51
|
Nagai R, Shinomura M, Kishi K, Aiyama Y, Harikae K, Sato T, Kanai-Azuma M, Kurohmaru M, Tsunekawa N, Kanai Y. Dynamics of GFRα1-positive spermatogonia at the early stages of colonization in the recipient testes of W/Wν male mice. Dev Dyn 2012; 241:1374-84. [PMID: 22745058 DOI: 10.1002/dvdy.23824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The spermatogonial transplantation experiment can be used as an unequivocal detection assay of spermatogenic stem cells (SSCs) in both a qualitative and quantitative manner, based on their regenerative capacity. In this study, the proliferative patterns and kinetics of donor-derived GFRα1-positive spermatogonia containing potential SSCs were examined during early colonization following spermatogonial transplantation. RESULTS Donor-derived GFRα1-positive cells frequently formed several aggregates of A(al(aligned)) /morula-like structures in a single spermatogenic cell patch before and on day 14 post-transplant, indicating a possible involvement in the formation of a stable spermatogenic colony at 21 days post-transplant. The appearance of these A(al) /morula-like aggregates is positively correlated with regional, high-level expression of immunoreactive GDNF signals, a ligand for GFRα1, associated with colony expansion. CONCLUSIONS These data raise the hypothesis that regional GDNF signals regulate the balance between donor-derived A(al) -like cell aggregates and their differentiation in each small patch, which subsequently leads to further selection of survival colonies at later stages.
Collapse
Affiliation(s)
- Ryohei Nagai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol 2012; 2012:291038. [PMID: 22431916 PMCID: PMC3303891 DOI: 10.1155/2012/291038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 01/15/2023] Open
Abstract
We describe the potential stemness of a small amount of frozen-thawed testicular tissue without sperm obtained by biopsy from six patients undergoing assisted reproductive treatment. The patients were diagnosed with Sertoli Cell-Only Syndrome alone or combined with maturation arrest. Trying to provide the natural stem cell niche for cultured stem cells, all isolated cells from enzymatically degraded biopsies where cultured together in different culture media and the presence of putative mesenchymal and putative pluripotent ES-like stem cells was indicated using different methods. High throughput real-time quantitative PCR followed by multivariate analysis revealed the formation of distinct cell clusters reflecting high degree of similarity and some of these cell clusters expressed the genes characteristic for pluripotent stem cells. In the presence of the follicular fluid, prepared as serum, putative testicular stem cells showed a certain degree of plasticity, and spontaneously differentiated into adipose-like and neuronal-like cells. Additionally, using differentiation protocols putative testicular stem cells were differentiated into neuronal- and pancreatic-like cells. This study shows that in assisted reproduction programmes, testicular tissue with no sperm might be an important source of stem cells, although it is discarded in daily medical practice; this requires further research.
Collapse
|
53
|
Zohni K, Zhang X, Tan S, Chan P, Nagano M. The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum Reprod 2011; 27:44-53. [DOI: 10.1093/humrep/der357] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
54
|
Zhang S, Sun J, Pan S, Zhu H, Wang L, Hu Y, Wang J, Wang F, Cao H, Yan X, Hua J. Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. J Cell Biochem 2011; 112:1009-21. [PMID: 21308744 DOI: 10.1002/jcb.23029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have shown that male germline stem cells (mGSCs), which are responsible for maintaining spermatogenesis in the male, could be obtained from mouse and human testis. However, the traditional cultural methods were mostly dependent on serum and feeder, and the initial mGSCs were either obtained from neonatal mice or the detailed description of its potency and origin was not provided. Here we reported a novel (retinol (RE) serum-free and feeder-free) system for the successful culture of adult germline stem cells from adult Kunming mice (8-24 weeks) testis. The isolated mGSCs cultured in RE serum-free and feeder-free medium maintained the typical morphology of undifferentiated embryonic stem cells (ESCs), and they proliferated well in RE medium analyzed by proliferation assay, RT-PCR, microarray, and Western blotting. These cells also showed typical properties of ESCs (alkaline phosphatase (AP) positive, expressions of Oct4, Sox2, Nanog, and SSEA1, with the capacity to form teratomas and differentiate into various types of cells within three germ layers). Taken together, we conclude that RE promotes the self-renewal of mGSCs and maintains the pluripotency of mGSCs, the RE serum-free and feeder-free system may be useful for the culture of pluripotent stem cell lines from adult testis tissues, which provides a new resource for tissue engineering and therapy for infertility.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Can we grow sperm? A translational perspective on the current animal and human spermatogenesis models. Asian J Androl 2011; 13:677-82. [PMID: 21765440 DOI: 10.1038/aja.2011.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There have been tremendous advances in both the diagnosis and treatment of male factor infertility; however, the mechanisms responsible to recreate spermatogenesis outside of the testicular environment continue to elude andrologists. Having the ability to 'grow' human sperm would be a tremendous advance in reproductive biology with multiple possible clinical applications, such as a treatment option for men with testicular failure and azoospermia of multiple etiologies. To understand the complexities of human spermatogenesis in a research environment, model systems have been designed with the intent to replicate the testicular microenvironment. Currently, there are both in vivo and in vitro model systems. In vivo model systems involve the transplantation of either spermatogonial stem cells or testicular xenographs. In vitro model systems involve the use of pluripotent stem cells and complex coculturing and/or three-dimensional culturing techniques. This review discusses the basic methodologies, possible clinical applications, benefits and limitations of each model system. Although these model systems have greatly improved our understanding of human spermatogenesis, we unfortunately have not been successful in demonstrating complete human spermatogenesis outside of the testicle.
