary. Follicle-stimulating hormone (FSH) acts as the primary survival factor during follicular atresia by preventing apoptosis in granulosa cells. FoxO1 is a critical factor in promoting follicular atresia and granulosa cell apoptosis. FSH inhibits the induction of FoxO1. In this report, we investigated the role of FSH-FoxO1 pathway in mouse follicular atresia. FSH dampened stress-induced apoptosis and the expression of FoxO1 and pro-apoptosis genes in mouse granulosa cells (MGCs). In contrast, overexpression of FoxO1 inhibited the viability of MGCs and induced the expression of endogenous FoxO1. The signaling cascades involved in regulating FoxO1 activity upon FSH treatment were identified using FSH signaling antagonists. Blocking protein kinase A (PKA), phosphatidylinositol-3 kinase (PI3K) or protein kinase B (AKT) restored the upregulation of FoxO1 and apoptotic signals, which was suppressed by FSH. Moreover, inhibition of PKA or PI3K impaired FSH-induced AKT activity, but inactivation of PI3K or AKT had little effect on PKA activity in the presence of FSH. Correspondingly, constitutive activation of FoxO1 (all three AKT sites were replaced by alanines) also promoted MGC apoptosis despite FSH administration. Furthermore, both luciferase reporter assays and chromatin immunoprecipitation assays showed that FoxO1 directly bound to a FoxO-recognized element site within the FoxO1 promoter and contributed to the regulation of FoxO1 expression in response to FSH. Taken together, we propose a novel model in which FSH downregulates FoxO1-dependent apoptosis in MGCs by coordinating the PKA-PI3K-AKT-FoxO1 axis and FoxO1-FoxO1 positive feedback.
Collapse
|
68
|
Araújo VR, Gastal MO, Figueiredo JR, Gastal EL. In vitro culture of bovine preantral follicles: a review. Reprod Biol Endocrinol 2014; 12:78. [PMID: 25117631 PMCID: PMC4148547 DOI: 10.1186/1477-7827-12-78] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/08/2014] [Indexed: 11/11/2022] Open
Abstract
Preantral follicles are the majority of the ovarian follicle population and their use as a source of homogeneous oocytes for bovine reproductive biotechnologies could result in a substantial advance in this field. However, while in other species embryos and offspring have been produced, in bovine species the results have been limited to the follicular activation of small (primordial) preantral follicles and formation of early antral follicles from large (secondary) preantral follicles after in vitro culture. Therefore, this review will highlight the basic aspects of bovine folliculogenesis by focusing on preantral follicles, the methods of harvesting preantral follicles, the main results from in vitro follicular culture during the last 20 years, and the potential candidate substances (basic supplements, growth factors, and hormones) for improving the efficiency of in vitro follicle growth.
Collapse
Affiliation(s)
- Valdevane R Araújo
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, CE 60740-903 Brazil
| | - Melba O Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana 1700, Campus do Itaperi, Fortaleza, CE 60740-903 Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, 1205 Lincoln Drive, MC 4417, Carbondale, IL 62901 USA
| |
Collapse
|
69
|
Brito IR, Lima IMT, Xu M, Shea LD, Woodruff TK, Figueiredo JR. Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod Fertil Dev 2014; 26:915-30. [PMID: 23866836 PMCID: PMC11287383 DOI: 10.1071/rd12401] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/12/2013] [Indexed: 08/01/2024] Open
Abstract
The in vitro culture of ovarian follicles has provided critical insight into the biology of the follicle and its enclosed oocyte and the physical interaction and communication between the theca and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed to evaluate the effect of growth factors, hormones, extracellular matrix components and culture conditions on follicle development and oocyte growth and maturation. Among these culture systems, 3D systems make it possible to maintain follicle structure and support communication between the various cell compartments within the follicle. In this review article, we will discuss the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems and 3D encapsulated systems. We will specifically emphasise the development of and advances in alginate-based encapsulated systems for in vitro follicle culture.
Collapse
Affiliation(s)
- Ivina R. Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| | | | - Min Xu
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Lonnie D. Shea
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Teresa K. Woodruff
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - José R. Figueiredo
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| |
Collapse
|
70
|
Brito IR, Silva CMG, Duarte ABG, Lima IMT, Rodrigues GQ, Rossetto R, Sales AD, Lobo CH, Bernuci MP, Rosa-E-Silva ACJS, Campello CC, Xu M, Figueiredo JR. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles. Mol Reprod Dev 2014; 81:636-45. [PMID: 24700587 DOI: 10.1002/mrd.22330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
This study examined caprine follicular development in different concentrations of alginate matrix to determine the optimal conditions for culture. Caprine preantral follicles were cultured in a two-dimensional system (control) or a three-dimensional encapsulated system in 0.25%, 0.5%, or 1% alginate (ALG 0.25, ALG 0.5, and ALG 1, respectively). A higher percentage of morphologically normal follicles developed in ALG 0.5 and ALG 1 than in ALG 0.25 or the control (P < 0.05). The rate of antrum formation, however, was higher in ALG 0.25 than in ALG 0.5 and ALG 1 conditions (P < 0.05), but similar to the control. Follicles cultured in ALG 0.25 had higher growth rates and meiotic resumption than those cultured in ALG 0.5, ALG 1, or the control (P < 0.05). Moreover, follicles cultured in ALG 0.25 had higher levels of estradiol and progesterone than those cultured in ALG 0.5, ALG 1, or the control, as well as higher levels of CYP19A1 and HSD3B mRNA. In conclusion, a three-dimensional system that uses ALG 0.25 fosters the in vitro development of caprine preantral follicles and increases the rate of meiotic resumption.
