51
|
Versari S, Villa A, Bradamante S, Maier JAM. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1645-52. [PMID: 17609119 DOI: 10.1016/j.bbamcr.2007.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/09/2007] [Accepted: 05/30/2007] [Indexed: 01/08/2023]
Abstract
Because endothelial cells are fundamental to the maintenance of the functional integrity of the vascular wall, endothelial modifications in altered gravity conditions might offer some insights into the mechanisms leading to circulatory impairment in astronauts. We cultured human endothelial cells in a dedicated centrifuge (MidiCAR) to generate hypergravity and in two different devices, namely the Rotating Wall Vessel and the Random Positioning Machine, to generate hypogravity. Hypogravity stimulated endothelial growth, did not affect migration, and enhanced nitric oxide production. It also remodeled the actin cytoskeleton and reduced the total amounts of actin. Hypergravity did not affect endothelial growth, markedly stimulated migration, and enhanced nitric oxide synthesis. In addition, hypergravity altered the distribution of actin fibers without, however, affecting the total amounts of actin. A short exposure to hypergravity (8 min) abolished the hypogravity induced growth advantage. Our results indicate that cytoskeletal alterations and increased nitric oxide production represent common denominators in endothelial responses to both hypogravity and hypergravity.
Collapse
Affiliation(s)
- Silvia Versari
- CNR-ISTM, Istituto di Scienze e Tecnologie Molecolari, Via Golgi, 19, Milano, Italy
| | | | | | | |
Collapse
|
52
|
Abstract
Populations of ants and other social insects self-organize and develop 'emergent' properties through stigmergy in which individual ants communicate with one another via chemical trails of pheromones that attract or repulse other ants. In this way, sophisticated properties and functions develop. Under appropriate conditions, in vitro microtubule preparations, initially comprised of only tubulin and GTP, behave in a similar manner. They self-organize and develop other higher-level emergent phenomena by a process where individual microtubules are coupled together by the chemical trails they produce by their own reactive growing and shrinking. This behaviour is described and compared with the behaviour of ant colonies. Viewing microtubules as populations of molecular ants may provide new insights as to how the cytoskeleton may spontaneously develop high-level functions. It is plausible that such processes occur during the early stages of embryogenesis and in cells.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
53
|
Sarkar P, Sarkar S, Ramesh V, Hayes BE, Thomas RL, Wilson BL, Kim H, Barnes S, Kulkarni A, Pellis N, Ramesh GT. Proteomic analysis of mice hippocampus in simulated microgravity environment. J Proteome Res 2007; 5:548-53. [PMID: 16512669 PMCID: PMC2748658 DOI: 10.1021/pr050274r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Space travel induces many deleterious effects on the flight crew due to the '0' g environment. The brain experiences a tremendous fluid shift, which is responsible for many of the detrimental changes in physical behavior seen in astronauts. It therefore indicates that the brain may undergo major changes in its protein levels in a '0' g environment to counteract the stress. Analysis of these global changes in proteins may explain to better understand the functioning of brain in a '0' g condition. Toward such an effort, we have screened proteins in the hippocampus of mice kept in simulated microgravity environment for 7 days and have observed a few changes in major proteins as compared to control mice. Essentially, the results show a major loss of proteins in the hippocampus of mice subjected to simulated microgravity. These changes occur in structural proteins such as tubulin, coupled with the loss of proteins involved in metabolism. This preliminary investigation leads to an understanding of the alteration of proteins in the hippocampus in response to the microgravity environment.
Collapse
Affiliation(s)
- Poonam Sarkar
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shubhashish Sarkar
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Vani Ramesh
- Department of Surgery, The University of Texas, Houston, Texas 77030
| | - Barbara E. Hayes
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Renard L. Thomas
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Bobby L. Wilson
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
| | - Helen Kim
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Anil Kulkarni
- Department of Surgery, The University of Texas, Houston, Texas 77030
| | - Neal Pellis
- Cellular Biotechnology Program, NASA-JSC, Houston, Texas 77058
| | - Govindarajan T. Ramesh
- Molecular Neurotoxicology Laboratory and Proteomics Core, Department of Biology, Texas Southern University, Houston, Texas 77004
- To whom correspondence should be addressed. Department of Biology, Texas Southern University, 3100 Cleburne St, Houston, TX -77004, USA. Tel: (713) 313-7784. Fax: (713) 313-7932.
