51
|
Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1412-7. [DOI: 10.1016/j.bbadis.2011.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 01/29/2023]
|
52
|
Srinivasan S, Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem Biol Interact 2011; 195:43-51. [PMID: 22056647 DOI: 10.1016/j.cbi.2011.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 11/16/2022]
Abstract
Oxidative stress has been suggested as a contributory factor in development and complication of diabetes. The aim of the study was to evaluate the effect of diosmin (DS) in oxidative stress in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats by measuring the lipid peroxidation (LPO) as well as the ameliorative properties. Experimental diabetes was induced by a single intraperitoneal (i.p) injection of STZ (45 mg/kg body weight (b.w.)) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w.). Diabetic rats exhibited increased plasma glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with DS (100mg/kg/day) for a period of 45 days showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that DS has potential ameliorative effects in addition to its antidiabetic effect in type 2 diabetic rats.
Collapse
Affiliation(s)
- Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Tamilnadu, India
| | | |
Collapse
|
53
|
AHN CHANGBUM, JE JAEYOUNG. ANTIOXIDANT ACTIVITY OF TRADITIONAL KOREAN FERMENTED SOYBEAN (DAMDUSI) EXTRACT ON FREE RADICAL-MEDIATED OXIDATIVE SYSTEMS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00448.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Prigol M, Brüning CA, Nogueira CW, Zeni G. The role of the glutathione system in seizures induced by diphenyl diselenide in rat pups. Chem Biol Interact 2011; 193:65-70. [DOI: 10.1016/j.cbi.2011.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022]
|
55
|
Willis MN, Liu Y, Biterova EI, Simpson MA, Kim H, Lee J, Barycki JJ. Enzymatic defects underlying hereditary glutamate cysteine ligase deficiency are mitigated by association of the catalytic and regulatory subunits. Biochemistry 2011; 50:6508-17. [PMID: 21657237 DOI: 10.1021/bi200708w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamate cysteine ligase (GCL) deficiency is a rare autosomal recessive trait that compromises production of glutathione, a critical redox buffer and enzymatic cofactor. Patients have markedly reduced levels of erythrocyte glutathione, leading to hemolytic anemia and, in some cases, impaired neurological function. Human glutamate cysteine ligase is a heterodimer comprised of a catalytic subunit (GCLC) and a regulatory subunit (GCLM), which catalyzes the initial rate-limiting step in glutathione production. Four clinical missense mutations have been identified within GCLC: Arg127Cys, Pro158Leu, His370Leu, and Pro414Leu. Here, we have evaluated the impacts of these mutations on enzymatic function in vivo and in vitro to gain further insight into the pathology. Embryonic fibroblasts from GCLC null mice were transiently transfected with wild-type or mutant GCLC, and cellular glutathione levels were determined. The four mutant transfectants each had significantly lower levels of glutathione relative to that of the wild type, with the Pro414Leu mutant being most compromised. The contributions of the regulatory subunit to GCL activity were investigated using a Saccharomyces cerevisiae model system. Mutant GCLC alone could not complement a glutathione deficient strain and required the concurrent addition of GCLM to restore growth. Kinetic characterizations of the recombinant GCLC mutants indicated that the Arg127Cys, His370Leu, and Pro414Leu mutants have compromised enzymatic activity that can largely be rescued by the addition of GCLM. Interestingly, the Pro158Leu mutant has kinetic constants comparable to those of wild-type GCLC, suggesting that heterodimer formation is needed for stability in vivo. Strategies that promote heterodimer formation and persistence would be effective therapeutics for the treatment of GCL deficiency.
Collapse
Affiliation(s)
- Melanie Neely Willis
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Kim SJ, Jung HJ, Lim CJ. Disruption of redox homeostasis and induction of apoptosis by suppression of glutathione synthetase expression in a mammalian cell line. Free Radic Res 2011; 45:1040-51. [PMID: 21679055 DOI: 10.3109/10715762.2011.591392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The stable HepG2 transfectants anti-sensing expression of the glutathione synthetase (GS) gene exhibited delayed cell growth and increased reactive oxygen species (ROS) level. After the treatment with hydrogen peroxide, the intracellular ROS level was much higher in the stable transfectants than in the vector control cells. However, the GSH levels decreased more significantly in the stable transfectants than in the vector control cells, in the presence of hydrogen peroxide. Hydrogen peroxide-induced apoptosis of the stable transfectants was notably higher than that of the vector control cells. The GS anti-sense RNAs rendered the HepG2 cells more sensitive to growth arrest caused by glucose deprivation. They also sensitized the HepG2 cells to cadmium chloride (Cd) and nitric oxide (NO)-generating sodium nitroprusside (SNP). In brief, the results confirm that GS plays an important role in the defense of the human hepatoma cells against oxidative stress by reducing apoptosis and maintaining redox homeostasis.
Collapse
Affiliation(s)
- Su-Jung Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | | | | |
Collapse
|
57
|
Choi IY, Lee SP, Denney DR, Lynch SG. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 2010; 17:289-96. [PMID: 20921235 DOI: 10.1177/1352458510384010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Disability levels for patients with secondary progressive multiple sclerosis (SPMS) often worsen despite a stable MRI T(2) lesion burden. The presence of oxidative stress in the absence of measurable inflammation could help explain this phenomenon. In this study, the assessment of an in vivo marker of oxidative stress, cerebral glutathione (GSH), using magnetic resonance chemical shift imaging (CSI) is described, and GSH levels were compared in patients with SPMS and healthy controls. OBJECTIVE To assess whether GSH, a key antioxidant in the brain, is lower in the SPMS patients compared to matched controls. METHODS Seventeen patients with SPMS (Expanded Disability Status Scale=4.0-7.0; length of MS diagnosis=19.4 ± 7 years) and 17 age- and gender-matched healthy controls were studied. GSH levels were measured in the fronto-parietal regions of the brain using a specially designed magnetic resonance spectroscopy technique, CSI of GSH, at 3T. RESULTS The levels of GSH were lower for SPMS patients than for controls, the largest reduction (18.5%) being in the frontal region (p=0.001). CONCLUSION The lower GSH levels in these patients indicate the presence of oxidative stress in SPMS. This process could be at least partially responsible for ongoing functional decline in SPMS.