Collapse
|
56
|
Ebata KT, Yeh JR, Zhang X, Nagano MC. Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro. Exp Cell Res 2011; 317:1319-29. [DOI: 10.1016/j.yexcr.2011.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 03/01/2011] [Accepted: 03/15/2011] [Indexed: 01/15/2023]
|
57
|
Kanatsu-Shinohara M, Kato-Itoh M, Ikawa M, Takehashi M, Sanbo M, Morioka Y, Tanaka T, Morimoto H, Hirabayashi M, Shinohara T. Homologous recombination in rat germline stem cells. Biol Reprod 2011; 85:208-17. [PMID: 21471297 DOI: 10.1095/biolreprod.111.090837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e., cultured spermatogonia with SSC activity. In this study, we report the successful homologous recombination in rat GS cells, which can be readily established by their ability to form germ cell colonies on culture plates whose surfaces are hydrophilic and neutrally charged and thus limit somatic cell binding. We established a drug selection protocol for GS cells under hypoxic conditions. The frequency of the homologous recombination of the Ocln gene was 4.2% (2 out of 48 clones). However, these GS cell lines failed to produce offspring following xenogeneic transplantation into mouse testes and microinsemination, suggesting that long-term culture and drug selection have a negative effect on GS cells. Nevertheless, our results demonstrate the feasibility of gene targeting in rat GS cells and pave the way toward the generation of KO rats.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
This article will provide an updated review of spermatogonial stem cells and their role in maintaining the spermatogenic lineage. Experimental tools used to study spermatogonial stem cells (SSCs) will be described, along with research using these tools to enhance our understanding of stem cell biology and spermatogenesis. Increased knowledge about the biology of SSCs improves our capacity to manipulate these cells for practical application. The chapter concludes with a discussion of future directions for fundamental investigation and practical applications of SSCs.
Collapse
Affiliation(s)
| | | | - Kyle E. Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Oatley JM, Kaucher AV, Avarbock MR, Brinster RL. Regulation of mouse spermatogonial stem cell differentiation by STAT3 signaling. Biol Reprod 2010; 83:427-33. [PMID: 20505165 DOI: 10.1095/biolreprod.109.083352] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Homeostasis of many tissues is maintained by self-renewal and differentiation of stem cells. Spermatogenesis is one such system relying on the activity of spermatogonial stem cells (SSCs). Several key regulators of SSC self-renewal have been identified, yet knowledge of molecules that control SSC differentiation is undefined. In this study, we found that transient impairment of STAT3 signaling enhances SSC self-renewal in vitro without affecting general spermatogonial proliferation, indicating an alteration in the balance of SSC fate decisions that inhibited differentiation. Confirming this observation, short hairpin RNA-mediated stable reduction of STAT3 expression in cultured SSCs abolished their ability to differentiate beyond the undifferentiated spermatogonial stage following transplantation into recipient testes. Collectively, these results demonstrate that STAT3 promotes the differentiation of SSCs. In contrast, STAT3 plays a central role in maintaining self-renewal of mouse embryonic stem cells, and STAT signaling is essential for self-renewal of male germline stem cells in Drosophila.
