51
|
Tello JA, Kohout T, Pineda R, Maki RA, Scott Struthers R, Millar RP. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs. Am J Physiol Endocrinol Metab 2013; 305:E67-77. [PMID: 23632635 DOI: 10.1152/ajpendo.00624.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.
Collapse
Affiliation(s)
- Javier A Tello
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
52
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
53
|
Costa-e-Sousa RH, Astapova I, Ye F, Wondisford FE, Hollenberg AN. The thyroid axis is regulated by NCoR1 via its actions in the pituitary. Endocrinology 2012; 153:5049-57. [PMID: 22878400 PMCID: PMC3512014 DOI: 10.1210/en.2012-1504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022]
Abstract
TSH is the most important biomarker in the interpretation of thyroid function in man. Its levels are determined by circulating thyroid hormone (TH) levels that feed back centrally to regulate the expression of the subunits that comprise TSH from the pituitary. The nuclear corepressor 1 (NCoR1), is a critical coregulator of the TH receptor (TR) isoforms. It has been established to play a major role in the control of TSH secretion, because mice that express a mutant NCoR1 allele (NCoRΔID) that cannot interact with the TR have normal TSH levels despite low circulating TH levels. To determine how NCoR1 controls TSH secretion, we first developed a mouse model that allowed for induction of NCoRΔID expression postnatally to rule out a developmental effect of NCoR1. Expression of NCoRΔID postnatally led to a drop in TH levels without a compensatory rise in TSH production, indicating that NCoR1 acutely controls both TH production and feedback regulation of TSH. To demonstrate that this was a cell autonomous function of NCoR1, we expressed NCoRΔID in the pituitary using a Cre driven by the glycoprotein α-subunit promoter (P-ΔID mice). Importantly, P-ΔID mice have low TH levels with decreased TSH production. Additionally, the rise in TSH during hypothyroidism is blunted in P-ΔID mice. Thus, NCoR1 plays a critical role in TH-mediated regulation of TSH in the pituitary by regulating the repressive function of the TR. Furthermore, these studies suggest that endogenous NCoR1 levels in the pituitary could establish the set point of TSH secretion.
Collapse
Affiliation(s)
- Ricardo H Costa-e-Sousa
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
54
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
55
|
Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res 2012; 28:71-6. [PMID: 22787479 PMCID: PMC3389841 DOI: 10.5625/lar.2012.28.2.71] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023] Open
Abstract
Estrogens, a class of steroid hormones, regulate the growth, development, and physiology of the human reproductive system. Estrogens also involve in the neuroendocrine, skeletal, adipogenesis, and cardiovascular systems. Estrogen signaling pathways are selectively stimulated or inhibited depending on a balance between the activities of estrogen receptor (ER) α or ERβ in target organs. ERs belong to the steroid hormone superfamily of nuclear receptors, which act as transcription factors after binding to estrogen. The gene expression regulation by ERs is to modulate biological activities, such as reproductive organ development, bone modeling, cardiovascular system functioning, metabolism, and behavior in both females and males. Understanding of the general physiological roles of ERs has been gained when estrogen levels were ablated by ovariectomy and then replenished by treatment with exogenous estrogen. This technique is not sufficient to fully determine the exact function of estrogen signaling in general processes in living tissues. However, a transgenic mouse model has been useful to study gene-specific functions. ERα and ERβ have different biological functions, and knockout and transgenic animal models have distinct phenotypes. Analysis of ERα and ERβ function using knockout mouse models has identified the roles of estrogen signaling in general physiologic processes. Although transgenic mouse models do not always produce consistent results, they are the useful for studying the functions of these genes under specific pathological conditions.