Collapse
Affiliation(s)
- I-Y Choi
- Hoglund Brain Imaging Center, Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
58
|
Ilesanmi OO. Pathological basis of symptoms and crises in sickle cell disorder: implications for counseling and psychotherapy. Hematol Rep 2010; 2:e2. [PMID: 22184515 PMCID: PMC3222266 DOI: 10.4081/hr.2010.e2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 12/28/2009] [Accepted: 01/05/2010] [Indexed: 02/02/2023] Open
Abstract
Sickle Cell Disorder (SCD) is a congenital hemoglobinopathy. There is little in literature regarding the psychological variables affecting individuals living with SCD and all of the significant people around them. There are also limited numbers of trained clinical psychologists and genetic counselors to cater for the psychotherapeutic needs of individuals living with SCD. Even among those who have been trained, only a few might have fully grasped the complexities of the disease pathology.Early understanding of its pathological nature, sources, types, complications, pathophysiological basis, and clinical severity of symptoms among clinical psychologists, genetic counselors and psychotherapists, as well as general medical practitioners, could guide them in providing holistic care for dealing with and reducing pain among individuals living with SCD. It could allow risk-based counseling for families and individuals. It could also justify the early use of disease-modifying or curative interventions, such as hydroxyurea (HU), chronic transfusions (CTs), or stem-cell transplantation (SCT) by general medical practitioners. Hence, the need for this paper on the pathophysiology of SCD.
Collapse
|
59
|
Pence S, Erkutlu I, Kurtul N, Bosnak M, Alptekin M, Tan Ü. Antiepileptogenic Effects of Glutathione Against Increased Brain ADA in PTZ-Induced Epilepsy. Int J Neurosci 2009; 119:616-29. [DOI: 10.1080/00207450802055440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
60
|
James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O, Hubanks A, Gaylor DW. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 2009; 89:425-30. [PMID: 19056591 PMCID: PMC2647708 DOI: 10.3945/ajcn.2008.26615] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Metabolic abnormalities and targeted treatment trials have been reported for several neurobehavioral disorders but are relatively understudied in autism. OBJECTIVE The objective of this study was to determine whether or not treatment with the metabolic precursors, methylcobalamin and folinic acid, would improve plasma concentrations of transmethylation/transsulfuration metabolites and glutathione redox status in autistic children. DESIGN In an open-label trial, 40 autistic children were treated with 75 microg/kg methylcobalamin (2 times/wk) and 400 microg folinic acid (2 times/d) for 3 mo. Metabolites in the transmethylation/transsulfuration pathway were measured before and after treatment and compared with values measured in age-matched control children. RESULTS The results indicated that pretreatment metabolite concentrations in autistic children were significantly different from values in the control children. The 3-mo intervention resulted in significant increases in cysteine, cysteinylglycine, and glutathione concentrations (P < 0.001). The oxidized disulfide form of glutathione was decreased and the glutathione redox ratio increased after treatment (P < 0.008). Although mean metabolite concentrations were improved significantly after intervention, they remained below those in unaffected control children. CONCLUSION The significant improvements observed in transmethylation metabolites and glutathione redox status after treatment suggest that targeted nutritional intervention with methylcobalamin and folinic acid may be of clinical benefit in some children who have autism. This trial was registered at (clinicaltrials.gov) as NCT00692315.
Collapse
Affiliation(s)
- S Jill James
- Department of Pediatrics and Biostatistics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Pires MM, Chmielewski J. Fluorescence imaging of cellular glutathione using a latent rhodamine. Org Lett 2008; 10:837-40. [PMID: 18257581 DOI: 10.1021/ol702769n] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutathione is a crucial component of the redox homeostasis of cells, and altered levels have been linked to human pathologies. We constructed a latent fluorophore (RhoSS) that responds to cellular thiols in vitro and in cyto following intracellular reduction by glutathione to yield rhodamine 110. Importantly, RhoSS was demonstrated to respond to changing levels of glutathione in cells. This compound represents a class of rationally designed latent fluorophores with exciting potential for monitoring cellular thiols.
Collapse
Affiliation(s)
- Marcos M Pires
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | |
Collapse
|
62
|
Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography–mass spectrometry. Anal Bioanal Chem 2007; 390:1403-12. [DOI: 10.1007/s00216-007-1799-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
63
|
Pence S, Erkutlu I, Kurtul N, Bosnak M, Tan U. Total brain tissue sialic acid levels due to glutathione effect in experimental epilepsy. Int J Neurosci 2007; 117:1523-35. [PMID: 17917923 DOI: 10.1080/00207450601126384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy can be described as a group of neurological disorders, characterized by recurrent episodes of convulsive seizures, loss of consciousness, sensory disturbances, abnormal behavior, or all of these. Altered glutathione metabolism in association with increased oxidative stress has been implicated in the pathogenesis of many diseases such as seizures. It is therefore reasonable to propose that sialic acid levels can be affected by this pathological state or, alternately, by seizures. The present study showed that the sialic acid levels were significantly different between the experimental groups as well as in the subgroup analysis. The results suggest that glutathione may have a neuroprotective effect by decreasing sialic acid levels in mice brain.