Collapse
Affiliation(s)
- Jon M Oatley
- Center for Reproductive Biology and Health, Department of Dairy and Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
60
|
Transmission distortion by loss of p21 or p27 cyclin-dependent kinase inhibitors following competitive spermatogonial transplantation. Proc Natl Acad Sci U S A 2010; 107:6210-5. [PMID: 20308578 DOI: 10.1073/pnas.0914448107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) undergo self-renewal division to support spermatogenesis. Although several positive regulators of SSC self-renewal have been identified, little is known about the mechanisms that negatively regulate SSCs. Here we developed a novel transplantation assay for SSCs and demonstrate that p21 and p27 cyclin-dependent kinase inhibitors play critical roles in SSC self-renewal and differentiation. Overexpression of p21 or p27 abrogated proliferation of cultured SSCs in vitro, and their expression levels were downregulated by exogenous self-renewal signals. In contrast, no apparent defects were found in p21 or p27-deficient SSCs by spermatogonial transplantation. However, competitive spermatogonial transplantation with WT SSCs revealed that the loss of either gene causes distortion of germline transmission: p21-deficiency facilitated mutant offspring production, whereas germline transmission was limited by p27-deficiency. Serial transplantation also showed that the loss of p27, but not p21, decreases secondary colony formation, suggesting that appropriate amounts of p27 are necessary for sustaining SSC self-renewal. Thus, p21 and p27 cyclin-dependent kinase inhibitors play critical roles in germline transmission by regulating the balance between SSC self-renewal and differentiation, and competitive spermatogonial transplantation technique will be useful for analyzing subtle defects in spermatogenesis that are not evident by traditional spermatogonial transplantation.
Collapse
|
61
|
Hermann BP, Sukhwani M, Hansel MC, Orwig KE. Spermatogonial stem cells in higher primates: are there differences from those in rodents? Reproduction 2010; 139:479-93. [PMID: 19880674 PMCID: PMC2895987 DOI: 10.1530/rep-09-0255] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout the reproductive life of mammals. While A(single) spermatogonia comprise the rodent SSC pool, the identity of the stem cell pool in the primate spermatogenic lineage is not well established. The prevailing model is that primate spermatogenesis arises from A(dark) and A(pale) spermatogonia, which are considered to represent reserve and active stem cells respectively. However, there is limited information about how the A(dark) and A(pale) descriptions of nuclear morphology correlate with the clonal (A(single), A(paired), and A(aligned)), molecular (e.g. GFRalpha1 (GFRA1) and PLZF), and functional (SSC transplantation) descriptions of rodent SSCs. Thus, there is a need to investigate primate SSCs using criteria, tools, and approaches that have been used to investigate rodent SSCs over the past two decades. SSCs have potential clinical application for treating some cases of male infertility, providing impetus for characterizing and learning to manipulate these adult tissue stem cells in primates (nonhuman and human). This review recounts the development of a xenotransplant assay for functional identification of primate SSCs and progress dissecting the molecular and clonal characteristics of the primate spermatogenic lineage. These observations highlight the similarities and potential differences between rodents and primates regarding the SSC pool and the kinetics of spermatogonial self-renewal and clonal expansion. With new tools and reagents for studying primate spermatogonia, the field is poised to develop and test new hypotheses about the biology and regenerative capacity of primate SSCs.
Collapse
Affiliation(s)
- Brian P. Hermann
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
| | - Marc C. Hansel
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
| |
Collapse
|
62
|
Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR, Brinster RL. The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 2010; 82:1103-11. [PMID: 20181621 DOI: 10.1095/biolreprod.109.083097] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Continual spermatogenesis relies on a pool of spermatogonial stem cells (SSCs) that possess the capacity for self-renewal and differentiation. Maintenance of this pool depends on survival of SSCs throughout the lifetime of a male. Response to extrinsic stimulation from glial cell line-derived neurotrophic factor (GDNF), mediated by the PIK3/AKT signaling cascade, is a key pathway of SSC survival. In this study, we found that expression of the POU domain transcription factor POU3F1 in cultured SSCs is up-regulated via this mechanism. Reduction of Pou3f1 gene expression by short interfering RNA (siRNA) treatment induced apoptosis in cultured germ cell populations, and transplantation analyses revealed impaired SSC maintenance in vitro. POU3F1 expression was localized to spermatogonia in cross-sections of prepubertal and adult testes, implying a similar role in vivo. Through comparative analyses, we found that expression of POU5F1, another POU transcription factor implicated as essential for SSC self-renewal, is not regulated by GDNF in cultured SSCs. Transplantation analyses following siRNA treatment showed that POU5F1 expression is not essential for SSC maintenance in vitro. Additionally, expression of NODAL, a putative autocrine regulator of POU5F1 expression in mouse germ cells, could not be detected in SSCs isolated from testes or cultured SSCs. Collectively, these results indicate that POU3F1, but not POU5F1, is an intrinsic regulator of GDNF-induced survival and self-renewal of mouse SSCs.
