51
|
Yuan C, Zhang K, Yue Y, Guo T, Liu J, Niu C, Sun X, Feng R, Wang X, Yang B. Analysis of dynamic and widespread lncRNA and miRNA expression in fetal sheep skeletal muscle. PeerJ 2020; 8:e9957. [PMID: 33024632 PMCID: PMC7518186 DOI: 10.7717/peerj.9957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The sheep is an economically important animal, and there is currently a major focus on improving its meat quality through breeding. There are variations in the growth regulation mechanisms of different sheep breeds, making fundamental research on skeletal muscle growth essential in understanding the regulation of (thus far) unknown genes. Skeletal muscle development is a complex biological process regulated by numerous genes and non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). In this study, we used deep sequencing data from sheep longissimus dorsi (LD) muscles sampled at day 60, 90, and 120 of gestation, as well as at day 0 and 360 following birth, to identify and examine the lncRNA and miRNA temporal expression profiles that regulate sheep skeletal myogenesis. We stained LD muscles using histological sections to analyse the area and circumference of muscle fibers from the embryonic to postnatal development stages. Our results showed that embryonic skeletal muscle growth can be characterized by time. We obtained a total of 694 different lncRNAs and compared the differential expression between the E60 vs. E90, E90 vs. E120, E120 vs. D0, and D0 vs. D360 lncRNA and gene samples. Of the total 701 known sheep miRNAs we detected, the following showed a wide range of expression during the embryonic stage: miR-2387, miR-105, miR-767, miR-432, and miR-433. We propose that the detected lncRNA expression was time-specific during the gestational and postnatal stages. GO and KEGG analyses of the genes targeted by different miRNAs and lncRNAs revealed that these significantly enriched processes and pathways were consistent with skeletal muscle development over time across all sampled stages. We found four visual lncRNA–gene regulatory networks that can be used to explore the function of lncRNAs in sheep and may be valuable in helping improve muscle growth. This study also describes the function of several lncRNAs that interact with miRNAs to regulate myogenic differentiation.
Collapse
Affiliation(s)
- Chao Yuan
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaojing Yue
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Tingting Guo
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianbin Liu
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Chune Niu
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoping Sun
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ruilin Feng
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bohui Yang
- Sheep Breeding Engineering Technology Research Center, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
52
|
Pregnant beef cow's nutrition and its effects on postnatal weight and carcass quality of their progeny. PLoS One 2020; 15:e0237941. [PMID: 32854111 PMCID: PMC7452729 DOI: 10.1371/journal.pone.0237941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
A systematic review (SR) and meta-analysis (MA) were performed to evaluate the effects of different energy levels (metabolizable energy, ME) and crude protein (CP), supplied to pregnant cows, on weight of their progenies at 60 (BW60), 100 (BW100), 180 (BW180) and 205 (BW205) days of age, average daily gain (ADG), and weight, age, loin eye area (LEA), marbling and fat thickness (FT) at slaughter. The SR was performed on two electronic databases. The MA for random effects was performed for each response variable separately. The BW60 was reduced (P<0.001; I2 = 78.9%) when cows consumed CP and ME above the required levels during the third trimester of pregnancy (3TRI). The BW205 was lower (P<0.001; I2 = 92.6%) when cows consumed ME above the recommended levels in the second trimester of pregnancy (2TRI) and 3TRI. Conversely, the ADG was higher when cows consumed CP (P = 0.032; I2 = 96.1%) and ME (P<0.001; I2 = 96.1%) above the required levels. The steers whose mothers consumed CP and ME above the required levels during the 3TRI were slaughtered 5.5 days earlier (P = 0.015; I2 = 98.5%) compared to other steers. The marbling was higher (P<0.001; I2 = 91.7%) in calves born to mothers consuming CP and ME above the recommended levels, regardless of the gestation phase. The FT was higher (P<0.001; I2 = 0%) in the offspring of cows that consumed CP and ME above the required levels during the 3TRI. Thus, CP and ME intake, at levels higher than those recommended by the NRC, by pregnant cows in the 3TRI reduces the progeny weight up to 205 days of age. However, this is advantageous during the finishing phase, as it reduces slaughter age and increases the ADG and carcass quality by improving marbling and FT.
Collapse
|
53
|
Bordbar F, Jensen J, Du M, Abied A, Guo W, Xu L, Gao H, Zhang L, Li J. Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing. Cell Prolif 2020; 53:e12870. [PMID: 32722873 PMCID: PMC7507581 DOI: 10.1111/cpr.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Genome‐wide association studies (GWAS) represent a powerful approach to detecting candidate genes for economically important traits in livestock. Our aim was to identify promising candidate muscle development genes that affect net meat weight (NMW) and validate these candidate genes in cattle. Materials and methods Using a next‐generation sequencing (NGS) dataset, we applied ~ 12 million imputed single nucleotide polymorphisms (SNPs) from 1,252 Simmental cattle to detect genes influencing net meat yield by way of a linear mixed model method. Haplotype and linkage disequilibrium (LD) blocks were employed to augment support for identified genes. To investigate the role of MTPN in bovine muscle development, we isolated myoblasts from the longissimus dorsi of a bovine foetus and treated the cells during proliferation, differentiation and hypertrophy. Results We identified one SNP (rs100670823) that exceeded our stringent significance threshold (P = 8.58 × 10−8) for a putative NMW‐related quantitative trait locus (QTL). We identified a promising candidate gene, myotrophin (MTPN), in the region around this SNP Myotrophin had a stimulatory effect on six muscle‐related markers that regulate differentiation and myoblast fusion. During hypertrophy, myotrophin promoted myotube hypertrophy and increased myotube diameters. Cell viability assay and flow cytometry showed that myotrophin inhibited myoblast proliferation. Conclusions The present experiments showed that myotrophin increases differentiation and hypertrophy of skeletal muscle cells, while inhibiting their proliferation. Our examination of GWAS results with in vitro biological studies provides new information regarding the potential application of myotrophin to increase meat yields in cattle and helpful information for further studies.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Adam Abied
- Animal Genetic Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Meat Science and Muscle Biology, Animal and Diary Science, University of Wisconsin-Madison, Madison, USA
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
54
|
Ren L, Li Q, Hu X, Yang Q, Du M, Xing Y, Wang Y, Li J, Zhang L. A Novel Mechanism of bta-miR-210 in Bovine Early Intramuscular Adipogenesis. Genes (Basel) 2020; 11:genes11060601. [PMID: 32485948 PMCID: PMC7349823 DOI: 10.3390/genes11060601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
Intramuscular fat (IMF) is one of the major factors determining beef quality. IMF formation is influenced by multiple conditions including genetic background, age and nutrition. In our previous investigation, bta-miR-210 was found to be increased during adipogenesis using miRNA-seq. In this study, we validated the upregulation of bta-miR-210 in platelet-derived growth factor receptor α positive (PDGFRα+) progenitor cells during adipogenic differentiation in vitro. To investigate its role in adipogenesis, bta-miR-210 mimics were introduced into progenitor cells, which resulted in enhanced intracellular lipid accumulation. Accordingly, the expression of adipocyte-specific genes significantly increased in the bta-miR-210 mimic group compared to that in the negative control group (p < 0.01). Dual-luciferase reporter assays revealed that WISP2 is a target of bta-miR-210. WISP2 knockdown enhanced adipogenesis. In conclusion, bta-miR-210 positively regulates the adipogenesis of PDGFRα+ cells derived from bovine fetal muscle by targeting WISP2.