Collapse
|
56
|
Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 2012; 153:2800-12. [PMID: 22508514 PMCID: PMC3359616 DOI: 10.1210/en.2012-1045] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 01/08/2023]
Abstract
Estrogen withdrawal increases gonadotropin secretion and body weight, but the critical cell populations mediating these effects are not well understood. Recent studies have focused on a subpopulation of hypothalamic arcuate neurons that coexpress estrogen receptor α, neurokinin 3 receptor (NK(3)R), kisspeptin, neurokinin B, and dynorphin for the regulation of reproduction. To investigate the function of kisspeptin/neurokinin B/dynorphin (KNDy) neurons, a novel method was developed to ablate these cells using a selective NK(3)R agonist conjugated to the ribosome-inactivating toxin, saporin (NK(3)-SAP). Stereotaxic injections of NK(3)-SAP in the arcuate nucleus ablated KNDy neurons, as demonstrated by the near-complete loss of NK(3)R, NKB, and kisspeptin-immunoreactive (ir) neurons and depletion of the majority of arcuate dynorphin-ir neurons. Selectivity was demonstrated by the preservation of proopiomelanocortin, neuropeptide Y, and GnRH-ir elements in the arcuate nucleus and median eminence. In control rats, ovariectomy (OVX) markedly increased serum LH, FSH, and body weight, and these parameters were subsequently decreased by treatment with 17β-estradiol. KNDy neuron ablation prevented the rise in serum LH after OVX and attenuated the rise in serum FSH. KNDy neuron ablation did not completely block the suppressive effects of E(2) on gonadotropin secretion, a finding consistent with redundant pathways for estrogen negative feedback. However, regardless of estrogen status, KNDy-ablated rats had lower levels of serum gonadotropins compared with controls. Surprisingly, KNDy neuron ablation prevented the dramatic effects of OVX and 17β-estradiol (E(2)) replacement on body weight and abdominal girth. These data provide evidence that arcuate KNDy neurons are essential for tonic gonadotropin secretion, the rise in LH after removal of E(2), and the E(2) modulation of body weight.
Collapse
Affiliation(s)
- Melinda A Mittelman-Smith
- Department of Pathology and the Evelyn F. McKnight Brain Institute, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Medigović I, Manojlović-Stojanoski M, Trifunović S, Ristić N, Milošević V, Žikić D, Nestorović N. Effects of genistein on gonadotropic cells in immature female rats. Acta Histochem 2012; 114:270-5. [PMID: 21703666 DOI: 10.1016/j.acthis.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The effects of genistein on pituitary gonadotropic cells of immature female rats were examined and compared to actions of the synthetic estrogen, 17α-ethynylestradiol. Immature female rats received 50mg/kg/bw of genistein in dimethylsulfoxide (DMSO) subcutaneously (s.c.) daily for 3 days at 18, 19 and 20 days of age. A second group was injected with 1μg/kg of 17α-ethynylestradiol in olive oil in the same schedule. The genistein control group received DMSO only, while 17α-ethynylestradiol controls were given sterile olive oil only. Changes in cell number per mm(2), cell volume and volume density of follicle-stimulating (FSH) and luteinizing (LH) immunolabeled cells were evaluated by morphometry and stereology. Genistein induced significant increases in the number of FSH cells (by 21%) and LH cells (by 20%) per mm(2) compared to corresponding controls. Volumes of FSH and LH cells were significantly increased by 19.7% and 20% and their volume densities by 20% and 20.2%, respectively. Estradiol markedly affected gonadotropes in the same manner, but to a greater extent. It can be concluded that genistein acted as an estrogenic agonist in the pituitaries of immature female rats, and as such, stimulated gonadotropic cells.
