51
|
Brady RD, Shultz SR, McDonald SJ, O'Brien TJ. Neurological heterotopic ossification: Current understanding and future directions. Bone 2018; 109:35-42. [PMID: 28526267 DOI: 10.1016/j.bone.2017.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Abstract
Neurological heterotopic ossification (NHO) involves the formation of bone in soft tissue following a neurological condition, of which the most common are brain and spinal cord injuries. NHO often forms around the hip, knee and shoulder joints, causing severe pain and joint deformation which is associated with significant morbidity and reduced quality of life. The cellular and molecular events that initiate NHO have been the focus of an increasing number of human and animal studies over the past decade, with this work largely driven by the need to unearth potential therapeutic interventions to prevent the formation of NHO. This review provides an overview of the present understanding of NHO pathogenesis and pathobiology, current treatments, novel therapeutic targets, potential biomarkers and future directions.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia.
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
52
|
Abstract
In 16 years of conflict, primarily in Iraq and Afghanistan, wounded warriors have primarily been subjected to blast type of injuries. Evacuation strategies have led to unprecedented survival rates in blast-injured soldiers, resulting in large numbers of wounded warriors with complex limb trauma. Bone and soft tissue defects have resulted in increased use of complex reconstructive algorithms to restore limbs and function. In addition, in failed salvage attempts, advances in amputation options are being developed. In this review, we summarize state-of-the-art limb-salvage methods for both soft tissue and bone. In addition, we discuss advances in diagnostic methods with development of personalized clinical decision support tools designed to optimize outcomes after severe blast injuries. Finally, we present new advances in osteointegrated prostheses for above-knee amputations.
Collapse
|
53
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Reply to: Macrophages Driving Heterotopic Ossification: Convergence of Genetically-Driven and Trauma-Driven Mechanisms. J Bone Miner Res 2018; 33:367-368. [PMID: 29194751 DOI: 10.1002/jbmr.3349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
54
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
55
|
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat 2017; 12:16-25. [PMID: 29662775 PMCID: PMC5866497 DOI: 10.1016/j.jot.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.
Collapse
Affiliation(s)
- Huan Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hai Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Tan Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
56
|
Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, Tseng HW, Arouche N, Boutin L, Kulina I, Salga M, Jose B, Pettit AR, Clay D, Rochet N, Vlachos E, Genet G, Debaud C, Denormandie P, Genet F, Sims NA, Banzet S, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017; 2:96034. [PMID: 29093266 DOI: 10.1172/jci.insight.96034] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 02/04/2023] Open
Abstract
Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury-induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad.
Collapse
Affiliation(s)
- Frédéric Torossian
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Bernadette Guerton
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Adrienne Anginot
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | - Sabrina Soave
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nassim Arouche
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Laetitia Boutin
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Marjorie Salga
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.,Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France
| | - Beulah Jose
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Denis Clay
- UMS33, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Nathalie Rochet
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Erica Vlachos
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Guillaume Genet
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Charlotte Debaud
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Philippe Denormandie
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - François Genet
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Sébastien Banzet
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jean-Jacques Lataillade
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | | |
Collapse
|
57
|
Seavey JG, Wheatley BM, Pavey GJ, Tomasino AM, Hanson MA, Sanders EM, Dey D, Moss KL, Potter BK, Forsberg JA, Qureshi AT, Davis TA. Early local delivery of vancomycin suppresses ectopic bone formation in a rat model of trauma-induced heterotopic ossification. J Orthop Res 2017; 35:2397-2406. [PMID: 28390182 DOI: 10.1002/jor.23544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is a debilitating sequela of high-energy injuries. It frequently requires surgical excision once symptomatic and there is no practical prophylaxis for combat-injured patients. In this study, we examined the effect of local vancomycin powder on HO formation in a small animal model of blast-related, post-traumatic HO. Male Sprague-Dawley rats were subjected to a polytraumatic extremity injury and amputation with or without methicillin-resistant Staphylococcus aureus infection. Animals were randomized to receive a single local application of vancomycin (20 mg/kg) at the time of injury (POD-0, n = 34) or on postoperative day-3 (POD-3, n = 11). Quantitative volumetric measurement of ectopic bone was calculated at 12-weeks post-injury by micro-CT. Bone marrow and muscle tissues were also collected to determine the bacterial burden. Blood for serum cytokine analysis was collected at baseline and post-injury. Vancomycin treatment on POD-0 suppressed HO formation by 86% and prevented bone marrow and soft tissue infections. We concurrently observed a marked reduction histologically in nonviable tissue, chronic inflammatory cell infiltrates, bone infection, fibrous tissue, and areas of bone necrosis within this same cohort. Delayed treatment was significantly less efficacious. Neither treatment had a marked effect on the production of pro-inflammatory cytokines. Our study demonstrates that local vancomycin treatment at the time of injury significantly reduces HO formation in both the presence and absence of infection, with decreased efficacy if not given early. These findings further support the concept that the therapeutic window for prophylaxis is narrow, highlighting the need to develop early treatment strategies for clinical management. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2397-2406, 2017.