Collapse
Affiliation(s)
- Ling Ren
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Qian Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Xin Hu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Min Du
- Washington Center for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Yishen Xing
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Yahui Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Correspondence: ; Tel.: +86-1062-890-940
| |
Collapse
|
55
|
Yang L, Li L, Kyei B, Guo J, Zhan S, Zhao W, Song Y, Zhong T, Wang L, Xu L, Zhang H. Systematic analyses reveal RNA editing events involved in skeletal muscle development of goat (Capra hircus). Funct Integr Genomics 2020; 20:633-643. [PMID: 32447468 DOI: 10.1007/s10142-020-00741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
RNA editing is a posttranscriptional molecular process involved with specific nucleic modification, which can enhance the diversity of gene products. Adenosine-to-inosine (A-to-I, I is read as guanosine by both splicing and translation machinery) is the main type of RNA editing in mammals, which manifested as AG (adenosine-to-guanosine) in sequence data. Here, we aimed to explore patterns of RNA editing using RNA sequencing data from skeletal muscle at four developmental stages (three fetal periods and one postnatal period) in goat. We found the occurrences of RNA editing events raised at fetal periods and declined at the postnatal period. Also, we observed distinct editing levels of AG editing across stages, and significant difference was found between postnatal period and fetal periods. AG editing patterns in newborn goats are similar to those of 45-day embryo compared with embryo at 105 days and embryo at 60 days. In this study, we found a total of 1415 significantly differential edited AG sites among four groups. Moreover, 420 sites were obviously clustered into six time-series profiles, and one profile had significant association between editing level and gene expression. Our findings provided some novel insights into understanding the molecular mechanism of muscle development in mammals.
Collapse
Affiliation(s)
- Liu Yang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yumo Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
56
|
Programming Skeletal Muscle Metabolic Flexibility in Offspring of Male Rats in Response to Maternal Consumption of Slow Digesting Carbohydrates during Pregnancy. Nutrients 2020; 12:nu12020528. [PMID: 32092940 PMCID: PMC7071425 DOI: 10.3390/nu12020528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle plays a relevant role in metabolic flexibility and fuel usage and the associated muscle metabolic inflexibility due to high-fat diets contributing to obesity and type 2 diabetes. Previous research from our group indicates that a high-fat and rapid-digesting carbohydrate diet during pregnancy promotes an excessive adipogenesis and also increases the risk of non-alcoholic fatty liver disease in the offspring. This effect can be counteracted by diets containing carbohydrates with similar glycemic load but lower digestion rates. To address the role of the skeletal muscle in these experimental settings, pregnant rats were fed high-fat diets containing carbohydrates with similar glycemic load but different digestion rates, a high fat containing rapid-digesting carbohydrates diet (HF/RD diet) or a high fat containing slow-digesting carbohydrates diet (HF/SD diet). After weaning, male offspring were fed a standard diet for 3 weeks (weaning) or 10 weeks (adolescence) and the impact of the maternal HF/RD and HF/SD diets on the metabolism, signaling pathways and muscle transcriptome was analyzed. The HF/SD offspring displayed better muscle features compared with the HF/RD group, showing a higher muscle mass, myosin content and differentiation markers that translated into a greater grip strength. In the HF/SD group, metabolic changes such as a higher expression of fatty acids (FAT/CD36) and glucose (GLUT4) transporters, an enhanced glycogen content, as well as changes in regulatory enzymes such as muscle pyruvate kinase and pyruvate dehydrogenase kinase 4 were found, supporting an increased muscle metabolic flexibility and improved muscle performance. The analysis of signaling pathways was consistent with a better insulin sensitivity in the muscle of the HF/SD group. Furthermore, increased expression of genes involved in pathways leading to muscle differentiation, muscle mass regulation, extracellular matrix content and insulin sensitivity were detected in the HF/SD group when compared with HF/RD animals. In the HF/SD group, the upregulation of the ElaV1/HuR gene could be one of the main regulators in the positive effects of the diet in early programming on the offspring. The long-lasting programming effects of the HF/SD diet during pregnancy may depend on a coordinated gene regulation, modulation of signaling pathways and metabolic flexibility that lead to an improved muscle functionality. The dietary early programming associated to HF/SD diet has synergic and positive crosstalk effects in several tissues, mainly muscle, liver and adipose tissue, contributing to maintain the whole body homeostasis in the offspring.
Collapse
|
57
|
NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility. Int J Mol Sci 2020; 21:ijms21041248. [PMID: 32070024 PMCID: PMC7072915 DOI: 10.3390/ijms21041248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis. After 1.5 days of differentiation, silencing NCAPG enhanced muscle-specific gene expression. An assay for transposase-accessible chromatin- high throughput sequencing (ATAC-seq) revealed that silencing NCAPG altered chromatin accessibility to activating protein 1 (AP-1) and its subunits. Knocking down the expression of the AP-1 subunits fos-related antigen 2 (FOSL2) or junB proto-oncogene (JUNB) enhanced part of the muscle-specific gene expression. In conclusion, our data provide valuable evidence about NCAPG’s function in myogenesis, as well as its potential role in gene expression.
Collapse
|
58
|
High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling. Biomed Pharmacother 2019; 120:109498. [DOI: 10.1016/j.biopha.2019.109498] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
|
59
|
Liu J, Au Yeung SL, He B, Kwok MK, Leung GM, Schooling CM. The effect of birth weight on body composition: Evidence from a birth cohort and a Mendelian randomization study. PLoS One 2019; 14:e0222141. [PMID: 31504067 PMCID: PMC6736493 DOI: 10.1371/journal.pone.0222141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lower birth weight is associated with diabetes although the underlying mechanisms are unclear. Muscle mass could be a modifiable link and hence a target of intervention. We assessed the associations of birth weight with muscle and fat mass observationally in a population with little socio-economic patterning of birth weight and using Mendelian randomization (MR) for validation. METHODS In the population-representative "Children of 1997" birth cohort (n = 8,327), we used multivariable linear regression to assess the adjusted associations of birth weight (kg) with muscle mass (kg) and body fat (%) at ~17.5 years. Genetically predicted birth weight (effect size) was applied to summary genetic associations with fat-free mass and fat mass (kg) from the UK Biobank (n = ~331,000) to obtain unconfounded estimates using inverse-variance weighting. RESULTS Observationally, birth weight was positively associated with muscle mass (3.29 kg per kg birth weight, 95% confidence interval (CI) 2.83 to 3.75) and body fat (1.09% per kg birth weight, 95% CI 0.54 to 1.65). Stronger associations with muscle mass were observed in boys than in girls (p for interaction 0.004). Using MR, birth weight was positively associated with fat-free mass (0.77 kg per birth weight z-score, 95% CI 0.22 to 1.33) and fat mass (0.58, 95% CI 0.01 to 1.15). No difference by sex was evident. CONCLUSION Higher birth weight increasing muscle mass may be relevant to lower birth weight increasing the risk of diabetes and suggests post-natal muscle mass as a potential target of intervention.
