51
|
Muradov JM, Ewan EE, Hagg T. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats. Exp Neurol 2013; 249:59-73. [PMID: 23978615 DOI: 10.1016/j.expneurol.2013.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and an ~70% loss of the sensory axons by 24 h. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 h. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 μg/μl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 h. EB also caused an ~75% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R(2) = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons.
Collapse
Affiliation(s)
- Johongir M Muradov
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | | | | |
Collapse
|
52
|
Volman V, Ng LJ. Computer modeling of mild axonal injury: implications for axonal signal transmission. Neural Comput 2013; 25:2646-81. [PMID: 23777525 DOI: 10.1162/neco_a_00491] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diffusion imaging and postmortem studies of patients with mild traumatic brain injury (mTBI) of the concussive type are consistent with the observations of diffuse axonal injury to the white matter axons. Mechanical trauma to axons affects the properties of tetrodotoxin-sensitive sodium channels at the nodes of Ranvier, leading to axonal degeneration through intra-axonal accumulation of calcium ions and activation of calcium proteases; however, the immediate implications of axonal trauma regarding axonal functionality and their relevance to transient impairment of function as observed in concussion remain elusive. A biophysically realistic computational model of a myelinated axon was developed to investigate how mTBI could immediately affect axonal function. Traumatized axons showed alterations in signal propagation properties that nonlinearly depended on the level of trauma; subthreshold traumatized axons had decreased spike propagation time, whereas suprathreshold traumatized axons exhibited a slowdown of spike propagation and spike propagation failure. Trauma had consistently reduced axonal spike amplitude. The susceptibility of an axon to trauma could be modulated by the function of an ATP-dependent sodium-potassium pump. The results suggest a mechanism by which concussive mTBI could lead to the immediate impairment of signal propagation through the axon and the emerging dysfunctional neuronal information exchange.
Collapse
Affiliation(s)
- Vladislav Volman
- L-3 Applied Technologies/Simulation, Engineering, and Testing, San Diego, CA 92121, USA.
| | | |
Collapse
|
53
|
Basoglu H, Kurtoglu T, Cetin NK, Bilgin MD, Kiylioglu N. Assessment of in vivo spinal cord conduction velocity in rats in an experimental model of ischemic spinal cord injury. Spinal Cord 2013; 51:616-22. [DOI: 10.1038/sc.2013.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022]
|
54
|
Clinical Trials for Neuroprotective Therapies in Intracerebral Hemorrhage: A New Roadmap from Bench to Bedside. Transl Stroke Res 2012; 3:409-17. [DOI: 10.1007/s12975-012-0207-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 11/26/2022]
|
55
|
|
56
|
Durham-Lee JC, Mokkapati VUL, Johnson KM, Nesic O. Amiloride improves locomotor recovery after spinal cord injury. J Neurotrauma 2011; 28:1319-26. [PMID: 21534729 PMCID: PMC3136742 DOI: 10.1089/neu.2011.1921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amiloride is a drug approved by the United States Food and Drug Administration, which has shown neuroprotective effects in different neuropathological conditions, including brain injury or brain ischemia, but has not been tested in spinal cord injury (SCI). We tested amiloride's therapeutic potential in a clinically relevant rat model of contusion SCI inflicted at the thoracic segment T10. Rats receiving daily administration of amiloride from 24 h to 35 days after SCI exhibited a significant improvement in hindlimb locomotor ability at 21, 28, and 35 days after injury, when compared to vehicle-treated SCI rats. Rats receiving amiloride treatment also exhibited a significant increase in myelin oligodendrocyte glycoprotein (MOG) levels 35 days after SCI at the site of injury (T10) when compared to vehicle-treated controls, which indicated a partial reverse in the decrease of MOG observed with injury. Our data indicate that higher levels of MOG correlate with improved locomotor recovery after SCI, and that this may explain the beneficial effects of amiloride after SCI. Given that amiloride treatment after SCI caused a significant preservation of myelin levels, and improved locomotor recovery, it should be considered as a possible therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Julieann C. Durham-Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Venkata Usha L. Mokkapati
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kathia M. Johnson
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Olivera Nesic
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
57
|
Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, Esiri M, Fugger L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011; 134:571-84. [DOI: 10.1093/brain/awq337] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
58
|
Molecular Pathophysiology of White Matter Anoxic-Ischemic Injury. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
59
|
Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS. 2-Methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury. Brain Res 2010; 1370:220-6. [PMID: 21092735 DOI: 10.1016/j.brainres.2010.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 12/29/2022]
Abstract
The study investigated the mechanism of the up-regulation of aquaporin-4 (AQP4) and aquaporin-1 (AQP1) expression induced by spinal cord injury (SCI). Using adult rat spinal cord injury model, it was found that up-regulation of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), AQP4, and AQP1 in response to spinal cord injury was greatly antagonized by 2-methoxyestradiol (2ME2), which can post-transcriptionally inhibit the expression of HIF-1α. VEGF alone significantly increased the extravasation of Evans blue and up-regulated the levels of AQP4 protein expression in the injured spinal cord issue, but the levels of AQP1 expression were not significantly changed. Taken together, our results suggest that expression of AQP4 and AQP1 is correlated with up-regulation of HIF-1α after SCI through the mechanisms that were dependent and independent of the VEGF signaling pathway, respectively. And the inhibitor of HIF-1α is a novel promising therapeutic agent for human SCI-induced edema in the future.
Collapse
Affiliation(s)
- Yan-feng Wang
- The First Affiliated Hospital, China Medical University, Department of Orthopaedics, the Nanjing Bei Street No 155, Heping District, Shen yang, Liaoning Province 110001, PR China.
| | | | | | | | | | | |
Collapse
|
60
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
61
|
Abstract
In addition to their role in providing myelin for rapid impulse propagation, the glia that ensheath long axons are required for the maintenance of normal axon transport and long-term survival. This presumably ancestral function seems to be independent of myelin membrane wrapping. Here, I propose that ensheathing glia provide trophic support to axons that are metabolically isolated, and that myelin itself might cause such isolation. This glial support of axonal integrity may be relevant for a number of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Klaus-Armin Nave is at the Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse 3, D-37075 Goettingen, Germany.
| |
Collapse
|
62
|
Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 2010; 16:160-70. [PMID: 20207196 DOI: 10.1016/j.molmed.2010.02.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 12/14/2022]
Abstract
Axonal degeneration causes morbidity in many neurological conditions including stroke, neurotrauma and multiple sclerosis. The limited ability of central nervous system (CNS) neurons to regenerate, combined with the observation that axonal damage causes clinical disability, has spurred efforts to investigate the mechanisms of axonal degeneration. Ca influx from outside the axon is a key mediator of injury. More recently, substantial pools of intra-axonal Ca sequestered in the 'axoplasmic reticulum' have been reported. These Ca stores are under the control of multimolecular 'nanocomplexes' located along the internodes under the myelin. The overactivation of these complexes during disease can lead to a lethal release of Ca from intra-axonal stores. Rich receptor pharmacology offers tantalizing therapeutic options targeting these nanocomplexes in the many diseases where axonal degeneration is prominent.