| |
Collapse
|
54
|
Tabony J, Rigotti N, Glade N, Cortès S. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophys Chem 2007; 127:172-80. [PMID: 17321031 DOI: 10.1016/j.bpc.2007.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/22/2022]
Abstract
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, DSV, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, Cedex 9, France.
| | | | | | | |
Collapse
|
55
|
Rösner H, Wassermann T, Möller W, Hanke W. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. PROTOPLASMA 2006; 229:225-34. [PMID: 17180506 DOI: 10.1007/s00709-006-0202-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/28/2005] [Indexed: 05/13/2023]
Abstract
Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to "simulated weightlessness" (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) - but not to 2 g (hypergravity, centrifugation) - resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity.
Collapse
Affiliation(s)
- H Rösner
- Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Stuttgart, Federal Republic of Germany.
| | | | | | | |
Collapse
|
56
|
Morrow MA. Clinorotation differentially inhibits T-lymphocyte transcription factor activation. In Vitro Cell Dev Biol Anim 2006; 42:153-8. [PMID: 16848635 DOI: 10.1290/0601011.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T lymphocytes cultured under the low-shear stress environment of modeled microgravity demonstrate an inhibition of activation in response to T-cell receptor (TCR)-mediated signaling. Modeled microgravity culture-induced inhibition mimics the inhibition observed during spaceflight. This work investigates the molecular signaling events of interleukin 2 transcription activation in modeled microgravity as generated with clinorotation. Under normal conditions, NFAT (nuclear factor of activated T cells) is dephosphorylated and activated with sustained calcium (Ca++) influx and calcineurin activity, whereas AP-1 is activated by protein kinase C (PKC) and Ras-mediated pathways. Purified human T lymphocytes are shown to exhibit differential inhibition of transcription factor activation in modeled microgravity. Activation of AP-1 is blocked with clinorotation, whereas NFAT dephosphorylation occurs. This work supports the theory that modeled microgravity differentially blocks the activation of distinct signaling mechanism.
Collapse
Affiliation(s)
- Maureen A Morrow
- Department of Biology, State University of New York, New Paltz, 75 South Manheim Boulevard, New Paltz, NY 12561-2499, USA.
| |
Collapse
|
57
|
Infanger M, Kossmehl P, Shakibaei M, Baatout S, Witzing A, Grosse J, Bauer J, Cogoli A, Faramarzi S, Derradji H, Neefs M, Paul M, Grimm D. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 2006; 11:749-64. [PMID: 16528471 DOI: 10.1007/s10495-006-5697-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions. Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin) and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas, and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity.
Collapse
Affiliation(s)
- M Infanger
- Department of Trauma and Reconstructive Surgery, Charité-University Medical School, Benjamin Franklin Medical Center Center of Space Medicine Berlin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, Palumbo G. Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Lett 2006; 580:2465-70. [PMID: 16638572 DOI: 10.1016/j.febslet.2006.03.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/27/2006] [Indexed: 11/16/2022]
Abstract
We investigated the effect of modeled microgravity (MMG) on normal vascular smooth muscle cells (VSMC) and neoplastic human breast cancer cells (MCF-7). In both cell types, MMG induced partial arrest in G2M and increased p14-3-3, HSP70, HSP60 and p21 expression. Cells synchronized by 24h starvation reentered the normal cycle within 24h if released in complete medium and exposed to normal gravity, but not if exposed to MMG. Similarly, MMG prevented VSMC and MCF-7 cells from overcoming growth arrest and re-synthesizing DNA. This study shows that cells adjust their metabolic rate in response to MMG.
Collapse
Affiliation(s)
- Rita Coinu
- Dipartimento di Patologia e Biologia Cellulare e Molecolare/IEOS CNR, Università di Napoli Federico II, Via S. Pansini, 5, I-80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Glade N, Beaugnon E, Tabony J. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys Chem 2006; 121:1-6. [PMID: 16380203 DOI: 10.1016/j.bpc.2005.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 11/23/2022]
Abstract
The effect of weightlessness on physical and biological systems is frequently studied by experiments in space. However, on the ground, gravity effects may also be strongly attenuated using methods such as magnetic levitation and clinorotation. Under suitable conditions, in vitro preparations of microtubules, a major element of the cytoskeleton, self-organise by a process of reaction-diffusion: self-organisation is triggered by gravity and samples prepared in space do not self-organise. Here, we report experiments carried out with ground-based methods of clinorotation and magnetic levitation. The behaviour observed closely resembles that of the space-flight experiment and suggests that many space experiments could be carried out equally well on the ground. Using clinorotation, we find that weak vibrations also trigger microtubule self-organisation and have an effect similar to gravity. Thus, in some in vitro biological systems, vibrations are a countermeasure to weightlessness.