Collapse
Affiliation(s)
- Sadrettin Pence
- Department of Physiology, Faculty of Medicine University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | |
Collapse
|
64
|
Piner P, Sevgiler Y, Uner N. In vivo effects of fenthion on oxidative processes by the modulation of glutathione metabolism in the brain of Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY 2007; 22:605-612. [PMID: 18000850 DOI: 10.1002/tox.20286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The present study was designed to understand the oxidative stress potential of fenthion, an organophosphate (OP) pesticide and its involvement in glutathione metabolism modulated buthionine sulfoximine (BSO, 50 mg/kg) and N-acetylcysteine (NAC, 100 mg/kg) in the brain of fish, Oreochromis niloticus. A sublethal fenthion concentration (0.45 mg/L) was applied for 24, 48, and 96 h together with injection with BSO or NAC; following treatment, recovery periods for 24, 48, and 96 h were allowed. Total glutathione (tGSH), oxidized glutathione (GSSG), lipid peroxidation, protein level, and GSH-related enzyme activities were analyzed by using spectrophotometric methods. Fenthion in applied concentration did not change GSH levels, but increased GSSG levels. BSO application in fenthion exposure caused a depletion in GSH, while increasing the GSSG levels. Glutathione peroxidase (GPx; EC 1.11.1.9) specific activity increased in fenthion-applied groups at 24-h treatment. gamma-Glutamylcysteinyl synthetase (gamma-GCS; EC 6.3.2.2) was not detected in the brain. NAC injection in fenthion treatment decreased GSH and increased GSSG levels and GST activity. In conclusion, fenthion in sublethal concentration induced an oxidative stress processes in brain. BSO application provided an evidence for the involvement of fenthion in GSH metabolism. NAC elevated the fenthion-induced effects in spite of its antioxidant properties. Recovery period for 96 h was not adequate to eliminate the fenthion-induced changes.
Collapse
Affiliation(s)
- Petek Piner
- Department of Biology, Faculty of Science and Letters, University of Cukurova, 01330 Balcali, Adana, Turkey
| | | | | |
Collapse
|
65
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
66
|
Morris CR, Suh JH, Hagar W, Larkin S, Bland DA, Steinberg MH, Vichinsky EP, Shigenaga M, Ames B, Kuypers FA, Klings ES. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood 2007; 111:402-10. [PMID: 17848621 PMCID: PMC2200820 DOI: 10.1182/blood-2007-04-081703] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythrocyte glutathione depletion has been linked to hemolysis and oxidative stress. Glutamine plays an additional antioxidant role through preservation of intracellular nicotinamide adenine dinucleotide phosphate (NADPH) levels, required for glutathione recycling. Decreased nitric oxide (NO) bioavailability, which occurs in the setting of increased hemolysis and oxidative stress, contributes to the pathogenesis of pulmonary hypertension (PH) in sickle cell disease (SCD). We hypothesized that altered glutathione and glutamine metabolism play a role in this process. Total glutathione (and its precursors) and glutamine were assayed in plasma and erythrocytes of 40 SCD patients and 9 healthy volunteers. Erythrocyte total glutathione and glutamine levels were significantly lower in SCD patients than in healthy volunteers. Glutamine depletion was independently associated with PH, defined as a tricuspid regurgitant jet velocity (TRV) of at least 2.5 m/s. The ratio of erythrocyte glutamine:glutamate correlated inversely to TRV (r = -0.62, P < .001), plasma arginase concentration (r = -0.45, P = .002), and plasma-free hemoglobin level (r = -0.41, P = .01), linking erythrocyte glutamine depletion to dysregulation of the arginine-NO pathway and increased hemolytic rate. Decreased erythrocyte glutathione and glutamine levels contribute to alterations in the erythrocyte redox environment, which may compromise erythrocyte integrity, contribute to hemolysis, and play a role in the pathogenesis of PH of SCD.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Emergency Medicine, Children's Hospital and Research Center Oakland, 747 52nd St, Oakland, CA 94609, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Métayer S, Seiliez I, Collin A, Duchêne S, Mercier Y, Geraert PA, Tesseraud S. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem 2007; 19:207-15. [PMID: 17707628 DOI: 10.1016/j.jnutbio.2007.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/05/2007] [Accepted: 05/02/2007] [Indexed: 01/20/2023]
Abstract
Amino acids regulate protein synthesis and breakdown (i.e., protein turnover) and consequently protein deposition, which corresponds to the balance between the two processes. Elucidating the mechanisms involved in such regulation is important from fundamental and applied points of view since it can provide a basis to optimize amino acid requirements and to control protein mass, body composition and so forth. Amino acids, which have long been considered simply as precursors of protein synthesis, are now recognized to exert other significant influences; that is, they are precursors of essential molecules, act as mediators or signal molecules and affect numerous functions. For example, amino acids act as mediators of metabolic pathways in the same manner as certain hormones. Thus, they modulate the activity of intracellular protein kinases involved in the regulation of metabolic pathways such as mRNA translation. We provide here an overview of the roles of amino acids as regulators of protein metabolism, by focusing particularly on sulfur amino acids. The potential importance of methionine as a "nutrient signal" is discussed in the light of recent findings. Emphasis is also placed on mechanisms controlling oxidative status since sulfur amino acids are involved in the synthesis of intracellular antioxidants (glutathione, taurine etc.) and in the methionine sulfoxide reductase antioxidant system.