Collapse
|
63
|
|
64
|
Unuma K, Harada K, Nakajima M, Eguchi H, Tsushima K, Ito T, Shintani-Ishida K, Kojima H, Yoshida KI. Autopsy report on central pontine myelinolysis triggered by vomiting associated with digoxin intoxication. Forensic Sci Int 2010; 194:e5-8. [DOI: 10.1016/j.forsciint.2009.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/21/2009] [Accepted: 09/01/2009] [Indexed: 11/30/2022]
|
65
|
Mccurley AT, Callard GV. Time course Analysis of Gene expression patterns in ZebrafIsh Eye during Optic Nerve Regeneration. J Exp Neurosci 2010. [DOI: 10.4137/jen.s5006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
It is well-established that neurons in the adult mammalian central nervous system (CNS) are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after ONX can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration. To define different phases of regeneration after ONX, alpha tubulin 1 ( tuba1) and growth-associated protein 43 ( gap43), markers previously shown to correspond to morphophological events, were measured by real time quantitative PCR (qPCR). Microarray analysis was then performed at defined intervals (6 hours, 1, 4, 12, and 21 days) post-ONX and compared to SHAM. Results show that optic nerve damage induces multiple, phase-related transcriptional programs, with the maximum number of genes changed and highest fold-change occurring at 4 days. Several functional groups affected by optic nerve regeneration, including cell adhesion, apoptosis, cell cycle, energy metabolism, ion channel activity, and calcium signaling, were identified. Utilizing the whole eye allowed us to identify signaling contributions from the vitreous, immune and glial cells as well as the neural cells of the retina. Comparisons between our dataset and transcriptional profiles from other models of regeneration in zebrafish retina, heart and fin revealed a subset of commonly regulated transcripts, indicating shared mechanisms in different regenerating tissues. Knowledge of gene expression patterns in all components of the eye in a model of successful regeneration provides an entry point for functional analyses, and will help in devising hypotheses for testing normal and toxic regulatory factors.
Collapse
Affiliation(s)
- Amy T. Mccurley
- Department of Biology, Boston University, 5 cummington street, Boston, MA 02215 USA
| | - Gloria V. Callard
- Department of Biology, Boston University, 5 cummington street, Boston, MA 02215 USA
| |
Collapse
|
66
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
67
|
Deng Y, Xu Z, Xu B, Tian Y, Deng X, Xin X, Gao J. Excitotoxicity in rat's brain induced by exposure of manganese and neuroprotective effects of pinacidil and nimodipine. Biol Trace Elem Res 2009; 131:143-53. [PMID: 19300915 DOI: 10.1007/s12011-009-8361-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
Manganese (Mn) is an essential trace element for humans. However, manganism would be caused by excessive Mn. The mechanisms underlying excitotoxicity induced by manganism are poorly understood. As it is known to us, glutamate (Glu) is the most prevalent excitatory neurotransmitter. To determine the possible role of dysfunction of Glu transportation and metabolism in Mn-induced excitotoxicity, the rats were ip injected with different dose of MnCl(2) (0, 50, 100, and 200 micromol/kg), the levels of Mn and activities of GS, PAG, Na(+)-K(+)-ATPase, and Ca(2+)-ATPase in striatum were investigated. In addition, effect of 20.38 micromol/kg pinacidil (K(+) channel opener) or 2.4 micromol/kg nimodipine (Ca(2+) channel blocker) were studied at 200 micromol/kg MnCl(2). With dose-dependent inhibition of GS, Na(+)-K(+)-ATPase, and Ca(2+)-ATPase activities, increase of Mn levels and PAG activity were observed. Further investigation indicated that pre-treatment of pinacidil or nimodipine reversed toxic effect of MnCl(2) significantly. These results suggested that MnCl(2) could induce dysfunction of Glu transportation and metabolism by augmenting the excitotoxicity dose-dependently; pinacidil and nimodipine might antagonize manganese neurotoxicity.
Collapse
Affiliation(s)
- Yu Deng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
68
|
Erşahin M, Toklu HZ, Çetinel Ş, Yüksel M, Erzik C, Berkman MZ, Yeğen BÇ, Şener G. Alpha Lipoic Acid Alleviates Oxidative Stress and Preserves Blood Brain Permeability in Rats with Subarachnoid Hemorrhage. Neurochem Res 2009; 35:418-28. [DOI: 10.1007/s11064-009-0072-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 01/22/2023]
|
69
|
Ma YY, Li KY, Wang JJ, Huang YL, Huang Y, Sun FY. Vascular endothelial growth factor acutely reduces calcium influx via inhibition of the Ca2+channels in rat hippocampal neurons. J Neurosci Res 2009; 87:393-402. [DOI: 10.1002/jnr.21859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
70
|
Liu Y, Liu XJ, Sun D. Ion transporters and ischemic mitochondrial dysfunction. Cell Adh Migr 2009; 3:94-8. [PMID: 19276659 PMCID: PMC2675155 DOI: 10.4161/cam.3.1.7516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022] Open
Abstract
Ischemia-induced ionic imbalance leads to the activation of numerous events including mitochondrial dysfunction and eventual cell death. Dysregulation of mitochondrial Ca(2+) (Ca(2+)(m)) plays a critical role in cell damage under pathological conditions including traumatic brain injury and stroke. High Ca(2+)(m) levels can induce the persistent opening of the mitochondrial permeability transition pore and trigger mitochondrial membrane depolarization, Ca(2+) release, cessation of oxidative phosphorylation, matrix swelling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Thus, the dysregulation of mitochondrial Ca(2+) homeostasis is now recognized to play a crucial role in triggering mitochondrial dysfunction and subsequent apoptosis. Recent studies show that some secondary active transport proteins, such as Na(+)-dependent chloride transporter and Na(+)/Ca(2+) exchanger, contribute to ischemia-induced dissipation of ion homeostasis including Ca(2+)(m).