Collapse
Affiliation(s)
- Xin Wu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
63
|
Kanatsu-Shinohara M, Shinohara T. Germline Modification Using Mouse Spermatogonial Stem Cells. Methods Enzymol 2010; 477:17-36. [DOI: 10.1016/s0076-6879(10)77002-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
64
|
Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto H, Takashima S, Ogura A, Shinohara T. Genetic influences in mouse spermatogonial stem cell self-renewal. J Reprod Dev 2009; 56:145-53. [PMID: 19926938 DOI: 10.1262/jrd.09-153n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are slowly dividing cells that undergo self-renewal division to support spermatogenesis. Although the effects of genetic background in stem cell self-renewal have been well studied in hematopoietic stem cells, little is known about its effect on stem cells in other self-renewing tissues, including SSCs. To examine whether genetic factors are involved in regulation of SSC self-renewal, we first studied spermatogenesis in different inbred mouse strains (C57BL/6, DBA/2, AKR, BALB/C and C3H) after chemical damage caused by busulfan. Spermatogenesis in the DBA/2 and AKR strains was relatively resistant to busulfan treatment, whereas spermatogenesis was diminished in C57BL/6 mice and nearly ablated in C3H and BALB/C mice. Serial germ cell transplantation experiments provided functional evidence that SSCs with the DBA/2 background expanded more rapidly than those with the B6 background. Finally, we also employed the Germline Stem (GS) cell culture technique to examine the self-renewal activity in vitro. Although genetic manipulation of GS cells has been limited to those from the DBA/2 background, we produced transgenic offspring of the C3H background by electroporation of GS cells with a plasmid vector. Our results underscore the importance of genetic factors in SSC self-renewal. Furthermore, application of genetic modification techniques to GS cells with non-DBA/2 backgrounds extends the potential of a SSC-based approach in male germline modification.
Collapse
|
65
|
Wu Z, Luby-Phelps K, Bugde A, Molyneux LA, Denard B, Li WH, Süel GM, Garbers DL. Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells. ACTA ACUST UNITED AC 2009; 187:513-24. [PMID: 19948499 PMCID: PMC2779229 DOI: 10.1083/jcb.200907047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types.
Collapse
Affiliation(s)
- Zhuoru Wu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009; 136:1191-9. [PMID: 19270176 DOI: 10.1242/dev.032243] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-renewal and differentiation of spermatogonial stem cells (SSCs) provide the foundation for testis homeostasis, yet mechanisms that control their functions in mammals are poorly defined. We used microarray transcript profiling to identify specific genes whose expressions are augmented in the SSC-enriched Thy1(+) germ cell fraction of mouse pup testes. Comparisons of gene expression in the Thy1(+) germ cell fraction with the Thy1-depleted testis cell population identified 202 genes that are expressed 10-fold or higher in Thy1(+) cells. This database provided a mining tool to investigate specific characteristics of SSCs and identify novel mechanisms that potentially influence their functions. These analyses revealed that colony stimulating factor 1 receptor (Csf1r) gene expression is enriched in Thy1(+) germ cells. Addition of recombinant colony stimulating factor 1 (Csf1), the specific ligand for Csf1r, to culture media significantly enhanced the self-renewal of SSCs in heterogeneous Thy1(+) spermatogonial cultures over a 63-day period without affecting total germ cell expansion. In vivo, expression of Csf1 in both pre-pubertal and adult testes was localized to clusters of Leydig cells and select peritubular myoid cells. Collectively, these results identify Csf1 as an extrinsic stimulator of SSC self-renewal and implicate Leydig and myoid cells as contributors of the testicular stem cell niche in mammals.
