51
|
Dankers PYW, Hermans TM, Baughman TW, Kamikawa Y, Kieltyka RE, Bastings MMC, Janssen HM, Sommerdijk NAJM, Larsen A, van Luyn MJA, Bosman AW, Popa ER, Fytas G, Meijer EW. Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2703-9. [PMID: 22528786 DOI: 10.1002/adma.201104072] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 05/21/2023]
Abstract
A modular one-component supramolecular transient network in water, based on poly(ethylene glycol) and end-capped with four-fold hydrogen bonding units, is reported. Due to its nonlinear structural formation, this system allows active proteins to be added to the hydrogel during formation. Once implanted in vivo it releases the protein by erosion of both the protein and polymer via dissolution.
Collapse
Affiliation(s)
- Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
García IM, Altamirano L, Mazzei L, Fornés M, Molina MN, Ferder L, Manucha W. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Renal Physiol 2012; 302:F1595-605. [PMID: 22492946 DOI: 10.1152/ajprenal.00617.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin D slows the progression of chronic kidney disease. Furthermore, activators of vitamin D receptors (VDR) have suppressant effects on the renin-angiotensin system, as well as anti-inflammatory and antifibrotic actions. This study aimed to evaluate the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model [unilateral ureteral obstruction (UUO)]. Rats subjected to UUO and controls were treated daily with vehicle or paricalcitol. The control group underwent a sham surgery. The treatment was done for 15 days (30 ng/kg). The following were determined: biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; VDR, AT(1) receptor, and NADPH oxidase 4 expression; and NADPH oxidase activity (in total and in mitochondrial fractions from the renal cortex). VDR activation prevented fibrosis (20 ± 5 vs. 60 ± 10%) and the number of TUNEL-positive apoptotic cells (10 ± 3 vs. 25 ± 4) in UUO. Biochemical, histological, and molecular studies suggest mitochondrial injury. Electron microscopy revealed in UUO electronically luminous material in the nucleus. Some mitochondria were increased in size and contained dilated crests and larger than normal spaces in their interiors. These changes were not present with paricalcitol treatment. Additionally, high AT(1)-receptor mRNA and NADPH activity was reverted in mitochondrial fractions from obstructed paricalcitol-treated animals (0.58 ± 0.06 vs. 0.95 ± 0.05 relative densitometry units and 9,000 ± 800 vs. 15,000 ± 1,000 relative fluorescence units·μg protein(-1)·min(-1), respectively). These changes were consistent with an improvement in VDR expression (0.75 ± 0.05 vs. 0.35 ± 0.04 relative densitometry units). These results suggest that paricalcitol confers a protective effect and reveal, as well, a possible AT(1) receptor-dependent protective effect that occurs at the mitochondrial level.
Collapse
Affiliation(s)
- Isabel Mercedes García
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
53
|
Bonegio R, Susztak K. Notch signaling in diabetic nephropathy. Exp Cell Res 2012; 318:986-92. [PMID: 22414874 DOI: 10.1016/j.yexcr.2012.02.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022]
Abstract
Notch signaling is an evolutionarily conserved cell-cell signaling system that controls the fate of cells during development. In this review, we will summarize the literature that notch signaling during development controls nephron number and segmentation and therefore could influence kidney disease susceptibility. We will also review the evidence that Notch is reactivated in adult-onset diabetic kidney disease where it promotes the development of nephropathy including glomerulopathy, tubulointerstitial fibrosis and possibly arteriopathy and inflammation. Finally, we will review the evidence that blockade of pathogenic Notch signaling alters the natural history of diabetic nephropathy and thus could represent a novel therapeutic approach to the management of diabetic kidney disease.
Collapse
Affiliation(s)
- Ramon Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA.
| | | |
Collapse
|
54
|
Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One 2012; 7:e30771. [PMID: 22363487 PMCID: PMC3281867 DOI: 10.1371/journal.pone.0030771] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown. Methodology/Principal Findings miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT. Conclusions/Significance Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.
Collapse
Affiliation(s)
- Rui Du
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Wenjuan Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Lin Xia
- State Key Laboratory of Cancer Biology & Xijing Digestive Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Ali Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Yan Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Lijuan Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
- * E-mail: (CH); (SS)
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic China
- * E-mail: (CH); (SS)
| |
Collapse
|
55
|
Barak H, Surendran K, Boyle SC. The Role of Notch Signaling in Kidney Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:99-113. [DOI: 10.1007/978-1-4614-0899-4_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Mazzei LJ, García IM, Altamirano L, Docherty NG, Manucha W. Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat. Am J Nephrol 2012; 35:103-13. [PMID: 22212364 DOI: 10.1159/000334935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/08/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS Unilateral ureteric obstruction (UUO) in neonatal rodents can be used as a paradigm for in utero obstruction in humans and a platform for studying the potential of novel therapies for congenital obstructive nephropathy. The present study examined the effect of rosuvastatin (Ros) on key morphometric measures of renal injury and corresponding gene expression correlates following neonatal UUO in the rat. METHODS Neonatal rats subjected to UUO and controls were treated daily with vehicle or Ros for 14 days. Quantification of tubular dilatation, glomerular size and number and tubulointerstitial fibrotic area was performed and changes validated by reference to appropriate renal gene expression correlates. RESULTS UUO increased tubular diameter and interstitial fibrosis by 2.7- and 7-fold, respectively, in parallel with increases in renal transforming growth factor-β(1) (TGF-β(1)) and tumor necrosis factor-α (TNF-α) mRNA levels. Glomerular number and size were reduced by 52 and 33%, respectively. Reductions in WT-1 mRNA and protein expression were noted following obstruction occurring in tandem with reduced mRNA levels for BMP-7 and E-cadherin. Ros attenuated tubular dilatation (33%) and interstitial fibrosis (72%) in association with the normalization of renal TGF-β(1) and TNF-α mRNA levels. Ros improved glomerular number and size (30 and 50%), and preserved mRNA and protein expression levels of WT-1 and normalized mRNA levels for BMP-7 and E-cadherin. CONCLUSIONS Ros treatment attenuated all changes, most notably the increase in interstitial fibrosis. Notably, Ros treatment was unable to completely salvage glomerular development. Together these data highlight the therapeutic potential and limitations of Ros in neonatal obstruction.
Collapse
Affiliation(s)
- Luciana Jorgelina Mazzei
- Áreas de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
57
|
Lian YG, Zhou QG, Zhang YJ, Zheng FL. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin 2011; 32:1513-21. [PMID: 21986574 DOI: 10.1038/aps.2011.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Vascular endothelial growth factor (VEGF) has been shown to be a survival factor for renal tubular epithelial cells. In the present study, we investigated whether administration of VEGF ameliorates tubulointerstitial fibrosis in a mouse model of unilateral ureteral obstruction (UUO). METHODS Thirty-six male CD-1 mice were randomly divided into three groups: sham-operation, UUO and UUO+VEGF group. VEGF (50 μg/kg) was subcutaneously injected twice daily from d 1 to d 14. Mice in each group were killed at d 3, 7, or 14 after the operation, and the tubulointerstitial fibrosis was histopathologically evaluated. Human proximal tubular epithelial cells (HK-2) were used for in vitro study. The expression levels of α-SMA, E-cadherin, TGF-β1, CTGF, and BMP-7 in the kidney were determined using Western blot and RT-PCR. RESULTS In the UUO mice, the degree of interstitial fibrosis was dramatically increased in a time-dependent manner. At d 3, 7, and 14, both the mRNA and protein expression levels for α-SMA, TGF-β1, and CTGF were significantly upregulated, whereas those for E-cadherin and BMP-7 were significantly downregulated. At d 3 and 7, VEGF treatment significantly reduced interstitial fibrosis and the expression levels for α-SMA, TGF-β1, and CTGF, while significantly increased the expression of E-cadherin and BMP-7, as compared with the UUO mice. At d 14 after operation, no significant differences were observed in the expression of the examined markers between VEGF-treated mice and UUO mice, with the exception of CTGF. In HK-2 cells, VEGF blocked TGF-β1-induced α-SMA and vimentin expression and restored E-cadherin expression in a dose-dependent manner. CONCLUSION VEGF may ameliorate renal tubulointerstitial fibrosis at the early stage in UUO mice. This effect may be related to inhibition of VEGF on renal tubular epithelial-mesenchymal transition (EMT).