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurological Surgery; University of Wisconsin School of Medicine and Public Health; Madison, WI USA
- Department of Biological Sciences and Biotechnology; Institute of Biomedical Informatics; School of Medicine; Tsinghua University; Beijing, China
| | - Xiang-jun Liu
- Department of Biological Sciences and Biotechnology; Institute of Biomedical Informatics; School of Medicine; Tsinghua University; Beijing, China
| | - Dandan Sun
- Department of Neurological Surgery; University of Wisconsin School of Medicine and Public Health; Madison, WI USA
| |
Collapse
|
71
|
Gupta R, Deshpande SB. 3-Nitropropionic acid-induced depression of spinal reflexes involves mechanisms different from ischemia-induced depression. Brain Res Bull 2008; 77:382-7. [DOI: 10.1016/j.brainresbull.2008.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
|
72
|
Gupta R, Deshpande SB. 3-Nitropropionic acid depresses spinal reflexes involving GABAergic and glycinergic transmission in neonatal rat spinal cord in vitro. Life Sci 2008; 83:756-60. [PMID: 18930740 DOI: 10.1016/j.lfs.2008.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 09/13/2008] [Accepted: 09/21/2008] [Indexed: 01/30/2023]
Abstract
AIMS 3-Nitropropionic acid (3-NPA) is a naturally occurring fungal toxin that leads to ATP-depletion by inhibiting mitochondrial succinate dehydrogenase and produces chemical anoxia. The present study was conducted to identify the involvement of inhibitory system in 3-NPA-induced depression of spinal reflexes. METHODS The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials were recorded at ventral root by stimulating the corresponding dorsal root in hemisected (sagitally) spinal cord from 4-8 day old rats. Effect of 3-NPA in the absence and presence of antagonists was evaluated on the reflexes. KEY FINDINGS Superfusion of 3-NPA (3.4 mM) depressed the reflexes in a time-dependent manner abolishing them by 35 min. The T-50 values were around 18 and 16 min for MSR and PSR, respectively. An NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid (10 microM) failed to block the 3-NPA (3.4 mM)-induced depression of reflexes. Superfusion of bicuculline (GABAA receptor antagonist; 1 microM), or strychnine (glycineA receptor antagonist; 1 microM) antagonized the 3-NPA-induced depression of reflexes significantly. The T-50 values were 26 and 30 min in bicuculline and strychnine pretreated groups, respectively and were significantly greater than 3-NPA only group. SIGNIFICANCE The results indicate that 3-NPA-induced depression of spinal reflexes is partially mediated by GABAergic and glycinergic inhibitory transmission.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India
| | | |
Collapse
|
73
|
Sättler MB, Williams SK, Neusch C, Otto M, Pehlke JR, Bähr M, Diem R. Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1496-507. [PMID: 18832577 DOI: 10.2353/ajpath.2008.080491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system that results in persistent impairment in young adults. During chronic progressive disease stages, there is a strong correlation between neurodegeneration and disability. Current therapies fail to prevent progression of neurological impairment during these disease stages. Flupirtine, a drug approved for oral use in patients suffering from chronic pain, was used in a rat model of autoimmune optic neuritis and significantly increased the survival of retinal ganglion cells, the neurons that form the axons of the optic nerve. When flupirtine was combined with interferon-beta, an established immunomodulatory therapy for MS, visual functions of the animals were improved during the acute phase of optic neuritis. Furthermore, flupirtine protected retinal ganglion cells from degeneration in a noninflammatory animal model of optic nerve transection. Although flupirtine was shown previously to increase neuronal survival by Bcl-2 up-regulation, this mechanism does not appear to play a role in flupirtine-mediated protection of retinal ganglion cells either in vitro or in vivo. Instead, we showed through patch-clamp investigations that the activation of inwardly rectifying potassium channels is involved in flupirtine-mediated neuroprotection. Considering the few side effects reported in patients who receive long-term flupirtine treatment for chronic pain, our results indicate that this drug is an interesting candidate for further evaluation of its neuroprotective potential in MS.
Collapse
Affiliation(s)
- Muriel B Sättler
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
74
|
Reshef A, Shirvan A, Shohami E, Grimberg H, Levin G, Cohen A, Trembovler V, Ziv I. Targeting cell death in vivo in experimental traumatic brain injury by a novel molecular probe. J Neurotrauma 2008; 25:569-80. [PMID: 18447626 DOI: 10.1089/neu.2007.0341] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) remains a frequent and major challenge in neurological and neurosurgical practice. Apoptosis may play a role in cerebral tissue damage induced by the traumatic insult, and thus its detection and inhibition may advance patient care. DDC (N,N'-didansyl-L-cystine) is a novel fluorescent probe for detection of apoptotic cells. We now report on the performance of DDC in experimental TBI. Closed head injury was induced in mice by weight-drop. DDC was administered intravenously in vivo. Two hours later, animals were sacrificed, and brain tissue was subjected to fluorescent microcopy, for assessment of DDC uptake, in correlation with histopathological assessment of apoptosis by TUNEL and caspase substrates, and also in correlation with the neurological deficits, as assessed by Neurological Severity Score (NSS). Selective uptake of DDC was observed at the primary site of injury, and also at remote sites. Uptake was at the cellular level, with accumulation of DDC in the cytoplasm. Cells manifesting DDC uptake were confirmed as apoptotic cells by detection of the characteristic apoptotic DNA fragmentation (positive TUNEL staining) and detection of activated caspases. The damaged region stained by DDC fluorescence correlated with the severity of neuronal deficits. Our study confirms the role of apoptosis in TBI, and proposes DDC as a useful tool for its selective targeting and detection in vivo. Such imaging of apoptosis, following future radiolabeling of DDC, may advance care for patients with head injury, by allowing real-time evaluation of the extent of tissue damage, assessment of novel therapeutic strategies, and optimization of treatment for the individual patient.
Collapse
Affiliation(s)
- Ayelet Reshef
- NST NeuroSurvival Technologies Ltd., Petach-Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine. Eur J Pharmacol 2008; 588:189-97. [PMID: 18508044 DOI: 10.1016/j.ejphar.2008.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons. Veratridine (10 microM)-induced neuronal cell damage was completely prevented by 0.1 microM tetrodotoxin. Pretreatment with donepezil (0.1-10 microM) for 1 day significantly decreased cell death in a concentration-dependent manner, and a potent NMDA receptor antagonist, dizocilpine (MK801), showed a neuroprotective effect at the concentration of 10 microM. The neuroprotective effect of donepezil was not affected by nicotinic or muscarinic acetylcholine receptor antagonists. We further characterized the neuroprotective properties of donepezil by measuring the effect on [Na+]i and [Ca2+]i in cells stimulated with veratridine. At 0.1-10 microM, donepezil significantly and concentration-dependently reduced the veratridine-induced increase of [Ca2+]i, whereas MK801 had no effect. At 10 microM, donepezil significantly decreased the veratridine-induced increase of [Na+]i. We also measured the effect on veratridine-induced release of the excitatory amino acids, glutamate and glycine. While donepezil decreased the release of glutamate and glycine, MK801 did not. In conclusion, our results indicate that donepezil has neuroprotective activity against depolarization-induced toxicity in rat cortical neurons via inhibition of the rapid influx of sodium and calcium ions, and via decrease of glutamate and glycine release, and also that this depolarization-induced toxicity is mediated by glutamate receptor activation.
Collapse
|
76
|
Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008; 55:363-89. [PMID: 18308347 DOI: 10.1016/j.neuropharm.2007.12.007] [Citation(s) in RCA: 548] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/03/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
Abstract
Neuroprotection for ischemic stroke refers to strategies, applied singly or in combination, that antagonize the injurious biochemical and molecular events that eventuate in irreversible ischemic injury. There has been a recent explosion of interest in this field, with over 1000 experimental papers and over 400 clinical articles appearing within the past 6 years. These studies, in turn, are the outgrowth of three decades of investigative work to define the multiple mechanisms and mediators of ischemic brain injury, which constitute potential targets of neuroprotection. Rigorously conducted experimental studies in animal models of brain ischemia provide incontrovertible proof-of-principle that high-grade protection of the ischemic brain is an achievable goal. Nonetheless, many agents have been brought to clinical trial without a sufficiently compelling evidence-based pre-clinical foundation. At this writing, around 160 clinical trials of neuroprotection for ischemic stroke have been initiated. Of the approximately 120 completed trials, two-thirds were smaller early-phase safety-feasibility studies. The remaining one-third were typically larger (>200 subjects) phase II or III trials, but, disappointingly, only fewer than one-half of these administered neuroprotective therapy within the 4-6h therapeutic window within which efficacious neuroprotection is considered to be achievable. This fact alone helps to account for the abundance of "failed" trials. This review presents a close survey of the most extensively evaluated neuroprotective agents and classes and considers both the strengths and weakness of the pre-clinical evidence as well as the results and shortcomings of the clinical trials themselves. Among the agent-classes considered are calcium channel blockers; glutamate antagonists; GABA agonists; antioxidants/radical scavengers; phospholipid precursor; nitric oxide signal-transduction down-regulator; leukocyte inhibitors; hemodilution; and a miscellany of other agents. Among promising ongoing efforts, therapeutic hypothermia, high-dose human albumin therapy, and hyperacute magnesium therapy are considered in detail. The potential of combination therapies is highlighted. Issues of clinical-trial funding, the need for improved translational strategies and clinical-trial design, and "thinking outside the box" are emphasized.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology (D4-5), University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
77
|
Glutamatergic signaling in the brain's white matter. Neuroscience 2008; 158:266-74. [PMID: 18314276 DOI: 10.1016/j.neuroscience.2008.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/05/2008] [Indexed: 11/22/2022]
Abstract
Glutamatergic signaling has been exceptionally well characterized in the brain's gray matter, where it underlies fast information processing, learning and memory, and also generates the neuronal damage that occurs in pathological conditions such as stroke. The role of glutamatergic signaling in the white matter, an area until recently thought to be devoid of synapses, is less well understood. Here we review what is known, and highlight what is not known, of glutamatergic signaling in the white matter. We focus on how glutamate is released, the location and properties of the receptors it acts on, the interacting molecules that may regulate trafficking or signaling of the receptors, the possible functional roles of glutamate in the white matter, and its pathological effects including the possibility of treating white matter disorders with glutamate receptor blockers.