Collapse
Affiliation(s)
- Nicolas Glade
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
60
|
Infanger M, Kossmehl P, Shakibaei M, Bauer J, Kossmehl-Zorn S, Cogoli A, Curcio F, Oksche A, Wehland M, Kreutz R, Paul M, Grimm D. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res 2006; 324:267-77. [PMID: 16432709 DOI: 10.1007/s00441-005-0142-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Studies of astronauts, experimental animals, and cells have shown that, after spaceflights, the function of the thyroid is altered by low-gravity conditions. The objective of this study was to investigate the cytoskeleton and extracellular matrix (ECM) protein synthesis of papillary thyroid cancer cells grown under zero g. We investigated alterations of ONCO-DG 1 cells exposed to simulated microgravity on a three-dimensional random-positioning machine (clinostat) for 30 min, 24 h, 48 h, 72 h, and 120 h (n=6, each group). ONCO-DG 1 cells grown under microgravity exhibited early alterations of the cytoskeleton and formed multicellular spheroids. The cytoskeleton was disintegrated, and nuclei showed morphological signs of apoptosis after 30 min. At this time, vimentin was increased. Vimentin and cytokeratin were highly disorganized, and microtubules (alpha-tubulin) did not display their typical radial array. After 48 h, the cytoskeletal changes were nearly reversed. The formation of multicellular spheroids continued. In parallel, the accumulation of ECM components, such as collagen types I and III, fibronectin, chondroitin sulfate, osteopontin, and CD44, increased. The levels of both transforming growth factor beta-1 (TGF-beta(1)) and TGF-beta receptor type II proteins were elevated from 24 h until 120 h clinorotation. Gene expression of TGF-beta(1) was clearly enhanced during culture under zero g. The amount of E-cadherin was enhanced time-dependently. We suggest that simulated weightlessness rapidly affects the cytoskeleton of papillary thyroid carcinoma cells and increases the amount of ECM proteins in a time-dependent manner.
Collapse
Affiliation(s)
- Manfred Infanger
- Department of Trauma and Reconstructive Surgery, Charité University Medical School, Center of Space Medicine, Benjamin Franklin Medical Center, 12200, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Tabony J. Self-Organization and Other Emergent Properties in a Simple Biological System of Microtubules. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000095480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
62
|
Tuszynski JA, Sataric MV, Portet S, Dixon JM. Gravitational symmetry breaking leads to a polar liquid crystal phase of microtubules in vitro. J Biol Phys 2005; 31:477-86. [PMID: 23345912 DOI: 10.1007/s10867-005-7284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent space-flight experiments performed by Tabony's team provided further evidence that a microgravity environment strongly affects the spatio-temporal organization of microtubule assemblies. Characteristic time and length scales were found that govern the organization of oriented bundles under Earth's gravitational field (GF). No such organization has been observed in a microgravity environment. This paper discusses physical mechanisms resulting in pattern formation under gravity and its disappearance in microgravity. The subtle interplay between chemical kinetics, diffusion, gravitational drift, thermal fluctuations, electrostatic interactions and liquid crystalline characteristics provides a plausible scenario.
Collapse
Affiliation(s)
- J A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 Canada
| | | | | | | |
Collapse
|
63
|
Beil M, Braxmeier H, Fleischer F, Schmidt V, Walther P. Quantitative analysis of keratin filament networks in scanning electron microscopy images of cancer cells. J Microsc 2005; 220:84-95. [PMID: 16313488 DOI: 10.1111/j.1365-2818.2005.01505.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The keratin filament network is an important part of the cytoskeleton. It is involved in the regulation of shape and viscoelasticity of epithelial cells. The morphology of keratin networks depends on post-translational modifications of keratin monomers. In-vitro studies indicated that network characteristics, such as filament crosslink density, determines the biophysical properties of the filament network. This report presents a quantitative method for the morphological analysis of keratin filament networks. Visualization of filaments was based on prefixation extraction of epithelial cells and scanning electron microscopy (SEM). SEM images were processed by a skeletonization algorithm to obtain a graph structure that represents individual filaments as well as their connections. This method was applied to investigate the effects of transforming growth factor alpha (TGFalpha) on the morphology of keratin networks in pancreatic cancer cells. TGFalpha contributes to pancreatic cancer progression and activates signalling pathways phosphorylating keratin monomers. Using this new method, a significant alteration to the keratin network morphology could be detected in response to TGFalpha.