Collapse
Affiliation(s)
- I R Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Park BW, Pan B, Toms D, Huynh E, Byun JH, Lee YM, Shen W, Rho GJ, Li J. Ovarian-cell-like cells from skin stem cells restored estradiol production and estrus cycling in ovariectomized mice. Stem Cells Dev 2014; 23:1647-58. [PMID: 24593690 DOI: 10.1089/scd.2014.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12-14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels like those encountered in premature ovarian failure.
Collapse
Affiliation(s)
- Bong-Wook Park
- 1 Department of Animal and Poultry Science, University of Guelph , Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tagler D, Makanji Y, Tu T, Bernabé BP, Lee R, Zhu J, Kniazeva E, Hornick JE, Woodruff TK, Shea LD. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng 2014; 111:1417-29. [PMID: 24375265 DOI: 10.1002/bit.25181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
Abstract
The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Technological Institute E-136, 2145 Sheridan Road, Evanston, Illinois, 60208; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, 303 E. Superior Street, Suite 11-131, Chicago, Illinois, 60611
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Harp D, Chowdhury I, Garcia-Barrio M, Welch C, Matthews R, Thompson W. Maintaining the reproductive potential of cancer patients during cancer treatment. Front Biosci (Schol Ed) 2014; 6:39-49. [PMID: 24389259 PMCID: PMC6178803 DOI: 10.2741/s412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer therapies are known to alter the reproductive potential in cancer patients. Due to improved survival rates in cancer patients of reproductive age, considerations of the long-term effects of cancer therapy have become more significant. Oncofertility is a new discipline in medicine that deals with maintaining the reproductive potential of cancer patients while they are receiving gonadotoxic cancer treatment. The purpose of this review is to explore how cancer treatment impairs reproductive functioning and present the current options for preservation of fertility in women. All patients with reproductive potential should be made aware of the possible treatment-related infertility and be offered appropriate fertility preservation options before cancer treatment is instituted. The hope is that, in the future, mechanism(s) can be developed to preserve immature germ cells in the ovary, so that they can be used for fertilization in vivo or in vitro.
Collapse
Affiliation(s)
- Djana Harp
- Department of Obstetrics and Gynecology
- Reproductive Science Research Program
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology
- Reproductive Science Research Program
| | - Minerva Garcia-Barrio
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia 30310
| | | | - Roland Matthews
- Department of Obstetrics and Gynecology
- Reproductive Science Research Program
| | - Winston Thompson
- Department of Obstetrics and Gynecology
- Reproductive Science Research Program
| |
Collapse
|
74
|
Songsasen N, Comizzoli P, Nagashima J, Fujihara M, Wildt DE. The domestic dog and cat as models for understanding the regulation of ovarian follicle development in vitro. Reprod Domest Anim 2013; 47 Suppl 6:13-8. [PMID: 23279457 DOI: 10.1111/rda.12067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The culture of ovarian follicles is an important tool for understanding the mechanisms controlling follicle development and differentiation of the oocyte. The benefit of recovering meiotically and developmentally competent oocytes from early stage follicles (primordial, primary, pre-antral and early antral) also would be significant, ranging from rescue of genomes from endangered species to preserving fertility in women facing cancer treatments. This research field is at an early stage of scientific discovery. To-date, live offspring from cultured primordial follicles that produced fertilizable oocytes has occurred only in the mouse. Progress in other more complex species has been limited because larger animals have longer durations of natural folliculogenesis, thereby requiring more culture time to generate fully grown follicles and oocytes. We believe the dog and cat are excellent models for understanding more about folliculogenesis in vitro. This review highlights what is known about this topic for these two species as well as future priorities. We have discovered that it is more challenging to maintain viability of primordial follicles within ovarian tissues in vitro in the dog than the cat. Nonetheless, it is possible to grow both isolated cat and dog pre-antral follicles in culture. Although the follicles of both species have the capacity to increase in size and produce steroids, only cat oocytes appear morphologically normal. The reason for this striking difference between these two species is an area of high research priority. While much more fundamental data are required, we envision advanced technology that will allow harvesting oocytes from the vast, unused follicle stores sequestered within carnivore ovaries. These gametes have utility for reproducing genetically valuable dogs and cats that are 'companions' or biomedical models for investigating human disorders as well as for salvaging the genomes of rare canid and felid species that die before contributing to genetic management programs.
Collapse
Affiliation(s)
- N Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA.