Collapse
|
78
|
Davies AL, Kramer JLK, Hayes KC. Carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer induces concentration-dependent alterations in the electrophysiological properties of axons in mammalian spinal cord. Neuroscience 2007; 151:1104-11. [PMID: 18248914 DOI: 10.1016/j.neuroscience.2007.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/03/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
Traumatic spinal cord injury (SCI) typically involves intraparenchymal hemorrhage and a cascade of inflammatory and cytotoxic processes leading to tissue necrosis and apoptosis. A consequence of the hemorrhage is the accumulation of deoxygenated heme proximal and distal to the epicenter of the lesion. The heme oxygenase (HO) system is an endogenous heme degradation system and is upregulated following neurotrauma. The breakdown of heme via HO activity yields the byproducts carbon monoxide (CO), biliverdin, and iron. CO has documented neuromodulatory properties; however, the effects of elevated concentrations of CO on axonal conduction in the spinal cord have not previously been studied. The present study tested the hypothesis that CO causes alterations in the electrophysiological properties of axons within the isolated guinea-pig spinal cord. Ex vivo spinal cord preparations were exposed to 100, 500, and 1000 microM concentrations of the carbon monoxide-releasing molecule (CORM) 2 for 30 min in a double sucrose gap electrophysiological recording system and the compound action potential (CAP) and membrane potential (CMP) were recorded continuously during pretreatment, CORM-2 treatment, and washout (30 min) with Krebs' solution. CAP amplitude and area were significantly (P<0.05) reduced following treatment with 500 and 1000 microM CORM-2 and did not recover during washout. No effect on CMP was observed, however, stimulus-peak latency did increase significantly (P<0.05) following CORM-2 treatment at these concentrations, and a decrease in the amplitude of the second CAP elicited by paired-pulse stimulation was also evident at interpulse intervals of 2 and 4 ms. These results are consistent with a CO-induced alteration in axonal conduction, possibly attributable to modified Na+ channel conductance. They also identify a new mechanism by which post-traumatic hemorrhage contributes to the neurological deficits observed following SCI.
Collapse
Affiliation(s)
- A L Davies
- Neuroscience Program, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
79
|
Tanaka Y, Imai H, Konno K, Miyagishima T, Kubota C, Puentes S, Aoki T, Hata H, Takata K, Yoshimoto Y, Saito N. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 2007; 39:205-12. [PMID: 18048856 DOI: 10.1161/strokeaha.107.489906] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Lacunar infarction accounts for 25% of ischemic strokes, but the pathological characteristics have not been investigated systematically. A new experimental model of lacunar infarction in the miniature pig was developed to investigate the pathophysiological changes in the corticospinal tract from the acute to chronic phases. METHODS Thirty-five miniature pigs underwent transcranial surgery for permanent anterior choroidal artery occlusion. Animals recovered for 24 hours (n=7), 2 (n=5), 3 (n=2), 4 (n=2), 6 (n=1), 7 (n=7), 8 (n=2), and 9 days (n=1), 2 weeks (n=2), 4 weeks (n=3), and more than 4 weeks (n=3). Neurology, electrophysiology, histology, and MRI were performed. Seven additional miniature pigs underwent transient anterior choroidal artery occlusion to study muscle motor-evoked potentials and evaluate corticospinal tract function during transient anterior choroidal artery occlusion. RESULTS The protocol had a 91.4% success rate in induction of internal capsule infarction 286+/-153 mm(3) (mean+/-SD). Motor-evoked potentials revealed the presence of penumbral tissue in the internal capsule after 6 to 15 minutes anterior choroidal artery occlusion. Total neurological deficit scores of 15.0 (95% CI, 13.5 to 16.4) and 3.4 (0.3 to 6.4) were recorded for permanent anterior choroidal artery occlusion and sham groups, respectively (P<0.001, maximum score 25) with motor deficit scores of 3.4 (95% CI, 2.9 to 4.0) and 0.0 (CI, 0.0 to 0.0), respectively (P<0.001, maximum score 9). Histology revealed that the internal capsule lesion expands gradually from acute to chronic phases. CONCLUSIONS This new model of lacunar infarction induces a reproducible infarct in subcortical white matter with a measurable functional deficit and evidence of penumbral tissue acutely.
Collapse
Affiliation(s)
- Yukitaka Tanaka
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
A modelling approach to explore some hypotheses of the failure of neuroprotective trials in ischemic stroke patients. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 97:60-78. [PMID: 18076975 DOI: 10.1016/j.pbiomolbio.2007.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ischemic stroke is the third cause of death in industrialised countries, but no satisfactory treatment is currently available. The hundreds of neuroprotective drugs developed to block the ischemic cascade gave very promising results in animal models but the clinical trials performed with these drugs showed no beneficial effects in stroke patients. Many hypotheses were advanced to explain this discrepancy, among which the morphological and functional differences between human and rodent brains. This discrepancy could be partly due to the differences in white matter and glial cell proportions between human and rodent brains. In order to test this hypothesis, we built a mathematical model of the main early pathophysiological mechanisms of stroke in rodent and in human brains. This model is a two-scale model and relies on a set of ordinary differential equations. We built two versions of this model (for human and rodent brains) differing in their white matter and glial cell proportions. Then, we carried out in silico experiments with various neuroprotective drugs. The simulation results obtained with a sodium channel blocker show that the proportion of penumbra recovery is much higher in rodent than in human brain and the results are similar with some other neuroprotective drugs tested during phase III trials. This in silico investigation suggests that the proportions of glial cells and white matter have an influence on neuroprotective drug efficacy. It reinforces the hypothesis that histological and morphological differences between rodent and human brains can partly explain the failure of these agents in clinical trials.