Collapse
Affiliation(s)
- Junxi Liu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baoting He
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gabriel Matthew Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C. Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- City University of New York Graduate School of Public Health and Health Policy, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
60
|
Zhang C, Ban W, Jiang J, Zhou Q, Li J, Li M. Two-Dimensional Ultrasound and Shear Wave Elastography in Infants With Late-Referral Congenital Muscular Torticollis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:2407-2415. [PMID: 30666660 DOI: 10.1002/jum.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES To investigate the feasibility of using 2-dimensional ultrasound (US) and shear wave elastography (SWE) to evaluate infants with late-referral congenital muscular torticollis (CMT). METHODS A total of 46 infants with late-referral CMT were enrolled and divided into 4 groups according to the degree of the passive range of motion (PROM) deficit in neck rotation. We introduced 6 metrics to represent the US features of the sternocleidomastoid muscle detected by 2-dimensional US and SWE studies. RESULTS There were no significant differences in the age at referral, sex, weight, or side of involvement between the 4 groups (P > .05). The thickness and shear modulus of the involved sternocleidomastoid muscle were positively correlated with the degree of the PROM deficit in neck rotation in late-referral infants with CMT (r = 0.71 and 0.82, respectively; P < .01). However, the difference in the shear modulus between adjacent PROM-limited groups of late-referral infants was not as significant as that of early-referral infants. CONCLUSIONS The shear modulus ratio may be one of the best diagnostic indicators of CMT available. However, more effective differential diagnostic SWE indicators late-referral infants with CMT need to be further explored.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenrui Ban
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jue Jiang
- Department of Medical Ultrasound, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Zhou
- Department of Medical Ultrasound, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University and Xi'an Jiaotong University, Xi'an, China
| | - Miao Li
- Department of Medical Ultrasound, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
61
|
Zhao L, Huang Y, Du M. Farm animals for studying muscle development and metabolism: dual purposes for animal production and human health. Anim Front 2019; 9:21-27. [PMID: 32002259 PMCID: PMC6952012 DOI: 10.1093/af/vfz015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Liang Zhao
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Yan Huang
- Department of Animal Science, University of Arkansas, Fayetteville, AR
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
62
|
Poizat G, Alexandre C, Al Rifai S, Riffault L, Crepin D, Benomar Y, Taouis M. Maternal resistin predisposes offspring to hypothalamic inflammation and body weight gain. PLoS One 2019; 14:e0213267. [PMID: 30845245 PMCID: PMC6405160 DOI: 10.1371/journal.pone.0213267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Resistin promotes hypothalamic neuroinflammation and insulin resistance through Toll like receptor 4 (TLR4), this hormone is thought to be a link between obesity and insulin-resistance. Indeed, resistin plasma levels are higher in obese and insulin resistant subjects. However, the impact of maternal resistin on the predisposition of offspring to hypothalamic neuroinflammation is unknown. Here, female mice were treated with resistin during gestation/lactation periods, then hypothalamic neuroinflammation was investigated in male offspring at p28 and p90. At p28, resistin increased the expression of inflammation markers (IL6, TNFα and NFκB) and TLR4 in the hypothalamus and decreased both hypothalamic insulin and leptin receptors' expression. The hypothalamic up-regulation IL6, TNFα and TLR4 was sustained until p90 promoting most likely hypothalamic inflammation. Maternal resistin also increased IL6 and TNFα in the adipose tissue of offspring at p90 associated with a higher body weight gain. In contrast, liver and muscle were not affected. These findings reveal that the augmentation of maternal resistin during gestation and lactation promotes hypothalamic and adipose tissue inflammation of offspring as evidenced by sustained increase of inflammation markers from weaning to adulthood. Thus, maternal resistin programs offspring hypothalamic and adipose tissue inflammation predisposing then offspring to body weight gain.
Collapse
Affiliation(s)
- Ghislaine Poizat
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Coralie Alexandre
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Sarah Al Rifai
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Laure Riffault
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Delphine Crepin
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Yacir Benomar
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
| | - Mohammed Taouis
- CNRS NeuroPSI UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, University Paris-Saclay, Orsay, France
- * E-mail:
| |
Collapse
|
63
|
Addinsall AB, Martin SD, Collier F, Conlan XA, Foletta VC, Stupka N. Differential regulation of cellular stress responses by the endoplasmic reticulum-resident Selenoprotein S (Seps1) in proliferating myoblasts versus myotubes. Physiol Rep 2018; 6:e13926. [PMID: 30557449 PMCID: PMC6296459 DOI: 10.14814/phy2.13926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
The antioxidant Selenoprotein S (Seps1, Selenos) is an endoplasmic reticulum (ER)-resident protein associated with metabolic and inflammatory disease. While Seps1 is highly expressed in skeletal muscle, its mechanistic role as an antioxidant in skeletal muscle cells is not well characterized. In C2C12 myotubes treated with palmitate for 24 h, endogenous Seps1 protein expression was upregulated twofold. Two different siRNA constructs were used to investigate whether decreased levels of Seps1 exacerbated lipid-induced oxidative and ER stress in C2C12 myotubes and myoblasts, which differ with regards to cell cycle state and metabolic phenotype. In myoblasts, Seps1 protein knockdown of ~50% or ~75% exacerbated cellular stress responses in the presence of palmitate; as indicated by decreased cell viability and proliferation, higher H2 O2 levels, a lower reduced to oxidized glutathione (GSH:GSSG) ratio, and enhanced gene expression of ER and oxidative stress markers. Even in the absence of palmitate, Seps1 knockdown increased oxidative stress in myoblasts. Whereas, in myotubes in the presence of palmitate, a ~50% knockdown of Seps1 was associated with a trend toward a marginal (3-5%) decrease in viability (P = 0.05), decreased cellular ROS levels, and a reduced mRNA transcript abundance of the cellular stress marker thioredoxin inhibitory binding protein (Txnip). Furthermore, no enhancement of gene markers of ER stress was observed in palmitate-treated myotubes in response to Seps1 knockdown. In conclusion, reduced Seps1 levels exacerbate nutrient-induced cellular stress responses to a greater extent in glycolytic, proliferating myoblasts than in oxidative, differentiated myotubes, thus demonstrating the importance of cell phenotype to Seps1 function.
Collapse
Affiliation(s)
- Alex B. Addinsall
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| | - Sheree D. Martin
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| | - Fiona Collier
- GCEID, University HospitalBarwon HealthGeelongAustralia
- School of MedicineDeakin UniversityGeelongAustralia
| | - Xavier A. Conlan
- Centre for Chemistry and BiotechnologySchool of Life and Environmental SciencesFaculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongAustralia
| | - Victoria C. Foletta
- Institute for Physical Activity and Nutrition (IPAN)School of Exercise and Nutrition SciencesDeakin UniversityGeelongAustralia
| | - Nicole Stupka
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| |
Collapse
|
64
|
Casey TM, Walker JF, Bhide K, Thimmapuram J, Schoonmaker JP. Global transcriptional differences in myokine and inflammatory genes in muscle of mature steer progeny are related to maternal lactation diet and muscle composition. Physiol Genomics 2018; 50:884-892. [PMID: 30074426 DOI: 10.1152/physiolgenomics.00060.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Steer progeny suckled by cows fed a dried distillers grains and solubles (DDGS) diet the first 3 mo of lactation were heavier during feedlot finishing and had significantly lower marbling and larger longissimus muscles than steers suckled by cows fed a control diet (CON). These differences were profound in that progeny were managed and fed identically from weaning until finishing, and findings suggest that the suckling period established the developmental program of muscle composition. Here transcriptomes of longissimus muscle were measured by next-generation sequencing to investigate whether there were any developmental clues to the differences in marbling scores and muscle content between steers suckled by DDGS ( n = 5) vs. control (CON; n = 5) diet-fed cows during lactation. There were 809 genes differentially expressed ( P-adj<0.1) between CON and DDGS muscle. Of these 636 were upregulated and 173 downregulated in DDGS relative to CON. Overall the DDGS vs. CON muscle transcriptomic signature was promyogenic and antiadipogenic. In particular, myokines/satellite cell maintenance factors were found among upregulated (LIF, CNTF, FGFB1, EPHB1) genes. The antiadipogenic signature was typified by the upregulation of anti-inflammatory cytokines and receptors (IL1RAP, IL1RL2, IL13RA2, IL1F10), and downregulation of expression of inflammation/inflammatory cytokines and receptor (TNF, IL6R, CXCL9), which suggests a selection of differentiation pathways away from adipogenic line. The upregulation of TGFB, SPP1, and INHBA supports selection of fibroblast lineage of cells. Thus, the lactation phase of production can effect meat quality by affecting transcriptional signatures that favor myogenesis and depress inflammation.