Collapse
|
58
|
Sánchez-Criado JE, Trudgen K, Millán Y, Blanco A, Monterde J, Garrido-Gracia JC, Gordon A, Aguilar R, Martín de las Mulas J, Ko C. Estrogen receptor (ESR) 2 partially offsets the absence of ESR1 in gonadotropes of pituitary-specific Esr1 knockout female mice. Reproduction 2012; 143:549-58. [DOI: 10.1530/rep-11-0214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen receptor 1 and 2 (ESR1 and 2) mediate estrogen (E) action on gonadotrope function. While much is known about the effects of ESR1 on the gonadotrope, there is still some controversy regarding the effects of ESR2. To investigate the role of ESR2 in the gonadotrope, 45-day-old female mice of two different genotypes were used: wild type (WT) and pituitary (gonadotropes and thyrotropes)-specific Esr1 knockout (KO). All mice were ovariectomized (OVX) and 15 days later injected over 3 days with 2.5 μg 17β-estradiol (E2), 0.2 mg of the selective ESR1 or 2 agonists, propylpyrazole triol and diarylpropionitrile, respectively, or 0.1 ml oil. The day after treatment, anterior pituitary glands were dissected out for evaluation of gonadotrope ultrastructural morphology and pituitary immunohistochemical expression of progesterone receptor (Pgr (Pr)). Blood was collected and serum LH levels were assessed. Activation of ESR1 in WT mice resulted in the following: i) uterine ballooning and vaginal cornification, ii) negative feedback on LH secretion, iii) increased number of homogeneous (functional) gonadotropes, and iv) pituitary Pgr expression (35.9±2.0% of pituitary cells). Activation of ESR1 in KO mice induced normal uterine, vaginal, and LH secretion responses, but failed to increase the number of functional gonadotropes, and induced significantly lower Pgr expression (21.0±3.0% of pituitary cells) than in WT mice. Whilst activation of ESR2 had no significant effects in WT mice, it doubled the number of functional gonadotropes exhibited by KO mice injected with oil. It is concluded that E2 exerted its action in KO mouse gonadotropes via ESR2.
Collapse
|
59
|
Radovick S, Levine JE, Wolfe A. Estrogenic regulation of the GnRH neuron. Front Endocrinol (Lausanne) 2012; 3:52. [PMID: 22654870 PMCID: PMC3356008 DOI: 10.3389/fendo.2012.00052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/16/2012] [Indexed: 11/17/2022] Open
Abstract
Reproductive function is regulated by the secretion of luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary and the steroid hormones from the gonads. The dynamic changes in the levels of the reproductive hormones regulate secondary sex characteristics, gametogenesis, cellular function, and behavior. Hypothalamic GnRH neurons, with cell bodies located in the basal hypothalamus, represent the final common pathway for neuronally derived signals to the pituitary. As such, they serve as integrators of a dizzying array of signals including sensory inputs mediating information about circadian, seasonal, behavioral, pheromonal, and emotional cues. Additionally, information about peripheral physiological function may also be included in the integrative signal to the GnRH neuron. These signals may communicate information about metabolic status, disease, or infection. Gonadal steroid hormones arguably exert the most important effects on GnRH neuronal function. In both males and females, the gonadal steroid hormones exert negative feedback regulation on axis activity at both the level of the pituitary and the hypothalamus. These negative feedback loops regulate homeostasis of steroid hormone levels. In females, a cyclic reversal of estrogen feedback produces a positive feedback loop at both the hypothalamic and pituitary levels. Central positive feedback results in a dramatic increase in GnRH secretion (Moenter et al., 1992; Xia et al., 1992; Clarke, 1993; Sisk et al., 2001). This is coupled with an increase in pituitary sensitivity to GnRH (Savoy-Moore et al., 1980; Turzillo et al., 1995), which produces the massive surge in secretion of LH that triggers ovulation. While feedback regulation of the axis in males is in part mediated by estrogen receptors (ER), there is not a clear consensus as to the relative role of ER versus AR signaling in males (Lindzey et al., 1998; Wersinger et al., 1999). Therefore, this review will focus on estrogenic signaling in the female.