Collapse
|
58
|
Manson SR, Niederhoff RA, Hruska KA, Austin PF. Endogenous BMP-7 is a critical molecular determinant of the reversibility of obstruction-induced renal injuries. Am J Physiol Renal Physiol 2011; 301:F1293-302. [PMID: 21880836 DOI: 10.1152/ajprenal.00071.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although obstructive uropathies are frequently correctable through surgery, the potential for permanent renal injury remains even following the successful correction of obstructions. Little is known about the intrinsic mechanisms that determine the reversibility of renal injuries. We and others found that exogenous bone morphogenic protein 7 (BMP-7) inhibits the pathogenesis of renal injury. Here, we examine the role of endogenous BMP-7 in the outcome of renal recovery following the correction of obstructive uropathies using a reversible murine model of ureteral obstruction. The role of BMP-7 was determined by examining the regulation of BMP-7 during renal recovery and by treating with either BMP-7-neutralizing antibodies or exogenous BMP-7. While BMP-7 is upregulated following the correction of obstructions that lead to reversible renal injury, the upregulation of BMP-7 is diminished following the correction of prolonged obstructions that lead to irreversible renal injury. The activation of the BMP-7 pathway is required for several processes that contribute to renal recovery including the suppression of transforming growth factor-β-dependent profibrotic pathways, the restoration of renal architecture, and the resolution of fibrotic changes in the kidney. Importantly, the therapeutic restoration of BMP-7 enhances renal recovery following the correction of prolonged obstructions that typically lead to irreversible renal injury. Together, these findings show that, while BMP-7 plays a critical role in the repair of obstruction-induced renal injuries, the potential for renal recovery from prolonged obstruction is diminished, in part, due to the dysregulation of BMP-7. Accordingly, renal recovery from obstructive uropathies may be optimized through timely intervention and adjuvant approaches to restore BMP-7 activity.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Pediatric Urology, Washington University, 4990 Children's Place, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
59
|
Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol 2011; 226:394-403. [PMID: 21952830 DOI: 10.1002/path.2967] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 01/04/2023]
Abstract
Notch signalling is a highly conserved cell-cell communication mechanism that regulates development, tissue homeostasis, and repair. Within the kidney, Notch has an important function in orchestrating kidney development. Recent studies indicate that Notch plays a key role in establishing proximal epithelial fate during nephron segmentation as well as the differentiation of principal cells in the renal collecting system. Notch signalling is markedly reduced in the adult kidney; however, increased Notch signalling has been noted in both acute and chronic kidney injury. Increased glomerular epithelial Notch signalling has been associated with albuminuria and glomerulosclerosis, while tubular epithelial Notch activation caused fibrosis development most likely inducing an improper epithelial repair pathway. Recent studies thereby indicate that Notch is a key regulator of kidney development, repair, and injury.
Collapse
Affiliation(s)
- Yasemin Sirin
- Department of Nephrology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
60
|
Dees C, Tomcik M, Zerr P, Akhmetshina A, Horn A, Palumbo K, Beyer C, Zwerina J, Distler O, Schett G, Distler JHW. Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann Rheum Dis 2011; 70:1304-10. [PMID: 21450749 DOI: 10.1136/ard.2010.134742] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dermal fibroblasts from patients with systemic sclerosis (SSc) release excessive amounts of collagen resulting in tissue fibrosis. The molecular mechanisms underlying this pathological activation are incompletely understood. OBJECTIVE To investigate whether Notch signalling contributes to the uncontrolled activation of fibroblasts in SSc. METHODS Activation of the Notch pathway was assessed by immunohistochemistry or Western blot for the Notch intracellular domain and the Notch ligand Jagged-1 (Jag-1) and real-time PCR for the target gene hes-1. Differentiation of resting dermal fibroblasts into myofibroblasts was assessed by staining for α-smooth muscle actin. The synthesis of collagen was quantified by real-time PCR and Sircol assays. RESULTS Notch signalling was activated in lesional skin of patients with SSc. The activation persisted in cultured dermal SSc fibroblasts. Stimulation of healthy dermal fibroblasts with recombinant human Jag-1-Fc chimera resulted in an SSc-like phenotype with increased release of collagen and differentiation of resting fibroblasts into myofibroblasts. Consistent with the selective activation of the Notch pathway in dermal SSc fibroblasts, DAPT or siRNA against Notch strongly reduced the basal collagen expression in SSc fibroblasts, but not in fibroblasts from healthy volunteers. CONCLUSION It was shown that Notch signalling is activated in SSc and plays an important role in fibroblast activation and collagen release. Inhibition of Notch signalling might be an effective strategy to selectively prevent the aberrant activation of SSc fibroblasts.
Collapse
Affiliation(s)
- Clara Dees
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen–Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Huang R, Zhou Q, Veeraragoo P, Yu H, Xiao Z. Notch2/Hes-1 Pathway Plays an Important Role in Renal Ischemia and Reperfusion Injury-Associated Inflammation and Apoptosis and the γ-Secretase Inhibitor DAPT has a Nephroprotective Effect. Ren Fail 2011; 33:207-16. [DOI: 10.3109/0886022x.2011.553979] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
62
|
Kavanagh D, McKay GJ, Patterson CC, McKnight AJ, Maxwell AP, Savage DA. Association analysis of Notch pathway signalling genes in diabetic nephropathy. Diabetologia 2011; 54:334-8. [PMID: 21103979 DOI: 10.1007/s00125-010-1978-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/22/2010] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS Several studies have provided compelling evidence implicating the Notch signalling pathway in diabetic nephropathy. Co-regulation of Notch signalling pathway genes with GREM1 has recently been demonstrated and several genes involved in the Notch pathway are differentially expressed in kidney biopsies from individuals with diabetic nephropathy. We assessed single-nucleotide polymorphisms (SNPs; n = 42) in four of these key genes (JAG1, HES1, NOTCH3 and ADAM10) for association with diabetic nephropathy using a case-control design. METHODS Tag SNPs and potentially functional SNPs were genotyped using Sequenom or Taqman technologies in a total of 1371 individuals with type 1 diabetes (668 patients with nephropathy and 703 controls without nephropathy). Patients and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK (http://pngu.mgh.harvard.edu/∼purcell/plink/) and haplotype frequencies in patients and controls were compared. Adjustment for multiple testing was performed by permutation testing. RESULTS In analyses stratified by centre, we identified six SNPs, rs8708 and rs11699674 (JAG1), rs10423702 and rs1548555 (NOTCH3), rs2054096 and rs8027998 (ADAM10) as being associated with diabetic nephropathy before, but not after, adjustment for multiple testing. Haplotype and subgroup analysis according to duration of diabetes also failed to find an association with diabetic nephropathy. CONCLUSIONS/INTERPRETATION Our results suggest that common variants in JAG1, HES1, NOTCH3 and ADAM10 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes from involvement in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- D Kavanagh
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW The Notch pathway is an evolutionary conserved cell-cell communication mechanism that plays a key role in kidney development. Here, we will discuss a number of recently published papers describing the role of Notch signaling in kidney development, homeostasis, injury and repair. RECENT FINDINGS Recent gene expression studies identified regulation of the Notch pathway in patients with chronic kidney disease (CKD). Mechanistic experiments performed using transgenic and knock-out mouse models indicate that Notch plays an important functional role in the development of proteinuria and renal fibrosis. Inhibition of the Notch pathway ameliorated diabetic kidney disease, nephrotic syndrome and fibrosis in different rodent models. SUMMARY An increasing amount of evidence suggests that Notch plays a role in CKD development. Understanding the role of Notch signaling in the kidney can aid in the development of new therapeutics for CKD.
Collapse
Affiliation(s)
- Shuchita Sharma
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
64
|
Kavian N, Servettaz A, Mongaret C, Wang A, Nicco C, Chéreau C, Grange P, Vuiblet V, Birembaut P, Diebold MD, Weill B, Dupin N, Batteux F. Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model. ACTA ACUST UNITED AC 2010; 62:3477-87. [PMID: 20583103 DOI: 10.1002/art.27626] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by the fibrosis of various organs, vascular hyperreactivity, and immunologic dysregulation. Since Notch signaling is known to affect fibroblast homeostasis, angiogenesis, and lymphocyte development, we undertook this study to investigate the role of the Notch pathway in human and murine SSc. METHODS SSc was induced in BALB/c mice by subcutaneous injections of HOCl every day for 6 weeks. Notch activation was analyzed in tissues from mice with SSc and from patients with scleroderma. Mice with SSc were either treated or not treated with the γ-secretase inhibitor DAPT, a specific inhibitor of the Notch pathway, and the severity of the disease was evaluated. RESULTS As previously described, mice exposed to HOCl developed a diffuse cutaneous SSc with pulmonary fibrosis and anti-DNA topoisomerase I antibodies. The Notch pathway was hyperactivated in the skin, lung, fibroblasts, and splenocytes of diseased mice and in skin biopsy samples from patients with scleroderma. ADAM-17, a proteinase involved in Notch activation, was overexpressed in the skin of mice and patients in response to the local production of reactive oxygen species. In HOCl-injected mice, DAPT significantly reduced the development of skin and lung fibrosis, decreased skin fibroblast proliferation and ex vivo serum-induced endothelial H(2)O(2) production, and abrogated the production of anti-DNA topoisomerase I antibodies. CONCLUSION Our results show the pivotal role of the ADAM-17/Notch pathway in SSc following activation by reactive oxygen species. The inhibition of this pathway may represent a new treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Niloufar Kavian
- Université Paris Descartes and Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, Peired A, Ronconi E, Becherucci F, Bani D, Gacci M, Carini M, Lazzeri E, Romagnani P. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010; 28:1674-85. [PMID: 20680961 PMCID: PMC2996085 DOI: 10.1002/stem.492] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glomerular diseases account for 90% of end-stage kidney disease. Podocyte loss is a common determining factor for the progression toward glomerulosclerosis. Mature podocytes cannot proliferate, but recent evidence suggests that they can be replaced by renal progenitors localized within the Bowman's capsule. Here, we demonstrate that Notch activation in human renal progenitors stimulates entry into the S-phase of the cell cycle and cell division, whereas its downregulation is required for differentiation toward the podocyte lineage. Indeed, a persistent activation of the Notch pathway induced podocytes to cross the G(2)/M checkpoint, resulting in cytoskeleton disruption and death by mitotic catastrophe. Notch expression was virtually absent in the glomeruli of healthy adult kidneys, while a strong upregulation was observed in renal progenitors and podocytes in patients affected by glomerular disorders. Accordingly, inhibition of the Notch pathway in mouse models of focal segmental glomerulosclerosis ameliorated proteinuria and reduced podocyte loss during the initial phases of glomerular injury, while inducing reduction of progenitor proliferation during the regenerative phases of glomerular injury with worsening of proteinuria and glomerulosclerosis. Taken altogether, these results suggest that the severity of glomerular disorders depends on the Notch-regulated balance between podocyte death and regeneration provided by renal progenitors.
