51
|
Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, Zagnoli F, Bendahan D, Figarella-Branger D, Brégigeon M, Brosset C. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One 2015; 10:e0135496. [PMID: 26258863 PMCID: PMC4530942 DOI: 10.1371/journal.pone.0135496] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Objective The identification of a predisposition toward malignant hyperthermia (MH) as a risk factor for exertional heat stroke (EHS) remains a matter of debate. Such a predisposition indicates a causal role for MH susceptibility (MHS) after EHS in certain national recommendations and has led to the use of an in vitro contracture test (IVCT) to identify the MHS trait in selected or unselected EHS patients. The aim of this study was to determine whether the MHS trait is associated with EHS. Methods EHS subjects in the French Armed Forces were routinely examined for MHS after experiencing an EHS episode. This retrospective study compared the features of IVCT-diagnosed MHS (iMHS) EHS subjects with those of MH-normal EHS patients and MH patients during the 2004–2010 period. MHS status was assessed using the European protocol. Results During the study period, 466 subjects (median age 25 years; 31 women) underwent MHS status investigation following an EHS episode. None of the subjects reported previous MH events. An IVCT was performed in 454 cases and was diagnostic of MHS in 45.6% of the study population, of MH susceptibility to halothane in 18.5%, of MH susceptibility to caffeine in 9.9%, and of MH susceptibility to halothane and caffeine in 17.2%. There were no differences in the clinical features, biological features or outcomes of iMHS EHS subjects compared with those of MH-normal or caffeine or halothane MHS subjects without known prior EHS episode. The recurrence rate was 12.7% and was not associated with MH status or any clinical or biological features. iMHS EHS patients exhibited a significantly less informative IVCT response than MH patients. Conclusions The unexpected high prevalence of the MHS trait after EHS suggested a latent disturbance of calcium homeostasis that accounted for the positive IVCT results. This study did not determine whether EHS patients have an increased risk of MH, and it could not determine whether MH susceptibility is a risk factor for EHS.
Collapse
Affiliation(s)
- Emmanuel Sagui
- French Military Hospital Laveran, Marseille, France
- Val de Grâce Military School, Paris, France
- Unité mixte de recherche 7291, laboratoire de neurosciences cognitives, Aix Marseille University, Marseille, France
- * E-mail:
| | - Coline Montigon
- French Military Hospital Laveran, Marseille, France
- Val de Grâce Military School, Paris, France
| | | | | | | | - Frédéric Canini
- Val de Grâce Military School, Paris, France
- Armed Forces Biomedical Research Institute, Brétigny/Orge, France
| | - Fabien Zagnoli
- Val de Grâce Military School, Paris, France
- French Military Hospital Clermont-Tonnerre, Brest, France
| | - David Bendahan
- Unité mixte de recherché 7339, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Marseille, France
| | - Dominique Figarella-Branger
- Service d’anatomie pathologique et de neuropathologie, Timone hospital, assistance publique/hôpitaux de Marseille, Marseille, France
| | | | | |
Collapse
|
52
|
Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10:93. [PMID: 26238698 PMCID: PMC4524368 DOI: 10.1186/s13023-015-0310-1] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals. MH affects humans, certain pig breeds, dogs and horses. The classic signs of MH include hyperthermia, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, hyperkalaemia, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue. In humans the syndrome is inherited in an autosomal dominant pattern, while in pigs it is autosomal recessive. Uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation leads to the pathophysiologic changes. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 400 variants have been identified in the RYR1 gene located on chromosome 19q13.1, and at least 34 are causal for MH. Less than 1 % of variants have been found in CACNA1S but not all of these are causal. Diagnostic testing involves the in vitro contracture response of biopsied muscle to halothane, caffeine, and in some centres ryanodine and 4-chloro-m-cresol. Elucidation of the genetic changes has led to the introduction of DNA testing for susceptibility to MH. Dantrolene sodium is a specific antagonist and should be available wherever general anesthesia is administered. Increased understanding of the clinical manifestation and pathophysiology of the syndrome, has lead to the mortality decreasing from 80 % thirty years ago to <5 % in 2006.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ, 07039, USA.
| | - Neil Pollock
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Terasa Bulger
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
53
|
Zhao X, Song Q, Gao Y. Hypothesis: exertional heat stroke-induced myopathy and genetically inherited malignant hyperthermia represent the same disorder, the human stress syndrome. Cell Biochem Biophys 2015; 70:1325-9. [PMID: 24948473 DOI: 10.1007/s12013-014-0059-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exertional heat stroke is usually experienced as a result of a prolonged and intensive exercise. It is a life-threatening condition that is characterized by an increase in core body temperature and rhabdomyolysis. The associated hyperkalemia and metabolic acidosis may lead to an acute renal, cardiac, and hemostatic failure. Exactly, the same symptoms are noticed in case of the anesthesia-induced malignant hyperthermia (MH), an inherited disorder of the skeletal muscle ryanodine receptor. This receptor is a Ca(2+) channel that is activated by the volatile anesthetic agents and depolarizing muscle relaxant. The presence of MH-associated ryanodine receptor variant in the individuals who suffered from EH and improvement of the symptoms with dantrolene has frequently raised the question as to whether the two disorders actually represent one and the same disease. Nevertheless, an exact explanation of the susceptibility of the genetically predisposed MH individuals to ER remains elusive. We have attempted to review the published clinical reports to explore the possibility that ER and EH represent one and the same disorder.
Collapse
Affiliation(s)
- Xuesheng Zhao
- Emergency Department in Shenyang Military Region General Hospital, Shenyang, China
| | | | | |
Collapse
|
54
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
55
|
Barnes C, Stowell KM, Bulger T, Langton E, Pollock N. Safe duration of postoperative monitoring for malignant hyperthermia patients administered non-triggering anaesthesia: an update. Anaesth Intensive Care 2015; 43:98-104. [PMID: 25579296 DOI: 10.1177/0310057x1504300115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The postoperative care of malignant hyperthermia (MH) patients is subject to international variation, with a paucity of data in the literature to guide management. Over a series of three studies, our aim was to evaluate whether MH-susceptible patients (and relatives who had not yet been investigated), who had received a non-triggering anaesthetic, could be managed in the same way as the standard surgical population. Following a retrospective study, 206 anaesthetics were administered in a prospective second study to MH-susceptible/related individuals who were monitored for a minimum of one hour in the post anaesthesia care unit and a further 90 minutes in a step-down facility. No problems relating to MH were encountered. The postoperative monitoring time was subsequently changed and, in a third study, patients were managed no differently from standard surgical patients. One hundred and twenty-five anaesthetics were administered with no evidence of problems. This data shows that standard postoperative monitoring times are safe and appropriate in MH-susceptible patients.