Collapse
Affiliation(s)
- Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin M Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gabriel J Pavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Margaret A Hanson
- Department of Pathology, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Kaitlyn L Moss
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Benjamin K Potter
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland.,Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
58
|
Kan C, Chen L, Hu Y, Lu H, Li Y, Kessler JA, Kan L. Microenvironmental factors that regulate mesenchymal stem cells: lessons learned from the study of heterotopic ossification. Histol Histopathol 2017; 32:977-985. [PMID: 28328009 PMCID: PMC5809774 DOI: 10.14670/hh-11-890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow contains a non-hematopoietic, clonogenic, multipotent population of stromal cells that are later called mesenchymal stem cells (MSC). Similar cells that share many common features with MSC are also found in other organs, which are thought to contribute both to normal tissue regeneration and to pathological processes such as heterotopic ossification (HO), the formation of ectopic bone in soft tissue. Understanding the microenvironmental factors that regulate MSC in vivo is essential both for understanding the biology of the stem cells and for effective translational applications of MSC. Unfortunately, this important aspect has been largely underappreciated. This review tries to raise the attention and highlight this critical issue by updating the relevant literature along with discussions of the key issues in the area.
Collapse
Affiliation(s)
- Chen Kan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijun Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yangyang Hu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haimei Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuyun Li
- Department of Medical Laboratory Science, Bengbu Medical College, Bengbu, China
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lixin Kan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Medical Laboratory Science, Bengbu Medical College, Bengbu, China
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
59
|
The traumatic bone: trauma-induced heterotopic ossification. Transl Res 2017; 186:95-111. [PMID: 28668522 PMCID: PMC6715128 DOI: 10.1016/j.trsl.2017.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023]
Abstract
Heterotopic ossification (HO) is a common occurrence after multiple forms of extensive trauma. These include arthroplasties, traumatic brain and spinal cord injuries, extensive burns in the civilian setting, and combat-related extremity injuries in the battlefield. Irrespective of the form of trauma, heterotopic bone is typically endochondral in structure and is laid down via a cartilaginous matrix. Once formed, the heterotopic bone typically needs to be excised surgically, which may result in wound healing complications, in addition to a risk of recurrence. Refinements of existing diagnostic modalities, like micro- and nano-CT are being adapted toward early intervention. Trauma-induced HO is a consequence of aberrant wound healing, systemic and local immune system activation, infections, extensive vascularization, and innervation. This intricate molecular crosstalk culminates in activation of stem cells that initiate heterotopic endochondral ossification. Development of animal models recapitulating the unique traumatic injuries has greatly facilitated the mechanistic understanding of trauma-induced HO. These same models also serve as powerful tools to test the efficacy of small molecules which specifically target the molecular pathways underlying ectopic ossification. This review summarizes the recent advances in the molecular understanding, diagnostic and treatment modalities in the field of trauma-induced HO.