| | | | | | | | | |
Collapse
|
75
|
Fujihara M, Comizzoli P, Wildt DE, Songsasen N. Cat and dog primordial follicles enclosed in ovarian cortex sustain viability after in vitro culture on agarose gel in a protein-free medium. Reprod Domest Anim 2013; 47 Suppl 6:102-8. [PMID: 23279476 DOI: 10.1111/rda.12022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Abstract
Our objective was to examine the influences of differing media, protein supplementation and the microenvironment on cat vs dog primordial follicle viability in vitro. Ovarian cortical slices were cultured for 3, 9 or 15 days in α-minimum essential medium (α-MEM) or MEM supplemented with 10% fetal bovine serum (FBS), 10% knock-out serum replacement (KSR) or 0.1% polyvinyl alcohol (protein free). In a separate study, cat and dog ovarian tissues were cultured in protein-free α-MEM and MEM, respectively, in cell culture inserts, on 1.5% agarose gel or in 24-well cell culture plates (control). Follicle viability was assessed in both studies using calcein AM/ethidium homodimer and histological evaluation with haematoxylin/eosin staining. No cat follicle sustained viability beyond 9 days of in vitro culture in α-MEM compared to 37.5% of those incubated for 15 days in MEM in protein-free condition (p < 0.05). In contrast, α-MEM was superior (p < 0.05) to MEM in maintaining dog follicle viability (32.7% vs 8.1%) in protein-free condition at 15 days. Serum was detrimental (p < 0.05) to follicle survival in both species. Knock-out serum replacement supplementation and a protein-free condition supported cat follicle viability, whereas the latter was superior (p < 0.05) to the former for sustaining dog follicle survival. Likewise, dog follicle viability was enhanced (p < 0.05) by the agarose gel compared to the cell culture insert and control groups after 3 and 9 days of culture. For the cat, the agarose gel better (p < 0.05) supported follicle viability compared to the control, but was equivalent to the cell culture insert. Therefore, sustaining primordial follicle survival from intracortical ovarian slices requires a different in vitro microenvironment for the cat vs the dog. A key factor to enhancing survival of these early stage follicles in culture appears to be the use of agarose gel, which enhances follicle viability, perhaps by promoting gas exchange.
Collapse
Affiliation(s)
- M Fujihara
- Department of Reproductive Sciences, Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA.
| | | | | | | |
Collapse
|
76
|
Tagler D, Makanji Y, Anderson NR, Woodruff TK, Shea LD. Supplemented αMEM/F12-based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng 2013; 110:3258-68. [PMID: 23801027 DOI: 10.1002/bit.24986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/18/2023]
Abstract
Hydrogel-encapsulating culture systems for ovarian follicles support the in vitro growth of secondary follicles from various species including mouse, non-primate human, and human; however, the growth of early stage follicles (primary and primordial) has been limited. While encapsulation maintains the structure of early stage follicles, feeder cell populations, such as mouse embryonic fibroblasts (MEFs), are required to stimulate growth and development. Hence, in this report, we investigated feeder-free culture environments for early stage follicle development. Mouse ovarian follicles were encapsulated within alginate hydrogels and cultured in various growth medium formulations. Initial studies employed embryonic stem cell medium formulations as a tool to identify factors that influence the survival, growth, and meiotic competence of early stage follicles. The medium formulation that maximized survival and growth was identified as αMEM/F12 supplemented with fetuin, insulin, transferrin, selenium, and follicle stimulating hormone (FSH). This medium stimulated the growth of late primary (average initial diameter of 80 µm) and early secondary (average initial diameter of 90 µm) follicles, which developed antral cavities and increased to terminal diameters exceeding 300 µm in 14 days. Survival ranged from 18% for 80 µm follicles to 36% for 90 µm follicles. Furthermore, 80% of the oocytes from surviving follicles with an initial diameter of 90-100 µm underwent germinal vesicle breakdown (GVBD), and the percentage of metaphase II (MII) eggs was 50%. Follicle/oocyte growth and GVBD/MII rates were not significantly different from MEF co-culture. Survival was reduced relative to MEF co-culture, yet substantially increased relative to the control medium that had been previously used for secondary follicles. Continued development of culture medium could enable mechanistic studies of early stage folliculogenesis and emerging strategies for fertility preservation.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Technological Institute E-136, 2145 Sheridan Road, Evanston, Illinois, 60208; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois
| | | | | | | | | |
Collapse
|
77
|
Mochida N, Akatani-Hasegawa A, Saka K, Ogino M, Hosoda Y, Wada R, Sawai H, Shibahara H. Live births from isolated primary/early secondary follicles following a multistep culture without organ culture in mice. Reproduction 2013; 146:37-47. [PMID: 23613617 DOI: 10.1530/rep-13-0020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the ovary has a large store of germ cells, most of them do not reach mature stages. If a culture system could be developed from early growing follicles to mature oocytes, it would be useful for biological research as well as for reproductive medicine. This study was conducted to establish a multistep culture system from isolated early growing follicles to mature oocytes using a mouse model. Early growing follicles with diameters of 60-95 μm corresponding to primary and early secondary follicles were isolated from 6-day-old mice and classified into three groups by diameter. These follicles contained oocytes with diameters of ~45 μm and one or a few layered granulosa cells on the basal lamina. Embedding in collagen gel was followed by first-step culture. After 9-day culture, the growing follicles were transferred onto collagen-coated membrane in the second step. At day 17 of the culture series, the oocyte-granulosa cell complexes were subjected to in vitro maturation. Around 90% of the oocytes in follicles surviving at day 17 resumed second meiosis (metaphase II oocytes: 49.0-58.7%), regardless of the size when the follicle culture started. To assess developmental competence to live birth, the eggs were used for IVF and implantation in pseudopregnant mice. We successfully obtained two live offspring that produced next generations after puberty. We thus conclude that the culture system reported here was able to induce the growth of small follicles and the resultant mature oocytes were able to develop into normal mice.