Collapse
Affiliation(s)
- C Barnes
- Department of Anaesthesia, Hutt Hospital, Lower Hutt, New Zealand
| | - K M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - T Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - E Langton
- Department of Anaesthesia and Pain Medicine, Wellington Regional Hospital, Wellington, New Zealand
| | - N Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| |
Collapse
|
56
|
Potts LE, Longwell JJ, Bedocs P, Sambuughin N, Bina S, Cooper PB, Carroll CG, O'Connor F, Deuster P, Muldoon SM, Hamilton S, Capacchione JF. Improving awareness of nonanesthesia-related malignant hyperthermia presentations: a tale of two brothers. ACTA ACUST UNITED AC 2015; 3:23-6. [PMID: 25611019 DOI: 10.1213/xaa.0000000000000043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 30-year-old man developed unexplained rhabdomyolysis, persistently increased creatine kinase and severe debilitating muscle cramps. After a nondiagnostic neurologic evaluation, he was referred for a muscle biopsy, to include histology/histochemistry, a myoglobinuria panel, and a caffeine halothane contracture test. Only the caffeine halothane contracture test was positive, and a subsequent ryanodine receptor type 1 gene evaluation revealed a mutation functionally causative for malignant hyperthermia. His identical twin brother, who was suffering from similar complaints, was found to share the same mutation. They each require oral dantrolene therapy to control symptoms, despite difficulty in identifying health care providers familiar with treating this disorder.
Collapse
Affiliation(s)
- Lauren E Potts
- From the *Department of Anesthesiology, Walter Reed National Military Medical Center, Bethesda; †DVCIPM, Rockville; ‡Department of Anesthesiology, Uniformed Services University of the Health Sciences; Departments of §Neurosurgery and ‖Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland; ¶Department of Military Medicine, Uniformed Services University of the Health Sciences; and **Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models? J Muscle Res Cell Motil 2014; 36:61-9. [PMID: 25424378 DOI: 10.1007/s10974-014-9396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Calcium storage, release, and reuptake are essential for normal physiological function of muscle. Several human skeletal muscle disorders can arise from dysfunction in the control and coordination of these three critical processes. The release from the Sarcoplasmic Reticulum stores (SR) is handled by a multiprotein complex called Calcium Release Unit and composed of DiHydroPyridine Receptor or DHPR, Ryanodine Receptor or RYR, Calsequestrin or CASQ, junctin, Triadin, Junctophilin and Mitsugumin 29. Malignant hyperthermia (MH), Central Core Disease (CCD), Exertional/environmental Heat Stroke (EHS) and Multiminicore disease (MmD) are inherited disorders of calcium homeostasis in skeletal muscles directly related to mutations of genes coding for proteins of the CRU, primarily ryanodine receptor (RYR1). To understand the pathophysiology of MH and CCD, four murine lines carrying point mutations of human RYR1 have been developed: Y524S, R163C, I4898T and T4826I. Mice carrying those mutations show a phenotype with the traits of MH and/or CCD. Interestingly, also ablation of skeletal muscle calsequestrin (CASQ1) leads to a phenotype with MH-like lethal episodes in response to halothane and heat stress and development of central cores. In this review, we aim to describe the murine lines with RYR mutations or CASQ ablation, which show a phenotype similar to human MH or CCD, to underline their specific phenotypes and their differences and to discuss their contribution to the understanding of the pathophysiology of the disorders and the development of therapeutic strategies.
Collapse
|
58
|
|
59
|
Schneiderbanger D, Johannsen S, Roewer N, Schuster F. Management of malignant hyperthermia: diagnosis and treatment. Ther Clin Risk Manag 2014; 10:355-62. [PMID: 24868161 PMCID: PMC4027921 DOI: 10.2147/tcrm.s47632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malignant hyperthermia is a potentially lethal inherited disorder characterized by disturbance of calcium homeostasis in skeletal muscle. Volatile anesthetics and/or the depolarizing muscle relaxant succinylcholine may induce this hypermetabolic muscular syndrome due to uncontrolled sarcoplasmic calcium release via functionally altered calcium release receptors, resulting in hypoxemia, hypercapnia, tachycardia, muscular rigidity, acidosis, hyperkalemia, and hyperthermia in susceptible individuals. Since the clinical presentation of malignant hyperthermia is highly variable, survival of affected patients depends largely on early recognition of the symptoms characteristic of malignant hyperthermia, and immediate action on the part of the attending anesthesiologist. Clinical symptoms of malignant hyperthermia, diagnostic criteria, and current therapeutic guidelines, as well as adequate management of anesthesia in patients susceptible to malignant hyperthermia, are discussed in this review.
Collapse
Affiliation(s)
- Daniel Schneiderbanger
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Johannsen
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
| | - Norbert Roewer
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
| | - Frank Schuster
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
60
|
Thomas J, Crowhurst T. Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia. Intern Med J 2014; 43:1035-8. [PMID: 24004393 DOI: 10.1111/imj.12232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
Abstract
Unexpectedly severe exertional heat stroke and rhabdomyolysis should prompt a clinician to look for susceptibility to malignant hyperthermia. We report a case of exertional heat stroke and rhabdomyolysis in a man later determined to have the malignant hyperthermia phenotype. We review the existing literature regarding this association and suggest future research that could address areas of remaining clinical uncertainty.