Collapse
|
68
|
Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 2007; 7:355-9. [PMID: 17602868 PMCID: PMC4540061 DOI: 10.1016/j.coph.2007.04.005] [Citation(s) in RCA: 495] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 02/06/2023]
Abstract
Glutathione (GSH) deficiency is associated with numerous pathological conditions. Administration of N-acetylcysteine (NAC), a cysteine prodrug, replenishes intracellular GSH levels. NAC, best known for its ability to counter acetaminophen toxicity, is a safe, well-tolerated antidote for cysteine/GSH deficiency. NAC has been used successfully to treat GSH deficiency in a wide range of infections, genetic defects and metabolic disorders, including HIV infection and COPD. Over two-thirds of 46 placebo-controlled clinical trials with orally administered NAC have indicated beneficial effects of NAC measured either as trial endpoints or as general measures of improvement in quality of life and well-being of the patients.
Collapse
Affiliation(s)
- Kondala R Atkuri
- Department of Genetics, School of Medicine, Stanford University, B007 Beckman Center, 279 Campus Drive, Stanford University, CA 94305-5318, United States.
| | | | | | | |
Collapse
|
69
|
Mendis E, Kim MM, Rajapakse N, Kim SK. An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Sci 2007; 80:2118-2127. [PMID: 17475286 DOI: 10.1016/j.lfs.2007.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/12/2007] [Accepted: 03/25/2007] [Indexed: 11/23/2022]
Abstract
Despite extensive study on biological activities of chitosan and chitooligosaccharides (COS), there is no experimental evidence available as to COS mediated inhibition of free radical damage in cellular oxidizing systems. In this study, radical scavenging efficacies of different molecular weight bearing COS were assessed and their intracellular radical scavenging effects were tested employing B16F1, murine melanoma cell line. The results exhibited appreciable suppression in occurrence of intracellular radical species in the presence of low molecular weight bearing COS (<1 kDa) confirming low molecular weight is important for observed activities in biological systems. However, DNA oxidation carried out in the presence of COS clearly exhibited that COS exert protective effect on oxidative damage of purified genomic DNA regardless of molecular weight. Low molecular weight bearing COS was observed to be successively participated in suppression of NF-kappaB gene promoter activity suggesting its capability to prevent oxidative stress related disease complications. Moreover, induction of intracellular glutathione (GSH) level in the presence of COS promoted the effectiveness of COS to act against cellular oxidative stress.
Collapse
Affiliation(s)
- Eresha Mendis
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, South Korea
| | - Moon-Moo Kim
- Department of Chemistry, Pukyong National University, Busan 608-737, South Korea
| | - Niranjan Rajapakse
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, South Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, South Korea; Department of Chemistry, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
70
|
Marshall KG, Howell S, Reid M, Badaloo A, Farrall M, Forrester T, McKenzie CA. Glutathione S-transferase polymorphisms may be associated with risk of oedematous severe childhood malnutrition. Br J Nutr 2007; 96:243-8. [PMID: 16923217 DOI: 10.1079/bjn20061825] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been estimated that more than 50% of deaths before the age of 5 years have undernutrition as an underlying cause. Severe childhood malnutrition, an extreme form of undernutrition, occurs as oedematous and non-oedematous syndromes. The reasons why only some children develop oedematous severe childhood malnutrition (OSCM) have remained elusive, but the heterogeneity of clinical appearances among children from relatively homogeneous backgrounds suggests that interindividual variation in susceptibility to OSCM may exist. We investigated variants of four glutathione S-transferase (GST) genes in a retrospective study among subjects (n136) previously admitted to the Tropical Metabolism Research Unit, Jamaica, for the treatment of either OSCM (cases) or non-oedematous severe childhood malnutrition (controls). We found that GSTP1 Val105 homozygotes were significantly more common among the cases (odds ratio (OR) 3·5; 95% CI 1·1, 10·8). We also found an association of borderline significance between non-deletion GSTT1 genotypes (i.e. +/+ or +/0) and OSCM (OR 2·4; 95% CI 1·0, 5·9). There was no significant association between OSCM and any of the other GST variants. These preliminary findings suggest that genetic variation within the GST superfamily may contribute to the risk of OSCM. Additional, larger data sets and studies of variants in other candidate genes are required in order to properly assess the true contribution, if any, of genetic variation to risk of OSCM. Such studies may improve our understanding of the causes of clinical heterogeneity in malnutrition.
Collapse
Affiliation(s)
- Kwesi G Marshall
- Tropical Metabolism Research Unit, University of the West Indies, Mona, Jamaica
| | | | | | | | | | | | | |
Collapse
|
71
|
Lee S, Pagoria D, Raigrodski A, Geurtsen W. Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N,N-dimethyl-p-toluidine. J Biomed Mater Res B Appl Biomater 2007; 83:391-9. [PMID: 17443666 DOI: 10.1002/jbm.b.30808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this investigation was to analyze whether various combinations of the ROS scavengers glutathione (GSH), N-acetyl-cysteine (NAC), and vitamins C and E decrease DNA damage due to visible-light-irradiated (VL-irradiated) camphorquinone/N,N-dimethyl-p-toluidine (CQ/DMT) compared with individual vitamin C or E. PhiX-174 RF plasmid DNA was used to determine single and double strand breaks as parameters of DNA damage. Individual ROS scavengers and combinations of the antioxidants were added to plasmid DNA treated with VL-irradiated CQ/DMT/Cu (II). After incubation, DNA was loaded into a 1% agarose gel. Following electrophoresis, gels stained with 0.5 microg/mL ethidium bromide were photographed under ultraviolet illumination and analyzed with NIH ImageJ software. Results were evaluated between groups for statistical significance using Student's paired t-test (p < 0.05). Glutathione significantly reduced oxidative DNA damage at all test concentrations when combined with vitamin C or vitamin E. The concentration of damaged DNA observed in the presence of combinations of GSH with vitamin C or vitamin E was significantly lower compared with all other combinations of antioxidants investigated in our study (p < 0.05). In contrast to GSH, NAC was not able to compensate the pro-oxidative effects of vitamin C and vitamin E. Only at a concentration of 2 mM, NAC combined with vitamin C efficiently prevented CQ/DMT/Cu (II)-associated DNA damage. Our data indicate that solely the combinations of GSH with vitamin C or vitamin E significantly reduce the severity of oxidative DNA damage caused by CQ/DMT, whereas NAC may even increase the pro-oxidant activity of vitamin C and vitamin E.