Collapse
Affiliation(s)
- Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, Susztak K. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 2010; 120:4040-54. [PMID: 20978353 PMCID: PMC2964979 DOI: 10.1172/jci43025] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 09/01/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease is a leading cause of death in the United States. Tubulointerstitial fibrosis (TIF) is considered the final common pathway leading to end-stage renal disease (ESRD). Here, we used pharmacologic, genetic, in vivo, and in vitro experiments to show that activation of the Notch pathway in tubular epithelial cells (TECs) in patients and in mouse models of TIF plays a role in TIF development. Expression of Notch in renal TECs was found to be both necessary and sufficient for TIF development. Genetic deletion of the Notch pathway in TECs reduced renal fibrosis. Consistent with this, TEC-specific expression of active Notch1 caused rapid development of TIF. Pharmacologic inhibition of Notch activation using a γ-secretase inhibitor ameliorated TIF. In summary, our experiments establish that epithelial injury and Notch signaling play key roles in fibrosis development and indicate that Notch blockade may be a therapeutic strategy to reduce fibrosis and ESRD development.
Collapse
Affiliation(s)
- Bernhard Bielesz
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Yasemin Sirin
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Han Si
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Thiruvur Niranjan
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Antje Gruenwald
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Seonho Ahn
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Hideki Kato
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - James Pullman
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Manfred Gessler
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Volker H. Haase
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York, USA.
Renal Division, University Hospital Münster, Münster, Germany.
Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA.
Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl Entwicklungsbiochemie, Am Hubland, Würzburg, Germany.
Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
67
|
Leask A. Targeting the jagged/notch pathway: a new treatment for fibrosis? J Cell Commun Signal 2010; 4:197-8. [PMID: 21234126 DOI: 10.1007/s12079-010-0101-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/02/2010] [Indexed: 12/15/2022] Open
Abstract
There is no treatment for fibrotic disease. TGFβ is known to promote fibrogenesis in vivo and in vitro, however, development of anti-fibrotic strategies targeting the TGFβ axis is problematic owing to the pleitropic nature of TGFβ action. Two recent papers (Kavian et al. 2010; Nyhan et al. 2010) suggest that the jagged/Notch pathway may selectively mediate fibrogenic properties of TGFβ and thus may represent a novel therapeutic approach to fibrosis for scleroderma and kidney fibrosis; these papers are the subject of this commentary.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, University of Western Ontario, Dental Sciences Building, London, ON Canada N6A 5C1
| |
Collapse
|
68
|
Nyhan KC, Faherty N, Murray G, Cooey LB, Godson C, Crean JK, Brazil DP. Jagged/Notch signalling is required for a subset of TGFβ1 responses in human kidney epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1386-95. [PMID: 20833210 DOI: 10.1016/j.bbamcr.2010.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/28/2010] [Accepted: 09/01/2010] [Indexed: 12/26/2022]
Abstract
The Jagged/Notch pathway has been implicated in TGFβ1 responses in epithelial cells in diabetic nephropathy and other fibrotic conditions in vivo. Here, we identify that Jagged/Notch signalling is required for a subset of TGFβ1-stimulated gene responses in human kidney epithelial cells in vitro. TGFβ1 treatment of HK-2 and RPTEC cells for 24h increased Jagged1 (a Notch ligand) and Hes1 (a Notch target) mRNA. This response was inhibited by co-incubation with Compound E, an inhibitor of γ-secretase (GSI), an enzyme required for Notch receptor cleavage and transcription regulation. In both cell types, TGFβ1-responsive genes associated with epithelial-mesenchymal transition such as E-cadherin and vimentin were also affected by γ-secretase inhibition, but other TGFβ1 targets such as connective tissue growth factor (CTGF) and thrombospondin-1 (THBS1) were not. TGFβ1-induced changes in Jagged1 expression preceded EMT-associated gene changes, and co-incubation with GSI altered TGFβ1-induced changes in cell shape and cytoskeleton. Transfection of cells with the activated, cleaved form of Notch (NICD) triggered decreased expression of E-cadherin in the absence of TGFβ1, but did not affect α-smooth muscle actin expression, suggesting differential requirements for Notch signalling within the TGFβ1-responsive gene subset. Increased Jagged1 expression upon TGFβ1 exposure required Smad3 signalling, and was also regulated by PI3K and ERK. These data suggest that Jagged/Notch signalling is required for a subset of TGFβ1-responsive genes, and that complex signalling pathways are involved in the crosstalk between TGFβ1 and Notch cascades in kidney epithelia.
Collapse
Affiliation(s)
- Kristine C Nyhan
- UCD Diabetes Research Centre, School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Belfield Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
69
|
Mariana M, Park JK, Sharma S, Kato H, Gruenwald A, Niranjan T, Si H, Thomas D, Pullman J, Melamed ML, Susztak K. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int 2010; 78:514-22. [PMID: 20531454 PMCID: PMC3164583 DOI: 10.1038/ki.2010.172] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies indicate that the Notch signaling pathway plays an important role in the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we analyzed the degree of expression and localization of Notch ligands (Jagged1 and Delta1) and activated (cleaved) receptors (Notch1 and Notch2) in healthy human kidneys and in renal biopsies from a wide variety of kidney diseases. These included patients with minimal change disease, membranous nephropathy, lupus nephritis ISN/RPS classes III/IV/V, hypertensive nephrosclerosis, crescentic glomerulonephritis, tubulointerstitial fibrosis, IgA nephropathy, diabetic kidney disease, and FSGS. We found that cleaved Notch1, Notch2, and Jagged1 are expressed on podocytes in proteinuric nephropathies and their level of expression correlated with the amount of proteinuria across all disease groups. The degree of glomerulosclerosis correlated with podocyte expression of cleaved Notch1, while the severity of tubulointerstitial fibrosis and the estimated glomerular filtration rate correlated with expression of cleaved Notch1 in the tubulointerstitium. Hence, our results raise the possibility that Notch pathway activation is a common mechanism in the pathophysiology of a wide range of acquired renal diseases.
Collapse
Affiliation(s)
- Murea Mariana
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Jun-Ki Park
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Shuchita Sharma
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Hideki Kato
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Antje Gruenwald
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Thiruvur Niranjan
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Han Si
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - David Thomas
- Department of Pathology, Montefiore Medical Center, Bronx, NY
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Bronx, NY
| | - Michal L. Melamed
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| | - Katalin Susztak
- Department of Medicine/Nephrology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
70
|
The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Mol Med 2010; 12:e17. [PMID: 20504380 DOI: 10.1017/s1462399410001481] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Common to all forms of chronic kidney disease is the progressive scarring of the tubulo-interstitial space, associated with the acquisition and accumulation of activated myofibroblasts. Many of these myofibroblasts are generated when tubular epithelial cells progressively lose their epithelial characteristics (cell-cell contact, microvilli, tight-junction proteins, apical-basal polarity) and acquire features of a mesenchymal lineage, including stress fibres, filopodia and augmented matrix synthesis. This process, known as epithelial to mesenchymal transition (EMT), plays an important role in progressive kidney disease. For EMT to occur in tubular cells, the transcriptional activation (and derepression) of genes required to sustain mesenchymal-type structures and functions (e.g. vimentin, alpha-smooth muscle actin) must occur alongside repression (or deactivation) of genes that act to maintain the epithelial phenotype (e.g. E-cadherin, bone morphogenic protein 7). Several factors have been suggested as potential initiators of EMT. With a few key exceptions, these triggers require the induction of transforming growth factor beta (TGF-beta) and downstream mediators, including SMADs, CTGF, ILK and SNAI1. Activation of TGF-beta receptors is also able to stimulate a range of additional pathways (so-called non-SMAD activation), including RhoA, mitogen-activated protein kinase and phosphoinositide 3-kinase signalling cascades, that also contribute to EMT and renal fibrogenesis. This review examines in detail the molecular mediators of EMT in tubular cells and its potential role as a long-lasting mediator of metabolic stress.