Collapse
|
81
|
Dhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 2007; 13:107-17. [PMID: 17505979 DOI: 10.1080/13550280601178226] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand how rabies virus (RV) infection results in neuronal dysfunction, the authors employed proteomics technology to profile host responses to RV infection. In mice infected with wild-type (wt) RV, the expression of proteins involved in ion homeostasis was altered. H(+) ATPase and Na(+)/K(+) ATPase were up-regulated whereas Ca(2+) ATPase was down-regulated, which resulted in reduction of the intracellular Na(+) and Ca(2+) concentrations. Furthermore, infection with wt RV resulted in down-regulation of soluble NSF attachment receptor proteins (SNAREs) such as alpha-synaptosome-associated protein (SNAP), tripartite motif-containing 9 (TRIM9), syntaxin, and pallidin, all of which are involved in docking and fusion of synaptic vesicles to and with presynaptic membrane. As a consequence, accumulation of synaptic vesicles was observed in the presynapses of mice infected with wt RV. These data demonstrate that infection with wt RV results in alteration of host protein expression, particularly those involved in ion homeostasis and docking and fusion of synaptic vesicles to presynaptic membrane, which may lead to neuronal dysfunction. On the other hand, attenuated RV up-regulated the expression of proteins involved in the induction of apoptosis, explaining why apoptosis is observed only in cells or animals infected with attenuated RV in previous studies.
Collapse
Affiliation(s)
- Vikas Dhingra
- Department of Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Our understanding of the potential role of sodium channels in multiple sclerosis (MS) has grown substantially in recent years. The channels have long had a recognized role in the symptomatology of the disease, but now also have suspected roles in causing permanent axonal destruction, and a potential role in modulating the intensity of immune activity. Sodium channels might also provide an avenue to achieve axonal and neuronal protection in MS, thereby impeding the otherwise relentless advance of permanent neurological deficit. The symptoms of MS are largely determined by the conduction properties of axons and these, in turn, are largely determined by sodium channels. The number, subtype and distribution of the sodium channels are all important, together with the way that channel function is modified by local factors, such as those resulting from inflammation (eg, nitric oxide). Suspicion is growing that sodium channels may also contribute to the axonal degeneration primarily responsible for permanent neurological deficits. The proposed mechanism involves intra-axonal sodium accumulation which promotes reverse action of the sodium/calcium exchanger and thereby a lethal rise in intra-axonal calcium. Partial blockade of sodium channels protects axons from degeneration in experimental models of MS, and therapy based on this approach is currently under investigation in clinical trials. Some recent findings suggest that such systemic inhibition of sodium channels may also promote axonal protection by suppressing inflammation within the brain.
Collapse
Affiliation(s)
- Kenneth J Smith
- Department of Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
83
|
Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Maldonado V, Tristan L, Alcaraz-Zubeldia M, Ríos C. Acute alterations of glutamate, glutamine, GABA, and other amino acids after spinal cord contusion in rats. Neurochem Res 2006; 32:57-63. [PMID: 17160506 DOI: 10.1007/s11064-006-9225-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/06/2006] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) leads to an alteration of energetic metabolism. As a consequence, glutamate, glutamine, aspartate and other important amino acids are altered after damage, leading to important disregulation of the neurochemical pathways. In the present study, we characterized the acute-phase changes in tissue concentration of amino acids involved in neurotransmitter and non-neurotransmitter actions after SCI by contusion in rats. Animals were submitted to either laminectomy or SCI by contusion and sacrificed at 2, 4, 8, and 12 h after lesion, for the analysis of tissue amino acids by HPLC. Results showed that both aspartate and glutamate contents diminished after SCI, while glutamine concentrations raised, however, the sum of molar concentrations of glutamate plus glutamine remained unchanged at all time points. GABA concentrations increased versus control group, while glycine remained unchanged. Finally, citrulline levels increased by effect of SCI, while taurine-increased only 4 h after lesion. Results indicate complex acute-phase changes in amino acids concentrations after SCI, reflecting the different damaging processes unchained after lesion.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ave. Insurgentes Sur No. 3877, Mexico City, DF 14269, Mexico
| | | | | | | | | | | | | |
Collapse
|
84
|
Bechtold DA, Miller SJ, Dawson AC, Sun Y, Kapoor R, Berry D, Smith KJ. Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J Neurol 2006; 253:1542-51. [PMID: 17219031 DOI: 10.1007/s00415-006-0204-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/09/2006] [Indexed: 01/03/2023]
Abstract
Axonal degeneration is a major cause of permanent disability in multiple sclerosis (MS). Recent observations from our and other laboratories suggest that sodium accumulation within compromised axons is a key, early step in the degenerative process, and hence that limiting axonal sodium influx may represent a mechanism for axonal protection in MS. Here we assess whether lamotrigine, a sodium channel-blocking agent, is effective in preventing axonal degeneration in an animal model of MS, namely chronic-relapsing experimental autoimmune encephalomyelitis (CR-EAE). When administered from 7 days post-inoculation, lamotrigine provided a small but significant reduction in the neurological deficit present at the termination of the experiments (averaged over three independent experiments; vehicle: 3.5+/-2.7; lamotrigine: 2.6+/-2.0, P<0.05) and preserved more functional axons in the spinal cord (measured as mean compound action potential area; vehicle: 31.7 microV.ms+/-23.0; lamotrigine: 42.9+/-27.4, P<0.05). Histological examination of the thoracic spinal cord (n=71) revealed that lamotrigine treatment also provided significant protection against axonal degeneration (percentage degeneration in dorsal column; vehicle: 33.5 %+/-38.5; lamotrigine: 10.4 %+/-12.5, P<0.01). The findings suggest that lamotrigine may provide a novel avenue for axonal protection in MS.
Collapse
Affiliation(s)
- David A Bechtold
- Department of Clinical Neuroscience, King's College London, Guy's Campus, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | | | | | |
Collapse
|
85
|
Vanický I, Ondrejcák T, Ondrejcáková M, Sulla I, Gálik J. Long-term changes in spinal cord evoked potentials after compression spinal cord injury in the rat. Cell Mol Neurobiol 2006; 26:1521-39. [PMID: 16691438 PMCID: PMC11520630 DOI: 10.1007/s10571-006-9071-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
1. After traumatic spinal cord injury (SCI), histological and neurological consequences are developing for several days and even weeks. However, little is known about the dynamics of changes in spinal axonal conductivity. The aim of this study was to record and compare repeated spinal cord evoked potentials (SCEP) after SCI in the rat during a 4 weeks' interval. These recordings were used: (i) for studying the dynamics of functional changes in spinal axons after SCI, and (ii) to define the value of SCEP as an independent outcome parameter in SCI studies. 2. We have used two pairs of chronically implanted epidural electrodes for stimulation/recording. The electrodes were placed below and above the site of injury, respectively. Animals with implanted electrodes underwent spinal cord compression injury induced by epidural balloon inflation at Th8-Th9 level. There were five experimental groups of animals, including one control group (sham-operated, no injury), and four injury groups (different degrees of SCI). 3. After SCI, SCEP waveform was either significantly reduced or completely lost. Partial recovery of SCEPs was observed in all groups. The onset and extent of recovery clearly correlated with the severity of injury. There was good correlation between quantitated SCEP variables and the volumes of the compressing balloon. However, sensitivity of electropohysiological parameters was inferior compared to neurological and morphometric outcomes. 4. Our study shows for the first time, that the dynamics of axonal recovery depends on the degree of injury. After mild injury, recovery of signal is rapid. However, after severe injury, axonal conductivity can re-appear after as long as 2 weeks postinjury. In conclusion, SCEPs can be used as an independent parameter of outcome after SCI, but in general, the sensitivity of electrophysiological data were worse than standard morphological and neurological evaluations.