Collapse
Affiliation(s)
- Jon M Oatley
- Department of Dairy and Animal Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
67
|
Kubota H, Avarbock MR, Schmidt JA, Brinster RL. Spermatogonial stem cells derived from infertile Wv/Wv mice self-renew in vitro and generate progeny following transplantation. Biol Reprod 2009; 81:293-301. [PMID: 19369648 DOI: 10.1095/biolreprod.109.075960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutation of the Kit gene causes a severe defect in spermatogenesis that results in infertility due to the inability of its cognate ligand, KIT ligand (KITL), to stimulate spermatogonial proliferation and differentiation. Although self-renewal of mouse spermatogonial stem cells (SSCs) depends on glial cell line-derived neurotrophic factor (GDNF), there is no unequivocal evidence that SSCs with a KIT deficiency can self-renew in vivo or in vitro. In the testis of W(v)/W(v) mice, in which the KIT tyrosine kinase activity is impaired, spermatogonia with SSC phenotype were identified. When W(v)/W(v) spermatogonia were cultured in an SSC culture system supplemented with GDNF in a 10% O(2) atmosphere, they formed clumps and proliferated continuously. An atmosphere of 10% O(2) was better than 21% O(2) to support SSC self-renewal. When W(v)/W(v) clump-forming germ cells were transplanted into testes of infertile wild-type busulfan-treated mice, they colonized the seminiferous tubules but did not differentiate. However, when transplanted into the testes of infertile W/W(v) pups, they restored spermatogenesis and produced spermatozoa, and progeny were generated using microinsemination. These results clearly show that SSCs exist in W(v)/W(v) testes and that they proliferate in vitro similar to wild-type SSCs, indicating that a functional KIT protein is not required for SSC self-renewal. Furthermore, the results indicate that a defect of KIT/KITL signaling of W(v)/W(v) SSCs does not prevent spermatogonial differentiation and spermatogenesis in some recipient strains.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
68
|
Schmidt JA, Avarbock MR, Tobias JW, Brinster RL. Identification of glial cell line-derived neurotrophic factor-regulated genes important for spermatogonial stem cell self-renewal in the rat. Biol Reprod 2009; 81:56-66. [PMID: 19339709 DOI: 10.1095/biolreprod.108.075358] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis throughout the life of a male. Because SSCs of many species can colonize the mouse testis, and glial cell line-derived neurotrophic factor (GDNF) is responsible for stimulating SSC self-renewal in rodents, we reasoned that molecular mechanisms of SSC self-renewal are similar across species. GDNF-regulated genes have been identified in mouse SSCs; however, downstream targets of GDNF are unknown in other species. The objective of this work was to identify GDNF-regulated genes in rat SSCs and to define the biological significance of these genes for rat SSC self-renewal. We conducted microarray analysis on cultured rat germ cells enriched for SSCs in the presence and absence of GDNF. Many GDNF-regulated genes were identified, most notably, Bcl6b and Etv5, which are important for mouse SSC self-renewal. Bcl6b was the most highly regulated gene in both the rat and mouse. Additionally, we identified three novel GDNF-regulated genes in rat SSCs: Bhlhe40, Hoxc4, and Tec. Small interfering RNA treatment for Bcl6b, Etv5, Bhlhe40, Hoxc4, and Tec resulted in a decrease in SSC number, as determined by transplantation, without a change in total cell number within the culture. These data indicate that, like in the mouse SSC, Bcl6b and Etv5 are important for rat SSC self-renewal, suggesting that these genes may be important for SSCs in all mammals. Furthermore, identification of three novel GDNF-regulated genes in the rat SSC extends our knowledge of SSC activity and broadens the foundation for understanding this process in higher species, including humans.
Collapse
Affiliation(s)
- Jonathan A Schmidt
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
69
|
Spermatogenesis and Cycle of the Seminiferous Epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:1-15. [DOI: 10.1007/978-0-387-09597-4_1] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Abstract
Mammalian spermatogenesis is a classic adult stem cell-dependent process, supported by self-renewal and differentiation of spermatogonial stem cells (SSCs). Studying SSCs provides a model to better understand adult stem cell biology, and deciphering the mechanisms that control SSC functions may lead to treatment of male infertility and an understanding of the etiology of testicular germ cell tumor formation. Self-renewal of rodent SSCs is greatly influenced by the niche factor glial cell line-derived neurotrophic factor (GDNF). In mouse SSCs, GDNF activation upregulates expression of the transcription factor-encoding genes bcl6b, etv5, and lhx1, which influence SSC self-renewal. Additionally, the non-GDNF-stimulated transcription factors Plzf and Taf4b have been implicated in regulating SSC functions. Together, these molecules are part of a robust gene network controlling SSC fate decisions that may parallel the regulatory networks in other adult stem cell populations.