Collapse
|
71
|
Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 2010; 120:768-77. [PMID: 20197625 DOI: 10.1172/jci39569] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Collapse
Affiliation(s)
- Mari Tanaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Puri TS, Shakaib MI, Chang A, Mathew L, Olayinka O, Minto AWM, Sarav M, Hack BK, Quigg RJ. Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Renal Physiol 2010; 298:F1024-32. [PMID: 20089676 DOI: 10.1152/ajprenal.00384.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) begins with renal injury; the progression thereafter depends upon a number of factors, including genetic background. Unilateral ureteral obstruction (UUO) is a well-described model of renal fibrosis and as such is considered a model of CKD. We used an improved reversible unilateral ureteral obstruction (rUUO) model in mice to study the strain dependence of development of CKD after obstruction-mediated injury. C57BL/6 mice developed CKD after reversal of three or more days of ureteral obstruction as assessed by blood urea nitrogen (BUN) measurements (>40 mg/dl). In contrast, BALB/c mice were resistant to CKD with up to 10 days ureteral obstruction. During rUUO, C57BL/6 mice exhibited pronounced inflammatory and intrinsic proliferative cellular responses, disruption of renal architecture, and ultimately fibrosis. By comparison, BALB/c mice had more controlled and measured extrinsic and intrinsic responses to injury with a return to normal within several weeks after release of ureteral obstruction. Our findings provide a model that allows investigation of the genetic basis of events during recovery from injury that contribute to the development of CKD.
Collapse
Affiliation(s)
- Tipu S Puri
- Section of Nephrology, Department of Medicine, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Zhu F, Li T, Qiu F, Fan J, Zhou Q, Ding X, Nie J, Yu X. Preventive effect of Notch signaling inhibition by a gamma-secretase inhibitor on peritoneal dialysis fluid-induced peritoneal fibrosis in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:650-9. [PMID: 20056840 DOI: 10.2353/ajpath.2010.090447] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peritoneal fibrosis, a major complication of peritoneal dialysis, limits the effectiveness of peritoneal dialysis as a treatment of end-stage renal disease. Preventing this complication by identifying targets for therapy has recently received much attention. In the present study, we showed that Notch signaling was highly activated in rats in peritoneal dialysis fluid-induced fibrotic peritoneum, as indicated by increased expression of Jagged-1, Notch-1, and HES-1. Blocking Notch signaling activation by intraperitoneal injection of a gamma-secretase inhibitor, DAPT, significantly attenuated peritoneal fibrosis as indicated by the decreased expression of alpha-smooth muscle actin, collagen I, and vascular endothelial growth factor as well as increased expression of E-cadherin. Moreover, compared with control rats, DAPT-treated rats had a thinner peritoneum with less extracellular matrix accumulation, a lower mass transfer of glucose, and a higher ultrafiltration rate. In addition, transforming growth factor (TGF)-beta1 induced Notch signaling activation in primary rat peritoneal mesothelial cells. DAPT blocked this TGF-beta1-induced Notch signaling activation and therefore significantly inhibited TGF-beta1-induced expression of alpha-smooth muscle actin, collagen I, and vascular endothelial growth factor. Thus, a gamma-secretase inhibitor that interferes with Notch signaling prevents biochemical, histological, and functional consequences of peritoneal fibrosis through inhibiting epithelial to mesenchymal transition of rat peritoneal mesothelial cells. These results support the use of gamma-secretase inhibitors as a novel therapeutic approach for peritoneal fibrosis.
Collapse
Affiliation(s)
- Fengxin Zhu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Morrell NW. Role of bone morphogenetic protein receptors in the development of pulmonary arterial hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:251-64. [PMID: 20204735 DOI: 10.1007/978-1-60761-500-2_16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of mutations in the bone morphogenetic protein (BMP) type II receptor in the majority of cases of familial pulmonary arterial hypertension (PAH) has provided a focus for researchers studying the complex pathobiology of this condition. Mutations are also found in a proportion of idiopathic PAH cases and it is now emerging that dysfunctional BMP signaling plays a role in other more common forms of PAH, even in the absence of mutations in the gene. Study of the role of BMP signaling in endothelial, smooth muscle cell, progenitor cell and inflammatory cell biology may reveal novel pathways lending themselves to therapeutic intervention in PAH. This chapter summarizes the present status of our understanding of the role of BMPR-II mutations in PAH and indicates future directions for research.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
75
|
Gupta S, Li S, Abedin MJ, Wang L, Schneider E, Najafian B, Rosenberg M. Effect of Notch activation on the regenerative response to acute renal failure. Am J Physiol Renal Physiol 2009; 298:F209-15. [PMID: 19828677 DOI: 10.1152/ajprenal.00451.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Episodes of acute renal failure (ARF) are not always fully reversible and may lead to chronic disease, due in part to an inadequate regenerative response. The Notch signaling pathway is involved in determining cell fate during development, and tissue maintenance and repair in adult organs. The purpose of this study was to examine the role of the Notch pathway in renal regeneration following ARF. Kidney injury, induced by ischemia-reperfusion, resulted in early activation of the Notch pathway, as evidenced by increased expression of Notch1 and Notch2 intracellular domain (cleaved Notch). The effect of exogenous administration of the Notch ligand Delta-like-4 (DLL4) on recovery from ARF was then studied. Rats were pretreated by intraperitoneal injection of DLL4 or vehicle control. Two days following the last DLL4 dose, ARF was induced by bilateral renal artery clamping for 45 min followed by reperfusion. The severity of renal injury was similar in DLL4 and control rats. Renal recovery was facilitated by DLL4 treatment, as evidenced by faster return of serum creatinine to baseline by 48 h in DLL4-treated rats as against 5 days in vehicle-treated control rats. Cell proliferation was higher in the DLL4-treated group. In conclusion, activation of the Notch pathway occurs following ARF. Pretreatment with the Notch ligand DLL4 enhanced recovery from ARF and represents a potential novel therapeutic option for regenerating the injured kidney.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55414, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Veerasamy M, Nguyen TQ, Motazed R, Pearson AL, Goldschmeding R, Dockrell MEC. Differential regulation of E-cadherin and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis. Am J Physiol Renal Physiol 2009; 297:F1238-48. [PMID: 19741012 DOI: 10.1152/ajprenal.90539.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney diseases are characterized by progressive tubulointerstitial fibrosis, and TGFbeta1 plays a crucial role in its development. Bone morphogenic protein 7 (BMP 7), another member of the TGF superfamily, antagonized the profibrotic effects of TGFbeta1, including epithelial mesenchymal transition and E-cadherin loss, in the previous studies from animal models. We investigated the effect of BMP 7 on TGFbeta1-mediated E-cadherin loss in two different transformed human adult proximal tubule epithelia. We found that BMP 7 not only failed to prevent TGFbeta1-mediated E-cadherin loss but itself downregulated E-cadherin levels and that it had an additive effect with TGFbeta1 in inducing E-cadherin loss. The downregulation of E-cadherin by BMP 7 was mediated through the Smad1/5 pathway. BMP 7-mediated E-cadherin loss was not followed by de novo alpha-smooth muscle actin (alpha-SMA) expression (a marker of myofibroblastic phenotype), which was due to the concurrent induction of Inhibitor of DNA binding 1 (Id1, a basic helix loop helix class transcriptional regulator) through a non-Smad pathway. Concurrent treatment of BMP 7 and TGFbeta1 prevented TGFbeta1-mediated alpha-SMA induction. In summary, our results suggest that E-cadherin loss, the key feature of epithelial mesenchymal transition, will not necessarily be followed by total phenotype change; rather, cells may undergo some loss of phenotypic marker in a ligand-dependent manner and participate in reparative processes. The inhibition of de novo expression of alpha-SMA could explain the antifibrotic effect of BMP 7. Id1 might play a crucial role in maintaining proximal tubule epithelial cell phenotype and its signaling regulation could be a potential therapeutic target.
Collapse
Affiliation(s)
- Mangalakumar Veerasamy
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Carshalton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
77
|
Rubio-Aliaga I, Przemeck GKH, Fuchs H, Gailus-Durner V, Adler T, Hans W, Horsch M, Rathkolb B, Rozman J, Schrewe A, Wagner S, Hoelter SM, Becker L, Klopstock T, Wurst W, Wolf E, Klingenspor M, Ivandic BT, Busch DH, Beckers J, Hrabé de Angelis M. Dll1 haploinsufficiency in adult mice leads to a complex phenotype affecting metabolic and immunological processes. PLoS One 2009; 4:e6054. [PMID: 19562077 PMCID: PMC2699037 DOI: 10.1371/journal.pone.0006054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage. METHODOLOGY/PRINCIPAL FINDINGS Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1(C413Y)). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized. CONCLUSIONS/SIGNIFICANCE In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes.