Collapse
Affiliation(s)
- Sally Radovick
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Jon E. Levine
- Wisconsin National Primate Research CenterMadison, WI, USA
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- *Correspondence: Andrew Wolfe, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. e-mail:
| |
Collapse
|
60
|
Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, Zhang X, Zou F, Gent LM, Hahner LD, Khan SA, Elias CF, Elmquist JK, Clegg DJ. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 2011; 14:453-65. [PMID: 21982706 PMCID: PMC3235745 DOI: 10.1016/j.cmet.2011.08.009] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/24/2011] [Accepted: 08/02/2011] [Indexed: 11/24/2022]
Abstract
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kim HJ, Gieske MC, Trudgen KL, Hudgins-Spivey S, Kim BG, Krust A, Chambon P, Jeong JW, Blalock E, Ko C. Identification of estradiol/ERα-regulated genes in the mouse pituitary. J Endocrinol 2011; 210:309-21. [PMID: 21700660 DOI: 10.1530/joe-11-0098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogen acts to prime the pituitary prior to the GnRH-induced LH surge by undiscovered mechanisms. This study aimed to identify the key components that mediate estrogen action in priming the pituitary. RNA extracted from the pituitaries of metestrous (low estrogen) and proestrus (high estrogen) stage mice, as well as from ovariectomized wild-type and estrogen receptor α (ERα) knockout mice treated with 17β-estradiol (E(2)) or vehicle, was used for gene expression microarray. Microarray data were then aggregated, built into a functional electronic database, and used for further characterization of E(2)/ERα-regulated genes. These data were used to compile a list of genes representing diverse biological pathways that are regulated by E(2) via an ERα-mediated pathway in the pituitary. This approach substantiates ERα regulation of membrane potential regulators and intracellular vesicle transporters, among others, but not the basic components of secretory machinery. Subsequent characterization of six selected genes (Cacna1a, Cacna1g, Cited1, Abep1, Opn3, and Kcne2) confirmed not only ERα dependency for their pituitary expression but also the significance of their expression in regulating GnRH-induced LH secretion. In conclusion, findings from this study suggest that estrogen primes the pituitary via ERα by equipping pituitary cells with critical cellular components that potentiate LH release on subsequent GnRH stimulations.
Collapse
Affiliation(s)
- Hyun Joon Kim
- Division of Reproductive Sciences, Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
The gonadotropin-releasing hormone cell-specific element is required for normal puberty and estrous cyclicity. J Neurosci 2011; 31:3336-43. [PMID: 21368045 DOI: 10.1523/jneurosci.5419-10.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Appropriate tissue-specific gene expression of gonadotropin-releasing hormone (GnRH) is critical for pubertal development and maintenance of reproductive competence. In these studies, a common element in the mouse GnRH (mGnRH) promoter, between -2806 and -2078 bp, is shown to mediate differential regulation of hypothalamic and ovarian mGnRH expression. To further characterize this region, we generated a knock-out mouse (GREKO(-/-)) with a deletion of the mGnRH promoter fragment between -2806 and -2078 bp. GnRH mRNA expression in the brain of GREKO(-/-) was less than the expression in wild-type mice; however, immunohistochemical analysis revealed no difference between the numbers of GnRH neurons among groups. GnRH mRNA expression in the ovary was fivefold higher in GREKO(-/-). The immunohistochemical staining for GnRH in the ovary increased in surface epithelial and granulosa cells and also in the corpora lutea of GREKO(-/-) mice. The reproductive phenotype revealed that the mean day of vaginal opening was delayed, and additionally, there was a significant decrease in the length of proestrus and diestrus-metestrus phases of the estrous cycle, resulting in a shortened estrous cycle in GREKO(-/-) mice. This work supports the hypothesis that the region of the GnRH promoter contained between -2806 and -2078 bp acts as a cell-specific enhancer in the GnRH neuron and as a repressor in the ovary. Deletion of this region in vivo implicates the GnRH promoter in mediating pubertal development and periodic reproductive cycling, and forms the foundation to define the nuclear proteins important for puberty and estrous cycling in mammals.
Collapse
|
63
|
Abstract
Gonadotropin-releasing hormone (GnRH) neurons represent the final common output of signals from the brain that regulates reproductive function. A wide range of environmental factors impact GnRH neuron activity including disease, stress, nutrition, and seasonal cues, as well as gonadal steroid hormones. The CNS response is thought to be mediated, at least in part, through intermediate signaling molecules that affect GnRH neuronal activity. In vitro, GnRH neuronal cell lines respond to a variety of ligands that activate the Jak (Janus-activated kinase)/STAT (signal transducers and activators of transcription) intracellular signaling pathway. To determine its biological function in reproduction, we used Cre (cAMP response element)/LoxP technology to generate GnRH neuron-specific Jak2 conditional knock-out (Jak2 G(-/-)) mice. GnRH mRNA levels were reduced in Jak2 G(-/-) mice when compared with controls, while the number of GnRH neurons was equivalent, indicating a reduction in GnRH gene expression. Secretion of GnRH is also reduced as basal serum luteinizing hormone (LH) levels were significantly lower in female Jak2 G(-/-) mice while the pituitary responded normally to exogenous GnRH. Preovulatory LH surge levels were blunted in Jak2 G(-/-) mice, which was correlated with reduced GnRH neuronal activation as assessed by c-Fos. However, the activation of GnRH neurons following release from estrogen-negative feedback is retained. Female Jak2 G(-/-) mice exhibited significantly delayed puberty and first estrus, abnormal estrous cyclicity, and impaired fertility. These results demonstrate an essential role for Jak2 signaling in GnRH neurons for normal reproductive development and fertility in female mice.