Collapse
Affiliation(s)
- J Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
61
|
|
62
|
Szczepanik ME, Heled Y, Capacchione J, Campbell W, Deuster P, O’Connor FG. Exertional Rhabdomyolysis. Curr Sports Med Rep 2014; 13:113-9. [DOI: 10.1249/jsr.0000000000000040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Yarotskyy V, Protasi F, Dirksen RT. Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 2013; 8:e77633. [PMID: 24143248 PMCID: PMC3797063 DOI: 10.1371/journal.pone.0077633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/11/2013] [Indexed: 11/24/2022] Open
Abstract
Store-operated calcium entry (SOCE) channels play an important role in Ca2+ signaling. Recently, excessive SOCE was proposed to play a central role in the pathogenesis of malignant hyperthermia (MH), a pharmacogenic disorder of skeletal muscle. We tested this hypothesis by characterizing SOCE current (ISkCRAC) magnitude, voltage dependence, and rate of activation in myotubes derived from two mouse models of anesthetic- and heat-induced sudden death: 1) type 1 ryanodine receptor (RyR1) knock-in mice (Y524S/+) and 2) calsequestrin 1 and 2 double knock-out (dCasq-null) mice. ISkCRAC voltage dependence and magnitude at -80 mV were not significantly different in myotubes derived from wild type (WT), Y524S/+ and dCasq-null mice. However, the rate of ISkCRAC activation upon repetitive depolarization was significantly faster at room temperature in myotubes from Y524S/+ and dCasq-null mice. In addition, the maximum rate of ISkCRAC activation in dCasq-null myotubes was also faster than WT at more physiological temperatures (35-37°C). Azumolene (50 µM), a more water-soluble analog of dantrolene that is used to reverse MH crises, failed to alter ISkCRAC density or rate of activation. Together, these results indicate that while an increased rate of ISkCRAC activation is a common characteristic of myotubes derived from Y524S/+ and dCasq-null mice and that the protective effects of azumolene are not due to a direct inhibition of SOCE channels.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Feliciano Protasi
- Center for Research on Ageing & Department of Neuroscience and Imaging, Università Gabriele d'Annunzio, Chieti, Italy
| | - Robert T. Dirksen
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
64
|
Bollig G. McArdle's disease (glycogen storage disease type V) and anesthesia--a case report and review of the literature. Paediatr Anaesth 2013; 23:817-23. [PMID: 23565573 DOI: 10.1111/pan.12164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2013] [Indexed: 11/30/2022]
Abstract
McArdles disease (glycogen storage disease type v) is a rare condition in which energy-metabolism in the muscle is hampered. A case report is presented and the possible risk for perioperative complications including malignant hyperthermia is discussed. A checklist for the anesthesiological management of patients with McArdles disease is provided. A short overview of anesthesiological challenges and perioperative complications of other glycogen storage diseases is given.
Collapse
Affiliation(s)
- Georg Bollig
- Department of Anesthesiology and Intensive Care, Palliative Medicine and Pain Therapy, HELIOS Klinikum Schleswig, Schleswig, Germany.
| |
Collapse
|
65
|
Dlamini N, Voermans NC, Lillis S, Stewart K, Kamsteeg EJ, Drost G, Quinlivan R, Snoeck M, Norwood F, Radunovic A, Straub V, Roberts M, Vrancken AFJE, van der Pol WL, de Coo RIFM, Manzur AY, Yau S, Abbs S, King A, Lammens M, Hopkins PM, Mohammed S, Treves S, Muntoni F, Wraige E, Davis MR, van Engelen B, Jungbluth H. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 2013; 23:540-8. [PMID: 23628358 DOI: 10.1016/j.nmd.2013.03.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are a common cause of neuromuscular disease, ranging from various congenital myopathies to the malignant hyperthermia (MH) susceptibility trait without associated weakness. We sequenced RYR1 in 39 unrelated families with rhabdomyolysis and/or exertional myalgia, frequent presentations in the neuromuscular clinic that often remain unexplained despite extensive investigations. We identified 9 heterozygous RYR1 mutations/variants in 14 families, 5 of them (p.Lys1393Arg; p.Gly2434Arg; p.Thr4288_Ala4290dup; p.Ala4295Val; and p.Arg4737Gln) previously associated with MH. Index cases presented from 3 to 45 years with rhabdomyolysis, with or without exertional myalgia (n=12), or isolated exertional myalgia (n=2). Rhabdomyolysis was commonly triggered by exercise and heat and, less frequently, viral infections, alcohol and drugs. Most cases were normally strong and had no personal MH history. Inconsistent additional features included heat intolerance, and cold-induced muscle stiffness. Muscle biopsies showed mainly subtle changes. Familial RYR1 mutations were confirmed in relatives with similar or no symptoms. These findings suggest that RYR1 mutations may account for a substantial proportion of patients presenting with unexplained rhabdomyolysis and/or exertional myalgia. Associated clinico-pathological features may be subtle and require a high degree of suspicion. Additional family studies are paramount in order to identify potentially MH susceptible relatives.
Collapse
Affiliation(s)
- N Dlamini
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Exercise-induced rhabdomyolysis and stress-induced malignant hyperthermia events, association with malignant hyperthermia susceptibility, and RYR1 gene sequence variations. ScientificWorldJournal 2013; 2013:531465. [PMID: 23476141 PMCID: PMC3582168 DOI: 10.1155/2013/531465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/16/2013] [Indexed: 02/03/2023] Open
Abstract
Exertional rhabdomyolysis (ER) and stress-induced malignant hyperthermia (MH) events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS) patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1). The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.
Collapse
|
67
|
Abstract
We review the muscular dystrophies and metabolic myopathies associated with myalgia and rhabdomyolysis together with some less well-recognized associations based upon the personal practice of the authors. A careful history and clinical examination will direct investigation towards an accurate molecular diagnosis. Non-specific exercise-induced myalgia in the presence of muscle hypertrophy and a high creatine kinase will point towards a muscular dystrophy. Symptoms occurring within minutes of exercise and with isometric contraction, especially with a history of a 'second wind' phenomenon, suggest a disorder of glycogen metabolism. In those patients in whom symptoms occur after prolonged exercise, infections, fasting, stress, and cold, a disorder of fatty acid oxidation should be considered. Heat-induced rhabdomyolysis caused by exercising in hot and humid climates should lead the clinician to suspect a mutation in RYR1. Serum creatine kinase level should be a checked in all children presenting with leg pains. A careful history and examination and laboratory confirmation of myoglobinuria will target investigations leading to a correct molecular diagnosis.