Collapse
Affiliation(s)
- Ivo Vanický
- Institute of Neurobiology, AD Center of Excellence, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
86
|
McMains KC, Kountakis SE. Contemporary diagnosis and approaches toward optic nerve decompression. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.otot.2006.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Liu MC, Akle V, Zheng W, Kitlen J, O'Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KKW. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006; 98:700-12. [PMID: 16893416 DOI: 10.1111/j.1471-4159.2006.03882.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.
Collapse
Affiliation(s)
- Ming Cheng Liu
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainsville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Furlan JC, Fehlings MG. A Web-based systematic review on traumatic spinal cord injury comparing the "citation classics" with the consumers' perspectives. J Neurotrauma 2006; 23:156-69. [PMID: 16503800 DOI: 10.1089/neu.2006.23.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the citation index of an article is not a direct measure of its quality or importance, it is a measure of recognition that may suggest its impact on the scientific community. This study was undertaken to examine the characteristics of the top 100 most frequently cited articles (so-called "citation classics") on traumatic spinal cord injury (SCI) that were published between 1986 and 2003, and to compare this selected professional literature with the consumers' perspective on the key issues in SCI research. The 100 top-cited articles on traumatic SCI were identified using the Internet database of the Science Citation Index Expanded and the Web of Science with the terms "spinal cord injury" and "spinal cord injuries." Meeting abstracts, letters, and editorials were excluded. No language restriction was applied. From a consumers' perspective, the areas of greatest interest for people with SCI as reported in two previous large-scale surveys include motor function, bowel and bladder control, sexual function, and pain. The final list of citation classics on traumatic SCI included 82 original articles and 18 article reviews, which were cited 146 times on average. Topics on basic science (63%) were more frequent than clinical studies (37%). The years of publication were distributed in a bell-shape curve with a peak between 1992 and 1994. North American and European centers (99%) led the list of the citation classics. Most of the top 100 most frequently cited articles on traumatic SCI (63%) explicitly focused on at least one of the topics of greatest interest to individuals with SCI. Motor function was the leading topic in the matching list between professional literature and consumers' perspective. This bibliometric analysis, for the first time, identifies the key features of the citation classics on traumatic SCI between 1986 and 2003, a period that represents one of an unprecedented increase in knowledge in this field. The 100 top-cited peer-reviewed articles have been predominantly focused on basic science SCI research indicating a need for greater bench-to-bedside translational studies in SCI research. Although the body of this top-cited professional literature mostly matches with the consumers' perspective, most of this research has been focused on motor function assessment and recovery following SCI.
Collapse
Affiliation(s)
- Julio C Furlan
- Department of Surgery, Division of Neurosurgery, University of Toronto, Spinal Program, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
89
|
Aboul-Enein F, Weiser P, Höftberger R, Lassmann H, Bradl M. Transient axonal injury in the absence of demyelination: a correlate of clinical disease in acute experimental autoimmune encephalomyelitis. Acta Neuropathol 2006; 111:539-47. [PMID: 16718350 DOI: 10.1007/s00401-006-0047-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 02/07/2023]
Abstract
Axonal degeneration contributes to the transient and permanent neurological deficits seen in multiple sclerosis, an inflammatory disease of the central nervous system. To study the immunological mechanisms causing axonal degeneration, we induced experimental autoimmune encephalomyelitis (EAE) in wildtype Lewis rats and Lewis rats with a slowly progressive myelin degeneration due to proteolipid protein (PLP) overexpression. EAE was triggered either by the transfer of encephalitogenic T-cells alone or by the co-transfer of T-cells with demyelinating antibodies. Inducible nitric oxide synthase (iNOS) expression in perivascular macrophages was associated with a transient functional disturbance of axons, reflected by the focal and reversible accumulation of amyloid precursor protein. Clinical disease correlated with the numbers of APP positive axon spheroids. Demyelination was associated with a further increase of iNOS expression in macrophages and with a higher degree of axonal injury. Our studies suggest that nitric oxide and its metabolites contribute to axonal pathology and possibly also to subsequent neurological dysfunction in EAE.
Collapse
Affiliation(s)
- Fahmy Aboul-Enein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | | | | | | | | |
Collapse
|
90
|
Brown AM. A non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2006; 82:51-7. [PMID: 16530879 DOI: 10.1016/j.cmpb.2006.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 05/07/2023]
Abstract
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Collapse
Affiliation(s)
- Angus M Brown
- Department of Neurology, Box 356465, University of Washington School of Medicine, 1959 Pacific St. N.E., Seattle, WA 98195, USA.
| |
Collapse
|
91
|
Choi H, Liao WL, Newton KM, Onario RC, King AM, Desilets FC, Woodard EJ, Eichler ME, Frontera WR, Sabharwal S, Teng YD. Respiratory abnormalities resulting from midcervical spinal cord injury and their reversal by serotonin 1A agonists in conscious rats. J Neurosci 2006; 25:4550-9. [PMID: 15872102 PMCID: PMC6725034 DOI: 10.1523/jneurosci.5135-04.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory dysfunction after cervical spinal cord injury (SCI) has not been examined experimentally using conscious animals, although clinical SCI most frequently occurs in midcervical segments. Here, we report a C5 hemicontusion SCI model in rats with abnormalities that emulate human post-SCI pathophysiology, including spontaneous recovery processes. Post-C5 SCI rats demonstrated deficits in minute ventilation (Ve) responses to a 7% CO2 challenge that correlated significantly with lesion severities (no injury or 12.5, 25, or 50 mm x 10 g weight drop; New York University impactor; p < 0.001) and ipsilateral motor neuron loss (p = 0.016). Importantly, C5 SCI resulted in at least 4 weeks of respiratory abnormalities that ultimately recovered afterward. Because serotonin is involved in respiration-related neuroplasticity, we investigated the impact of activating 5-HT1A receptors on post-C5 SCI respiratory dysfunction. Treatment with the 5-HT1A agonist 8-hydroxy-2-(di-n-propylmino)tetralin (8-OH DPAT) (250 microg/kg, i.p.) restored hypercapnic Ve at 2 and 4 weeks after injury (i.e., approximately 39.2% increase vs post-SCI baseline; p < or = 0.033). Improvements in hypercapnic Ve response after single administration of 8-OH DPAT were dose dependent and lasted for approximately 4 h(p < or = 0.038 and p < or = 0.024, respectively). Treatment with another 5-HT1A receptor agonist, buspirone (1.5 mg/kg, i.p.), replicated the results, whereas pretreatment with a 5-HT1A-specific antagonist, 4-iodo-N-[2-[4(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (3 mg/kg, i.p.) given 20 min before 8-OH DPAT negated the effect of 8-OH DPAT. These results imply a potential clinical use of 5-HT1A agonists for post-SCI respiratory disorders.
Collapse
Affiliation(s)
- Howard Choi
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Singhal AB, Lo EH, Dalkara T, Moskowitz MA. Advances in stroke neuroprotection: hyperoxia and beyond. Neuroimaging Clin N Am 2006; 15:697-720, xii-xiii. [PMID: 16360598 DOI: 10.1016/j.nic.2005.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Refinements in patient selection, improved methods of drug delivery, use of more clinically relevant animal stroke models, and the use of combination therapies that target the entire neurovascular unit make stroke neuroprotection an achievable goal. This article provides an overview of the major mechanisms of neuronal injury and the status of neuroprotective drug trials and reviews emerging strategies for treatment of acute ischemic stroke. Advances in the fields of stem cell transplantation, stroke recovery, molecular neuroimaging, genomics, and proteomics will provide new therapeutic avenues in the near future. These and other developments over the past decade raise expectations that successful stroke neuroprotection is imminent.