Collapse
Affiliation(s)
- T. M. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - J. F. Walker
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - K. Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J. Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J. P. Schoonmaker
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
65
|
Effect of maternal weight during pregnancy on offspring muscle strength response to resistance training in late adulthood. Adv Med Sci 2018; 63:353-358. [PMID: 30099329 DOI: 10.1016/j.advms.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Maternal obesity can unfavorably influence offspring body composition, muscle strength, and possibly muscle's adaptability to training, but the human studies are scarce. Therefore, we aimed to investigate the effect of maternal obesity on offspring muscle strength responses to resistance training intervention in elderly frail women. MATERIALS/METHODS Recruited participants were elderly frail women offspring of lean/normal weight mothers (n = 19, mean body mass index (BMI): 22.8 kg/m2, range: 19.9-24.5) or overweight/obese mothers (n = 16, mean BMI: 29.7 kg/m2, range: 28.2-34.2). Information on maternal BMI immediately prior to delivery was collected from the birth registers. All women participated in a 4-month supervised progressive resistance training intervention three times a week for 60 min. Predicted 1-RM of abdominal crunch, hip abduction, leg curl, leg press, seated row, and total strength were measured at baseline and after each month of training. RESULTS According to rANOVA, strength increased significantly in both groups (p for time <0.001), but no significant between the group difference were detected (p for time x group interaction > 0.072). On average, muscle strength of the women offspring of overweight/obese mothers tended to be lower than in women offspring of lean/normal weight mothers, but the only significant difference was found in leg curl (p = 0.006). No significant differences between the groups were found in relative strength changes from baseline to 4-months. CONCLUSIONS Muscle strength response to supervised resistance training is not modulated by maternal adiposity in late pregnancy in elderly frail female offspring.
Collapse
|
66
|
Shankar K, Pivik RT, Johnson SL, van Ommen B, Demmer E, Murray R. Environmental Forces that Shape Early Development: What We Know and Still Need to Know. Curr Dev Nutr 2018; 2:nzx002. [PMID: 30167570 PMCID: PMC6111237 DOI: 10.3945/cdn.117.001826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
Understanding health requires more than knowledge of the genome. Environmental factors regulate gene function through epigenetics. Collectively, environmental exposures have been called the "exposome." Caregivers are instrumental in shaping exposures in a child's initial years. Maternal dietary patterns, physical activity, degree of weight gain, and body composition while pregnant will influence not only fetal growth, but also the infant's metabolic response to nutrients and energy. Maternal over- or underweight, excess caloric intake, nutrient imbalances, glucose dysregulation, and presence of chronic inflammatory states have been shown to establish risk for many later chronic diseases. During the period from birth to age 3 y, when the infant's metabolic rate is high and synaptogenesis and myelination of the brain are occurring extremely rapidly, the infant is especially prone to damaging effects from nutrient imbalances. During this period, the infant changes from a purely milk-based diet to one including a wide variety of foods. The process, timing, quality, and ultimate dietary pattern acquired are a direct outcome of the caregiver-infant feeding relationship, with potentially lifelong consequences. More research on how meal time interactions shape food acceptance is needed to avoid eating patterns that augment existing disease risk. Traditional clinical trials in nutrition, meant to isolate single factors for study, are inadequate to study the highly interconnected realm of environment-gene interactions in early life. Novel technologies are being used to gather broad exposure data on disparate populations, employing pioneering statistical approaches and correlations applied specifically to the individual, based on their genetic make-up and unique environmental experiences.
Collapse
Affiliation(s)
- Kartik Shankar
- Arkansas Children's Nutrition Research Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - R T Pivik
- Arkansas Children's Nutrition Research Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan L Johnson
- Department of Pediatrics, Section of Nutrition, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Ben van Ommen
- Netherlands Organization of Applied Scientifc Research (TNO), Zeist, Netherlands
| | | | - Robert Murray
- Department of Human Nutrition, Ohio State University, Columbus, OH
| |
Collapse
|
67
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
68
|
Ren T, Li Z, Zhou Y, Liu X, Han R, Wang Y, Yan F, Sun G, Li H, Kang X. Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome 2018; 61:337-347. [DOI: 10.1139/gen-2017-0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chicken muscle quality is one of the most important factors determining the economic value of poultry, and muscle development and growth are affected by genetics, environment, and nutrition. However, little is known about the molecular regulatory mechanisms of long non-coding RNAs (lncRNAs) in chicken skeletal muscle development. Our study aimed to better understand muscle development in chickens and thereby improve meat quality. In this study, Ribo-Zero RNA-Seq was used to investigate differences in the expression profiles of muscle development related genes and associated pathways between Gushi (GS) and Arbor Acres (AA) chickens. We identified two muscle tissue specific expression lncRNAs. In addition, the target genes of these lncRNAs were significantly enriched in certain biological processes and molecular functions, as demonstrated by Gene Ontology (GO) analysis, and these target genes participate in five signaling pathway, as revealed by an analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Taken together, these data suggest that different lncRNAs might be involved in regulating chicken muscle development and growth and provide new insight into the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Tuanhui Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yu Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Yongcai Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - FengBin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - GuiRong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
| |
Collapse
|
69
|
Masuda S, Tanaka M, Inoue T, Ohue-Kitano R, Yamakage H, Muranaka K, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Chemokine (C-X-C motif) ligand 1 is a myokine induced by palmitate and is required for myogenesis in mouse satellite cells. Acta Physiol (Oxf) 2018; 222. [PMID: 28960786 DOI: 10.1111/apha.12975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/20/2023]
Abstract
AIM The functional significance of the myokines, cytokines and peptides produced and released by muscle cells has not been fully elucidated. The purpose of this study was to identify a myokine with increased secretion levels in muscle cells due to saturated fatty acids and to examine the role of the identified myokine in the regulation of myogenesis. METHODS Human primary myotubes and mouse C2C12 myotubes were used to identify the myokine; its secretion was stimulated by palmitate loading. The role of the identified myokine in the regulation of the activation, proliferation, differentiation and self-renewal was examined in mouse satellite cells (skeletal muscle stem cells). RESULTS Palmitate loading promoted the secretion of chemokine (C-X-C motif) ligand 1 (CXCL1) in human primary myotubes, and it also increased CXCL1 gene expression level in C2C12 myotubes in a dose- and time-dependent manner. Palmitate loading increased the production of reactive oxygen species along with the activation of nuclear factor-kappa B (NF-κB) signalling. Pharmacological inhibition of NF-κB signalling attenuated the increase in CXCL1 gene expression induced by palmitate and hydrogen peroxide. Palmitate loading significantly increased CXC receptor 2 gene expression in undifferentiated cells. CXCL1 knockdown attenuated proliferation and myotube formation by satellite cells, with reduced self-renewal. CXCL1 knockdown also significantly decreased the Notch intracellular domain protein level. CONCLUSION These results suggest that secretion of the myokine CXCL1 is stimulated by saturated fatty acids and that CXCL1 promotes myogenesis from satellite cells to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- S. Masuda
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - M. Tanaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Inoue
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - R. Ohue-Kitano
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - H. Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Muranaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - A. Shimatsu
- Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Hasegawa
- Department of Translational Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - N. Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| |
Collapse
|
70
|
Năstase L, Cretoiu D, Stoicescu SM. Skeletal Muscle Damage in Intrauterine Growth Restriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:93-106. [PMID: 30390249 DOI: 10.1007/978-981-13-1435-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) represents a rate of fetal growth that is less than average for the population and the growth potential of a specific infant. IUGR produces infants who are small for gestational age (SGA) but also appropriate for gestational age (AGA). It refers to growth less than expected for gestational age and is most often under 10th percentiles for age. It develops during the late second and third trimesters of gestation. The etiology of IUGR is multifactorial. One of the most important factors which leads to IUGR is a decrease of nutrients and oxygen delivered to the fetus by the placenta. The growth of adipose tissue and skeletal muscle is limited by the declined fetal nutrient supply later in gestation. IUGR affects about 24% of babies born in developing countries. Worldwide, IUGR is the second cause of perinatal morbidity and mortality behind the premature birth and a major predisposing factor to metabolic disorders throughout postnatal life, even at adult age. Skeletal muscle represents about 35-40% of the body mass and plays an essential role in metabolic homeostasis, being responsible for 65% of fetal glucose consumption. A reduction in skeletal muscle growth characterizes IUGR fetuses compared to normal weight neonates. The decrease in muscle mass is not compensated after birth and persists until adulthood. This is a review of the literature, a neonatological, clinical point of view on the effects of IUGR on striated muscles. The available studies on this subject are currently the results of experimental research on animals, and information about the human fetus and newborn are scarce.