Collapse
Affiliation(s)
- Jon M Oatley
- Department of Animal Sciences, Center for Reproductive Biology and Health, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
71
|
Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T. Production of Transgenic Rats via Lentiviral Transduction and Xenogeneic Transplantation of Spermatogonial Stem Cells1. Biol Reprod 2008; 79:1121-8. [DOI: 10.1095/biolreprod.108.071159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
72
|
Availability of subfertile transgenic rats expressing the c-myc gene as recipients for spermatogonial transplantation. Transgenic Res 2008; 18:135-41. [DOI: 10.1007/s11248-008-9219-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 09/08/2008] [Indexed: 12/19/2022]
|
73
|
Kubota H, Brinster RL. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol 2008; 86:59-84. [PMID: 18442644 DOI: 10.1016/s0091-679x(08)00004-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSCs), postnatal male germline stem cells, are the foundation of spermatogenesis, during which an enormous number of spermatozoa is produced daily by the testis throughout life of the male. SSCs are unique among stem cells in the adult body because they are the only cells that undergo self-renewal and transmit genes to subsequent generations. In addition, SSCs provide an excellent and powerful model to study stem cell biology because of the availability of a functional assay that unequivocally identifies the stem cell. Development of an in vitro culture system that allows an unlimited supply of SSCs is a crucial technique to manipulate genes of the SSC to generate valuable transgenic animals, to study the self-renewal mechanism, and to develop new therapeutic strategies for infertility. In this chapter, we describe a detailed protocol for the culture of mouse and rat SSCs. A key factor for successful development of the SSC culture system was identification of in vitro growth factor requirements for the stem cell using a defined serum-free medium. Because transplantation assays using immunodeficient mice demonstrated that extrinsic factors for self-renewal of SSCs appear to be conserved among many mammalian species, culture techniques for SSCs of other species, including farm animals and humans, are likely to be developed in the coming 5-10 years.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | |
Collapse
|
74
|
Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T. Long-Term Culture of Male Germline Stem Cells From Hamster Testes1. Biol Reprod 2008; 78:611-7. [DOI: 10.1095/biolreprod.107.065615] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
75
|
Orwig KE, Ryu BY, Master SR, Phillips BT, Mack M, Avarbock MR, Chodosh L, Brinster RL. Genes involved in post-transcriptional regulation are overrepresented in stem/progenitor spermatogonia of cryptorchid mouse testes. Stem Cells 2008; 26:927-38. [PMID: 18203673 DOI: 10.1634/stemcells.2007-0893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene expression and consequent biological activity of adult tissue stem cells are regulated by signals emanating from the local microenvironment (niche). To gain insights into the molecular regulation of spermatogonial stem cells (SSCs), gene expression was characterized from SSCs isolated from their cognate niches of cryptorchid (stem cell-enriched), wild-type, and busulfan-treated (stem cell-depleted) mouse testes. Quantitative assessment of stem cell activity in each testis model was determined using an in vivo functional assay and correlated with gene expression using Affymetrix MGU74Av2 microarrays and the ChipStat algorithm optimized to detect gene expression from rare cells in complex tissues. We identified 389 stem/progenitor spermatogonia candidate genes, which exhibited significant overlap with genes expressed by embryonic, hematopoietic, and neural stem cells; enriched spermatogonia; and cultured SSCs identified in previous studies. Candidate cell surface markers identified by the microarray may facilitate the isolation and enrichment of stem and/or progenitor spermatogonia. Flow cytometric analyses confirmed the expression of chemokine receptor 2 (Ccr2) and Cd14 on a subpopulation cryptorchid testis cells (alpha6-integrin+, side scatter(lo)) enriched for SSCs. These cell surface molecules may mark progenitor spermatogonia but not SSCs because Ccr2+ and Cd14+ fractions failed to produce spermatogenesis upon transplantation to recipient testes. Functional annotation of candidate genes and subsequent immunohistochemistry revealed that proteins involved in post-transcriptional regulation are overrepresented in cryptorchid testes that are enriched for SSCs. Comparative analyses indicated that this is a recurrent biological theme among stem cells.