Collapse
Affiliation(s)
- Seungbum Lee
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Box 357456, Seattle, Washington 98195-7456, USA
| | | | | | | |
Collapse
|
72
|
Falck JR, Sangras B, Capdevila JH. Preparation of N-tBoc L-glutathione dimethyl and di-tert-butyl esters: versatile synthetic building blocks. Bioorg Med Chem 2006; 15:1062-6. [PMID: 17070060 PMCID: PMC1766940 DOI: 10.1016/j.bmc.2006.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 10/11/2006] [Indexed: 12/13/2022]
Abstract
The title l-glutathione derivatives, containing acid- and base-labile esters, respectively, were obtained in good overall yields. N-(t)Boc l-glutathione dimethyl ester was prepared via Fischer esterification of l-glutathione disulfide (GSSG) using HCl in dry methanol, protection of the amine with (t)Boc(2)O, and tributylphosphine cleavage of the disulfide in wet isopropanol. Alternatively, Fischer esterification and (t)Boc-protection of l-glutathione (GSH) also furnished N-(t)Boc glutathione dimethyl ester accompanied by a small amount of S-(t)Boc that was removed chromatographically. The di-tert-butyl ester was obtained by S-palmitoylation of GSH in TFA as solvent, N-(t)Boc-protection, esterification using (t)BuOH mediated by diisopropylcarbodiimide/copper(I) chloride, and saponification of the thioester. These l-glutathione derivatives are versatile synthetic building blocks for the preparation of S-glutathione adducts.
Collapse
Affiliation(s)
- J R Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA.
| | | | | |
Collapse
|
73
|
Abstract
Oxidative damage is a major feature in the pathophysiology of Alzheimer's disease (AD). In this review, we discuss free radical-mediated damage to the biochemical components involved in the pathology and clinical symptoms of AD. We explain how amyloid beta-protein (Abeta), microtubule-associated protein tau, presenilins, apolipoprotein E, mitochondria and proteases play a role in increasing oxidative stress in AD. Abeta not only can induce oxidative stress, but its generation is also increased as a result of oxidative stress. Finally, a hypothetical model linking oxidative stress with beta-amyloid and neurofibrillary tangle pathology in AD is proposed.
Collapse
Affiliation(s)
- Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
74
|
Reid M, Badaloo A, Forrester T, Jahoor F. In vivo rates of erythrocyte glutathione synthesis in adults with sickle cell disease. Am J Physiol Endocrinol Metab 2006; 291:E73-9. [PMID: 16434557 DOI: 10.1152/ajpendo.00287.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite reports of lower GSH concentration in sickle cell disease (SCD), the in vivo kinetic mechanism(s) responsible for GSH deficiency is unknown. To determine whether suppressed synthesis was responsible for the lower erythrocyte GSH concentration, we used a primed intermittent infusion of [(2)H(2)]glycine to measure erythrocyte GSH synthesis in vivo in 23 individuals with homozygous beta(s) SCD and 8 healthy controls. Erythrocyte cysteine concentration, the rate-limiting precursor for GSH synthesis, plasma markers of oxidant damage, and dietary intakes of energy and protein were also measured. Compared with values of controls, SCD subjects had significantly lower erythrocyte GSH (P < 0.04) and cysteine concentrations (P < 0.004) but significantly faster fractional rates of GSH synthesis (P < 0.02). The absolute rates of GSH synthesis in SCD subjects compared with control subjects was greater by approximately 57% (P = 0.062). However, the concentrations of markers of oxidative damage, plasma derivatives of reactive oxygen metabolites, plasma nitrotyrosine, urinary isoprostane-to-creatinine ratio, and GSH-to-GSSG ratio, as well as dietary intakes of energy, protein, and GSH precursor amino acids, were not different between SCD subjects and controls. The findings of this study suggest that the lower erythrocyte GSH of SCD patients is not due to suppressed synthesis or impaired regeneration but rather to increased consumption. In addition, the lower erythrocyte cysteine concentration plus the faster rate of GSH synthesis strongly suggest that the endogenous cysteine supply is not sufficient to meet all anabolic demands; hence, cysteine may be a conditionally essential amino acid in individuals with SCD.
Collapse
Affiliation(s)
- Marvin Reid
- Sickle Cell Unit, Tropical Medicine Research Institute, Univ. of the West Indies, Mona, Kingston 7, Jamaica.
| | | | | | | |
Collapse
|
75
|
Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, Panet H, Saada A, Krool-Galron N, Barzilai A, Atlas D, Melamed E. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease. Eur J Neurosci 2005; 21:637-46. [PMID: 15733082 DOI: 10.1111/j.1460-9568.2005.03889.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.