Collapse
Affiliation(s)
- M Beil
- Department of Internal Medicine I, University Hospital Ullm, D-89070, Ulm, Germany
| | | | | | | | | |
Collapse
|
64
|
Maurice P, Waeckel L, Pires V, Sonnet P, Lemesle M, Arbeille B, Vassy J, Rochette J, Legrand C, Fauvel-Lafève F. The platelet receptor for type III collagen (TIIICBP) is present in platelet membrane lipid microdomains (rafts). Histochem Cell Biol 2005; 125:407-17. [PMID: 16205938 DOI: 10.1007/s00418-005-0076-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2005] [Indexed: 02/02/2023]
Abstract
Platelet interactions with collagen are orchestrated by the presence or the migration of platelet receptor(s) for collagen into lipid rafts, which are specialized lipid microdomains from the platelet plasma membrane enriched in signalling proteins. Electron microscopy shows that in resting platelets, TIIICBP, a receptor specific for type III collagen, is present on the platelet membrane and associated with the open canalicular system, and redistributes to the platelet membrane upon platelet activation. After platelet lysis by 1% Triton X-100 and the separation of lipid rafts on a discontinuous sucrose gradient, TIIICBP is recovered in lipid raft-containing fractions and Triton X-100 insoluble fractions enriched in cytoskeleton proteins. Platelet aggregation, induced by type III collagen, was inhibited after disruption of the lipid rafts by cholesterol depletion, whereas platelet adhesion under static conditions did not require lipid raft integrity. These results indicate that TIIICBP, a platelet receptor involved in platelet interaction with type III collagen, is localized within platelet lipid rafts where it could interact with other platelet receptors for collagen (GP VI and alpha2beta1 integrin) for efficient platelet activation.
Collapse
Affiliation(s)
- Pascal Maurice
- INSERM, U 553, IFR 105, Institut d'Hématologie, Université Paris VII Denis Diderot, 75475, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Glade N, Tabony J. Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes. Biophys Chem 2005; 115:29-35. [PMID: 15848281 DOI: 10.1016/j.bpc.2004.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
A frequent feature of microtubule organisation in living systems is that it can be triggered by a variety of biochemical or physical factors. Under appropriate conditions, in vitro microtubule preparations self-organise by a reaction-diffusion process in which self-organisation depends upon, and can be triggered by, weak external physical factors such as gravity. Here, we show that self-organisation is also strongly dependent upon the presence of a high magnetic field, for a brief critical period early in the process, and before any self-organised pattern is visible. These results provide evidence that external physical factors trigger self-organisation by way of an orientational bias that breaks the symmetry of the reaction-diffusion process. As microtubule organisation is central to many cell functions, this behaviour provides a mechanism by which strong magnetic fields can intervene in biological processes.
Collapse
Affiliation(s)
- Nicolas Glade
- Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, Laboratoire d'Immunochimie, INSERM U548, D.S.V, C.E.A. Grenoble, France
| | | |
Collapse
|
66
|
Carlsson SIM, Bertilaccio MTS, Ballabio E, Maier JAM. Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2003; 1642:173-9. [PMID: 14572900 DOI: 10.1016/j.bbamcr.2003.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms on Earth have evolved to survive within the pull of gravity. Orbital space flights have clearly demonstrated that the absence or the reduction of gravity profoundly affects eukaryotic organisms, including man. Because (i). endothelial cells are crucial in the maintenance of the functional integrity of the vascular wall, and (ii). cardiovascular deconditioning has been described in astronauts, we evaluated whether microgravity affected endothelial functions. We show that microgravity reversibly stimulated endothelial cell growth. This effect correlated with an overexpression of heat shock protein 70 (hsp70) and a down-regulation of interleukin 1 alpha (IL-1alpha), a potent inhibitor of endothelial cell growth, also implicated in promoting senescence. In addition, gravitationally unloaded endothelial cells rapidly remodelled their cytoskeleton and, after a few days, markedly down-regulated actin through a transcriptional mechanism. We hypothesize that the reduction in the amounts of actin in response to microgravity represents an adaptative mechanism to avoid the accumulation of redundant actin fibers.