Collapse
Affiliation(s)
- Nahoko Mochida
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Xu J, Lawson MS, Yeoman RR, Molskness TA, Ting AY, Stouffer RL, Zelinski MB. Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum Reprod 2013; 28:2187-200. [PMID: 23608357 DOI: 10.1093/humrep/det093] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does fibrin introduced into the extracellular matrix affect the growth and maturation of individual primate follicles during encapsulated three-dimensional (3D) culture? SUMMARY ANSWER While not altering follicle survival, fibrin-alginate (FIBRIN) improves macaque primary, but not secondary, follicle development during encapsulated 3D culture in terms of growth, steroidogenesis, anti-Müllerian hormone (AMH)/vascular endothelial growth factor (VEGF) production and oocyte maturation. WHAT IS KNOWN ALREADY Efforts to grow non-human primate ovarian follicles from the secondary to the antral stage during encapsulated 3D culture have been successful. However, the growth and maturation of primary follicles in vitro has not been reported in primates, especially in chemically defined conditions. STUDY DESIGN, SIZE, DURATION In vitro follicle maturation was investigated using the rhesus macaque (Macaca mulatta). Ovaries (n = 7 pairs) were obtained during the early follicular phase of the menstrual cycle (cycle day 1-4). Primary (80-120 µm diameter) and secondary (125-225 µm diameter) follicles were isolated mechanically, randomly assigned to experimental groups, encapsulated into alginate (0.25% w/v) or FIBRIN (25 mg/ml fibrinogen-0.25% alginate) and cultured for 13 and 5 weeks, respectively. MATERIALS, SETTING, METHODS Individual follicles were cultured in alpha minimum essential medium supplemented with FSH. Follicle survival and growth were assessed by microscopy. Follicles that reached the antral stage were treated with recombinant hCG. Metaphase II (MII) oocytes were inseminated via ICSI. Follicle morphology was evaluated by hematoxylin and eosin (H&E) staining. Immunohistochemistry was performed for cytochrome P450 family 17 subfamily A polypeptide 1 (CYP17A1) and 19 subfamily A polypeptide 1 (CYP19A1). Culture medium was analyzed for estradiol (E2) and progesterone by chemiluminescence, androstenedione (A4) by radioimmunoassay, as well as anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay. MAIN RESULTS AND THE ROLE OF CHANCE A total of 105 primary and 133 secondary follicles were collected. The presence of fibrin in the alginate matrix had no effect on either primary or secondary follicle survival. Growing primary and secondary follicles formed an antrum at Weeks 9 and 3, respectively. The percentage of growing follicles was higher (P < 0.05) for primary follicles cultured in FIBRIN than alginate at Week 13. The diameters were larger for the growing secondary follicles cultured in alginate than FIBRIN at Week 5 (P < 0.05). H&E staining revealed the typical morphology for small antral follicles. CPY17A1 immunostaining was detected in theca cells, while CYP19A1 was observed in granulosa cells. E2 increased (P < 0.05) during antrum formation in growing follicles at Week 9 for primary and Week 3 for secondary follicles. AMH levels in medium from growing primary follicles increased (P < 0.05) after Week 4 with peak levels at Weeks 9-11. AMH increased (P < 0.05) in growing secondary follicles at Weeks 3-5. VEGF levels in medium were elevated (P < 0.05) in growing primary follicles at Week 9. VEGF increased (P < 0.05) in medium from growing secondary follicles at Weeks 3-5. E2, AMH and VEGF production was higher (P < 0.05) in primary follicle culture with FIBRIN than alginate alone. One primary follicle cultured in FIBRIN (1 of 5 follicles harvested) and a secondary follicle cultured in alginate alone (1 of 15 follicles harvested) yielded an MII oocyte. The fertilized oocyte from primary follicle culture arrested without cell division after fertilization, while the oocyte from secondary follicle culture cleaved and reached the morula stage. LIMITATIONS, REASONS FOR CAUTION The study reports on in vitro development and function of individual macaque follicles, that is limited to the interval from the primary and secondary stage to the small antral stage. The findings await translation to human ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS The 3D model for primate follicle development offers a unique opportunity to investigate the growth and regulation of primate primary, as well as secondary follicles, and their enclosed oocytes, as they grow to the antral stage by monitoring and manipulating factors or signaling pathways in vitro. Since primate primary follicles, in addition to secondary follicles, can be cultured to the antral stage to provide mature oocytes, they represent an additional source of pre-antral follicles for in vitro follicle maturation with the potential to provide gametes for assisted reproductive technology as an option for fertility preservation in women, including patients with cancer. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by The Oncofertility Consortium (NIH U54 RR024347-HD058294, PL1-EB008542), NIH U54-HD18185 (Eunice Kennedy Shriver Specialized Cooperative Centers Program in Reproduction and Infertility Research), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), Oregon National Primate Research Center 8P51OD011092. There are no conflicts of interest.
Collapse
Affiliation(s)
- J Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Atkin SD, Owen BM, Bookout AL, Cravo RM, Lee C, Elias CF, Elmquist JK, Kliewer SA, Mangelsdorf DJ. Nuclear receptor LRH-1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol Endocrinol 2013; 27:598-605. [PMID: 23504956 PMCID: PMC3607696 DOI: 10.1210/me.2012-1371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
The differential expression and secretion of the neuropeptide kisspeptin from neurons in the arcuate (Arc) and anteroventral periventricular (AVPV) nuclei of the hypothalamus coordinate the temporal release of pituitary gonadotropins that control the female reproductive cycle. However, the molecular basis for this differential regulation is incompletely understood. Here, we report that liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is expressed in kisspeptin neurons in the Arc but not in the AVPV in female mice. LRH-1 binds directly to the kisspeptin (Kiss1) promoter and stimulates Kiss1 transcription. Deletion of LRH-1 from kisspeptin neurons in mice decreased Kiss1 expression in the Arc, leading to reduced plasma FSH levels, dysregulated follicle maturation, and prolongation of the estrous cycle. Conversely, overexpression of LRH-1 in kisspeptin neurons increased Arc Kiss1 expression and plasma FSH concentrations. These studies provide a molecular basis for the differential regulation of basal kisspeptin expression in Arc and AVPV neurons and reveal a prominent role for LRH-1 in hypothalamus in regulating the female reproductive axis.