Collapse
Affiliation(s)
- Merav Bahat-Stroomza
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev 2005; 4:288-314. [PMID: 15936251 DOI: 10.1016/j.arr.2005.02.005] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 02/22/2005] [Indexed: 12/29/2022]
Abstract
Glutathione plays a critical role in many biological processes both directly as a co-factor in enzymatic reactions and indirectly as the major thiol-disulfide redox buffer in mammalian cells. Glutathione also provides a critical defense system for the protection of cells from many forms of stress. However, mild stress generally increases glutathione levels, often but not exclusively through effects on glutamate cysteine ligase, the rate-limiting enzyme for glutathione biosynthesis. This upregulation in glutathione provides protection from more severe stress and may be a critical feature of preconditioning and tolerance. In contrast, during aging, glutathione levels appear to decline in a number of tissues, thereby putting cells at increased risk of succumbing to stress. The evidence for such a decline is strongest in the brain where glutathione loss is implicated in both Parkinson's disease and in neuronal injury following stroke.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
77
|
Kim SJ, Park EH, Lim CJ. Stress-dependent regulation of the gene encoding gamma-glutamylcysteine synthetase from the fission yeast. Mol Biol Rep 2004; 31:23-30. [PMID: 15040451 DOI: 10.1023/b:mole.0000013505.12111.5b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutathione (GSH), an important antioxidant involved in stress response, is synthesized in two sequential reactions. Gamma-glutamylcysteine synthetase (GCS) catalyzes the first step in GSH biosynthesis, which is usually known to be rate-limiting. In this work, regulatory patterns of the GCS gene from the fission yeast Schizosaccharomyces pombe have been investigated. The 607 bp upstream region from the translational initiation point was amplified by the two synthetic primers. The amplified DNA was ligated into the BamHI/HindIII site of the shuttle vector YEp367R to generate the fusion plasmid pUGCS101. The GCS-lacZ fusion gene construct was confirmed by restriction mapping and nucleotide sequencing. The GCS-lacZ fusion gene was used to study effects of various agents on the transcription of the GCS gene. The synthesis of beta-galactosidase from the fusion plasmid pUGCS101 was enhanced by metals, oxidative and nitrosative stresses, and glutathione-depleting agents. The GCS mRNA level in the wildtype S. pombe cells was significantly elevated by the treatment with sodium nitroprusside or menadione, which was detected by RT-PCR. It was also induced by low concentrations of glucose and sucrose. These results suggest that the expression of S. pombe GCS gene is regulated by various stresses and carbon sources.
Collapse
Affiliation(s)
- Su-Jung Kim
- Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Oxidative stress is caused by a higher production of reactive oxygen and reactive nitrogen species or a decrease in endogenous protective antioxidative capacity. In all types of critical illness, such as sepsis, trauma, burn injury, acute pancreatitis, liver injury, severe diabetes, acute respiratory distress syndrome, AIDS and kidney failure, the occurrence of increased oxidative stress or a reduced antioxidative status is described. Whereas in the past, reactive oxygen and reactive nitrogen species were mainly known as harmful agents, recent investigations have given a new insight into the (patho)physiological importance of these substances as powerful messenger molecules involved in gene regulation, thereby enabling the synthesis of cytokines or adhesion molecules necessary for defending inflammatory processes. As shown in this review, there are numerous possibilities for the quantification of oxidative stress. RECENT FINDINGS Several investigations showed a close association of single or multiple parameters, such as total antioxidative capacity, lipid peroxidation, vitamins C and E, the activation of nuclear factor kappa B, and respiratory burst, with the patient's outcome. However, no recommendation for a single parameter to be measured can be given because the assays described do not allow the definition of an overall "antioxidative status" for patients. SUMMARY The occurrence of oxidative stress in critically ill patients is associated with a poor prognosis. The measurement of a cluster of assays representative of the quantification of reactive species or of antioxidants may improve the usefulness of therapeutic intervention and increase knowledge of pathophysiological alterations.
Collapse
Affiliation(s)
- Erich Roth
- Department of Surgery, Research Laboratories, University of Vienna General Hospital, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
79
|
Mosoni L, Breuillé D, Buffière C, Obled C, Mirand PP. Age-related changes in glutathione availability and skeletal muscle carbonyl content in healthy rats. Exp Gerontol 2004; 39:203-10. [PMID: 15036413 DOI: 10.1016/j.exger.2003.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 09/22/2003] [Accepted: 10/15/2003] [Indexed: 11/21/2022]
Abstract
The free radical theory of aging proposes that oxidative stress plays a key role in the aging process. By altering muscle protein degradation rates, it could accelerate the age-related loss of muscle proteins. Glutathione (GSH), one of the main body antioxidants, could prevent this phenomenon, but its concentration decreases during aging. Our aims were to have a better understanding of the mechanisms of the age-related decrease in glutathione availability and of the links with sarcopenia. Male Wistar rats aged 6, 9, 12, 15, 19, 22, 25 and 28 months (n = 6 per age) were used to measure plasma and skeletal muscle protein carbonyl content, plasma total and free cyst(e)ine content, liver and muscle glutathione content as well as liver GSSG reductase, GSH peroxidase, GSH transferase and gamma glutamyl cysteine synthetase (GCS) activities. Although tissue glutathione content decreased with age, the other markers of oxidative stress were little changed during aging. In particular, muscle protein carbonyl content was unchanged. Variations in glutathione availability were not explained by cyst(e)ine availability but depended on gamma GCS activity. The stability of skeletal muscle carbonyl content during aging suggests a very efficient degradation of oxidized proteins in muscle.