Collapse
Affiliation(s)
- Sofia I M Carlsson
- Department of Preclinical Sciences, LITA Vialba, Università di Milano, Via GB Grassi 74, Milan, Italy
| | | | | | | |
Collapse
|
67
|
Hughes-Fulford M. Physiological effects of microgravity on osteoblast morphology and cell biology. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2003; 8:129-57. [PMID: 12951695 DOI: 10.1016/s1569-2574(02)08017-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Millie Hughes-Fulford
- Laboratory of Cell Growth, Department of Medicine, University of California San Francisco, Dept. of Veteran's Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
68
|
Tabony J, Glade N, Papaseit C, Demongeot J. Microtubule self-organisation and its gravity dependence. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2003; 8:19-58. [PMID: 12951692 DOI: 10.1016/s1569-2574(02)08014-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular processes by which gravity affects biological systems are poorly, if at all, understood. Under equilibrium conditions, chemical and biochemical reactions do not depend upon gravity. It has been proposed that biological systems might depend on gravity by way of the bifurcation properties of certain types of non-linear chemical reactions that are far-from-equilibrium. In such reactions, the initially homogenous solution spontaneously self-organises by way of a combination of reaction and diffusion. Theoreticians have predicted that the presence or absence of an external field, such as gravity, at a critical moment early in the self-organising process may determine the morphology that subsequently develops. We have found that the formation in vitro of microtubules, a major element of the cellular skeleton, shows this type of behaviour. The microtubule preparations spontaneously self-organise by way of reaction and diffusion, and the morphology of the state that forms depends upon gravity at a critical bifurcation time early in the process. Experiments carried out under low gravity conditions show that the presence of gravity at the bifurcation time actually triggers the self-organising process. This is an experimental demonstration of how a very simple biochemical system, containing only two molecules, can be gravity sensitive. At a microscopic level the behaviour results from an interaction of gravity with the concentration and density fluctuations that arise from processes of microtubule shortening and elongation. We have developed a numerical reaction-diffusion scheme, based on the chemical dynamics of a population of microtubules, that simulate self-organisation. These simulations provide insight into how self-organisation occurs at a microscopic level and how gravity triggers this process. Recent experiments on cell lines cultured in space suggest that microtubule organisation may not occur properly under low gravity conditions. As microtubule organisation is essential to cellular function, it is quite plausible that the type of processes described in this article provide an underlying explanation for the gravity dependence of living systems at a cellular level.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, Département de Biologie Moléculaire et Structurale, Laboratoire de Résonance Magnétique en Biologie Métabolique, D.S.V, C.E.A. Grenoble, Grenoble, France
| | | | | | | |
Collapse
|
69
|
Lewis ML. The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2003; 8:77-128. [PMID: 12951694 DOI: 10.1016/s1569-2574(02)08016-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Marian L Lewis
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| |
Collapse
|
70
|
Portet S, Arino O, Vassy J, Schoëvaërt D. Organization of the cytokeratin network in an epithelial cell. J Theor Biol 2003; 223:313-33. [PMID: 12850452 DOI: 10.1016/s0022-5193(03)00101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Collapse
Affiliation(s)
- Stéphanie Portet
- Laboratoire d'Analyse d'Images en Pathologie Cellulaire, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75475 Paris, France.
| | | | | | | |
Collapse
|
71
|
Portet S, Tuszynski JA, Dixon JM, Sataric MV. Models of spatial and orientational self-organization of microtubules under the influence of gravitational fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:021903. [PMID: 14525002 DOI: 10.1103/physreve.68.021903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Indexed: 05/24/2023]
Abstract
Tabony and co-workers [C. Papaseit, N. Pochon, and J. Tabony, Proc. Natl. Acad. Sci. U.S.A. 97, 8364 (2000)] showed that the self-organization of microtubules from purified tubulin solutions is sensitive to gravitational conditions. In this paper, we propose two models of spatial and orientational self-organization of microtubules in a gravitational field. First, the spatial model is based on the dominant chemical kinetics. The pattern formation of microtubule concentration is obtained (1) in terms of a moving kink in the limit when the disassembly rate is negligible, and (2) for the case of no free tubulin and only assembled microtubules present. Second, the orientational pattern of striped microtubule domains is consistent with predictions from a phenomenological Landau-Ginzburg free energy expansion in terms of an orientational order parameter.