Collapse
Affiliation(s)
- Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, National Hospital, London, UK
| | | |
Collapse
|
68
|
Abstract
In this review, the clinical and laboratory features of exertional rhabdomyolysis (ER) are discussed in detail, emphasizing the full clinical spectrum from physiological elevations of serum creatine kinase after exertion to life-threatening rhabdomyolysis with acute kidney injury and associated systemic complications. Laboratory markers used to diagnose both ER and rhabdomyolysis are very sensitive, but not very specific, and imperfectly distinguish "subclinical" or asymptomatic from severe, life-threatening illness. However, genetic factors, both recognized and yet to be discovered, likely influence this diverse clinical spectrum of disease and response to exercise. Genetic mutations causative for McArdle disease, carnitine palmitoyl transferase deficiency 2, myoadenylate deaminase deficiency, and malignant hyperthermia have all been associated with ER. Polymorphic variations in the myosin light chain kinase, α-actin 3, creatine kinase-muscle isoform, angiotensin I-converting enzyme, heat shock protein, and interleukin-6 genes have also been associated with either ER or exercise-induced serum creatine kinase elevations typical of ER. The prognosis for ER is significantly better than that for other etiologies of rhabdomyolysis, but the risk of recurrence after an initial episode is unknown. Guidelines for management are provided.
Collapse
|
69
|
Rouviere C, Corona BT, Ingalls CP. Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice. Muscle Nerve 2012; 45:586-96. [PMID: 22431093 DOI: 10.1002/mus.22343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The purpose of this study was to test the hypothesis that malignant hyperthermia model mice (RyR1Y522S/wt) are more vulnerable to exercise-induced muscle injury and fatigability and adapt less to run training. METHODS After 6 weeks of voluntary wheel running, we measured anterior crural muscle fatigability, muscle injury, and cytochrome oxidase (COX) and citrate synthase (CS). RESULTS Although RyR1Y522S/wt mice ran without undergoing MH episodes, they ran 42% less distance than wild-type (WT) mice. Muscles from WT mice exhibited increased fatigue resistance and COX content after training. Muscles from RyR1Y522S/wt mice demonstrated no significant change in fatigability or COX and CS after training. However, muscles from RyR1Y522S/wt mice displayed less intrinsic fatigability and greater COX/CS content and muscle damage than WT mice. CONCLUSIONS RyR1Y522S/wt mice can run without having rhabdomyolysis, and their inability to adapt to training appears to stem from intrinsic enhancement of mitochondrial enzymes and fatigue resistance.
Collapse
Affiliation(s)
- Clement Rouviere
- Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, P.O. Box 3975, Atlanta, Georgia 30302-3975, USA
| | | | | |
Collapse
|
70
|
AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat Med 2012; 18:244-51. [PMID: 22231556 PMCID: PMC3274651 DOI: 10.1038/nm.2598] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/08/2011] [Indexed: 11/08/2022]
Abstract
Mice with a knock-in mutation (Y524S) in the type I ryanodine receptor (RyR1) die when exposed to short periods of temperature elevation (≥ 37 °C). We demonstrate that treatment with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevents heat-induced sudden death in Y524S mice. The AICAR protection is independent of AMPK activation and results from a newly identified action on the mutant RyR1 to reduce Ca2+ leak, preventing Ca2+ dependent increases in both reactive oxygen and reactive nitrogen species that act to further increase resting Ca2+ concentrations. If unchecked, the temperature driven increases in resting Ca2+ and ROS/RNS create an amplifying cycle that ultimately triggers sustained muscle contractions, rhabdomyolysis and death. Although antioxidants are effective in reducing this cycle in vitro, only AICAR prevents the heat induced death in vivo. Our findings suggest that AICAR is likely to be effective in prophylactic treatment of humans with enhanced susceptibility to exercise/heat-induced sudden death associated with RyR1 mutations.
Collapse
|
71
|
Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology 2011; 115:938-45. [PMID: 21918424 DOI: 10.1097/aln.0b013e3182320068] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mutations in the type 1 ryanodine receptor gene (RYR1) result in malignant hyperthermia, a pharmacogenetic disorder typically triggered by administration of anesthetics. However, cases of sudden death during exertion, heat challenge, and febrile illness in the absence of triggering drugs have been reported. The underlying causes of such drug-free fatal "awake" episodes are unknown. METHODS De novo R3983C variant in RYR1 was identified in two unrelated children who experienced fatal, nonanesthetic awake episodes associated with febrile illness and heat stress. One of the children also had a second novel, maternally inherited D4505H variant located on a separate haplotype. Effects of all possible heterotypic expression conditions on RYR1 sensitivity to caffeine-induced Ca release were determined in expressing RYR1-null myotubes. RESULTS Compared with wild-type RYR1 alone (EC50 = 2.85 ± 0.49 mM), average (± SEM) caffeine sensitivity of Ca release was modestly increased after coexpression with either R3983C (EC50 = 2.00 ± 0.39 mM) or D4505H (EC50 = 1.64 ± 0.24 mM). Remarkably, coexpression of wild-type RYR1 with the double mutant in cis (R3983C-D4505H) produced a significantly stronger sensitization of caffeine-induced Ca release (EC50 = 0.64 ± 0.17 mM) compared with that observed after coexpression of the two variants on separate subunits (EC50 = 1.53 ± 0.18 mM). CONCLUSIONS The R3983C mutation potentiates D4505H-mediated sensitization of caffeine-induced RYR1 Ca release when the mutations are in cis (on the same subunit) but not when present on separate subunits. Nevertheless, coexpression of the two variants on separate subunits still resulted in a ∼2-fold increase in caffeine sensitivity, consistent with the observed awake episodes and heat sensitivity.
Collapse
|
72
|
Vladutiu GD, Isackson PJ, Kaufman K, Harley JB, Cobb B, Christopher-Stine L, Wortmann RL. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol Genet Metab 2011; 104:167-73. [PMID: 21795085 PMCID: PMC3171598 DOI: 10.1016/j.ymgme.2011.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/01/2023]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic, autosomal dominantly inherited disorder of skeletal muscle triggered by volatile anesthetics and infrequently by extreme exertion and heat exposure. MH has variable penetrance with an incidence ranging from 1 in 5000 to 1 in 50,000-100,000 anesthesias. Mutations in the ryanodine receptor gene, RYR1, are found in 50-70% of cases. We hypothesized that a portion of patients with drug-induced muscle diseases, unrelated to anesthesia, such as severe statin myopathy, have underlying genetic liability that may include RYR1 gene mutations. DNA samples were collected from 885 patients in 4 groups: severe statin myopathy (n=197), mild statin myopathy (n=163), statin-tolerant controls (n=133), and non-drug-induced myopathies of unknown etiology characterized by exercise-induced muscle pain and weakness (n=392). Samples were screened for 105 mutations and variants in 26 genes associated with 7 categories of muscle disease including 34 mutations and variants in the RYR1 gene. Disease-causing mutations or variants in RYR1 were present in 3 severe statin myopathy cases, 1 mild statin myopathy case, 8 patients with non-drug-induced myopathy, and none in controls. These results suggest that disease-causing mutations and certain variants in the RYR1 gene may contribute to underlying genetic risk for non-anesthesia-induced myopathies and should be included in genetic susceptibility screening in patients with severe statin myopathy and in patients with non-statin-induced myopathies of unknown etiology.