Collapse
Affiliation(s)
- Isabel Rubio-Aliaga
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thure Adler
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universitaet Muenchen, Munich, Germany
| | - Wolfgang Hans
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marion Horsch
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology/LAFUGA, Gene Center, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Molecular Nutritional Medicine, Technische Universitaet Muenchen, Else Kroener-Fresenius Center, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Sibylle Wagner
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M. Hoelter
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universitaet, Munich, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universitaet, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl fuer Entwicklungsgenetik, Technische Universitaet Muenchen, Freising-Weihenstephan, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology/LAFUGA, Gene Center, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Technische Universitaet Muenchen, Else Kroener-Fresenius Center, Freising-Weihenstephan, Germany
| | - Boris T. Ivandic
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universitaet Muenchen, Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl fuer Experimentelle Genetik, Technische Universitaet Muenchen, Freising-Weihenstephan, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl fuer Experimentelle Genetik, Technische Universitaet Muenchen, Freising-Weihenstephan, Germany
| |
Collapse
|
78
|
Haase VH. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney Int 2009; 76:492-9. [PMID: 19536078 DOI: 10.1038/ki.2009.222] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a developmentally vital, molecularly complex cellular process by which epithelial cells lose apico-basal polarity and cell-cell contact, become motile, and acquire mesenchymal characteristics. Under pathophysiological conditions EMT has a central role in cancer progression and metastasis, and has been associated with fibrotic disorders. Microenvironmental changes such as alterations in oxygen levels and activation of hypoxic signaling through hypoxia-inducible factor (HIF) are emerging as important triggers and modulators of EMT. Recent insights into potential molecular mechanisms underlying oxygen-dependent regulation of this process and their relevance to disease are discussed.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, C-3119A, MCN, 1161 21stAvenue, Nashville, TN 37232, USA.
| |
Collapse
|
79
|
Mature human eosinophils express functional Notch ligands mediating eosinophil autocrine regulation. Blood 2009; 113:3092-101. [PMID: 19171875 DOI: 10.1182/blood-2008-05-155937] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eosinophil chemotaxis and survival within tissues are key components in the development of tissue eosinophilia and subsequent effector responses. In this study, we demonstrate a novel mechanism of eosinophil autoregulation affecting migration and survival mediated through Notch signaling. We show for the first time that human blood eosinophils express Notch receptors and Notch ligands, expressions of which are influenced by the presence of eosinophil-activating granulocyte-macrophage colony-stimulating factor (GM-CSF). Evidence of Notch receptor activation and subsequent transcription of the Notch-responsive gene HES1 were observed in GM-CSF-stimulated eosinophils, confirming functionality of eosinophil-expressed Notch-signaling components. Moreover, by inhibiting Notch signaling with gamma-secretase inhibitors or Notch receptor-specific neutralizing antibodies, we demonstrate that autocrine Notch signaling enhances stimulus-mediated actin rearrangement and eosinophil chemokinesis, and impairs eosinophil viability. Taken together, these data suggest autocrine Notch signaling, enhanced in response to tissue- or inflammatory-derived signals, influences eosinophil activity and longevity, which may ultimately contribute to the development of tissue eosinophilia and exacerbation or remediation of eosinophil effector functions.
Collapse
|
80
|
Chen F. Plumbing the depths of urinary tract obstruction by using murine models. Organogenesis 2009; 5:297-305. [PMID: 19568351 PMCID: PMC2659371 DOI: 10.4161/org.8055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
Urinary tract obstruction leads to obstructive nephropathy, which in turn, frequently results in renal failure. Congenital urinary tract obstruction can be traced back to errors during the organogenesis of the urinary system. A fundamental understanding of the causes of urinary tract obstruction and the developmental processes involved are critical for improving the diagnostic and therapeutic strategies for this disease. A number of laboratories, including ours, have been using genetically engineered and spontaneously occurring mouse models to study the primary causes and the pathogenesis of urinary tract obstruction. These studies have shown that urinary tract obstruction is a very heterogeneous disease that can be caused by a diverse set of factors targeting multiple levels of the urinary system. Accumulating evidence also indicates that the development of the urinary tract requires the integration of progenitor cells of diverse embryonic origins, leading to the formation of multiple junctions prone to developmental errors. In addition, the high sensitivity of the pyeloureteral peristaltic machinery to disturbance affecting the structural or functional integrity of its components also contributes to the high incidence rate of urinary tract obstruction.
Collapse
Affiliation(s)
- Feng Chen
- Assistant Professor of Medicine and Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA
| |
Collapse
|
81
|
Waters AM, Wu MYJ, Onay T, Scutaru J, Liu J, Lobe CG, Quaggin SE, Piscione TD. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J Am Soc Nephrol 2008; 19:1139-57. [PMID: 18337488 PMCID: PMC2396929 DOI: 10.1681/asn.2007050596] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 12/30/2007] [Indexed: 01/26/2023] Open
Abstract
Genetic evidence supports an early role for Notch signaling in the fate of podocytes during glomerular development. Decreased expression of Notch transcriptional targets in developing podocytes after the determination of cell fate suggests that constitutive Notch signaling may oppose podocyte differentiation. This study determined the effects of constitutive Notch signaling on podocyte differentiation by ectopically expressing Notch's intracellular domain (NOTCH-IC), the biologically active, intracellular product of proteolytic cleavage of the Notch receptor, in developing podocytes of transgenic mice. Histologic and molecular analyses revealed normal glomerular morphology and expression of podocyte markers in newborn NOTCH-IC-expressing mice; however, mice developed severe proteinuria and showed evidence of progressive glomerulosclerosis at 2 wk after birth. Features of mature podocytes were lost: Foot processes were effaced; expression of Wt1, Nphs1, and Nphs2 was downregulated; cell-cycle re-entry was induced; and the expression of Pax2 was increased. In contrast, mice with podocyte-specific inactivation of Rbpsuh, which encodes a protein essential for canonical Notch signaling, seemed normal. In addition, the damaging effects of NOTCH-IC expression were prevented in transgenic mice after simultaneous conditional inactivation of Rbpsuh in murine podocytes. These results suggest that Notch signaling is dispensable during terminal differentiation of podocytes but that constitutive (or inappropriate) Notch signaling is deleterious, leading to glomerulosclerosis.
Collapse
Affiliation(s)
- Aoife M Waters
- Program in Developmental Biology, Research Institute, and Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury. Kidney Int 2008; 73:1240-50. [PMID: 18418349 DOI: 10.1038/ki.2008.74] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Notch signaling pathway consists of several receptors and their ligands Delta and Jagged and is important for embryogenesis, cellular differentiation and proliferation. Activation of Notch receptors causes their cleavage yielding cytoplastic domains that translocate into the nucleus to induce target proteins such as the basic-loop-helix proteins Hes and Hey. Here we sought to clarify the significance of the Notch signaling pathway in acute kidney injury using a rat ischemia-reperfusion injury model and cultured NRK-52E cells. Analysis of the whole kidney after injury showed increased expression of Delta-1 and Hes-1 mRNA and protein along with processed Notch-2. Confocal microscopy, using specific antibodies, showed that Delta-1, cleaved Notch-2 and Hes-1 colocalized in the same segments of the injured renal proximal tubules. Recombinant Delta-1 significantly stimulated NRK-52E cell proliferation. Our study suggests that the Delta-1/Notch-2/Hes-1 signaling pathway may regulate the regeneration and proliferation of renal tubules during acute kidney injury.
Collapse
|
83
|
Ivanova L, Butt MJ, Matsell DG. Mesenchymal transition in kidney collecting duct epithelial cells. Am J Physiol Renal Physiol 2008; 294:F1238-48. [PMID: 18322023 DOI: 10.1152/ajprenal.00326.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Progressive organ damage due to tissue scarring and fibrosis is a paradigm shared by numerous human diseases including chronic kidney disease. The purpose of this study was to confirm the hypothesis that collecting duct (CD) epithelial cells can undergo mesenchymal transition (EMT) in vitro. The mechanism by which CDs undergo EMT is complex and involves both early and late cellular events. Early events include rapid insulin-like growth factor (IGF)-induced Akt and GSK-3beta phosphorylation, associated with early disruption of E-cadherin-beta-catenin membrane colocalization, with translocation of E-cadherin to endosomes, with translocation of beta-catenin to the nucleus, and with an increase in Snail expression. Transforming growth factor-beta1, on the other hand, induced early activation of Smad3 and its translocation to the nucleus, Erk1/2 phosphorylation, and early disruption of membrane E-cadherin localization. The late consequences of these events included a phenotypic transformation of the cells to a mesenchymal morphology with associated increase in vimentin and alpha-smooth muscle actin protein expression and a decrease in total cellular E-cadherin expression, detectable as early as 24 h after stimulation.