Collapse
|
64
|
Xu Y, Faulkner LD, Hill JW. Cross-Talk between Metabolism and Reproduction: The Role of POMC and SF1 Neurons. Front Endocrinol (Lausanne) 2011; 2:98. [PMID: 22649394 PMCID: PMC3355979 DOI: 10.3389/fendo.2011.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/22/2011] [Indexed: 01/22/2023] Open
Abstract
Energy homeostasis and reproduction require tight coordination, but the mechanisms underlying their interaction are not fully understood. Two sets of hypothalamic neurons, namely pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and steroidogenic factor-1 (SF1) neurons in the ventromedial hypothalamic nucleus, are emerging as critical nodes where metabolic and reproductive signals communicate. This view is supported by recent genetic studies showing that disruption of metabolic signals (e.g., leptin and insulin) or reproductive signals (e.g., estradiol) in these neurons leads to impaired regulation of both energy homeostasis and fertility. In this review, we will examine the potential mechanisms of neuronal communication between POMC, SF1, and gonadotropin-releasing hormone neurons in the regulation of metabolism and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| | - Latrice D. Faulkner
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of ToledoToledo, OH, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| |
Collapse
|
65
|
Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A 2010; 107:22693-8. [PMID: 21149719 DOI: 10.1073/pnas.1012406108] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Puberty onset is initiated by activation of neurons that secrete gonadotropin-releasing hormone (GnRH). The timing and progression of puberty may depend upon temporal coordination of two opposing central mechanisms--a restraint of GnRH secretion before puberty onset, followed by enhanced stimulation of GnRH release to complete reproductive maturation during puberty. Neuronal estrogen receptor α (ERα) has been implicated in both controls; however, the underlying neural circuits are not well understood. Here we test whether these mechanisms are mediated by neurons that express kisspeptin, a neuropeptide that modulates GnRH neurosecretion. Strikingly, conditional ablation of ERα in kisspeptin neurons results in a dramatic advancement of puberty onset in female mice. Furthermore, subsequent pubertal maturation is arrested in these animals, as they fail to acquire normal ovulatory cyclicity. We show that the temporal coordination of juvenile restraint and subsequent pubertal activation is likely mediated by ERα in two separate kisspeptin neuronal populations in the hypothalamus.
Collapse
|
66
|
Sharma S, Sharma PM, Mistry DS, Chang RJ, Olefsky JM, Mellon PL, Webster NJG. PPARG regulates gonadotropin-releasing hormone signaling in LbetaT2 cells in vitro and pituitary gonadotroph function in vivo in mice. Biol Reprod 2010; 84:466-75. [PMID: 21076077 DOI: 10.1095/biolreprod.110.088005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peroxisome proliferators-activated receptor gamma (PPARG) ligands improve insulin sensitivity in type 2 diabetes and polycystic ovarian syndrome (PCOS). Despite clinical studies showing normalization of pituitary responsiveness to gonadotropin-releasing hormone (GnRH) in patients with PCOS, the precise role of PPARG in regulating the hypothalamic-pituitary-gonadal axis remains unclear. In the present study, we tested the hypothesis that the PPARG agonist rosiglitazone has a direct effect on the pituitary. In mouse LbetaT2 immortalized gonadotrophs, rosiglitazone treatment inhibited GnRH stimulation of the stress kinases p38MAPK and MAPKs/JNKs, but did not alter activation of ERKs, both in the presence and absence of activin. Furthermore, p38MAPK signaling was critical for both Lhb and Fshb promoter activity, and rosiglitazone suppressed the GnRH-mediated induction of Lhb and Fshb mRNA. Depletion of PPARG using a lentivirally encoded short hairpin RNA abolishes the effect of rosiglitazone to suppress activation of JNKs and induction of the transcription factors EGR1 and FOS as well as the gonadotropin genes Lhb and Fshb. Lastly, we show conditional knockout of Pparg in pituitary gonadotrophs caused an increase in luteinizing hormone levels in female mice, a decrease in follicle-stimulating hormone in male mice, and a fertility defect characterized by reduced litter size. Taken together, our data support a direct role for PPARG in modulating pituitary function in vitro and in vivo.