Collapse
Affiliation(s)
- Leonard Năstase
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania.
| | - Dragos Cretoiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| | - Silvia Maria Stoicescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| |
Collapse
|
71
|
Hidaka BH, Thodosoff JM, Kerling EH, Hull HR, Colombo J, Carlson SE. Intrauterine DHA exposure and child body composition at 5 y: exploratory analysis of a randomized controlled trial of prenatal DHA supplementation. Am J Clin Nutr 2018; 107:35-42. [PMID: 29381793 PMCID: PMC5972598 DOI: 10.1093/ajcn/nqx007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Observational studies find associations between maternal docosahexaenoic acid (DHA) and greater fat-free mass and lower percentage of body fat, but randomized trials of prenatal DHA supplementation have not found significant intent-to-treat effects on childhood body composition. Objective This study sought to explore associations between intrauterine DHA exposure and body composition and size at 5 y in the offspring of women who participated in a randomized trial of prenatal DHA supplementation (corn and soybean oil placebo or 600 mg/d). Design At 5 y, body composition was measured by air displacement plethysmography in 154 offspring of women who had participated in the Kansas University DHA Outcomes Study and who had red blood cell (RBC) phospholipid (PL) fatty acids assessed at enrollment and delivery. We used linear regression models to analyze the relation among 3 indicators of intrauterine DHA exposure-1) intent-to-treat (placebo or DHA), 2) maternal RBC PL DHA status at delivery, and 3) change in maternal DHA (delivery minus enrollment)-and 6 outcomes of interest: 5-y fat mass, fat-free mass, percentage of body fat, height, weight, and body mass index z score. Results Change in maternal RBC PL DHA correlated with higher fat-free mass (r = 0.21, P = 0.0088); the association was unchanged after adjustment for maternal, perinatal, and childhood dietary factors. Intent-to-treat and DHA status at delivery showed positive trends with fat-free mass that were not statistically significant. There was no evidence relating intrauterine DHA exposure to any other body composition measure. Conclusions Change in maternal DHA status during pregnancy was related to higher offspring 5-y fat-free mass. The other 2 indicators of intrauterine exposure to DHA suggested a trend for higher offspring 5-y fat-free mass. Our findings agree with an earlier observational study from the United Kingdom. This trial was registered at clinicaltrials.gov as NCT00266825.
Collapse
Affiliation(s)
- Brandon H Hidaka
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Jocelynn M Thodosoff
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Elizabeth H Kerling
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Holly R Hull
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - John Colombo
- Department of Psychology, University of Kansas, Lawrence, KS
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
72
|
Rosales Nieto CA, Thompson AN, Martin GB. A new perspective on managing the onset of puberty and early reproductive performance in ewe lambs: a review. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global changes in industry and society have led us to reassess the numerous factors that combine to influence the time of onset of puberty and the efficiency of reproduction in young sheep. Age and weight have long been considered the dominant factors that influence the onset of puberty and, for many years, it has been accepted that these relationships are mediated by the hormone, leptin, produced by body fat. However, recent studies showing that muscle mass also plays a role have challenged this dogma and also presented new options for our understanding of metabolic inputs into the brain control of reproduction. Moreover, the possibility that an improvement in meat production will simultaneously advance puberty is exciting from an industry perspective. An industry goal of strong reproductive performance in the first year of life is becoming possible and, with it, a major step upwards in the lifetime reproductive performance of ewes. The concept of early puberty is not well accepted by producers for a variety of reasons, but the new data show clear industry benefits, so the next challenge is to change that perception and encourage producers to manage young ewes so they produce their first lamb at 1 year of age.
Collapse
|
73
|
Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Sci Rep 2017; 7:17595. [PMID: 29242640 PMCID: PMC5730612 DOI: 10.1038/s41598-017-18034-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
We investigated whether maternal metabolic environment affects mesenchymal stromal/stem cells (MSCs) from umbilical cord’s Wharton’s Jelly (WJ) on a molecular level, and potentially render them unsuitable for clinical use in multiple recipients. In this pilot study on umbilical cords post partum from healthy non-obese (BMI = 19–25; n = 7) and obese (BMI ≥ 30; n = 7) donors undergoing elective Cesarean section, we found that WJ MSC from obese donors showed slower population doubling and a stronger immunosuppressive activity. Genome-wide DNA methylation of triple positive (CD73+CD90+CD105+) WJ MSCs found 67 genes with at least one CpG site where the methylation difference was ≥0.2 in four or more obese donors. Only one gene, PNPLA7, demonstrated significant difference on methylome, transcriptome and protein level. Although the number of analysed donors is limited, our data suggest that the altered metabolic environment related to excessive body weight might bear consequences on the WJ MSCs.
Collapse
|
74
|
Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Funct Integr Genomics 2017; 18:43-54. [PMID: 28993898 DOI: 10.1007/s10142-017-0573-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.
Collapse
|
75
|
The Role of Malnutrition during Pregnancy and Its Effects on Brain and Skeletal Muscle Postnatal Development. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
“Foetal programming” refers to nutritional and hormonal variations during pregnancy. A maternal proper diet has a fundamental role in decreasing pregnancy complications and to prevent possible diseases in postnatal life. In our narrative review, we analyze and discuss the role of malnutrition during pregnancy and its effects on pre- and postnatal development of embryos. Our review proposes a comprehensive and careful analysis of the studies in this field regarding malnutrition and foetal programming. Evidence shows that nutrient imbalance before implantation may result in somatic hypoevolutism at birth, and endocrine and metabolic dysfunctions in postnatal life. In addition, the maternal malnutrition could exert a suppressive effect on the maternal and foetal immune response. It could also affect both the proliferation of myogenic precursors reducing the number of muscle fibres and the future reproductive maturation with possible consequent impaired fertility and quality of gametes. In conclusion, it is necessary to develop dietary strategies to optimize nutrition, not only during pregnancy but already when it is programmed, in order to improve the outcomes of pregnancy, promote growth, healthy child development, reduce the risk of chronic diseases, and slow down the metabolic decline associated with aging.
Collapse
|
76
|
Wasenius NS, Grattan KP, Harvey ALJ, Barrowman N, Goldfield GS, Adamo KB. Maternal gestational weight gain and objectively measured physical activity among offspring. PLoS One 2017; 12:e0180249. [PMID: 28662129 PMCID: PMC5491154 DOI: 10.1371/journal.pone.0180249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Animal studies have suggested that maternal weight-related factors during pregnancy can program offspring physical activity in a sex-dependent manner. However, there is limited evidence in humans. The purpose of this study was to investigate the association between maternal gestational weight gain (GWG) and offspring total physical activity (TPA) level and to determine whether these associations are moderated by sex of offspring or maternal pre-pregnancy weight status. Method We studied 56 boys (mean age = 3.7 years, standard deviation (SD) 0.5) and 57 girls (mean age = 3.5±0.5 years) enrolled in licensed childcare centers. TPA was objectively measured using Actical® accelerometers. Information on pre-pregnancy body mass index (BMI), GWG, and other maternal factors were collected with a maternal health questionnaire. Associations between GWG, as a continuous variable or categorically (inadequate, adequate, and excessive), and offspring TPA were analysed using linear mixed models to take into account the intraclass correlation between the clusters (childcare centers). Models were adjusted for gestational age, accelerometer weartime, socioeconomic status, and pre-pregnancy BMI status. Results We found a significant sex interaction (P-value = 0.009). In boys, greater GWG was associated with decreased offspring TPA (β = -3.2 counts⋅1000−1/d, 95% confidence intervals (CI) = -6.4–0.02, P-value = 0.049). In girls born to mothers categorized as overweight or obese, the association between the GWG and TPA followed an inverted U-shape curve (β for GWG squared = -0.1 counts⋅1000−1/d, 95% CI = (-0.2 –-0.04), P-value = 0.005). In contrast, a U-shaped curve was found in girls born to mothers classified as lean (pre-pregnancy BMI<25 kg/m2) (β for GWG squared = 0.7 counts⋅1000−1/d, 95% CI = 0.2–1.2, P-value = 0.011). In boys, TPA in offspring was higher among women with inadequate GWG compared to adequate GWG (P-value = 0.0137), whereas no significant differences were found in girls (P-value = 0.107). Conclusion Maternal GWG can be an important biological marker of offspring TPA. These findings support the sex-dependent early developmental programming influence of GWG on TPA.