Collapse
Affiliation(s)
- Stan D Atkin
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Room ND9.124, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Bian J, Li T, Ding C, Xin W, Zhu B, Zhou C. Vitreous cryopreservation of human preantral follicles encapsulated in alginate beads with mini mesh cups. J Reprod Dev 2013; 59:288-95. [PMID: 23485957 PMCID: PMC3934133 DOI: 10.1262/jrd.2012-157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To completely avoid ice crystal formation and thus get a higher survival rate,
vitrification methods have been commonly used for cryopreservation of oocytes and embryos.
However, currently used vitrification methods for oocytes and embryos are not suitable for
the cryopreservation of preantral follicles (PFs). In the present study, stainless steel
mesh was fabricated into mini mesh cups to vitrify isolated PFs. Moreover, isolated
follicles were encapsulated and then subjected to vitreous cryopreservation to facilitate
in vitro culture/maturation of follicles after warming. The results
showed that the percentages of viable follicles did not differ significantly between the
vitrification group and fresh group soon after warming (81.25% vs.
85.29%, P>0.05) and after a 7-day culture period (77.78% vs. 83.33%,
P>0.05). No difference in mean follicular diameter was observed between cryopreserved
and fresh follicles when cultured in vitro. Transmission electron
microscopic analysis revealed that vitreous cryopreservation could maintain the
ultrastructure of follicles in alginate beads. In conclusion, the present vitrification
method could efficiently cryopreserve isolated human ovarian follicles encapsulated by
calcium alginate, which could be put into immediate use (in vitro
culture/ maturation) after warming. However, more follicles and some detailed biochemical
analyses are required to further investigate the effects of vitrification on the long-term
growth of human encapsulated PFs.
Collapse
Affiliation(s)
- Jiang Bian
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | |
Collapse
|
81
|
Xu J, Xu M, Bernuci MP, Fisher TE, Shea LD, Woodruff TK, Zelinski MB, Stouffer RL. Primate follicular development and oocyte maturation in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 761:43-67. [PMID: 24097381 PMCID: PMC4007769 DOI: 10.1007/978-1-4614-8214-7_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Min Xu
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Marcelo P Bernuci
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thomas E Fisher
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Lonnie D Shea
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Teresa K Woodruff
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
82
|
Hirao Y. Isolation of ovarian components essential for growth and development of mammalian oocytes in vitro. J Reprod Dev 2012; 58:167-74. [PMID: 22738899 DOI: 10.1262/jrd.2011-052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian ovaries contain a large number of oocytes, most of which degenerate either before or at various stages of growth. Dynamic and precise regulation in the ovary involves many factors, each with a unique role. Identifying the single most important factor is impossible; however, it may be possible to identify factors essential for oocyte growth. It is evident that oocytes can grow into competent ova in vitro; however, how faithfully the follicle should mimic the in vivo conditions remains unclear. In the culture system discussed in this review, bovine and mouse oocyte-granulosa cell complexes, at approximately the late mid-growth stage, spread on a substratum without the involvement of theca cells. The structural simplicity of this system is advantageous because it reduces the basic conditions essential for regulation of oocyte growth. Apart from biological factors, high concentrations of polyvinylpyrrolidone (molecular weight: 360000) improved oocyte growth. Among ovarian factors, androstenedione was used to compensate for the absence of theca cells, and it promoted both follicular growth and acquisition of oocyte meiotic competence. Most oocytes cultured in a group were viable after long-term culture, suggesting that unlike ovarian events, there was no exhaustive follicle selection. Collectively, oocytes and their associated granulosa cells can establish independent units capable of supporting oocyte growth in appropriately modified culture media.
Collapse
Affiliation(s)
- Yuji Hirao
- Livestock and Forage Research Division, Tohoku Agricultural Research Center (TARC), National Agriculture and Food Research Organization (NARO), Morioka 020-0198, Japan.