Collapse
Affiliation(s)
- Larissa Ivanova
- Department of Pediatrics and Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
84
|
Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14:290-8. [PMID: 18311147 DOI: 10.1038/nm1731] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/25/2008] [Indexed: 12/20/2022]
Abstract
Albuminuria associated with sclerosis of the glomerulus leads to a progressive decline in renal function affecting millions of people. Here we report that activation of the Notch pathway, which is critical in glomerular patterning, contributes to the development of glomerular disease. Expression of the intracellular domain of Notch1 (ICN1) was increased in glomerular epithelial cells in diabetic nephropathy and in focal segmental glomerulosclerosis. Conditional re-expression of ICN1 in vivo exclusively in podocytes caused proteinuria and glomerulosclerosis. In vitro and in vivo studies showed that ICN1 induced apoptosis of podocytes through the activation of p53. Genetic deletion of a Notch transcriptional partner (Rbpj) specifically in podocytes or pharmacological inhibition of the Notch pathway (with a gamma-secretase inhibitor) protected rats with proteinuric kidney diseases. Collectively, our observations suggest that Notch activation in mature podocytes is a new mechanism in the pathogenesis of glomerular disease and thus could represent a new therapeutic target.
Collapse
Affiliation(s)
- Thiruvur Niranjan
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Higgins DF, Kimura K, Iwano M, Haase VH. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008; 7:1128-32. [PMID: 18418042 DOI: 10.4161/cc.7.9.5804] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Capillary rarefaction is a hallmark of fibrotic diseases and results in reduced blood perfusion and oxygen delivery. In the kidney, tubulointerstitial fibrosis, which leads to the destruction of renal tissue and the irreversible loss of kidney function, is associated with hypoxia and the activation of Hypoxia-Inducible-Factor (HIF) signaling. HIF-1 and HIF-2 are basic-helix-loop-helix transcription factors that allow cells to survive in a low oxygen environment by regulating energy metabolism, vascular remodeling, erythropoiesis, cellular proliferation and apoptosis. Recent studies suggest that HIF activation promotes epithelial to mesenchymal transition (EMT) and renal fibrogenesis. These findings raise the possibility that the spectrum of HIF activated biological responses to hypoxic stress may differ under conditions of acute and chronic hypoxia. Here we discuss the role of HIF signaling in the pathogenesis and progression of chronic kidney disease.
Collapse
Affiliation(s)
- Debra F Higgins
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
86
|
Tacke F, Gäbele E, Bataille F, Schwabe RF, Hellerbrand C, Klebl F, Straub RH, Luedde T, Manns MP, Trautwein C, Brenner DA, Schölmerich J, Schnabl B. Bone morphogenetic protein 7 is elevated in patients with chronic liver disease and exerts fibrogenic effects on human hepatic stellate cells. Dig Dis Sci 2007; 52:3404-15. [PMID: 17415633 DOI: 10.1007/s10620-007-9758-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/01/2007] [Indexed: 12/09/2022]
Abstract
Hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in liver fibrogenesis. The excessive synthesis of ECM proteins deteriorates hepatic architecture and results in liver fibrosis and cirrhosis. This study investigated the role of bone morphogenetic protein 7 (BMP7) as a member of the transforming growth factor (TGF)-beta superfamily in chronic liver disease. Plasma levels of BMP7 were significantly elevated in patients with chronic liver disease compared with healthy controls. Immunohistochemistry of cirrhotic human liver demonstrated upregulated BMP7 protein expression in hepatocytes as compared with normal human liver. Because gene expression for all putative BMP7 receptors was induced during the culture activation process of primary human HSCs, we studied the effects of BMP7 on hTERT immortalized human HSCs in vitro. BMP7, as expressed and secreted after infection with adenoviruses encoding BMP7 (AdBMP7), increased proliferation of HSCs. The mRNA and protein expression of type I collagen and fibronectin was increased in BMP7-stimulated HSCs. Elevated systemic and hepatic levels of BMP7 in patients with chronic liver disease may contribute to progression of liver fibrogenesis in vivo.
Collapse
Affiliation(s)
- Frank Tacke
- Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Walsh DW, Roxburgh SA, McGettigan P, Berthier CC, Higgins DG, Kretzler M, Cohen CD, Mezzano S, Brazil DP, Martin F. Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2007; 1782:10-21. [PMID: 17980714 DOI: 10.1016/j.bbadis.2007.09.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/04/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Diabetic nephropathy is currently the leading cause of end-stage renal disease worldwide, and occurs in approximately one third of all diabetic patients. The molecular pathogenesis of diabetic nephropathy has not been fully characterized and novel mediators and drivers of the disease are still being described. Previous data from our laboratory has identified the developmentally regulated gene Gremlin as a novel target implicated in diabetic nephropathy in vitro and in vivo. We used bioinformatic analysis to examine whether Gremlin gene sequence and structure could be used to identify other genes implicated in diabetic nephropathy. The Notch ligand Jagged1 and its downstream effector, hairy enhancer of split-1 (Hes1), were identified as genes with significant similarity to Gremlin in terms of promoter structure and predicted microRNA binding elements. This led us to discover that transforming growth factor-beta (TGFbeta1), a primary driver of cellular changes in the kidney during nephropathy, increased Gremlin, Jagged1 and Hes1 expression in human kidney epithelial cells. Elevated levels of Gremlin, Jagged1 and Hes1 were also detected in extracts from renal biopsies from diabetic nephropathy patients, but not in control living donors. In situ hybridization identified specific upregulation and co-expression of Gremlin, Jagged1 and Hes1 in the same tubuli of kidneys from diabetic nephropathy patients, but not controls. Finally, Notch pathway gene clustering showed that samples from diabetic nephropathy patients grouped together, distinct from both control living donors and patients with minimal change disease. Together, these data suggest that Notch pathway gene expression is elevated in diabetic nephropathy, co-incident with Gremlin, and may contribute to the pathogenesis of this disease.
Collapse
Affiliation(s)
- David W Walsh
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Butt MJ, Tarantal AF, Jimenez DF, Matsell DG. Collecting duct epithelial–mesenchymal transition in fetal urinary tract obstruction. Kidney Int 2007; 72:936-44. [PMID: 17667982 DOI: 10.1038/sj.ki.5002457] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis contributes to the progression of most chronic kidney diseases and is an important pathologic feature of urinary tract obstruction. To study the origin of this fibrosis, we used a fetal non-human primate model of unilateral ureteric obstruction focusing on the role of medullary collecting duct (CD) changes. Obstruction at 70 days gestation (full term approximately 165 days) results in cystic dysplasia with significant medullary changes including loss of the epithelial phenotype and gain of a mesenchymal phenotype. These changes were associated with disruption of the epithelial basement membrane and concomitant migration of transitioning cells presumed responsible for the observed peritubular collars of fibrous tissue. There was an abundance of cells that co-expressed the intercalated cell marker carbonic anhydrase II and smooth muscle actin. These cells migrated through the basement membrane and were significantly reduced in obstructed ducts with peritubular collars. Our studies suggest that fetal urinary tract obstruction results in a CD epithelial-mesenchymal transition contributing to the interstitial changes associated with poor prognosis. This seems restricted to the intercalated cells, which contribute to the expansion of the principal cell population and the formation of peritubular collars, but are depleted in progressive injury.
Collapse
Affiliation(s)
- M J Butt
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
89
|
Abstract
Chronic progressive kidney diseases typically are characterized by loss of differentiated epithelial cells and activation of mesenchymal cell populations leading to renal fibrosis in response to a broad range of diverse renal injuries. Recent evidence has indicated that epithelial microinjury leads to unbalanced epithelial-mesenchymal communication to initiate the fibrotic response. Transforming growth factors beta constitute a large family of cytokines that control key cellular responses in development and tissue repair. Activation of autocrine and paracrine transforming growth factor-beta signaling cascades in the context of epithelial microinjuries initiate a variety of cell type-dependent signaling and activity profiles, including epithelial apoptosis and epithelial-to-mesenchymal transition, that trigger fibrogenic foci and initiate progressive fibrogenesis in chronic renal injury.