Collapse
Affiliation(s)
- Niko S. Wasenius
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Folkhalsan Research Center, Helsinki, Finland
| | - Kimberly P. Grattan
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Alysha L. J. Harvey
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nick Barrowman
- Clinical Research Unit, Children’s Hospital of Eastern Ontario Research Institute (CHEO RI), Ottawa, Canada
| | - Gary S. Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Ottawa, Canada
| | - Kristi B. Adamo
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Healthy Active Living and Obesity (HALO) Research Group, Ottawa, Canada
- * E-mail:
| |
Collapse
|
77
|
Guo J, Zhao W, Zhan S, Li L, Zhong T, Wang L, Dong Y, Zhang H. Identification and Expression Profiling of miRNAome in Goat longissimus dorsi Muscle from Prenatal Stages to a Neonatal Stage. PLoS One 2016; 11:e0165764. [PMID: 27798673 PMCID: PMC5087842 DOI: 10.1371/journal.pone.0165764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle development is a complex biological process regulated by numerous genes and non-coding RNAs, such as microRNAs (miRNAs). In the current study, we made use of the deep sequencing data from Jianzhou Da’er goat longissimus dorsi sampled on days 45, 60, and 105 of gestation, as well as day three after birth to identify miRNAs that regulate goat skeletal myogenesis, and examine their temporal expression profiles. A total of 410 known goat miRNAs, 752 miRNA homologs and 88 novel miRNAs were identified across four stages. Besides three myomiRs, the abundance of 17 miRNAs, including chi-miR-424, chi-miR-542-3p and chi-miR-136-5p was more than 10,000 reads per million mapped reads (RPM), on average. Furthermore, 50 miRNAs with more than 100 RPM clustered at the imprinted DLK1–DIO3 locus on chromosome 21 and showed similar expression patterns, indicating that these miRNAs played important roles in skeletal myogenesis of goats. Based on pairwise comparisons, 221 differentially expressed (DE), known miRNAs were identified across four stages. GO and KEGG analyses of the genes targeted by the DE miRNAs revealed the significantly enriched processes and pathways to be consistent with temporal changes of skeletal muscle development across all sampled stages. However, follow-up experimental studies were required to explore functions of these miRNAs and targets underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Wei Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Yao Dong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
- * E-mail:
| |
Collapse
|
78
|
Lu ZQ, Ren Y, Zhou XH, Yu XF, Huang J, Yu DY, Wang XX, Wang YZ. Maternal dietary linoleic acid supplementation promotes muscle fibre type transformation in suckling piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:1130-1136. [PMID: 27761944 DOI: 10.1111/jpn.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/24/2016] [Indexed: 12/27/2022]
Abstract
As meat quality is basically dependent on muscle fibre characteristics, it is important to know how muscle fibres are regulated and transformed. This study aimed to investigate the effect of maternal dietary supplementation on muscle fibre types using 3% saturated fatty acid (palmitic acid, PA) or 3% unsaturated fatty acid (linoleic acid, LA) from 80 days of gestation to the weaning of offspring (25 days post-natal). The results indicated that higher mRNA levels of MyHCI type genes were found in the soleus muscles of piglets that suckled from LA-supplemented sows than from PA-supplemented sows. In addition, LA treatment increased the gene expression of the type I muscle fibre marker troponin I (p < 0.01), suggesting that LA promoted muscle fibre type transformation to type I fibres. Moreover, PGC-1α (p < 0.01) and MEF2c (p < 0.05) mRNA levels were higher in the piglets from the LA treatment group than in those from the PA treatment group. Furthermore, LA supplementation also significantly increased AMP-activated protein kinase (AMPK) mRNA levels (p < 0.05), which is an upstream regulator of PGC-1α. Collectively, these findings demonstrated that maternal dietary LA supplementation promoted muscle fibre transformation to type I fibre and that this process may be mediated through an AMPK-dependent pathway.
Collapse
Affiliation(s)
- Z Q Lu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Ren
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X H Zhou
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X F Yu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - J Huang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - D Y Yu
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X X Wang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Z Wang
- Key Laboratory of Molecular Animal Nutrition, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Comparison of muscle characteristics and underpinning mechanisms between Texel and Ujumqin sheep aged from day 70 to 135 of gestation. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
80
|
Zou T, He D, Yu B, Yu J, Mao X, Zheng P, He J, Huang Z, Chen D. Moderate Maternal Energy Restriction During Gestation in Pigs Attenuates Fetal Skeletal Muscle Development Through Changing Myogenic Gene Expression and Myofiber Characteristics. Reprod Sci 2016; 24:156-167. [DOI: 10.1177/1933719116651151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tiande Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Dongting He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease–Resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
81
|
Mitochondrial biogenesis is decreased in skeletal muscle of pig fetuses exposed to maternal high-energy diets. Animal 2016; 11:54-60. [PMID: 27349347 DOI: 10.1017/s1751731116001269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria plays an important role in the regulation of energy homeostasis. Moreover, mitochondrial biogenesis accompanies skeletal myogenesis, and we previously reported that maternal high-energy diet repressed skeletal myogenesis in pig fetuses. Therefore, the aim of this study was to evaluate the effects of moderately increased maternal energy intake on skeletal muscle mitochondrial biogenesis and function of the pig fetuses. Primiparous purebred Large White sows were allocated to a normal energy intake group (NE) as recommended by the National Research Council (NRC) and a high energy intake group (HE, 110% of NRC recommendations). On day 90 of gestation, fetal umbilical vein blood and longissimus (LM) muscle were collected. Results showed that the weight gain of sows fed HE diet was higher than NE sows on day 90 of gestation (P<0.05). Maternal HE diet increased fetal umbilical vein serum triglyceride and insulin concentrations (P<0.05), and tended to increase the homeostasis model assessment index (P=0.08). Furthermore, HE fetuses exhibited increased malondialdehyde concentration (P<0.05), and decreased activities of antioxidative enzymes (P<0.05) and intracellular NAD+ level (P<0.05) in LM muscle. These alterations in metabolic traits of HE fetuses were accompanied by reduced mitochondrial DNA amount (P<0.05) and down-regulated messenger RNA expression levels of genes responsible for mitochondrial biogenesis and function (P<0.05). Our results suggest that moderately increased energy supply during gestation decreases mitochondrial biogenesis, function and antioxidative capacity in skeletal muscle of pig fetuses.