Collapse
Affiliation(s)
- Georgirene D Vladutiu
- Department of Pediatrics, School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Cardiopulmonary bypass in malignant hyperthermia susceptible patients: A systematic review of published cases. J Thorac Cardiovasc Surg 2011; 141:1488-95. [DOI: 10.1016/j.jtcvs.2011.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 11/03/2010] [Accepted: 01/20/2011] [Indexed: 11/22/2022]
|
74
|
Banks ML, Sprague JE. From Bench to Bedside: Understanding the Science behind the Pharmacologic Management of MDMA- and other Sympathomimetic-Mediated Hyperthermia. J Pharm Technol 2011. [DOI: 10.1177/875512251102700305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To evaluate the scientific rationale and efficacy of pharmacologic and nonpharmacologic treatments for sympathomimetic-induced hyperthermia and related sequelae. Data Sources: Literature was accessed through MEDLINE (1940-September 2010) using the terms MDMA [3,4-methylenedioxymethamphetamine], methamphetamine, toxicity, and hyperthermia. In addition, reference citations from identified publications were reviewed. Study Selection and Data Extraction: All articles written in English identified from data sources were evaluated. Data Synthesis: The treatment of sympathomimetic-induced hyperthermia is a challenging problem for health-care professionals. The lack of clinical trials further complicates the development of evidence-based treatment algorithms. Preclinical studies have mostly been with the sympathomimetic MDMA and have demonstrated a reversal of MDMA-induced hyperthermia with a mixed serotonin 5-HT1A agonist/5-HT2A antagonist or mixed α1- and β1,2,3-adrenergic receptor antagonists. Conclusions: Because of the nature by which patients are exposed to these agents, therapeutic interventions for sympathomimetic-mediated hyperthermia still lack evidence from clinical trials with human subjects. Pharmacologic treatments that should be avoided are antipyretics and the ryanodine receptor antagonist dantrolene. Promising future therapies may involve mixed 5-HT1A agonist/5-HT2A antagonists such as the atypical antipsychotic olanzapine, or mixed α1- and β1,2,3-adrenergic receptor antagonists such as carvedilol, as current preclinical research suggests.
Collapse
Affiliation(s)
- Matthew L Banks
- MATTHEW L BANKS PharmD PhD, Assistant Professor, Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Jon E Sprague
- JON E SPRAGUE RPh PhD, Professor of Pharmacology and Dean, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH
| |
Collapse
|
75
|
MacLennan DH, Zvaritch E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:948-64. [DOI: 10.1016/j.bbamcr.2010.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
|
76
|
|
77
|
Corona BT, Hamilton SL, Ingalls CP. Effect of prior exercise on thermal sensitivity of malignant hyperthermia-susceptible muscle. Muscle Nerve 2010; 42:270-2. [PMID: 20544946 DOI: 10.1002/mus.21715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Malignant hyperthermia (MH) episodes may occur upon exposure to halogenated anesthetics, during resistance and endurance exercise, and in response to thermal stress. The purpose of this study was to investigate the effects of prior eccentric and concentric (i.e., wheel running) exercise on the thermal sensitivity of isolated MH-susceptible mouse muscle (RyR1(Y522S/wt)). Eccentric, but not concentric, exercise attenuated the thermal sensitivity of MH-susceptible muscle.
Collapse
Affiliation(s)
- Benjamin T Corona
- Department of Kinesiology & Health, PO Box 3975, Georgia State University, Atlanta, Georgia 30302-3975, USA
| | | | | |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Malignant hyperthermia-susceptible patients have an increased risk during anaesthesia. The aim of this review is to present current knowledge about pathophysiology and triggers of malignant hyperthermia as well as concepts for safe anaesthesiological management of these patients. RECENT FINDINGS Trigger substances and mechanisms have been well defined to date. Anaesthesia can be safely performed with i.v. anaesthetics, nitrous oxide, nondepolarizing muscle relaxants, local anaesthetics as well as xenon. Attention must be directed to the preparation of the anaesthetic machine because modern workstations need longer cleansing times than their predecessors. Alternatively, activated charcoal might be beneficial for elimination of volatile anaesthetics. Day case surgery can be performed in malignant hyperthermia-susceptible patients, if all safety aspects are regarded. Whether there is an association between malignant hyperthermia susceptibility and other disorders is still a matter of debate. SUMMARY The incidence of malignant hyperthermia is low, but the prevalence can be estimated as up to 1: 3000. Because malignant hyperthermia is potentially lethal, it is relevant to establish management concepts for perioperative care in susceptible patients. This includes preoperative genetic and in-vitro contracture testing, preparation of the anaesthetic workstation, use of nontriggering anaesthetics, adequate monitoring, availability of sufficient quantities of dantrolene and appropriate postoperative care. Taking these items into account, anaesthesia can be safely performed in susceptible patients.
Collapse
|
79
|
Abstract
A 60-year-old woman with a long psychiatric history presented with delirium and mutism. She was febrile, with marked limb rigidity and elevated creatinine kinase (CK) level. Current medications included pericyazine. Current or recent use of dopamine-blocking agents, such as pericyazine, together with a disturbance in conscious state, autonomic dysfunction, and an elevated CK level may be suggestive of neuroleptic malignant syndrome (NMS). The diagnosis was confirmed as NMS, and she was successfully treated with bromocriptine. Eight years later, she represents with symptoms suggesting recurrence of NMS including elevated CK level and myalgia, however, without limb rigidity. Current medications include quetiapine, lithium, simvastatin, and a recent course of clarithromycin. Macrolide antibiotics such as clarithromycin inhibit the metabolic pathway of statins via the cytochrome CYP450 3A4 hepatic enzyme system and may result in elevated CK level, myopathy, or rhabdomyolysis producing symptoms that may be confused with NMS. Simvastatin was ceased with rapid decrease in CK level and resolution of symptoms. This case highlights the importance of considering other diagnoses in any patient presenting with a disturbance in conscious state, autonomic dysfunction, and an elevated CK level. Particularly in a patient with a history of NMS, a thorough medication history is essential to aid diagnosis and avoid confusion with presenting symptoms and medical history.