Collapse
Affiliation(s)
- Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Yeh JR, Zhang X, Nagano MC. Establishment of a Short-Term In Vitro Assay for Mouse Spermatogonial Stem Cells1. Biol Reprod 2007; 77:897-904. [PMID: 17687116 DOI: 10.1095/biolreprod.107.063057] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are responsible for life-long, daily production of male gametes and for the transmission of genetic information to the next generation. Unequivocal detection of SSCs has relied on spermatogonial transplantation, in which functional SSCs are analyzed qualitatively and quantitatively based on their regenerative capacity. However, this technique has some significant limitations. For example, it is a time-consuming procedure, as data acquisition requires at least 8 weeks after transplantation. It is also laborious, requiring microinjection of target cells into the seminiferous tubules of individual testes. Donor-recipient immunocompatibility for successful transplantation and large variations in data obtained represent further limitations of this technique. In the present study, we provide evidence that a recently developed SSC culture system can be employed as a reliable, short-term in vitro assay for SSCs. In this system, donor cells generate three-dimensional structures of aggregated germ cells (clusters) in vitro within 6 days. We show that each cluster originates from a single cell. Thus, by counting the clusters, cluster-forming cells can be quantified. We observed a strong linear correlation between the numbers of clusters and SSCs over extended culture periods. Therefore, cluster numbers faithfully reflect SSC numbers. These results indicate that by simply counting the number of clusters, functional SSCs can be readily detected within 1 week in a semi-quantitative manner. The faithfulness of this in vitro assay to the transplantation assay was further confirmed under two experimental situations. This in vitro cluster formation assay provides a reliable short-term technique to detect SSCs.
Collapse
Affiliation(s)
- Jonathan R Yeh
- Department of Obstetrics and Gynecology and Division of Experimental Medicine, McGill University, Montreal, Québec, Canada H3A 1A1
| | | | | |
Collapse
|
77
|
Takehashi M, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ogura A, Shinohara T. Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2007; 104:2596-601. [PMID: 17299052 PMCID: PMC1815228 DOI: 10.1073/pnas.0609282104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spermatogonial stem cells represent a self-renewing population of spermatogonia, and continuous division of these cells supports spermatogenesis throughout the life of adult male animals. Previous attempts to introduce adenovirus vectors into spermatogenic cells, including spermatogonial stem cells, have failed to yield evidence of infection, suggesting that male germ cells may be resistant to adenovirus infection. In this study we show the feasibility of transducing spermatogonial stem cells by adenovirus vectors. When testis cells from ROSA26 Cre reporter mice were incubated in vitro with a Cre-expressing adenovirus vector, Cre-mediated recombination occurred at an efficiency of 49-76%, and the infected spermatogonial stem cells could reinitiate spermatogenesis after transplantation into seminiferous tubules of infertile recipient testes. No evidence of germ-line integration of adenovirus vector could be found in offspring from infected stem cells that underwent Cre-mediated recombination, which suggests that the adenovirus vector infected the cells but did not stably integrate into the germ line. Nevertheless, these results suggest that adenovirus may inadvertently integrate into the patient's germ line and indicate that there is no barrier to adenovirus infection in spermatogonial stem cells.
Collapse
Affiliation(s)
| | | | - Kimiko Inoue
- Bioresource Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki 305-0074, Japan
| | - Narumi Ogonuki
- Bioresource Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki 305-0074, Japan
| | - Hiromi Miki
- Bioresource Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki 305-0074, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Atsuo Ogura
- Bioresource Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- *Department of Molecular Genetics
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
78
|
Abstract
The biological activities of spermatogonial stem cells (SSCs) are the foundation for spermatogenesis and thus sustained male fertility. Therefore, understanding the mechanisms governing their ability to both self-renew and differentiate is essential. Moreover, because SSCs are the only adult stem cell to contribute genetic information to the next generation, they are an excellent target for genetic modification. In this chapter, we discuss two important approaches to investigate SSCs and their cognate niche microenvironment in the mouse, the SSC transplantation assay and the long-term serum-free SSC culture method. These techniques can be used to enhance our understanding of SSC biology as well as to produce genetically modified animals.
Collapse
Affiliation(s)
- Jon M Oatley
- University of Pennsylvania School of Veterinary Medicine, Laboratory of Reproductive Physiology, Philadelphia, USA
| | | |
Collapse
|