Collapse
|
93
|
Pryor J, Shi R. Electrophysiological changes in isolated spinal cord white matter in response to oxygen deprivation. Spinal Cord 2006; 44:653-61. [PMID: 16432530 DOI: 10.1038/sj.sc.3101901] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN In vitro studies using isolated guinea pig spinal cord white matter. OBJECTIVES To determine whether lack of oxygen can cause irreversible impairment of electrical impulse conduction. SETTING Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA. METHODS The hypoxic injury was induced by reducing the oxygen tension of the perfused solution by 80%. Compound action potentials (CAPs) were monitored before, during, and after oxygen deprivation. RESULTS We have found that 60 min of hypoxia reduced the conduction to 30% of preinjury level and recovered to approximately 60% of the preinjury level upon reoxygenation. Larger axons appeared to be more vulnerable to oxygen deprivation. We noted a significant decrease and recovery of the depolarizing afterpotential (DAP). Likewise, there was a delay and recovery of absolute and relative refractory period. Concomitantly, the ability of axons to follow repetitive stimuli was suppressed following oxygen deprivation but recovered upon reoxygenation. CONCLUSION Following 60 min of oxygen deprivation and 30 min of reoxygenation, mammalian spinal cord white matter can partially recover electrical impulse conduction. However, within the same period, cords gained a complete recovery of other electrical properties, such as the depression of DAP, the delaying of refractory period, and the decreased ability to respond to repetitive stimuli. Compared to previous findings when both oxygen and glucose were deprived, we conclude that glucose plays a relatively minor role during the acute stage of oxygen deprivation in mammalian spinal cord white matter.
Collapse
Affiliation(s)
- J Pryor
- Department of Basic Medical Sciences, Institute for Applied Neurology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
94
|
Fukuda K, Okada Y, Yoshida H, Aoyama R, Nakamura M, Chiba K, Toyama Y. Ischemia-induced disturbance of neuronal network function in the rat spinal cord analyzed by voltage-imaging. Neuroscience 2006; 140:1453-65. [PMID: 16675139 DOI: 10.1016/j.neuroscience.2006.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 03/07/2006] [Accepted: 03/12/2006] [Indexed: 11/24/2022]
Abstract
Using a voltage-imaging technique, we analyzed the acute effect of ischemia, hypoxia and hypoglycemia on the neuronal network function of the rat spinal cord. Ischemic, hypoxic, or hypoglycemic stress was loaded to spinal cord slices with an oxygen- and glucose-free, oxygen-free, or glucose-free mock cerebrospinal fluid, respectively. Depolarizing signals in the dorsal horn, induced by dorsal root stimulation, consisted of fast (pre-synaptic) and slow (post-synaptic) components. The slow component was attenuated much more than the fast component under an ischemic condition (P<0.0002). Post-synaptic neuronal activities in lamina III-IV were suppressed earlier than those in lamina I-II. The nerve fiber was relatively resistant to ischemia. As long as the fast component was preserved in the dorsal horn, the suppression of the fast and slow components was reversible. There was a significant difference (P<0.05) in the recovered slow component sizes between the group in which the fast component was suppressed by more than 20% by ischemia and the group in which the suppression was less than 20%. Further prolonged stress irreversibly eliminated most of the slow component, and attenuated the fast component (to 59+/-8%) accompanied by cellular damage in histology. Suppression of neural activity by hypoxic or hypoglycemic stress was less prominent than that by ischemia. Prolonged ischemic stress suddenly and irreversibly eliminated depolarizing signals in the ventral horn accompanied by morphological damage of motoneurons. Immunohistochemical staining was negative for apoptosis. We have, for the first time, analyzed the processes of spinal cord disturbance induced by ischemia, hypoxia and hypoglycemia at the neuronal network level by directly observing the regional neuronal network activities within the spinal cord. We conclude that synaptic transmission in the dorsal horn, especially in deep regions, is vulnerable and first affected by these stresses. Severe ischemic stress induces irreversible dysfunction of neurons accompanied by eventual cell death in both dorsal and ventral horns.
Collapse
Affiliation(s)
- K Fukuda
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
95
|
Fowler JH, Edgar JM, Pringle A, McLaughlin M, McCulloch J, Griffiths IR, Garbern JY, Nave KA, Dewar D. α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid-mediated excitotoxic axonal damage is attenuated in the absence of myelin proteolipid protein. J Neurosci Res 2006; 84:68-77. [PMID: 16625661 DOI: 10.1002/jnr.20859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo and in vitro studies have shown that alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitotoxicity causes cytoskeletal damage to axons. AMPA/kainate receptors are present on oligodendrocytes and myelin, but currently there is no evidence to suggest that axon cylinders contain AMPA receptors. Proteolipid protein (PLP) and DM20 are integral membrane proteins expressed by CNS oligodendrocytes and located in compact myelin. Humans and mice lacking normal PLP/DM20 develop axonal swellings and degeneration, suggesting that local interactions between axons and the oligodendrocyte/myelin unit are important for the normal functioning of axons and that PLP/DM20 is involved in this process. To determine whether perturbed glial-axonal interaction affects AMPA-receptor-mediated axonal damage, AMPA (1.5 nmol) was injected into the caudate nucleus of anesthetized Plp knockout and wild-type male mice (n = 13). Twenty-four hours later, axonal damage was detected by using neurofilament 200 (NF 200) immunohistochemistry and neuronal damage detected via histology. AMPA-induced axonal damage, assessed with NF 200 immunohistochemistry, was significantly reduced in Plp knockout mice compared with wild-type mice (P = 0.015). There was no significant difference in the levels of neuronal perikaryal damage between the Plp knockout and wild-type mice. In addition, there was no significant difference in the levels of glutamate receptor subunits GluR1-4 or KA2 in Plp knockout compared with wild-type littermates. The present study suggests that PLP-mediated interactions among oligodendrocytes, myelin, and axons may be involved in AMPA-mediated axonal damage.
Collapse
Affiliation(s)
- J H Fowler
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
A wide range of insults can trigger axon degeneration, and axons respond with diverse morphology, topology and speed. However, recent genetic, immunochemical, morphological and pharmacological investigations point to convergent degeneration mechanisms. The principal convergence points - poor axonal transport, mitochondrial dysfunction and an increase in intra-axonal calcium - have been identified by rescuing axons with the slow Wallerian degeneration gene (Wld(S)) and studies with blockers of sodium or calcium influx. By understanding how the pathways fit together, we can combine our knowledge of mechanisms, and potentially also treatment strategies, from different axonal disorders.