Collapse
Affiliation(s)
- S Portet
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1.
| | | | | | | |
Collapse
|
72
|
Hatton JP, Gaubert F, Cazenave JP, Schmitt D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 2003; 87:39-50. [PMID: 12210720 DOI: 10.1002/jcb.10273] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.
Collapse
Affiliation(s)
- Jason P Hatton
- Laboratory of Cell Growth, Veterans Affairs Medical Center, Mail Code 151F, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
73
|
Hughes-Fulford M. Function of the cytoskeleton in gravisensing during spaceflight. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2003; 32:1585-93. [PMID: 15002415 DOI: 10.1016/s0273-1177(03)90399-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since astronauts and cosmonauts have significant bone loss in microgravity we hypothesized that there would be physiological changes in cellular bone growth and cytoskeleton in the absence of gravity. Investigators from around the world have studied a multitude of bone cells in microgravity including Ros 17/2.8, Mc3T3-E1, MG-63, hFOB and primary chicken calvaria. Changes in cytoskeleton and extracellular matrix (ECM) have been noted in many of these studies. Investigators have noted changes in shape of cells exposed to as little as 20 seconds of microgravity in parabolic flight. Our laboratory reported that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) but a paradoxical 2-fold increase in release of the osteoblast autocrine factor PGE2 when compared to ground controls. In addition, a collapse of the osteoblast actin cytoskeleton and loss of focal adhesions has been noted after 4 days in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the actin cytoskeleton in cells grown in microgravity conditions, however flown cells under 1 g conditions maintained normal actin cytoskeleton and fibronectin matrix. The changes seen in the cytoskeleton are probably not due to alterations in fibronectin message or protein synthesis since no differences have been noted in microgravity. Multiple investigators have observed actin and microtubule cytoskeletal modifications in microgravity, suggesting a common root cause for the change in cell architecture. The inability of the 0 g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways that are connected to the cytoskeleton. Cell cycle is dependent on the cytoskeleton. Alterations in cytoskeletal structure can block cell growth either in G1 (F-actin microfilament collapse), or in G2/M (inhibition of microtubule polymerization during G2/M-phase). We therefore hypothesize that microgravity would inhibit growth in either G1, or G2/M.
Collapse
Affiliation(s)
- M Hughes-Fulford
- Laboratory of Cell Growth, Northern California Institute for Research and Education, University of California San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
74
|
Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafève F, Gasset G, Schoevaert D. Weightlessness acts on human breast cancer cell line MCF-7. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2003; 32:1595-1603. [PMID: 15002416 DOI: 10.1016/s0273-1177(03)90400-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1 g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser; More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade; Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or deactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex.
Collapse
Affiliation(s)
- J Vassy
- IUH, IFR Saint Louis, Hôpital Saint Louis, Paris cedex, France.
| | | | | | | | | | | | | |
Collapse
|
75
|
Nieder GL, Nagy F. Analysis of medical students' use of web-based resources for a gross anatomy and embryology course. Clin Anat 2002; 15:409-18. [PMID: 12373731 DOI: 10.1002/ca.10067] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An extensive Web site supporting our gross anatomy and embryology course, which includes various course management pages as well as online lectures, has been in use for the past 2 years. To determine how this Web site is being used by students, we examined server log files to track access to each of the Web pages on the site. Using this data, along with student responses on a course evaluation, we have been able to quantitatively characterize Web site use and gain some insight into students' perception of the site. This analysis showed that all of the resources available online, including course management information, exam reviews, online lectures, and dissection guides were heavily used and deemed useful by students. Despite universal computer ownership and Internet access from home, most use of the Web site was from on-campus computer labs, especially for lectures with audio streams. This was probably due to the limited bandwidth of off-campus connections. Data on the day of the week and time of the day of access showed peak activity at expected times, but also significant activity at all hours, as students took full advantage of 'access on demand.' This on-demand nature of the Web was also evident in students' viewing of lectures in short sessions rather than in one sitting. Online lectures were used regularly by a majority of students both before and after corresponding class sessions, however, this was not the preferred venue for all students. Although the flexibility of Web-based resources accommodates students' varying study habits, the alternative of traditional print material and live lectures should not be abandoned lightly.
Collapse
Affiliation(s)
- Gary L Nieder
- Department of Anatomy, Wright State University School of Medicine, Dayton, Ohio 45435, USA.
| | | |
Collapse
|