Collapse
|
82
|
Zou T, Yu B, Yu J, Mao X, Zheng P, He J, Huang Z, Liu Y, Chen D. Moderately decreased maternal dietary energy intake during pregnancy reduces fetal skeletal muscle mitochondrial biogenesis in the pigs. GENES AND NUTRITION 2016; 11:19. [PMID: 27551320 PMCID: PMC4968452 DOI: 10.1186/s12263-016-0535-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mitochondria are of major importance in oocyte and early embryo, playing a key role in maintaining energy homeostasis. Epidemiological findings indicate that maternal undernutrition-induced mitochondrial dysfunction during pregnancy is associated with the development of metabolic disorders in offspring. Here, we investigated the effects of moderately decreased maternal energy intake during pregnancy on skeletal muscle mitochondrial biogenesis in fetal offspring with pig as a model. METHODS Pregnant Meishan sows were allocated to a standard-energy (SE) intake group as recommended by the National Research Council (NRC; 2012) and a low-energy (LE) intake group. Fetal umbilical vein serum and longissimus muscle samples were collected for further analysis on day 90 of pregnancy. RESULTS Sow and fetal weights and the concentrations of serum growth hormone (GH) and glucose were reduced in LE group. Maternal LE diet decreased the messenger RNA (mRNA) expression of genes involved in mitochondrial biogenesis and function such as peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), β subunit of mitochondrial H(+)-ATP synthase (ATB5B), sirtuin 1 (Sirt1), and citrate synthase (CS). The protein expression of PPARGC1A and Sirt1, intracellular NAD(+)-to-NADH ratio, and CS activity was reduced in LE group, and accordingly, mitochondrial DNA (mtDNA) content was decreased. Moreover, copper/zinc superoxide dismutase (CuZn-SOD) expression at both mRNA and protein levels and SOD and catalase (CAT) activities were reduced in LE group as well. CONCLUSIONS The observed decrease in muscle mitochondrial biogenesis and antioxidant defense capacity suggests that moderately decreased maternal energy intake during pregnancy impairs mitochondrial function in fetal pigs.
Collapse
Affiliation(s)
- Tiande Zou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Yue Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| |
Collapse
|
83
|
Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:18. [PMID: 27168943 PMCID: PMC4862161 DOI: 10.1186/s40781-016-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
84
|
Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun 2016; 7:11415. [PMID: 27138650 PMCID: PMC4857399 DOI: 10.1038/ncomms11415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. Muscle PDGFRβ+ cells are interstitial stem/progenitor cells with myogenic potential. Here, Yao et al. show that PDGFRβ+ cell-derived laminin actively regulates their proliferation, differentiation and fate determination.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, Minnesota 55812, USA
| | - Erin H Norris
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA.,The Feil Family Brain and Mind Research Institute, New York, New York 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
85
|
Grabiec K, Majewska A, Wicik Z, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts. Cell Biol Toxicol 2016; 32:185-98. [PMID: 27114085 PMCID: PMC4882353 DOI: 10.1007/s10565-016-9324-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
High-fat diet, exposure to saturated fatty acids, or the presence of adipocytes in myoblast microenvironment affects skeletal muscle growth and function. The aim of the present study was to investigate the effect of palmitate supplementation on transcriptomic profile of mouse C2C12 myoblasts. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through qPCR. A total of 4047 genes were identified as differentially expressed, including 3492 downregulated and 555 upregulated genes, during a 48-h exposure to palmitate (0.1 mmol/l). Functional classification showed the involvement of these genes in several processes which regulate cell growth. In conclusion, the addition of palmitate modifies the expression of genes associated with (1) myoblast responsiveness to hormones and growth factors, (2) cytokine and growth factor expression, and (3) regulation of cell-cell and cell-matrix communication. Such alterations can affect myoblast growth and differentiation; however, further studies in this field are required.
Collapse
Affiliation(s)
- K Grabiec
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - A Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Z Wicik
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - M Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - M Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - K Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
86
|
Tsoulis MW, Chang PE, Moore CJ, Chan KA, Gohir W, Petrik JJ, Vickers MH, Connor KL, Sloboda DM. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring. Biol Reprod 2016; 94:94. [PMID: 26962114 PMCID: PMC4861169 DOI: 10.1095/biolreprod.115.135004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/25/2016] [Indexed: 11/12/2022] Open
Abstract
Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood.
Collapse
Affiliation(s)
- Michael W Tsoulis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Pauline E Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caroline J Moore
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - James J Petrik
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
87
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
88
|
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond) 2016; 40:229-38. [PMID: 26367335 DOI: 10.1038/ijo.2015.178] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.
Collapse
Affiliation(s)
- L M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - J L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - L Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Discipline of Physiology, School of Molecular and Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - S E Ozanne
- Department of Clinical Biochemistry, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - I C McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,The Chancellery, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
89
|
Kaur G, Sharma A, Gupta M, Kaur T. Obesity and Neuroinflammation. INFLAMMATION: THE COMMON LINK IN BRAIN PATHOLOGIES 2016:297-323. [DOI: 10.1007/978-981-10-1711-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
90
|
Boone-Heinonen J, Messer LC, Fortmann SP, Wallack L, Thornburg KL. From fatalism to mitigation: A conceptual framework for mitigating fetal programming of chronic disease by maternal obesity. Prev Med 2015; 81:451-9. [PMID: 26522092 PMCID: PMC4679670 DOI: 10.1016/j.ypmed.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci - diet and physical activity - in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children.
Collapse
Affiliation(s)
| | - Lynne C Messer
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | | | - Lawrence Wallack
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
91
|
Abstract
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Collapse
|
92
|
Ingvorsen C, Brix S, Ozanne SE, Hellgren LI. The effect of maternal Inflammation on foetal programming of metabolic disease. Acta Physiol (Oxf) 2015; 214:440-9. [PMID: 26011013 DOI: 10.1111/apha.12533] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 02/02/2023]
Abstract
Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and related diseases. The literature on this topic is limited, so this review also includes animal models where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS). An LPS challenge results in an immunological response that resembles the obesity-induced immune profile, although LPS injections provoke a stronger response than the subclinical obesity-associated response. Maternal LPS or cytokine exposures result in increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. The cytokine levels might be specifically important for the metabolic imprinting, as cytokines are both transferable from maternal to foetal circulation and have the capability to modulate placental nutrient transfer. However, the immune response associated with obesity is moderate and therefore potentially weakened by the pregnancy-driven immune modulation, dominated by anti-inflammatory Treg and Th2 cells. We know from other low-grade inflammatory diseases, such as rheumatoid arthritis, that pregnancy can improve disease state. If pregnancy is also capable of suppressing the obesity-associated inflammation, the immunological markers might be less likely to affect metabolic programming in the developing foetus than otherwise implied.
Collapse
Affiliation(s)
- C Ingvorsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| | - S Brix
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - S E Ozanne
- Metabolic Research Laboratories, University of Cambridge, UK
| | - L I Hellgren
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| |
Collapse
|
93
|
Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr 2015; 55:1777-87. [PMID: 26179476 DOI: 10.1007/s00394-015-0996-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effects of moderately increased maternal dietary energy intake during gestation on foetal skeletal muscle development and metabolism with pig as a model. METHODS Twelve primiparous purebred Large White sows (initial body weight 135.5 ± 1.6 kg) were allocated to one of two energy intake treatments: normal-energy-intake group (Con, 30.96 MJ DE/day) as recommended by the National Research Council (NRC; 2012) and high-energy-intake group (HE, 34.15 MJ DE/day). The nutritional treatments were introduced from mating to day 90 of gestation. On day 90 of gestation, foetuses were examined by morphological, biochemical and molecular analysis of the longissimus muscle. Umbilical vein serum hormones were measured. RESULTS Sow body weight was increased in HE group compared with Con group (P < 0.05), whereas foetal myofibre density was decreased (P < 0.05). Meanwhile, protein concentration, creatine kinase and lactate dehydrogenase activities and umbilical vein serum triiodothyronine (T3) concentration were decreased in HE foetuses (P < 0.05). Maternal HE diets decreased the mRNA abundance of muscle growth-related genes, myosin heavy-chain (MYH/MyHC) genes (MYH2 and MYH1) and insulin-like growth factor 1 and insulin growth factor-binding protein 5 (P < 0.05). Furthermore, the protein expressions of myogenic differentiation factor 1, myogenin and fast-MyHC isoforms were reduced in HE foetuses (P < 0.05). CONCLUSION Our results suggest that moderately increased maternal dietary energy intake delays the differentiation and maturation in skeletal muscle of the foetus on day 90 of gestation.