Collapse
|
97
|
Logan MP, Parker S, Shi R. Glutathione and ascorbic acid enhance recovery of Guinea pig spinal cord white matter following ischemia and acrolein exposure. Pathobiology 2005; 72:171-8. [PMID: 16127292 DOI: 10.1159/000086786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/30/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We have shown that acrolein, a lipid peroxidation byproduct, can inflict significant damage in isolated spinal cord white matter following oxygen glucose deprivation (OGD). The mechanism of such acrolein-induced damage is unclear. The aim of this study was to examine whether glutathione (GSH) and ascorbic acid, two reactive oxygen species (ROS) scavengers, can alleviate functional and anatomical damage due to acrolein. METHODS We used an OGD injury model with isolated guinea pig spinal cord white matter. Sucrose gap recording was used to monitor axonal impulse conduction, and a horseradish peroxidase exclusion test was employed to determine membrane integrity. The functional and anatomical parameters were compared in three groups: acrolein, acrolein/GSH and acrolein/ascorbic acid. RESULTS We found that while GSH resulted in an 87% recovery of compound action potential conductance, ascorbic acid produced a 97% recovery, compared with a 69% recovery in an injured group without treatment. It is noted that GSH, and to a lesser extent ascorbic acid, preferentially enhanced functional recovery in smaller axons. CONCLUSION Acrolein-induced neuronal damage is likely mediated by ROS. Furthermore, GSH and ascorbic acid are effective in suppressing acrolein and free radical-induced injury in spinal cord white matter.
Collapse
Affiliation(s)
- Melissa Peasley Logan
- Department of Basic Medical Sciences, Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-1244, USA.
| | | | | |
Collapse
|
98
|
Shang Y, Cheng J, Qi J, Miao H. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Pharmacol Biochem Behav 2005; 82:67-73. [PMID: 16129477 DOI: 10.1016/j.pbb.2005.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 06/01/2005] [Accepted: 06/24/2005] [Indexed: 11/15/2022]
Abstract
The purpose of this study is to investigate the effects of flavonoid, isolated from aerial parts of Scutellaria baicalensis Georgi (SSF), on memory deficits, neuronal degeneration and abnormal energy metabolism induced by permanent global ischemia in rats. The global ischemia was produced in female Sprague-Dawley rats by permanent occlusion of the bilateral common carotid arteries. The permanent global ischemia in rats resulted in a significantly increased latency of the rat to find the hidden platform and a decreased swimming distance from the target quadrant in the Morris water maze task. The pathological changes in the neurons of ischemic rats, observed in the hippocampus and cerebral cortex, included neuron loss, neuron swelling, nuclear shrinkage or disappearance, neuronophagia and reduced density of Nissl bodies in the neuron. Moreover, the levels of lactate and ATPase activity in ischemic rats were notably increased and decreased, respectively, in the hippocampus and cerebral cortex as compared with sham-operated rats. Daily oral administration of SSF (35 mg/kg, 19-20 days) dramatically reduced the decrease in learning and memory, attenuated neuronal injury and improved abnormality of energy metabolites in rats induced by global ischemia. These findings suggest that SSF may be beneficial for the treatment of vascular dementia.
Collapse
Affiliation(s)
- Yazhen Shang
- Institute of Chinese Materia Medica, Chengde Medical College, Chengde, 067000, PR China.
| | | | | | | |
Collapse
|
99
|
Abstract
Axonal degeneration is a prominent pathological feature in multiple sclerosis observed over a century ago. The gradual loss of axons is thought to underlie irreversible clinical deficits in this disease. The precise mechanisms of axonopathy are poorly understood, but likely involve excess accumulation of Ca ions. In healthy fibers, ATP-dependent pumps support homeostasis of ionic gradients. When energy supply is limited, either due to inadequate delivery (e.g., ischemia, mitochondrial dysfunction) and/or excessive utilization (e.g., conduction along demyelinated axons), ion gradients break down, unleashing a variety of aberrant cascades, ultimately leading to Ca overload. During Na pump dysfunction, Na can enter axons through non-inactivating Na channels, promoting axonal Na overload and depolarization by allowing K egress. This will gate voltage-sensitive Ca channels and stimulate reverse Na-Ca exchange, leading to further Ca entry. Energy failure will also promote Ca release from intracellular stores. Neurotransmitters such as glutamate can be released by reverse operation of Na-dependent transporters, in turn activating a variety of ionotropic and metabotropic receptors, further exacerbating overload of cellular Ca. Together, this Ca overload will inappropriately stimulate a variety of Ca-dependent enzyme systems (e.g., calpains, phospholipases), leading to structural and functional axonal injury. Pharmacological interruption at key points in these interrelated injury cascades (e.g., at voltage-gated Na channels or AMPA receptors) may confer significant neuroprotection to compromised central axons and supporting glia. Such agents may represent attractive adjuncts to currently available immunomodulatory therapies.
Collapse
Affiliation(s)
- Peter K Stys
- Division of Neuroscience, Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4K9.
| |
Collapse
|
100
|
Garthwaite G, Batchelor AM, Goodwin DA, Hewson AK, Leeming K, Ahmed Z, Cuzner ML, Garthwaite J. Pathological implications of iNOS expression in central white matter: an ex vivo study of optic nerves from rats with experimental allergic encephalomyelitis. Eur J Neurosci 2005; 21:2127-35. [PMID: 15869509 DOI: 10.1111/j.1460-9568.2005.04062.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excessive nitric oxide (NO) production from the inducible isoform of nitric oxide synthase (iNOS) has been invoked as a causative factor in many neurodegenerative disorders, including multiple sclerosis. This hypothesis has been supported by in vitro studies showing that glial iNOS expression results in toxic NO concentrations (near 1 microm). To investigate the relevance of such findings, experiments were carried out ex vivo on optic nerves from rats with exacerbated experimental allergic encephalomyelitis, a model of multiple sclerosis. The nerves displayed characteristic immunopathology and expression of iNOS in macrophages and/or microglia and there was overt axonal damage in localized regions of the optic chiasm. The resulting NO levels in the optic nerve were sufficient to cause activation of guanylyl cyclase-coupled NO receptors, resulting in marked cGMP accumulation in axons throughout the nerve. Nevertheless, calibration of cGMP levels against those evoked by exogenous NO indicated that the nerves were not compromised metabolically and that their ambient NO concentration was only approximately 1 nm. Consistent with this observation, electrophysiological tests indicated that there was no ongoing malfunctioning of the type that can be elicited by high exogenous NO concentrations. It is concluded that, with iNOS expressed in physiological locations and levels, the tissue levels of NO remain at concentrations far lower than those shown to have toxic effects, despite continuous NO synthesis. The fact that NO can rise to much higher levels in dispersed cultures in vitro may be attributable to a deficiency in NO inactivation in such preparations.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Action Potentials/drug effects
- Animals
- Arginine/pharmacology
- Biomarkers/metabolism
- CD11b Antigen/metabolism
- CD2 Antigens/metabolism
- Cyclic GMP/metabolism
- DEET/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Electric Stimulation/methods
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Guanylate Cyclase/metabolism
- Guinea Pigs
- Hydrazines/pharmacology
- Immunohistochemistry/methods
- Macrophages/enzymology
- Macrophages/pathology
- Microscopy, Electron, Transmission/methods
- Myelin Basic Protein/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Optic Chiasm/pathology
- Optic Chiasm/ultrastructure
- Optic Nerve/drug effects
- Optic Nerve/enzymology
- Optic Nerve/pathology
- Optic Nerve/ultrastructure
- Ornithine/analogs & derivatives
- Ornithine/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- Rats
- Rats, Inbred Lew
- Time Factors
Collapse
Affiliation(s)
- G Garthwaite
- The Wolfson Institute for Biomedical Research, University College London, Gower, Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|