Collapse
Affiliation(s)
- Shweta Sharma
- Medical Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Brothers KJ, Wu S, DiVall SA, Messmer MR, Kahn CR, Miller RS, Radovick S, Wondisford FE, Wolfe A. Rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor. Cell Metab 2010; 12:295-305. [PMID: 20816095 PMCID: PMC2935812 DOI: 10.1016/j.cmet.2010.06.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 12/21/2022]
Abstract
Obesity is associated with insulin resistance in metabolic tissues such as adipose, liver, and muscle, but it is unclear whether nonclassical target tissues, such as those of the reproductive axis, are also insulin resistant. To determine if the reproductive axis maintains insulin sensitivity in obesity in vivo, murine models of diet-induced obesity (DIO) with and without intact insulin signaling in pituitary gonadotrophs were created. Diet-induced obese wild-type female mice (WT DIO) were infertile and experienced a robust increase in luteinizing hormone (LH) after gonadotropin-releasing hormone (GnRH) or insulin stimulation. By contrast, both lean and obese mice with a pituitary-specific knockout of the insulin receptor (PitIRKO) exhibited reproductive competency, indicating that insulin signaling in the pituitary is required for the reproductive impairment seen in DIO and that the gonadotroph maintains insulin sensitivity in a setting of peripheral insulin resistance.
Collapse
Affiliation(s)
- Kathryn J Brothers
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Allan CM, Couse JF, Simanainen U, Spaliviero J, Jimenez M, Rodriguez K, Korach KS, Handelsman DJ. Estradiol induction of spermatogenesis is mediated via an estrogen receptor-{alpha} mechanism involving neuroendocrine activation of follicle-stimulating hormone secretion. Endocrinology 2010; 151:2800-10. [PMID: 20410197 PMCID: PMC2875821 DOI: 10.1210/en.2009-1477] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both testosterone and its nonaromatizable metabolite dihydrotestosterone (DHT) induce spermatogenesis in gonadotropin-deficient hpg mice. Surprisingly, because aromatization is not required, estradiol (E2) also induces spermatogenesis and increases circulating FSH in hpg mice, but the mechanism remains unclear. We studied E2-induced spermatogenesis in hpg mice on an estrogen receptor (ER)-alpha (hpg/alphaERKO) or ERbeta (hpg/betaERKO) knockout or wild-type ER (hpg/WT) background treated with subdermal E2 or DHT implants for 6 wk. In hpg/WT and hpg/betaERKO, but not hpg/alphaERKO mice, E2 increased testis and epididymal weight, whereas DHT-induced increases were unaffected by ERalpha or ERbeta inactivation. E2 but not DHT treatment increased serum FSH (but not LH) in hpg/WT and hpg/betaERKO but not hpg/alphaERKO hpg mice. DHT or E2 alone increased (premeiotic) spermatogonia and (meiotic) spermatocytes without significant change in Sertoli cell numbers. DHT alone increased postmeiotic spermatids, regardless of ER presence, compared with variable ERalpha-dependent E2 postmeiotic responses. An ERalpha-mediated effect was confirmed by treating hpg mice for 6 wk by subdermal selective ER-alpha (16alpha-LE(2)) or ERbeta (8beta-VE(2)) agonist implants. ERalpha (but not ERbeta) agonist increased testis and epididymal weight, Sertoli cell, spermatogonia, meiotic, and postmeiotic germ cell numbers. Only ERalpha agonist markedly increased serum FSH, whereas either agonist induced small rises in serum LH. Administration of ERalpha agonist or E2 in the presence of functional ERalpha induced prominent gene expression of specific Sertoli (Eppin, Rhox5) and Leydig cell (Cyp11a1, Hsd3b1) markers. We conclude that E2-induced spermatogenesis in hpg mice involves an ERalpha-dependent neuroendocrine mechanism increasing blood FSH and Sertoli cell function.