Collapse
Affiliation(s)
- Erwin P Böttinger
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
90
|
Manucha W, Carrizo L, Ruete C, Vallés PG. Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction. BJU Int 2007; 100:191-8. [PMID: 17552965 DOI: 10.1111/j.1464-410x.2007.06840.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the participation of NHE1 in the regulation of the apoptotic response in neonatal obstruction, as the ubiquitously expressed NHE1 isoform is an important component of regulatory volume increase. MATERIALS AND METHODS Rats had a unilateral ureteric obstruction (UUO) or a sham operation, and the kidneys were harvested 5 and 14 days afterward. Cellular apoptosis in proximal tubules (PT) and collecting ducts (CD) was assessed using a standard assay, and NHE1 expression in the renal cortex assessed using reverse transcription-polymerase chain reaction and Western blots. Mitochondrial apoptosis was evaluated by Bax/BcL2 expression, and caspase-3 expression and activity. In addition, we evaluated the in vivo administration of increasing doses of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on NHE1 inhibition associated with the induction of apoptosis. RESULTS After 14 days there were consistently more apoptotic cells in CD than in PT, associated with a lower expression of NHE1 at the mRNA and protein levels. There was increased expression of the Bax/BcL2 ratio, linked to decreased pro-caspase-3 protein levels and with increased caspase-3 activation. NHE1 inhibition by increasing doses of EIPA induced epithelial cell apoptosis and increased caspase-3 activity in a dose-dependent manner. After in vitro incubation with amiloride (100 mm) there was less NHE1 expression associated with reduced 32 kDa pro-caspase-3 protein levels. Kidneys obstructed for 5 days showed no changes in NHE1 expression or induction of apoptosis. CONCLUSION In neonatal obstruction, we suggest that the decreased NHE1 expression could be a signal-transduction event participating in the induction of epithelial tubular cell apoptosis, through the regulation of the BcL-2 gene family and activation of caspase-3.
Collapse
Affiliation(s)
- Walter Manucha
- Area de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario CP5500, Mendoza, Argentina
| | | | | | | |
Collapse
|
91
|
Blumenberg M, Gao S, Dickman K, Grollman AP, Bottinger EP, Zavadil J. Chromatin Structure Regulation in Transforming Growth Factor-β-Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs 2007; 185:162-74. [PMID: 17587822 DOI: 10.1159/000101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) occur in organogenesis throughout embryonic development and are recapitulated during epithelial tissue injury and in carcinoma progression. EMTs are regulated by complex, precisely orchestrated cell signaling and gene expression networks, with the participation of key developmental pathways. Here we review context-dependent modules of gene regulation by hairy/enhancer-of-split-related (H/E(spl)) repressors downstream of transforming growth factor-beta (TGF-beta)/Smad and Notch signals in EMT and in other phenotype transitions such as differentiation and cancer. Based on multiple models of disease-related EMT, we propose that Polycomb group epigenetic silencers and histone-lysine methyl-transferases EZH1 and EZH2 are candidate targets of H/E(spl)-mediated transcriptional repression, in a process accompanied by replacement of modified core histone H3 with de novo synthesized histone variant H3.3B. Finally, we discuss the potential significance of this scenario for EMT in the light of recent findings on gene regulation by histone modifications and chromatin structure changes.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
92
|
Kruse JJCM, Stewart FA. Gene expression arrays as a tool to unravel mechanisms of normal tissue radiation injury and prediction of response. World J Gastroenterol 2007; 13:2669-74. [PMID: 17569134 PMCID: PMC4147114 DOI: 10.3748/wjg.v13.i19.2669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past 5 years there has been a rapid increase in the use of microarray technology in the field of cancer research. The majority of studies use microarray analysis of tumor biopsies for profiling of molecular characteristics in an attempt to produce robust classifiers for prognosis. There are now several published gene sets that have been shown to predict for aggressive forms of breast cancer, where patients are most likely to benefit from adjuvant chemotherapy and tumors most likely to develop distant metastases, or be resistant to treatment. The number of publications relating to the use of microarrays for analysis of normal tissue damage, after cancer treatment or genotoxic exposure, is much more limited. A PubMed literature search was conducted using the following keywords and combination of terms: radiation, normal tissue, microarray, gene expression profiling, prediction. With respect to normal tissue radiation injury, microarrays have been used in three ways: (1) to generate gene signatures to identify sensitive and resistant populations (prognosis); (2) to identify sets of biomarker genes for estimating radiation exposure, either accidental or as a result of terrorist attack (diagnosis); (3) to identify genes and pathways involved in tissue response to injury (mechanistic). In this article we will review all (relevant) papers that covered our literature search criteria on microarray technology as it has been applied to normal tissue radiation biology and discuss how successful this has been in defining predisposition markers for radiation sensitivity or how it has helped us to unravel molecular mechanisms leading to acute and late tissue toxicity. We also discuss some of the problems and limitations in application and interpretation of such data.
Collapse
Affiliation(s)
- Jacqueline J C M Kruse
- The Netherlands Cancer Institute, Department of Experimental Therapy (H6), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
93
|
Mizobuchi M, Morrissey J, Finch JL, Martin DR, Liapis H, Akizawa T, Slatopolsky E. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol 2007; 18:1796-806. [PMID: 17513326 DOI: 10.1681/asn.2006091028] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Monotherapy with angiotensin-converting enzyme inhibitors has been shown to be beneficial in suppressing the progression of experimentally induced kidney diseases. Whether such therapy provides additional benefits when combined with vitamin D or an analog of vitamin D has not been established. Rats were made uremic by 5/6 nephrectomy and treated as follows: Uremic + vehicle (UC), uremic + enalapril (30 mg/L in drinking water; E), uremic + paricalcitol (19-nor; 0.8 microg/kg, three times a week), and uremic + enalapril + paricalcitol (E + 19-nor). A group of normal rats served as control (NC). BP was significantly elevated in the UC and 19-nor groups compared with the NC group but was indistinguishable from normal in the E and E + 19-nor groups. The decrease in creatinine clearance and the increase in the excretion of urinary protein that were observed in the UC group were ameliorated by the use of E alone or by E + 19-nor (P < 0.05 versus UC). The glomerulosclerotic index was significantly decreased in both the 19-nor (P < 0.01) and E + 19-nor groups (P < 0.01) compared with the UC group. Tubulointerstitial volume was significantly decreased in both the E (P < 0.05) and E + 19-nor groups (P < 0.01) compared with the UC group. Both macrophage infiltration (ED-1-positive cells) and production of the chemokine monocyte chemoattractant protein-1 were significantly blunted in E + 19-nor compared with E group. TGF-beta1 mRNA and protein expression were increased in the UC group (mRNA: 23.7-fold; protein: 29.1-fold versus NC). These increases were significantly blunted in the 19-nor group (mRNA: 7.1-fold; protein: 8.0-fold versus NC) and virtually normalized in the E + 19-nor group (protein: 0.8-fold versus NC). Phosphorylation of Smad2 was also elevated in the UC group (7.6-fold versus NC) but less so in the 19-nor-treated rats (5.5-fold versus NC). When rats were treated with E + 19-nor, the phosphorylation of Smad2 was normal (1.1-fold versus NC). Thus, 19-nor can suppress the progression of renal insufficiency via mediation of the TGF-beta signaling pathway, and this effect is amplified when BP is controlled via renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Vallés PG, Manucha W, Carrizo L, Vega Perugorria J, Seltzer A, Ruete C. Renal caveolin-1 expression in children with unilateral ureteropelvic junction obstruction. Pediatr Nephrol 2007; 22:237-48. [PMID: 17111160 DOI: 10.1007/s00467-006-0290-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 10/23/2022]
Abstract
Caveolae are plasma membrane invaginations that contain a variety of signal transduction molecules and receptors for growth factors and cytokines. This study was performed to examine the in vivo expression and localization of caveolin-1 in kidneys from 19 children who underwent surgery release of ureteropelvic junction obstruction (UPJO) in relation to renal function and degree of tubulointerstitial fibrosis. Renal biopsies were carried out at the time of surgery for obstruction release. Kidney tissue from children of similar age removed because of carcinoma was used as control. Expression of caveolin-1 at the protein level in renal tissue and urine was demonstrated in patients with technetium 99 m labeled diethylene triamine pentaacetate ((99)Tc DTPA) renal scan 28.8+/-2% and increased tubular interstitial fibrosis in seven patients at the time of obstruction release. Colocalization staining of AT(1) angiotensin II receptor with caveolin-1 in basolateral membrane of epithelial tubule cells, enhanced AT(1) messenger ribonucleic acid (mRNA) and decreased endothelial nitric oxide synthase (eNOS), were shown in these patients. In contrast, absence of association of caveolin-1 with AT(1) receptor expression in proximal and collecting tubule membranes with AT(1) receptor mRNA and eNOS mRNA expression near control were demonstrated in 12 patients, with (99)Tc DTPA renal scan 39.7+2.1% and no evidence of tubulointerstitial fibrosis. From our results, the role of caveolin-1 as a factor contributing to the severity of the tubulointerstitial process resulting from obstructive nephropathy could be suggested.