Collapse
|
60
|
Hurtgen BJ, Henderson BEP, Ward CL, Goldman SM, Garg K, McKinley TO, Greising SM, Wenke JC, Corona BT. Impairment of early fracture healing by skeletal muscle trauma is restored by FK506. BMC Musculoskelet Disord 2017; 18:253. [PMID: 28606129 PMCID: PMC5469075 DOI: 10.1186/s12891-017-1617-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Heightened local inflammation due to muscle trauma or disease is associated with impaired bone regeneration. Methods We hypothesized that FK506, an FDA approved immunomodulatory compound with neurotrophic and osteogenic effects, will rescue the early phase of fracture healing which is impaired by concomitant muscle trauma in male (~4 months old) Lewis rats. FK506 (1 mg/kg; i.p.) or saline was administered systemically for 14 days after an endogenously healing tibia osteotomy was created and fixed with an intermedullary pin, and the overlying tibialis anterior (TA) muscle was either left uninjured or incurred volumetric muscle loss injury (6 mm full thickness biopsy from middle third of the muscle). Results The salient observations of this study were that 1) concomitant TA muscle trauma impaired recovery of tibia mechanical properties 28 days post-injury, 2) FK506 administration rescued the recovery of tibia mechanical properties in the presence of concomitant TA muscle trauma but did not augment mechanical recovery of an isolated osteotomy (no muscle trauma), 3) T lymphocytes and macrophage presence within the traumatized musculature were heightened by trauma and attenuated by FK506 3 days post-injury, and 4) T lymphocyte but not macrophage presence within the fracture callus were attenuated by FK506 at 14 days post-injury. FK506 did not improve TA muscle isometric torque production Conclusion Collectively, these findings support the administration of FK506 to ameliorate healing of fractures with severe muscle trauma comorbidity. The results suggest one potential mechanism of action is a reduction in local T lymphocytes within the injured musculoskeletal tissue, though other mechanisms to include direct osteogenic effects of FK506 require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1617-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
61
|
Sung Hsieh HH, Chung MT, Allen RM, Ranganathan K, Habbouche J, Cholok D, Butts J, Kaura A, Tiruvannamalai-Annamalai R, Breuler C, Priest C, Loder SJ, Li J, Li S, Stegemann J, Kunkel SL, Levi B. Evaluation of Salivary Cytokines for Diagnosis of both Trauma-Induced and Genetic Heterotopic Ossification. Front Endocrinol (Lausanne) 2017; 8:74. [PMID: 28484423 PMCID: PMC5401868 DOI: 10.3389/fendo.2017.00074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Heterotopic ossification (HO) occurs in the setting of persistent systemic inflammation. The identification of reliable biomarkers can serve as an early diagnostic tool for HO, especially given the current lack of effective treatment strategies. Although serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP). Therefore, the goal of this study is to profile the cytokines associated with HO using a different non-invasive source of biomarkers. METHODS Serum and saliva were collected from a model of trauma-induced HO (tHO) with hind limb Achilles' tenotomy and dorsal burn injury at indicated time points (pre-injury, 48 h, 1 week, and 3 weeks post-injury) and a genetic non-trauma HO model (Nfatc1-Cre/caAcvr1fl/wt ). Samples were analyzed for 27 cytokines using the Bio-Plex assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these cytokines at the tenotomy site were also quantified with quantitative real-time PCR. Pearson correlation coefficient was assessed between saliva and serum. RESULTS Levels of TNF-α and IL-1β peaked at 48 h and 1 week post-injury in the burn/tenotomy cohort, and these values were significantly higher when compared with both uninjured (p < 0.01, p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Immunofluorescence staining confirmed enhanced expression of IL-1β, TNF-α, and MCP-1 at the tenotomy site 48 h after injury. Monocyte chemoattractant protein-1 (MCP-1) and VEGF was detected in saliva showing elevated levels at 1 week post-injury in our tHO model when compared with both uninjured (p < 0.001, p < 0.01) and burn-only mice (p < 0.005, p < 0.01). The Pearson correlation between serum MCP-1 and salivary MCP-1 was statistically significant (r = 0.9686, p < 0.001) Similarly, the Pearson correlation between serum VEGF and salivary VEGF was statistically significant (r = 0.9709, p < 0.05). CONCLUSION In this preliminary study, we characterized the diagnostic potential of specific salivary cytokines that may serve as biomarkers for an early-stage diagnosis of HO. This study identified two candidate biomarkers for further study and suggests a novel method for diagnosis in the context of current difficult diagnosis and risks of current diagnostic methods in certain patients.
Collapse
Affiliation(s)
- Hsiao Hsin Sung Hsieh
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael T. Chung
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ronald M. Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joe Habbouche
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Butts
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Arminder Kaura
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Chris Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin Priest
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shawn J. Loder
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jan Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
62
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
63
|
Davies OG, Grover LM, Lewis MP, Liu Y. PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification. J Tissue Eng Regen Med 2017; 12:e355-e367. [PMID: 27696748 PMCID: PMC6084375 DOI: 10.1002/term.2320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue‐engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated ‘reserve’ cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that ‘reserve’ cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet‐derived growth factor (PDGF)‐BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca‐1+/CD73+ phenotype. Alizarin red staining showed that PDGF‐BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF‐induced mineralization was blocked in the presence of the pro‐inflammatory cytokines tumour necrosis factor‐α and interleukin 1. In conclusion, the present study identified that PDGF‐BB is a potent osteoinductive factor in a model of tissue‐engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro‐inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Owen G Davies
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Yang Liu
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
64
|
Abstract
Heterotopic ossification (HO) is a common complication of the surgical treatment of acetabular fractures. HO is the formation of trabecular bone in soft tissues where bone does not usually occur. Over the last decade, many risk factors have been identified for HO after surgical fixation of acetabular fractures; however, prophylaxis and treatment of this condition are controversial. Potential preventive measures range from NSAIDs to external beam irradiation, but recent studies have questioned the utility of these measures. The Brooker classification system, which has been correlated with patient function and outcomes, is most commonly used to describe HO severity. Advances will assist in the diagnosis, prevention, and management of HO as well as the assessment of risk factors that could affect outcomes.