| |
Collapse
|
83
|
Demeestere I, Streiff AK, Suzuki J, Al-Khabouri S, Mahrous E, Tan SL, Clarke HJ. Follicle-Stimulating Hormone Accelerates Mouse Oocyte Development In Vivo1. Biol Reprod 2012; 87:3, 1-11. [DOI: 10.1095/biolreprod.112.099929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
84
|
Desai N, Abdelhafez F, Calabro A, Falcone T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod Biol Endocrinol 2012; 10:29. [PMID: 22513305 PMCID: PMC3474165 DOI: 10.1186/1477-7827-10-29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. METHODS A novel tyramine-based hyaluronan (HA) hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM). Enzymatically isolated pre-antral follicles from the ovaries of 10-12 day SJL pups were divided amongst control (CT) and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC). Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. RESULTS HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively). HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively), percent GV breakdown (96-97%), MII formation (47-48%) and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85%) and MII formation (67%) . Vitrified-warmed follicles encapsulated in HA had an oocyte maturation rate to MII of 54% as compared to 57% in non-embedded follicles. CONCLUSIONS Initial testing of this new and unique HA-based hydrogel was quite promising. The ease of follicle encapsulation in HA, its optical transparency and ability to be molded combined with its support of follicle growth, estradiol secretion and resumption of meiosis make this HA-hydrogel particularly attractive as model for 3-D ovarian follicle culture.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Faten Abdelhafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| |
Collapse
|
85
|
Park KE, Kim YY, Ku SY, Baek SM, Huh Y, Kim YJ, Kim SH, Choi YM, Moon SY. Effects of alginate hydrogels on in vitro maturation outcome of mouse preantral follicles. Tissue Eng Regen Med 2012; 9:170-174. [DOI: 10.1007/s13770-012-0170-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
86
|
Tagler D, Tu T, Smith RM, Anderson NR, Tingen CM, Woodruff TK, Shea LD. Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng Part A 2012; 18:1229-38. [PMID: 22296562 DOI: 10.1089/ten.tea.2011.0418] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogel-encapsulating culture systems support the consistent growth of ovarian follicles from various species, such as mouse, non-human primate, and human; however, further innovations are required for the efficient production of quality oocytes from early-stage follicles. In this report, we investigated the coculture of mouse ovarian follicles with mouse embryonic fibroblasts (MEFs), commonly used as feeder cells to promote the undifferentiated growth of embryonic stem (ES) cells, as a means to provide the critical paracrine factors necessary for follicle survival and growth. Follicles were encapsulated within alginate hydrogels and cocultured with MEFs for 14 days. Coculture enabled the survival and growth of early secondary (average diameter of 90-100 μm) and primary (average diameter of 70-80 μm) follicles, which developed antral cavities and increased in diameter to 251-347 μm. After 14 days, follicle survival ranged from 70% for 100-μm follicles to 23% for 70-μm follicles. Without MEF coculture, all follicles degenerated within 6-10 days. Furthermore, 72%-80% of the oocytes from surviving follicles underwent germinal vesicle breakdown (GVBD), and the percentage of metaphase II (MII) eggs was 41%-69%. Medium conditioned by MEFs had similar effects on survival, growth, and meiotic competence, suggesting a unidirectional paracrine signaling mechanism. This advancement may facilitate the identification of critical factors responsible for promoting the growth of early-stage follicles and lead to novel strategies for fertility preservation.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Lima I, Celestino J, Faustino L, Magalhães-Padilha D, Rossetto R, Brito I, Donato M, Lopes C, Campello C, Peixoto C, Figueiredo J, Rodrigues A. Dynamic Medium Containing Kit Ligand and Follicle-Stimulating Hormone Promotes Follicular Survival, Activation, and Growth during Long-Term in vitro Culture of Caprine Preantral Follicles. Cells Tissues Organs 2012; 195:260-71. [DOI: 10.1159/000325150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 11/19/2022] Open
|
88
|
Soumya S, Sreerekha PR, Menon D, V. Nair S, Chennazhi KP. Generation of a biomimetic 3D microporous nano-fibrous scaffold on titanium surfaces for better osteointegration of orthopedic implants. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14038h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Abstract
Mammalian ovaries contain a large number of oocytes at different stages of growth. To utilize potential female gametes, it is important to develop culture systems that permit oocytes to achieve full growth and competence in order to undergo maturation, fertilization and development. The desired culture systems should meet at least the following three conditions: (i) oocytes remain healthy and functional so that they can execute intrinsic programs that direct their growth and development; (ii) granulosa cells that are adjacent to oocytes proliferate efficiently to prevent oocytes from becoming denuded; and (iii) granulosa cells maintain (and develop) appropriate associations with oocytes during the culture period. For this reason, several systems have been developed, and they can be classified into four categories based on the structure and components of the follicle/oocyte-granulosa cell complex and the location of the oocyte in the physical organization of the complex. The resultant diverse morphologies are due to multiple factors, including the method for initial isolation of follicles, the culture substrate, and hormones and other factors added into the medium. It is important to find an optimal combination of such factors involved in the process to facilitate future research efforts.
Collapse
Affiliation(s)
- Yuji Hirao
- National Agricultural Research Center for Tohoku Region, National Agriculture and Food Research Organization, Morioka, Japan.
| |
Collapse
|
90
|
Kedem A, Hourvitz A, Fisch B, Shachar M, Cohen S, Ben-Haroush A, Dor J, Freud E, Felz C, Abir R. Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles. J Assist Reprod Genet 2011; 28:761-9. [PMID: 21785966 DOI: 10.1007/s10815-011-9605-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To compare macroporous alginate scaffolds with Matrigel for culturing frozen-thawed human primordial follicles in organ culture. METHODS Twelve girls/women donated ovarian tissue. One tissue sample was fixed immediately after thawing (uncultured samples). Slices were cultured for 2 weeks on either Matrigel or on alginate scaffolds with a serum-free culture medium. Growth evaluation consisted of follicular counts and classification, immunohistochemistry and measurement of 17β-Estradiol (E(2)) production. RESULTS The number of developing follicles was significantly higher in alginate scaffold-cultured samples than on Matrigel with a concomitant decrease in the number of primordial follicles in alginate scaffold-cultured samples than uncultured samples. The number of atretic follicles after 1 week was significantly higher in the Matrigel-cultured samples than in the alginate scaffold cultured samples. E(2) production was similar in both groups. CONCLUSIONS Three dimensional alginate scaffolds are a promising putative in vitro technology for developing human primordial follicles.