Collapse
Affiliation(s)
- Laurent Mosoni
- Unité de Nutrition et Métabolisme Protéique, Centre INRA de Clermont-Ferrand-Theix, Theix 63122, France.
| | | | | | | | | |
Collapse
|
80
|
Abstract
In early starvation tissue protein degradation increases, however in later starvation proteolysis declines so as to pace gradual atrophy during synthetic failure. Secondary decline of proteolytic pathways under progressive nutritional desperation is unexplained. After several days of starvation tissue GSH is partly depleted and GSSG/GSH is increased, followed by onset of ketonemia from fat breakdown. Ketone bodies inexplicably delay net muscle protein loss. Recent studies identify a proteome subset of more than 200 proteins with reactive sulfhydryl sites as candidates for coordinate redox control of diverse cell functions. Ketones cause protein sulfhydryl oxidation and protein S-glutathionylation. Here, redox-responsive proteolytic pathways were bio-assayed by release of [3H]leucine from rat myocardium under non-recirculating perfusion. More than 75% of myocardial protein degradation was inhibited and defined by infusion of diamide (100 microM) under constant physiologic concentrations of complete amino acids. Diamide-inhibitable proteolysis includes all lysosomal and some extra-lysosomal proteolysis. Following diamide washout, the reversal of proteolytic inhibitory action was greatly enhanced by artificial repletion of GSH by supra-physiologic extra-cellular GSH (1mM) exposure. Therefore, GSH maintains much of constitutive protein degradation in a primary tissue bioassay. Physiologic acetoacetate infusion (5mM) inhibited redox-responsive protein degradation. Uniformly [3H]leucine labeled 3T3 cells exhibited similar redox-dependent and redox-independent subcomponents of protein degradation. Independent of ketones, steady state cathepsin B reaction rate ex vivo was graded in proportion to the GSH concentration without GSSG, and inversely proportional to the GSSG/GSH redox ratio with inhibitory threshold at 0.5% oxidized. Linkage of some cysteine protease reaction rates to the interplay between GSH-GSSG/GSH status and ketonemia is suggested among transcendent mechanisms coordinating and pacing proteome turnover under prolonged starvation. The possibility of pre-emptive, redox coordination of distinct proteolytic pathways is speculatively discussed.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department of Pharmacology, School of Medicine, Wright State University, Cox Bldg, 3525 Southern Blvd, Kettering, OH 45429, USA.
| |
Collapse
|
81
|
Love RM, Branton RL, Karlsson J, Brundin P, Clarke DJ. Effects of antioxidant pretreatment on the survival of embryonic dopaminergic neurons in vitro and following grafting in an animal model of Parkinson's disease. Cell Transplant 2003; 11:653-62. [PMID: 12518892 DOI: 10.3727/000000002783985431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effect of pretreating cell suspensions of embryonic rat ventral mesencephala (VM) with antioxidant combinations on the survival of dopaminergic (DA) neurons was studied in vitro and following transplantation into the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease. The in vitro experiments examined the effects of two thiol antioxidants, N-acetyl-L-cysteine (NAC) and reduced glutathione (GSH), and a member of the lazaroid family of 21-aminosteroids, U-83836E, singly and in combination, on survival of DA neurons derived from dissociated E14 rat VM tissue. For in vivo studies, cell suspensions were pretreated with combinations of NAC, GSH, and U-83836E prior to transplanting into 6-OHDA-lesioned rats to investigate whether DA neuron survival could be further improved. NAC, GSH, and U-83836E individually increased DA neuron survival in vitro and a combination of all three resulted in the greatest survival. In vivo, pretreatment with U-83836E alone resulted in a significantly greater reduction in amphetamine-induced rotation 6 weeks postgrafting compared with a control group receiving nontreated graft tissue. This functional effect correlated with a significant improvement in DA neuron survival 6 weeks postgrafting. The thiol combination pretreatment of NAC and GSH, and the triple combination of NAC, GSH, and U-83836E, however, failed to improve both functional recovery and DA neuron survival when compared with the nontreated control grafts.
Collapse
Affiliation(s)
- R M Love
- Department of Human Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | | | | | | | | |
Collapse
|
82
|
Kim SJ, Shin YH, Kim K, Park EH, Sa JH, Lim CJ. Regulation of the gene encoding glutathione synthetase from the fission yeast. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:326-31. [PMID: 12787490 DOI: 10.5483/bmbrep.2003.36.3.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSH) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, gamma-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multicopy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride (10 microM) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal 8 amino acid-coding region were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of beta-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of gamma-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.
Collapse
Affiliation(s)
- Su-Jung Kim
- Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | |
Collapse
|
83
|
Willis AS, Freeman ML, Summar SR, Barr FE, Williams SM, Dawson E, Summar ML. Ethnic diversity in a critical gene responsible for glutathione synthesis. Free Radic Biol Med 2003; 34:72-6. [PMID: 12498981 DOI: 10.1016/s0891-5849(02)01178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tripeptide glutathione is an important biomolecule that acts as a scavenger of free radicals and plays a role in a number of other cellular processes. A number of diseases, including Parkinson's disease, cancer, sickle cell anemia, and HIV infection, are thought to involve oxidative stress and depletion of glutathione. The heterodimeric enzyme glutamate cysteine ligase catalyzes the first, rate-limiting step in the de novo synthesis of glutathione. Functional polymorphisms within the gene encoding the subunits of glutamate cysteine ligase have the potential to affect the body's capacity to synthesize glutathione and thus, may affect those diseases in which oxidative stress and glutathione have roles. We undertook systematic screening for polymorphisms within the exons and intronic flanking sequences of the gene encoding the catalytic subunit of glutamate cysteine ligase (GCLC). We identified 11 polymorphisms in GCLC and established allele frequencies for those polymorphisms in a population fitting the demographics of the middle Tennessee area. The nonsynonymous polymorphism C1384T was found only in individuals of African descent. In addition, allele frequencies for three other polymorphisms differ between Caucasians and African-Americans. Understanding these polymorphisms may lead to better understanding of diseases where glutathione is important so that better treatments may be developed.