Collapse
Affiliation(s)
- Charles M Allan
- ANZAC Research Institute, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Bernard DJ, Fortin J, Wang Y, Lamba P. Mechanisms of FSH synthesis: what we know, what we don't, and why you should care. Fertil Steril 2010; 93:2465-85. [DOI: 10.1016/j.fertnstert.2010.03.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/11/2010] [Indexed: 12/17/2022]
|
70
|
Shaw ND, Histed SN, Srouji SS, Yang J, Lee H, Hall JE. Estrogen negative feedback on gonadotropin secretion: evidence for a direct pituitary effect in women. J Clin Endocrinol Metab 2010; 95:1955-61. [PMID: 20133465 PMCID: PMC2853991 DOI: 10.1210/jc.2009-2108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Studies in humans and animals indicate that estrogen negative feedback occurs at the level of the hypothalamus, but it is unclear whether estrogen also exerts an inhibitory effect directly at the pituitary. OBJECTIVES The aim of the study was to determine whether estrogen has a direct negative feedback effect at the pituitary and whether this varies with aging. DESIGN AND SETTING A GnRH antagonist and graded doses of GnRH were used to isolate pituitary responsiveness before and after estrogen administration in Clinical Research Center studies at an academic medical center. SUBJECTS Subjects were healthy postmenopausal women aged 48-56 yr (n = 8) or 70-75 yr (n= 8). INTERVENTIONS A suppressive dose of the NAL-GLU GnRH antagonist was administered, followed by graded doses of GnRH before and after 1 month of estrogen administration. RESULTS LH and FSH responses to GnRH decreased after estrogen administration (P = 0.01 and P = 0.0001, respectively). The ratio of FSH to LH amplitudes decreased in response to estrogen (P = 0.04) indicating a greater sensitivity of FSH than LH to inhibition by estrogen. The inhibitory effect of estrogen on FSH was attenuated with aging (P = 0.02), but was maintained for LH (P = 0.4). CONCLUSIONS Studies that control for endogenous GnRH and estradiol demonstrate a direct pituitary site of estrogen negative feedback on LH and FSH responsiveness to GnRH in women. The effect of estrogen on FSH responsiveness is greater than on LH and is attenuated with aging. These studies indicate that estrogen negative feedback occurs directly at the pituitary and contributes to the differential regulation of FSH and LH secretion.
Collapse
Affiliation(s)
- N D Shaw
- Reproductive Endocrine Unit, BHX-5, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
71
|
Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM. Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice. Endocrinology 2010; 151:1142-52. [PMID: 20068010 DOI: 10.1210/en.2009-0598] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the GnRH receptor gene (GNRHR) can result in hypogonadotropic hypogonadism in humans. Unlike most mammals, mice lack a second form of GnRH (GnRH2) and a type 2 GnRH receptor. To determine whether the GnRH receptor is critical at all stages of reproduction and whether this receptor has additional physiological functions in developing and adult mice, we have generated mice from an embryonic stem cell line containing a retroviral vector with multiple stop codons inserted into intron 1 of the Gnrhr gene. This gene trap insertion resulted in the disruption of exon 2 and exon 3 of the Gnrhr gene. The insertion also contained a lacZ gene that was used as a reporter for GnRH receptor expression in these mice. This model has a similar phenotype to the clinical syndrome of hypogonadotropic hypogonadism. Null Gnrhr mice had small sexual organs, low levels of FSH, LH, and steroid hormones, failure of sexual maturation, infertility, and inability to respond to exogenous GnRH. However, the defective GnRH receptor did not prevent morula/blastocyst development, implantation, masculinization of fetal male mice, or maintenance of early pregnancy. The phenotype of this null Gnrhr mouse was more severe than models in the literature, including the N-ethyl-N-nitrosourea-induced Gnrhr mutant, the kisspeptin (Kiss1) knockout, and the kisspeptin receptor (Gpr54) knockout. In terms of gonadal morphology, adult gene trap-Gnrhr null mice demonstrate a complete cessation of reproduction and serve as an important model for understanding GnRH/GnRHR physiology.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|