Collapse
Affiliation(s)
- Alon Kedem
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center, Beilinson Hospital, Petach Tikva and Sackler Faculty of Medicine,Tel Aviv University,Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Oocyte growth in vitro: potential model for studies of oocyte-granulosa cell interactions. Reprod Med Biol 2011; 11:1-9. [PMID: 29699101 DOI: 10.1007/s12522-011-0096-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 02/01/2023] Open
Abstract
Various factors such as gonadotrophins, growth factors, and steroid hormones play important roles in the regulation of oocyte/follicular growth in mammalian ovaries. In addition to these factors, there is a bidirectional interaction between oocytes and granulosa cells that is essential for achieving optimal oocyte developmental competence. Oocytes play a key role in this interaction by secreting paracrine factors that alter the activities of neighboring cumulus cells, such as the expression of a specific amino acid transporter, cholesterol biosynthesis, and levels of glycolysis in the cumulus cells. Among the known oocyte-derived factors, growth differentiation factor 9 (GDF9) is the dominant factor mediating the regulation by oocytes leading to cumulus expansion and granulosa cell proliferation. GDF9 frequently interacts with other oocyte-derived factors in a synergistic manner. It seems reasonable to speculate that oocytes growing in vitro require interactions similar to those in vivo. Some of the oocyte-mediated regulations have been confirmed in vitro, providing evidence of the usefulness of culture systems as a strong tool for such studies. This review discusses in vitro culture of growing oocytes in terms of oocyte-granulosa cell interactions.
Collapse
|
92
|
Parrish EM, Siletz A, Xu M, Woodruff TK, Shea LD. Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system. Reproduction 2011; 142:309-18. [PMID: 21610168 DOI: 10.1530/rep-10-0481] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell-cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus-oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.
Collapse
Affiliation(s)
- Elizabeth M Parrish
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
93
|
Songsasen N, Woodruff TK, Wildt DE. In vitro growth and steroidogenesis of dog follicles are influenced by the physical and hormonal microenvironment. Reproduction 2011; 142:113-22. [PMID: 21502334 DOI: 10.1530/rep-10-0442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study examined the influences of the physical and hormonal microenvironment on in vitro growth and steroidogenesis of dog follicles. Follicles were enzymatically isolated and individually encapsulated in 0.5% (w/v; n=17) or 1.5% (n=10) alginate and cultured with 0.5 IU/ml equine chorionic gonadotropin for 192 h. In a separate experiment, follicles were encapsulated in 0.5% alginate and cultured with 0 (n=22), 1 (n=23), 10 (n=20) or 100 (n=21) μg/ml FSH for 240 h. Follicle diameter and steroid production were assessed every 48 h in both studies. Follicles encapsulated in the 0.5% alginate grew faster (P<0.05) than those cultured in the 1.5% concentration. Oestradiol (E(2)) and progesterone (P(4)) increased consistently (P<0.05) over time, and follicles in the 1.5% alginate produced more (P<0.05) P(4) than those in the 0.5% solution. Follicles cultured in the highest FSH concentration (100 μg/ml) increased 100% in size after 240 h compared with 50 to 70% in lower dosages. E(2) concentration remained unchanged over time (P>0.05) across FSH dosages. However, P(4) increased (P<0.05) as culture progressed and with increasing FSH concentration. Results demonstrate that dog follicles cultured in alginate retain structural integrity, grow in size and are hormonally active. Lower alginate and increasing FSH concentrations promote in vitro follicle growth. However, the absence of an E(2) rise in follicles cultured in FSH alone suggests the need for LH supplementation to support theca cell differentiation and granulosa cell function.
Collapse
Affiliation(s)
- N Songsasen
- Department of Reproductive Sciences, Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia 22630, USA.
| | | | | |
Collapse
|
94
|
Mainigi MA, Ord T, Schultz RM. Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system. Biol Reprod 2011; 85:269-76. [PMID: 21490243 DOI: 10.1095/biolreprod.111.091124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Culture systems that support development and maturation of oocytes in vitro with a high efficiency would have great impact not only on research addressed at underlying mechanisms of oocyte development but also on preservation of fertility. Recently, attention has turned to using culture systems that preserve follicle integrity, in contrast to existing systems that do not maintain follicle integrity, with the hope of improving oocyte development. We report that an alginate-based follicle culture system supports both follicular and oocyte growth in vitro, with little effect on the oocyte transcriptome. Nevertheless, oocytes obtained from these follicles exhibit an increased incidence of defects in spindle formation and chromosome alignment as well as pronounced abnormalities in cortical granule biogenesis. Developmental competence is also highly compromised, because few matured oocytes develop into 1-cell embryos with pronuclei. This situation contrasts with a high incidence of pronuclear formation following development using an existing in vitro culture system that does not preserve follicle integrity.
Collapse
Affiliation(s)
- Monica A Mainigi
- Reproductive Endocrinology and Infertility, Departments of Obstetrics and Gynecology University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | |
Collapse
|
95
|
Xu M, Fazleabas AT, Shikanov A, Jackson E, Barrett SL, Hirshfeld-Cytron J, Kiesewetter SE, Shea LD, Woodruff TK. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol Reprod 2011; 84:689-97. [PMID: 21123815 PMCID: PMC3062036 DOI: 10.1095/biolreprod.110.088674] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/26/2010] [Accepted: 11/23/2010] [Indexed: 01/23/2023] Open
Abstract
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.