Collapse
|
80
|
Matsusue A, Hara K, Kageura M, Kashiwagi M, Lu W, Ishigami A, Gotohda T, Tokunaga I, Nisimura A, Sugimura T, Kubo SI. An autopsy case of rhabdomyolysis related to vegetamin and genetic analysis of the rhabdomyolysis-associated genes. J Forensic Leg Med 2010; 17:46-9. [DOI: 10.1016/j.jflm.2009.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/07/2009] [Accepted: 07/19/2009] [Indexed: 10/20/2022]
|
81
|
Sambuughin N, Capacchione J, Blokhin A, Bayarsaikhan M, Bina S, Muldoon S. The ryanodine receptor type 1 gene variants in African American men with exertional rhabdomyolysis and malignant hyperthermia susceptibility. Clin Genet 2009; 76:564-8. [PMID: 19807743 DOI: 10.1111/j.1399-0004.2009.01251.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been suggested that exertional rhabdomyolysis (ER) and malignant hyperthermia (MH) are related syndromes. We hypothesize that patients with unexplained ER harbor mutations in the ryanodine receptor gene type 1 (RYR1), a primary gene implicated in MH, and therefore ER patients are at increased risk for MH. Although there are reported cases of MH in individuals of African descent, there are no data available on molecular characterization of these patients. We analyzed RYR1 in six, unrelated African American men with unexplained ER, who were subsequently diagnosed as MH susceptible (MHS) by the Caffeine Halothane Contracture Test. Three novel and two variants, previously reported in Caucasian MHS subjects, were found in five studied patients. The novel variants were highly conserved amino acids and were absent among 230 control subjects of various ethnic backgrounds. These results emphasize the importance of performing muscle contracture testing and RYR1 mutation screening in patients with unexplained ER. The MHS-associated variant Ala1352Gly was identified as a polymorphism predominant in individuals of African descent. Our data underscore the need for investigating RYR1 across different ethnic groups and will contribute to interpretation of genetic screening results of individuals at risk for MH.
Collapse
Affiliation(s)
- N Sambuughin
- Department of Anesthesiology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Affiliation(s)
- Linda A Howe
- School of Nursing, Clemson University, Clemson, SC, USA
| |
Collapse
|
83
|
Carpenter D, Robinson RL, Quinnell RJ, Ringrose C, Hogg M, Casson F, Booms P, Iles DE, Halsall PJ, Steele DS, Shaw MA, Hopkins PM. Genetic variation in RYR1 and malignant hyperthermia phenotypes. Br J Anaesth 2009; 103:538-48. [PMID: 19648156 DOI: 10.1093/bja/aep204] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is associated, in the majority of cases, with mutations in RYR1, the gene encoding the skeletal muscle ryanodine receptor. Our primary aim was to assess whether different RYR1 variants are associated with quantitative differences in MH phenotype. METHODS The degree of in vitro pharmacological muscle contracture response and the baseline serum creatine kinase (CK) concentration were used to generate a series of quantitative phenotypes for MH. We then undertook the most extensive RYR1 genotype-phenotype correlation in MH to date using 504 individuals from 204 MH families and 23 RYR1 variants. We also determined the association between a clinical phenotype and both the laboratory phenotype and RYR1 genotype. RESULTS We report a novel correlation between the degree of in vitro pharmacological muscle contracture responses and the onset time of the clinical MH response in index cases (P<0.05). There was also a significant correlation between baseline CK concentration and clinical onset time (P=0.039). The specific RYR1 variant was a significant determinant of the severity of each laboratory phenotype (P<0.0001). CONCLUSIONS The MH phenotype differs significantly with different RYR1 variants. Variants leading to more severe MH phenotype are distributed throughout the gene and tend to lie at relatively conserved sites in the protein. Differences in phenotype severity between RYR1 variants may explain the variability in clinical penetrance of MH during anaesthesia and why some variants have been associated with exercise-induced rhabdomyolysis and heat stroke. They may also inform a mutation screening strategy in cases of idiopathic hyperCKaemia.
Collapse
Affiliation(s)
- D Carpenter
- MH Investigation Unit, Academic Unit Anaesthesia, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009; 109:1065-9. [PMID: 19617585 DOI: 10.1213/ane.0b013e3181a9d8d9] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia (MH) are complex syndromes with similar pathophysiology. All three are hypermetabolic states that include high demand for adenosine triphosphate, accelerated oxidative, chemical, and mechanical stress of muscle, and uncontrolled increase in intracellular calcium. Although there are no controlled clinical studies to support a relationship, there is evidence to suggest an association between unexpected heat/exercise intolerance and MH susceptibility. There are multiple case reports and a small number of clinical studies that have used in vitro muscle contracture testing and/or genetic testing to make the association. However, such methodology is problematic in that these tests are validated for clinical MH in association with anesthesia, and not for exertional heat illness or exertional rhabdomyolysis. Nevertheless, these relationships may have implications for some MH-susceptible patients and their capacity to exercise, as well as for clinicians treating and anesthetizing patients with histories of unexplained exertional heat and exercise illnesses.