Collapse
|
94
|
Grabiec K, Milewska M, Błaszczyk M, Gajewska M, Grzelkowska-Kowalczyk K. Palmitate exerts opposite effects on proliferation and differentiation of skeletal myoblasts. Cell Biol Int 2015; 39:1044-52. [PMID: 25857830 DOI: 10.1002/cbin.10477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/27/2022]
Abstract
The purpose of the study was to examine mechanisms controlling cell cycle progression/arrest and differentiation of mouse C2C12 myoblasts exposed to long-chain saturated fatty acid salt, palmitate. Treatment of proliferating myoblasts with palmitate (0.1 mmol/l) markedly decreased myoblast number. Cyclin A and cyclin D1 levels decreased, whereas total p21 and p21 complexed with cyclin-dependent kinase-4 (cdk4) increased in myoblasts treated with palmitate. In cells induced to differentiation addition of palmitate augmented the level of cyclin D3, the early (myogenin) and late (α-actinin, myosin heavy chain) markers of myogenesis, and caused an increase of myotube diameter. In conclusion, exposure to palmitate inhibits proliferation of myoblasts through a decrease in cyclin A and cyclin D1 levels and an increase of p21-cdk4 complex formation; however, it promotes cell cycle exit, myogenic differentiation and myotube growth.
Collapse
Affiliation(s)
- Kamil Grabiec
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Maciej Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
95
|
Raipuria M, Bahari H, Morris MJ. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 2015; 10:e0120980. [PMID: 25853572 PMCID: PMC4390148 DOI: 10.1371/journal.pone.0120980] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.
Collapse
Affiliation(s)
- Mukesh Raipuria
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hasnah Bahari
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- * E-mail:
| |
Collapse
|
96
|
Yang X, Lai P, Chen XG, Liu ZP, Tang YM, Rao S, Wen CJ, Jiao SR, Lei J. Maternal high-fat diet exposure leads to insulin resistance and impacts myogenic and adipogenicgene expression in offspring rats. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao Yang
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Peng Lai
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Xiang-Gui Chen
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Zhen-Ping Liu
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Yuan-Mou Tang
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Su Rao
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Chun-Juan Wen
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Shi-Rong Jiao
- School of Bioengineering; Xihua University; Chengdu P. R. China
| | - Ji Lei
- School of Bioengineering; Xihua University; Chengdu P. R. China
| |
Collapse
|
97
|
Gotoh T. Potential of the application of epigenetics in animal production. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our many current environmental challenges, including worldwide abnormal weather, global warming, and pollution, necessitate a new and innovative strategy for animal production for the next generation. This strategy should incorporate not only higher-efficiency production, but also advanced biological concepts and multi-functional agricultural techniques, into environmentally friendly systems. Recent research has discovered a unique phenomenon referred to as ‘foetal and neonatal programming’, which is based on ‘the developmental origins of health and disease (DOHaD)’ concept. These studies have shown that alterations in foetal and early postnatal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology and metabolism of affected animals during adult life. Ruminants fill an important ecological niche that capitalises on the symbiotic relationship between fibre-fermenting ruminal microbes and the mammalian demand for usable nutrients. The timing of the perturbation in maternal nutrient availability plays an important role in determining the effect that the foetal and neonatal programming will have on the developing placenta or foetus and offspring performance. Developmental programming through nutritional manipulations may help the ruminant, as an effective grass–protein converter, fulfil its production potential.
Collapse
|
98
|
Maternal high-fat diet consumption impairs exercise performance in offspring. J Nutr Sci 2014; 3:e61. [PMID: 26101629 PMCID: PMC4473145 DOI: 10.1017/jns.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/19/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to scrutinise the influence of maternal high-fat diet (mHFD) consumption during gestation and lactation on exercise performance and energy metabolism in male mouse offspring. Female C3H/HeJ mice were fed either a semi-synthetic high-fat diet (HFD; 40 % energy from fat) or a low-fat diet (LFD; 10 % energy from fat) throughout gestation and lactation. After weaning, male offspring of both groups received the LFD. At the age of 7·5 weeks half of the maternal LFD (n 20) and the mHFD (n 21) groups were given access to a running wheel for 28 d as a voluntary exercise training opportunity. We show that mHFD consumption led to a significantly reduced exercise performance (P < 0·05) and training efficiency (P < 0·05) in male offspring. There were no effects of maternal diet on offspring body weight. Lipid and glucose metabolism was disturbed in mHFD offspring, with altered regulation of cluster of differentiation 36 (CD36) (P < 0·001), fatty acid synthase (P < 0·05) and GLUT1 (P < 0·05) gene expression in skeletal muscle. In conclusion, maternal consumption of a HFD is linked to decreased exercise performance and training efficiency in the offspring. We speculate that this may be due to insufficient muscle energy supply during prolonged exercise training. Further, this compromised exercise performance might increase the risk of obesity development in adult life.
Collapse
Key Words
- CD36, cluster of differentiation 36
- Cpt1b, carnitine O-palmitoyltransferase 1b
- Esrrg, oestrogen-related receptor-γ
- FAS, fatty acid synthase
- HFD, high-fat diet
- High-fat diet
- LFD, low-fat diet
- Offspring
- REE, resting energy expenditure
- RQ, respiratory quotient
- RW, running wheel
- Serca2, sarcoplasmic/endoplasmic reticulum Ca ATPase 2
- Skeletal muscle
- Training
- eWAT, epididymal white adipose tissue
- mHFD, maternal high-fat diet
- mLFD, maternal low-fat diet
Collapse
|
99
|
The Role of Metformin in Metabolic Disturbances during Pregnancy: Polycystic Ovary Syndrome and Gestational Diabetes Mellitus. Int J Reprod Med 2014; 2014:797681. [PMID: 25763406 PMCID: PMC4334060 DOI: 10.1155/2014/797681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Maintenance of gestation implicates complex function of multiple endocrine mechanisms, and disruptions of the global metabolic environment prompt profound consequences on fetomaternal well-being during pregnancy and postpartum. Polycystic Ovary Syndrome (PCOS) and gestational diabetes mellitus (GDM) are very frequent conditions which increase risk for pregnancy complications, including early pregnancy loss, pregnancy-induced hypertensive disorders, and preterm labor, among many others. Insulin resistance (IR) plays a pivotal role in the pathogenesis of both PCOS and GDM, representing an important therapeutic target, with metformin being the most widely prescribed insulin-sensitizing antidiabetic drug. Although traditional views neglect use of oral antidiabetic agents during pregnancy, increasing evidence of safety during gestation has led to metformin now being recognized as a valuable tool in prevention of IR-related pregnancy complications and management of GDM. Metformin has been demonstrated to reduce rates of early pregnancy loss and onset of GDM in women with PCOS, and it appears to offer better metabolic control than insulin and other oral antidiabetic drugs during pregnancy. This review aims to summarize key aspects of current evidence concerning molecular and epidemiological knowledge on metformin use during pregnancy in the setting of PCOS and GDM.
Collapse
|
100
|
Segers JR, Faulkner DB, Retallick KM, Shike DW. Effects of protein and fat concentration in coproduct-based growing calf diets on performance and carcass composition. J Anim Sci 2014; 92:5603-11. [DOI: 10.2527/jas.2014-7880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. R. Segers
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - D. B. Faulkner
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - K. M. Retallick
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - D. W. Shike
- Department of Animal Sciences, University of Illinois, Urbana 61801
| |
Collapse
|