Collapse
Affiliation(s)
- Alecia S Willis
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Sebastià J, Cristòfol R, Martín M, Rodríguez-Farré E, Sanfeliu C. Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A 2003; 51:16-25. [PMID: 12500301 DOI: 10.1002/cyto.a.10003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Reduced glutathione (GSH) protects cells against oxidative injury and maintains a range of vital functions. To study GSH content in human neuronal cell cultures, thiol-sensitive fluorescent techniques requiring a small number of cells may be of great value, but their GSH specificity has not been established in these cells. METHODS We tested the efficiency of four currently available GSH fluorescent stains in human neurons and SH-SY5Y neuroblastoma cells, both cultured in microwells, by using a fluorescence plate reader. Cultures were treated with the inhibitor of the GSH synthesis, buthionine sulfoximine (BSO), and progressive GSH depletion was assayed with monochlorobimane (mBCl), monobromobimane (mBBr), 5-chloromethylfluorescein diacetate (CMFDA), and 7-amino-4-chloromethylcoumarin (CMAC). GSH was also determined by a biochemical method in cell homogenates to obtain quantitative reference values. RESULTS Neurons and SH-SY5Y neuroblastoma had basal GSH contents of 27.1 +/- 3.2 and 14.5 +/- 1.7 nmol/mg protein (n = 5), respectively. An approximate 90% depletion of GSH was obtained after 3 days of exposure to 1,000 microM of BSO in neurons and after 1 day in SH-SY5Y cells. Cell death through an apoptotic pathway appeared 1-2 days after total GSH depletion. The assayed stains had different degrees of background fluorescence and sensitivity to GSH content, with similar results in both neuronal cell types. The probes mBCl and CMAC showed the lowest background, and the GSH-depletion curves were most similar to that of the reference method. CONCLUSIONS Both mBCl and CMAC are useful fluorescent stains to determine semiquantitative GSH concentration in human neuronal cell cultures.
Collapse
Affiliation(s)
- Jordi Sebastià
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | | | |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW The importance of sulfur amino acid metabolism has become increasingly apparent in recent years. Methionine and cysteine are precursors of glutathione, which plays an important role in intracellular antioxidant/free radical defenses. Homocysteine is a non-protein-bound sulfur amino acid strongly implicated in the pathogenesis of several diseases. Both glutathione and homocysteine are affected by abnormalities in sulfur amino acid metabolism that occur in the clinical setting. RECENT FINDINGS The Storch-Young model, which determines methionine turnover and homocysteine remethylation by means of a tracer methionine infusion, has been improved by using plasma homocysteine (rather than methionine) enrichment in the model. A complex new tracer method involving the use of tracer serine, methionine, and leucine has been described to determine the effects of folate or pyridoxine deficiency on sulfur amino acid-methyl transfer reactions in humans. The etiology of hyperhomocysteinemia in chronic renal failure is controversial; new concepts in this area are described. There is new interest in the subspecies of homocysteine in the circulation. A new method is described for measuring the extremely low plasma concentrations of reduced homocysteine, using gas chromatography-mass spectrometry. Plasma S-adenosylhomocysteine, measured by fluorescence high-performance liquid chromatography, has been suggested as being superior to homocysteine as a predictor of the risk of vascular disease. SUMMARY This review highlights and critiques the above recent developments, and points out some of the complexities and pitfalls in designing and interpreting human metabolic studies involving the sulfur amino acids.
Collapse
Affiliation(s)
- L John Hoffer
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
86
|
Abstract
Acute diseases are characterized by a catabolic state, resulting in a negative nitrogen balance and muscle wasting. Increasing protein intake often proves to have little effect in limiting muscle protein loss. This suggests a qualitative inadequacy of the usual nutritional supports to meet the amino acid requirements of the critically ill patient. Therefore, it can be assumed that the additional intake of limiting amino acids would allow the sparing of muscle proteins. The aim of this review is to examine whether metabolic and kinetics studies using labelled amino acids can help identify the pathways activated in injury and their specific amino acid requirements. The kinetics of cysteine, arginine and glutamine, which are mainly cited as conditionally indispensable in stress situations, are presented. Moreover, amino acids can act as mediators or signal molecules and modulate numerous functions. The optimal conditions allowing the best expression of these activities are discussed.
Collapse
Affiliation(s)
- Christiane Obled
- Human Nutrition Research Center Clermont-Ferrand, Unité de Nutrition et Métabolisme Protéique, INRA Theix, 63122 Ceyrat, France.
| | | | | |
Collapse
|
87
|
Deuther-Conrad W, Loske C, Schinzel R, Dringen R, Riederer P, Münch G. Advanced glycation endproducts change glutathione redox status in SH-SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neurosci Lett 2001; 312:29-32. [PMID: 11578838 DOI: 10.1016/s0304-3940(01)02174-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reaction of proteins with reducing sugars leads to the formation of 'advanced glycation endproducts' (AGEs). They accumulate in Alzheimer's disease brain in the vicinity of beta-amyloid plaques. AGEs are cytotoxic by a mechanism involving reactive oxygen species, which implies that they could compromise glutathione redox status. In this study, we show that AGEs (BSA-AGE and beta-amyloid-AGE) persistently increase the ratio of oxidized to reduced glutathione in a dose- and time-dependent manner in SH-SY5Y neuroblastoma cells. The level of oxidized glutathione accounted to 10-14% and persisted for up to 24 h in the presence of added AGEs. In contrast, the unmodified beta-amyloid peptides A beta (1-40) and A beta (25-35) had no significant effect on glutathione redox status. The AGE-induced increase in oxidized glutathione could be prevented by the radical scavengers N-acetylcysteine, alpha-lipoic acid and 17beta-estradiol or by application of catalase, indicating that superoxide and hydrogen peroxide production precedes the AGE-mediated depletion of reduced glutathione.
Collapse
Affiliation(s)
- W Deuther-Conrad
- Neuroimmunological Cell Biology, Interdisciplinary Center of Clinical Research (IZKF) Leipzig, Johannisallee 30a, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|