Collapse
Affiliation(s)
- Min Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Ariella Shikanov
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
- Institute of Bio-Nanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Erin Jackson
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| | - Susan L. Barrett
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| | - Jenny Hirshfeld-Cytron
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| | - Sarah E. Kiesewetter
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| | - Lonnie D. Shea
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
- Institute of Bio-Nanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Member of the Oncofertility Consortium, Northwestern University, Chicago, Illinois
| |
Collapse
|
96
|
Shikanov A, Xu M, Woodruff TK, Shea LD. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system. J Vis Exp 2011:2695. [PMID: 21445043 DOI: 10.3791/2695] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size. The degradable component may be particularly critical for clinical translation in order to support the greater than 10(6)-fold increase in volume that human follicles normally undergo in vivo .
Collapse
Affiliation(s)
- Ariella Shikanov
- Institute for BioNanotechnology in Advanced Medicine, Northwestern University, USA
| | | | | | | |
Collapse
|
97
|
Xu J, Lawson MS, Yeoman RR, Pau KY, Barrett SL, Zelinski MB, Stouffer RL. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod 2011; 26:1061-72. [PMID: 21362681 DOI: 10.1093/humrep/der049] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An alginate-based matrix supports the three-dimensional (3D) architecture of non-human primate follicles and, in the presence of FSH, permits the in vitro development of pre-antral follicles to the small antral stage, including the production of ovarian steroids and paracrine factors. The current study investigated the ability of gonadotrophins, fetuin and oxygen (O₂) to improve primate follicle growth and oocyte maturation in vitro. METHODS Macaque secondary follicles were isolated from the early follicular phase ovaries, encapsulated in a sodium alginate matrix and cultured individually for 40 days in supplemented medium. The effects of recombinant human (rh) FSH (15, 3 and 0.3 ng/ml for high, medium and low FSH, respectively), bovine fetuin (1 or 0 mg/ml) and O₂ (5 or 20% v/v) were examined. Half of the follicles in each culture condition received rhLH on Day 30-40. Follicles that reached antral stage were treated with rh chorionic gonadotrophin for 34 h to initiate oocyte meiotic maturation. Media were analyzed for ovarian steroids and anti-müllerian hormone (AMH). RESULTS Improved culture conditions supported non-human primate, secondary follicle growth to the antral stage and, for the first time, promoted oocyte maturation to the MII stage. In the presence of fetuin at 5% O₂, follicles had the highest survival rate if cultured with high or medium FSH, whereas follicles grew to larger diameters at Week 5 in low FSH. Oocyte health and maturation were promoted under 5% O₂. High FSH stimulated steroid production by growing follicles, and steroidogenesis by follicles cultured with low FSH was promoted by LH. AMH biosynthesis was elevated with high compared with low FSH and for longer under 5% O₂ than under 20% O₂. CONCLUSIONS This encapsulated 3D culture model permits further studies on the endocrine and local factors that influence primate follicle growth and oocyte maturation, with relevance to enhancing fertility preservation options in women.
Collapse
Affiliation(s)
- J Xu
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Follicular interactions affect the in vitro development of isolated goat preantral follicles. ZYGOTE 2010; 19:215-27. [DOI: 10.1017/s0967199410000237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe aim of this study was to evaluate the influence of the number of follicles per drop (one or three) and antral follicles on in vitro development of isolated goat preantral follicles. Preantral follicles were isolated through microdissection and distributed individually (control) or in groups of three follicles (treatment) in microdroplets of α-MEM with or without 1000 ng/ml follicle stimulating hormone (FSH) for Experiments 1 and 2, respectively. Experiment 3 was divided into four treatments according to the presence of one or three preantral follicles, associated or not with antral follicles. After culture, oocytes were retrieved from morphologically normal follicles and submitted to in vitro maturation (IVM) and live/dead fluorescent labelling. Results of Experiment 1 (basic medium without FSH) showed that culture of preantral follicles in groups enhances viability, growth and antrum formation after 12 days. However, in the presence of FSH (Experiment 2), only the recovery rate of fully grown oocytes for IVM was significantly affected by grouping of follicles. In Experiment 3, in general, co-culture of preantral follicles with an early antral follicle had a detrimental effect on viability, antrum formation and production of oocytes for IVM. In conclusion, the performance of in vitro culture of goat preantral follicles is affected by the number of follicles per drop, the presence of an antral follicle and FSH.
Collapse
|
99
|
Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol 2010; 8:119. [PMID: 20946661 PMCID: PMC2967553 DOI: 10.1186/1477-7827-8-119] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/14/2010] [Indexed: 01/15/2023] Open
Abstract
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anastasia Alex
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Faten AbdelHafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - James Goldfarb
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
100
|
Saraiva M, Rossetto R, Brito I, Celestino J, Silva C, Faustino L, Almeida A, Bruno J, Magalhães D, Matos M, Campello C, Figueiredo J. Dynamic Medium Produces Caprine Embryo From Preantral Follicles Grown In Vitro. Reprod Sci 2010; 17:1135-43. [DOI: 10.1177/1933719110379269] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M.V.A. Saraiva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil,
| | - R. Rossetto
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - I.R. Brito
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.J.H. Celestino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - C.M.G. Silva
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - L.R. Faustino
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - A.P. Almeida
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.B. Bruno
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - D.M. Magalhães
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - M.H.T. Matos
- Biotechnology Nucleus of Sobral (NUBIS), Nucleus of Biotechnology Applied to Ovarian Follicle Development Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - C.C. Campello
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| | - J.R. Figueiredo
- Faculty of Veterinary Medicine, LAMOFOPA, PPGCV, State University of Ceara, Fortaleza-CE, Brazil
| |
Collapse
|