Collapse
Affiliation(s)
- John F Capacchione
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | |
Collapse
|
85
|
Nieto JE, Aleman M. A rapid detection method for the ryanodine receptor 1 (C7360G) mutation in Quarter Horses. J Vet Intern Med 2009; 23:619-22. [PMID: 19298609 DOI: 10.1111/j.1939-1676.2009.0281.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Anesthetic-induced malignant hyperthermia has been documented in Quarter Horses and is caused by a single-point mutation in the ryanodine receptor 1 gene at nucleotide C7360G generating a R2454G amino acid substitution. An accurate, faster molecular test that is less prone to contamination would facilitate screening for the mutation in horses intended for breeding, in those undergoing surgical procedures, and in those with clinical signs compatible with malignant hyperthermia. OBJECTIVE To report a rapid and accurate method for the detection of the ryanodine receptor 1 C7360G mutation. ANIMALS Eleven diseased, 10 healthy, and 225 randomly selected Quarter Horses. METHODS This study included horses with the ryanodine receptor 1 C7360G mutation as detected by gene sequencing. Available genomic and complementary DNA extracted from whole blood, hair or skeletal muscle was used for genetic analysis. Real-time polymerase chain reaction (RT-PCR) melting curve analysis was performed by equine specific primers and 2 hybridization probes (sensor and anchor probes) that contain the site of the mutation. Results from this method were blinded and compared with nucleic acid sequencing for validation. RESULTS A rapid genotyping assay with fluorescence resonance energy transfer probes and melting curve analysis was accurate (100% agreement, K= 1) for identification of affected horses. The prevalence of the mutation in a random population of Quarter Horses was 1.3%. CONCLUSIONS AND CLINICAL IMPORTANCE Malignant hyperthermia in Quarter Horses can be rapidly and accurately detected by RT-PCR melting curve genotyping with hybridization probes.
Collapse
Affiliation(s)
- J E Nieto
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
86
|
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder triggered by volatile anesthetics or depolarizing muscle relaxants in predisposed individuals. Exercise or stress-induced MH episodes, in the absence of any obvious pharmacological trigger, have been reported, but these are rare. A considerable effort has taken place over the last two decades to identify mutations associated with MH and characterize their functional effects. A number of different, but complementary systems, have been developed and implemented to this end. The results of such studies have identified commonalities in functional affects of mutations, and also uncovered unexpected complexities in both the structure and function of the skeletal muscle calcium-release channel. The following review is an attempt to provide a summary of the background to current MH research, and highlight some recent advances in our knowledge of the molecular basis of the phenotypic expression of this disorder.
Collapse
Affiliation(s)
- Kathryn M Stowell
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
87
|
Aleman M, Nieto J, Magdesian K. Malignant Hyperthermia Associated with Ryanodine Receptor 1 (C7360G) Mutation in Quarter Horses. J Vet Intern Med 2009; 23:329-34. [DOI: 10.1111/j.1939-1676.2009.0274.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
88
|
Dainese M, Quarta M, Lyfenko AD, Paolini C, Canato M, Reggiani C, Dirksen RT, Protasi F. Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 2009; 23:1710-20. [PMID: 19237502 DOI: 10.1096/fj.08-121335] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calsequestrin-1 (CASQ1) is a moderate-affinity, high-capacity Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) terminal cisternae of skeletal muscle. CASQ1 functions as both a Ca(2+)-binding protein and a luminal regulator of ryanodine receptor (RYR1)-mediated Ca(2+) release. Mice lacking skeletal CASQ1 are viable but exhibit reduced levels of releasable Ca(2+) and altered contractile properties. Here we report that CASQ1-null mice exhibit increased spontaneous mortality and susceptibility to heat- and anesthetic-induced sudden death. Exposure of CASQ1-null mice to either 2% halothane or heat stress triggers lethal episodes characterized by whole-body contractures, elevated core temperature, and severe rhabdomyolysis, which are prevented by prior dantrolene administration. The characteristics of these events are remarkably similar to analogous episodes observed in humans with malignant hyperthermia (MH) and animal models of MH and environmental heat stroke (EHS). In vitro studies indicate that CASQ1-null muscle exhibits increased contractile sensitivity to temperature and caffeine, temperature-dependent increases in resting Ca(2+), and an increase in the magnitude of depolarization-induced Ca(2+) release. These results demonstrate that CASQ1 deficiency alters proper control of RYR1 function and suggest CASQ1 as a potential candidate gene for linkage analysis in families with MH/EHS where mutations in the RYR1 gene are excluded.
Collapse
Affiliation(s)
- Marco Dainese
- Ce.S.I.-Department of Basic and Applied Medical Sciences, Interuniversity Institute of Myology, University G. d'Annunzio, I-66013 Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Corona BT, Rouviere C, Hamilton SL, Ingalls CP. Eccentric contractions do not induce rhabdomyolysis in malignant hyperthermia susceptible mice. J Appl Physiol (1985) 2008; 105:1542-53. [PMID: 18787086 DOI: 10.1152/japplphysiol.90926.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest a link between exercise-induced rhabdomyolysis and mutations of the ryanodine receptor (RYR1) associated with malignant hyperthermia (MH). We hypothesized that MH-susceptible mice (RYR1Y522S/wt) would exhibit greater anterior crural muscle [tibialis anterior (TA) and extensor digitorum longus (EDL) muscles] damage and strength deficits following the performance of a single or repeated bouts of eccentric contractions compared with wild-type (WT) mice. After a single injury bout, RYR1Y522S/wt mice produced more isometric torque than WT mice immediately and 3 and 7 days postinjury. Moreover, EDL muscle isometric specific force deficits were fully recovered for RYR1Y522S/wt but not WT mice 14 days postinjury. The percentage of fibers in TA muscle exhibiting signs of muscle damage 7 and 14 days postinjury were at least three times less in RYR1Y522S/wt than in WT mice. Uninjured and injured EDL muscle from RYR1Y522S/wt mice also displayed greater S-glutathionylation of RYR1 than that from WT mice. During the weekly injury bouts, torque production by RYR1Y522S/wt mice was fully recovered before the third and fourth injury bouts, whereas torque was still reduced for WT mice. Three days after multiple injury bouts, there were approximately 50% fewer fibers exhibiting signs of muscle damage in RYR1Y522S/wt than in WT TA muscle. These findings indicate that the RYR1Y522S/wt mutation protects skeletal muscle from exercise-induced muscle injury and do not support a direct association between MH susceptibility and contraction-induced rhabdomyolysis when core temperature is maintained at lower physiological temperatures during exercise.
Collapse
Affiliation(s)
- Benjamin T Corona
- Muscle Biology Laboratory, Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302-3975, USA
| | | | | | | |
Collapse
|
90
|
RAE DALEE, KNOBEL GIDEONJ, MANN THERESA, SWART JEROEN, TUCKER ROSS, NOAKES TIMOTHYD. Heatstroke during Endurance Exercise. Med Sci Sports Exerc 2008; 40:1193-204. [DOI: 10.1249/mss.0b013e31816a7155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, Protasi F, Dirksen R, Hamilton SL. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 2008; 133:53-65. [PMID: 18394989 DOI: 10.1016/j.cell.2008.02.042] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/30/2007] [Accepted: 02/29/2008] [Indexed: 11/30/2022]
Abstract
Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.