Collapse
Affiliation(s)
- Patricia G Vallés
- Area de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
95
|
Chevalier RL. Obstructive nephropathy: towards biomarker discovery and gene therapy. ACTA ACUST UNITED AC 2006; 2:157-68. [PMID: 16932414 DOI: 10.1038/ncpneph0098] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 12/05/2005] [Indexed: 12/16/2022]
Abstract
Obstructive nephropathy is a major cause of renal failure, particularly in infants and children. Cellular and molecular mechanisms responsible for the progression of the tubular atrophy and interstitial fibrosis-processes that lead to nephron loss-have been elucidated in the past 5 years. Following urinary tract obstruction and tubular dilatation, a cascade of events results in upregulation of the intrarenal renin-angiotensin system, tubular apoptosis and macrophage infiltration of the interstitium. This is followed by accumulation of interstitial fibroblasts through proliferation of resident fibroblasts and epithelial-mesenchymal transformation of renal tubular cells. Under the influence of cytokines, chemokines and other signaling molecules produced by tubular and interstitial cells, fibroblasts undergo transformation to myofibroblasts that induce expansion of the extracellular matrix. The cellular interactions that regulate development of interstitial inflammation, tubular apoptosis and interstitial fibrosis are complex. Changes in renal gene expression and protein production afford many potential biomarkers of disease progression and targets for therapeutic manipulation. These include signaling molecules and receptors involved in macrophage recruitment and proliferation, tubular death signals and survival factors, and modulators of epithelial-mesenchymal transformation. Targeted gene deletion and various forms of gene therapy have been used in experimental obstructive nephropathy, mostly rodent models of unilateral ureteral obstruction or cell culture techniques. Further refinement of these models is needed to develop a matrix of biomarkers with clinical predictive value, as well as molecular therapies that will prevent or reverse the renal structural and functional consequences of obstructive nephropathy.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics at the University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
96
|
Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 2006; 10:76-99. [PMID: 16563223 PMCID: PMC3933103 DOI: 10.1111/j.1582-4934.2006.tb00292.x] [Citation(s) in RCA: 604] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis is a scarring process that is associated with an increased and altered deposition of extracellular matrix in liver. At the cellular and molecular level, this progressive process is mainly characterized by cellular activation of hepatic stellate cells and aberrant activity of transforming growth factor-beta1 and its downstream cellular mediators. Although the cellular responses to this cytokine are complex, the signalling pathways of this pivotal cytokine during the fibrogenic response and its connection to other signal cascades are now understood in some detail. Based on the current advances in understanding the pleiotropic reactions during fibrogenesis, various inhibitors of transforming growth factor-beta were developed and are now being investigated as potential drug candidates in experimental models of hepatic injury. Although it is too early to favour one of these antagonists for the treatment of hepatic fibrogenesis in human, the experimental results obtained yet provide stimulatory impulses for the development of an effective treatment of choice in the not too distant future. The present review summarises the actual knowledge on the pathogenesis of hepatic fibrogenesis, the role of transforming growth factor-beta and its signalling pathways in promoting the fibrogenic response, and the therapeutic modalities that are presently in the spotlight of many investigations and are already on the way to take the plunge into clinical studies.
Collapse
Affiliation(s)
- A M Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University - HospitalAachen, Germany
- *Correspondence to: A. M. GRESSNER/R. WEISKIRCHEN Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Hospital, D-52074 Aachen, Germany. Tel.: +49-241-8088678/9 Fax: +49-241-8082512 E-mails:
| | - R Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University - HospitalAachen, Germany
| |
Collapse
|
97
|
Mathew S, Davies M, Lund R, Saab G, Hruska KA. Function and effect of bone morphogenetic protein-7 in kidney bone and the bone-vascular links in chronic kidney disease. Eur J Clin Invest 2006; 36 Suppl 2:43-50. [PMID: 16884397 DOI: 10.1111/j.1365-2362.2006.01663.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In two independent and separate studies, we have shown that renal injury and chronic kidney disease (CKD) directly inhibit skeletal anabolism, and that stimulation of bone formation decreased the serum phosphate. In the first study, the serum Ca PO(4), parathyroid hormone (PTH), and calcitriol were maintained normal after renal ablation in mice, and even mild renal injury equivalent to stage 3 CKD decreased bone formation rates. More recently, these observations were rediscovered in low-density lipoprotein receptor null (LDLR-/-) mice fed high-fat/cholesterol diets, a model of the metabolic syndrome (hypertension, obesity, dyslipidemia and insulin resistance). We demonstrated that these mice have vascular calcification (VC) of both the intimal atherosclerotic type and medial calcification. We have also shown that VC is made worse by CKD and ameliorated by bone morphogenetic protein-7 (BMP-7). The finding that high-fat fed LDLR-/- animals with CKD had hyperphosphatemia which was prevented in BMP-7-treated animals lead us to examine the skeletons of these mice. It was found that significant reductions in bone formation rates were associated with high-fat feeding, and superimposing CKD resulted in the adynamic bone disorder (ABD), while VC was made worse. The effect of CKD to decrease skeletal anabolism (decreased bone formation rates and reduced number of bone modelling units) occurred despite secondary hyperparathyroidism. The BMP-7 treatment corrected the ABD and hyperphosphatemia, owing to BMP-7-driven stimulation of skeletal phosphate deposition reducing plasma phosphate and thereby removing a major stimulus to VC. A pathological link between abnormal bone mineralization and VC through the serum phosphorus was demonstrated by the partial effectiveness of directly reducing the serum phosphate by a phosphate binder that had no skeletal action. Thus, in the metabolic syndrome with CKD, a reduction in bone forming potential of osteogenic cells leads to the ABD producing hyperphosphatemia and VC, processes ameliorated by BMP-7, in part through increased bone formation and skeletal deposition of phosphate and in part through direct actions on vascular smooth muscle cells. We have demonstrated that the processes leading to vascular calcification begin with even mild levels of renal injury affecting the skeleton before demonstrable hyperphosphatemia and that they are preventable and treatable. Therefore, early intervention in the skeletal disorder associated with CKD is warranted and may affect mortality of the disease.
Collapse
Affiliation(s)
- S Mathew
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
98
|
Roxburgh SA, Murphy M, Pollock CA, Brazil DP. Recapitulation of Embryological Programmes in Renal Fibrosis – The Importance of Epithelial Cell Plasticity and Developmental Genes. ACTA ACUST UNITED AC 2006; 103:p139-48. [PMID: 16582577 DOI: 10.1159/000092453] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis.
Collapse
Affiliation(s)
- Sarah A Roxburgh
- UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
99
|
Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray P, Ray A. Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 2006; 116:996-1004. [PMID: 16543950 PMCID: PMC1401482 DOI: 10.1172/jci26490] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 01/24/2006] [Indexed: 12/14/2022] Open
Abstract
Studies in humans and mice show an important role for Tregs in the control of immunological disorders. The mechanisms underlying the immunosuppressive functions of Tregs are not well understood. Here, we show that CD4+ T cells expressing Foxp3 and membrane-bound TGF-beta (TGF-beta(m+)Foxp3+), previously shown to be immunosuppressive in both allergic and autoimmune diseases, activate the Notch1-hairy and enhancer of split 1 (Notch1-HES1) axis in target cells. Soluble TGF-beta and cells secreting similar levels of soluble TGF-beta were unable to trigger Notch1 activation. Inhibition of Notch1 activation in vivo reversed the immunosuppressive functions of TGF-beta(m+)Foxp3+ cells, resulting in severe allergic airway inflammation. Integration of the TGF-beta and Notch1 pathways may be an important mechanism for the maintenance of immune homeostasis in the periphery.
Collapse
Affiliation(s)
- Marina Ostroukhova
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zengbiao Qi
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy B. Oriss
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Barbara Dixon-McCarthy
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
100
|
Woroniecki RP, Schiffer M, Shaw AS, Kaskel FJ, Bottinger EP. Glomerular expression of transforming growth factor-beta (TGF-beta) isoforms in mice lacking CD2-associated protein. Pediatr Nephrol 2006; 21:333-8. [PMID: 16388393 DOI: 10.1007/s00467-005-2102-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/18/2005] [Accepted: 08/20/2005] [Indexed: 01/17/2023]
Abstract
Mice lacking CD2-associated protein (CD2AP-/-) develop glomerular lesions resembling human focal segmental glomerulosclerosis (FSGS) between 3-4 weeks of age and die approximately 2 weeks later from massive proteinuria and renal failure. The mechanisms involved in the glomerular injury in this model are unclear. In this study, we used laser capture microdissection (LCM) and real-time PCR, and examined expression of TGF-ss isoforms in CD2AP-/- mice at the level of isolated glomeruli. Total RNA yield from cryosections of 30 glomeruli was 10.71 ng (SD, 5.45) in CD2AP+/+ group (n =7), and 4.20 ng (SD, 2.04) in CD2AP-/- group (n =8), p =0.008. Expression of TGF-ss1 mRNA was increased 1.5-fold in the whole kidney (p =0.030), and twofold in isolated CD2AP-/- glomeruli (p =0.026). Whole kidney mRNA of TGF-ss receptor I (RI) and II (RII) was not different in CD2AP-/- and CD2AP+/+ animals, but it was increased in CD2AP-/- glomerular samples by 4.38-fold (p =0.001) and 11.37-fold (p =0.0163), respectively. By using LCM we confirmed increased glomerular expression levels of TGF-ss isoforms previously described by our group in glomeruli isolated by sieving in CD2AP KO mice and underscored the importance of local factors in the development of glomerulosclerosis.
Collapse
Affiliation(s)
- Robert P Woroniecki
- Section of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | | | | | |
Collapse
|