Collapse
Affiliation(s)
- William J Durham
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Dysregulated S-nitrosylation of proteins characterizes a broad array of human disorders, but its role in disease etiology is not well understood. Two new studies (Durham et al., 2008; Bellinger et al., 2008) now show that hyper-S-nitrosylation of the ryanodine receptor calcium release channel (RyR1) in skeletal muscle disrupts calcium ion flux. This disruption underlies the impaired contractility and cellular damage of skeletal muscle during strenuous exercise and in a spectrum of congenital muscle disorders including malignant hyperthermia.
Collapse
Affiliation(s)
- Jonathan S Stamler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
93
|
Eyer F, Zilker T. Bench-to-bedside review: mechanisms and management of hyperthermia due to toxicity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:236. [PMID: 18096088 PMCID: PMC2246210 DOI: 10.1186/cc6177] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Body temperature can be severely disturbed by drugs capable of altering the balance between heat production and dissipation. If not treated aggressively, these events may become rapidly fatal. Several toxins can induce such non-infection-based temperature disturbances through different underlying mechanisms. The drugs involved in the eruption of these syndromes include sympathomimetics and monoamine oxidase inhibitors, antidopaminergic agents, anticholinergic compounds, serotonergic agents, medicaments with the capability of uncoupling oxidative phosphorylation, inhalation anesthetics, and unspecific agents causing drug fever. Besides centrally disturbed regulation disorders, hyperthermia often results as a consequence of intense skeletal muscle hypermetabolic reaction. This leads mostly to rapidly evolving muscle rigidity, extensive rhabdomyolysis, electrolyte disorders, and renal failure and may be fatal. The goal of treatment is to reduce body core temperature with both symptomatic supportive care, including active cooling, and specific treatment options.
Collapse
Affiliation(s)
- Florian Eyer
- Department of Clinical Toxicology, II Medizinische Klinik, Klinikum rechts der Isar, Technical University, D-81675 Munich, Germany.
| | | |
Collapse
|
94
|
|
95
|
Clinical Issues. AORN J 2007. [DOI: 10.1016/j.aorn.2007.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
|
97
|
Abstract
The neuromuscular disorders are associated with diminished cardiopulmonary reserves, deficient airway protection mechanisms, and atypical responses to drugs used during anesthesia. Many of these conditions are uncommon, and methodologically sound evidence to guide clinical practice is limited. The disorders discussed in the present review are the motor neuron diseases, peripheral neuropathies, myasthenic syndromes, and myopathies, including malignant hyperthermia. Recent data on pathogenesis and medical management are outlined, as are studies relating to anesthesia and the perioperative period.
Collapse
Affiliation(s)
- R D Stevens
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| |
Collapse
|
98
|
Heled Y, Bloom MS, Wu TJ, Stephens Q, Deuster PA. CK-MM and ACE genotypes and physiological prediction of the creatine kinase response to exercise. J Appl Physiol (1985) 2007; 103:504-10. [PMID: 17478608 DOI: 10.1152/japplphysiol.00081.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exertional rhabdomyolysis (ERB) is a syndrome of severe skeletal muscle breakdown. Blood levels of creatine kinase (CK) are widely used as a marker to reflect muscle breakdown. Some individuals exhibit extreme increases in blood CK after exercise and have been characterized as high responders (HR), but no clinical definition of HR exists and reasons for the HR phenomenon are not understood. This study investigated possible associations between the magnitude of the CK response to exercise and polymorphisms of two genes: muscle-specific creatine kinase (CK-MM) NcoI and angiotensin-converting enzyme (ACE) I/D. An exercise test for defining HR was also investigated. Participants (n = 88) underwent an exercise test that included stepping up and down two stairs for 5 min followed by 15 squats while wearing a backpack weighted at 30% of their body weight. CK levels were measured before, immediately after, and 48 and 72 h after the test. Nine participants (10.2%) were defined as HR. Participants with the CK-MM NcoI AA genotype had a sixfold higher risk of being HR compared with GG and AG genotypes (P = 0.031). No significant differences were found for the ACE I/D polymorphism. Percent body fat was an independent predictor of being a HR. We conclude that the CK-MM AA genotype and percent body fat may be part of the constellation of mechanisms that explain susceptibility to ERB. A physiological test that may assist in predicting ERB is also presented.
Collapse
Affiliation(s)
- Yuval Heled
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20184, USA.
| | | | | | | | | |
Collapse
|
99
|
Rosenberg H, Davis M, James D, Pollock N, Stowell K. Malignant hyperthermia. Orphanet J Rare Dis 2007; 2:21. [PMID: 17456235 PMCID: PMC1867813 DOI: 10.1186/1750-1172-2-21] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/24/2007] [Indexed: 11/10/2022] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000-100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals. MH affects humans, certain pig breeds, dogs, horses, and probably other animals. The classic signs of MH include hyperthermia to marked degree, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. Early recognition of the signs of MH, specifically elevation of end-expired carbon dioxide, provides the clinical diagnostic clues. In humans the syndrome is inherited in autosomal dominant pattern, while in pigs in autosomal recessive. The pathophysiologic changes of MH are due to uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation. Due to ATP depletion, the muscle membrane integrity is compromised leading to hyperkalemia and rhabdomyolysis. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 90 mutations have been identified in the RYR-1 gene located on chromosome 19q13.1, and at least 25 are causal for MH. Diagnostic testing relies on assessing the in vitro contracture response of biopsied muscle to halothane, caffeine, and other drugs. Elucidation of the genetic changes has led to the introduction, on a limited basis so far, of genetic testing for susceptibility to MH. As the sensitivity of genetic testing increases, molecular genetics will be used for identifying those at risk with greater frequency. Dantrolene sodium is a specific antagonist of the pathophysiologic changes of MH and should be available wherever general anesthesia is administered. Thanks to the dramatic progress in understanding the clinical manifestation and pathophysiology of the syndrome, the mortality from MH has dropped from over 80% thirty years ago to less than 5%.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Mark Davis
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Danielle James
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Neil Pollock
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| | - Kathryn Stowell
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ 07039, USA
| |
Collapse
|
100
|
|