Collapse
|
65
|
Autologous Minced Muscle Grafts Improve Muscle Strength in a Porcine Model of Volumetric Muscle Loss Injury. J Orthop Trauma 2016; 30:e396-e403. [PMID: 27466826 DOI: 10.1097/bot.0000000000000673] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The traumatic loss of muscle tissue, defined as volumetric muscle loss (VML) injury, has no definitive therapy. The purposes of this study were: (1) to develop a porcine model of VML and (2) to investigate autologous minced muscle grafts (1-mm pieces of muscle) as a potential therapeutic. Minced grafts were evaluated because they have promoted fiber regeneration and functional recovery in rat VML models and do not require US Food and Drug Administration approval for clinical use. METHODS In 5 female Yorkshire-cross pigs, ≈5 g (≈20%) of tissue was excised from the peroneous tertius muscle (≈3 × 3 × 1.5-cm defect) of each leg. The defect in one leg was treated with autologous minced grafts derived from the contralateral leg. Maximal isometric tetanic strength assessments of the dorsiflexor muscles (ie, the peroneous tertius muscle) were performed before and biweekly up to 12 weeks postinjury. RESULTS VML injury resulted in a -43.5% ± 7.2% strength deficit 12 weeks postinjury in nonrepaired legs. Autologous minced muscle graft repair significantly improved strength over 12 weeks (32% strength increase 12 weeks postinjury vs. nonrepaired muscles with a remaining -27.8% ± 7.0% strength deficit; P < 0.001). Nonrepaired muscles developed extensive fibrosis and presented no evidence of muscle fiber regeneration within the defect area. Minced graft-treated muscles presented areas of putative de novo muscle fiber regeneration within the defect area, although extensive fibrotic tissue deposition was also present. CONCLUSION Autologous minced muscle grafts partially restored neuromuscular strength in a novel porcine model of VML.
Collapse
|
66
|
Agarwal S, Drake J, Qureshi AT, Loder S, Li S, Shigemori K, Peterson J, Cholok D, Forsberg JA, Mishina Y, Davis TA, Levi B. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS One 2016; 11:e0156253. [PMID: 27494521 PMCID: PMC4975503 DOI: 10.1371/journal.pone.0156253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is the pathologic formation of bone separate from the normal skeleton. Although several models exist for studying HO, an understanding of the common in vitro properties of cells isolated from these models is lacking. We studied three separate animal models of HO including two models of trauma-induced HO and one model of genetic HO, and human HO specimens, to characterize the properties of cells derived from tissue containing pre-and mature ectopic bone in relation to analogous mesenchymal cell populations or osteoblasts obtained from normal muscle tissue. We found that when cultured in vitro, cells isolated from the trauma sites in two distinct models exhibited increased osteogenic differentiation when compared to cells isolated from uninjured controls. Furthermore, osteoblasts isolated from heterotopic bone in a genetic model of HO also exhibited increased osteogenic differentiation when compared with normal osteoblasts. Finally, osteoblasts derived from mature heterotopic bone obtained from human patients exhibited increased osteogenic differentiation when compared with normal bone from the same patients. These findings demonstrate that across models, cells derived from tissues forming heterotopic ossification exhibit increased osteogenic differentiation when compared with either normal tissues or osteoblasts. These cell types can be used in the future for in vitro investigations for drug screening purposes.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - James Drake
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Ammar T Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Shuli Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Kay Shigemori
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan Peterson
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Jonathan A Forsberg
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Yuji Mishina
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, MI, 48109, United States of America
| |
Collapse
|
67
|
Ranganathan K, Agarwal S, Cholok D, Loder S, Li J, Sung Hsieh HH, Wang SC, Buchman SR, Levi B. The role of the adaptive immune system in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. J Surg Res 2016; 206:53-61. [PMID: 27916375 DOI: 10.1016/j.jss.2016.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/26/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterotopic ossification (HO) is the pathologic process of extraskeletal bone formation. Although the exact etiology remains unknown, inflammation appears to catalyze disease progression. The goal of this study is to determine the impact of the adaptive immune system on HO. METHODS HO was induced in 8-wk-old control C57BL/6 and immunocompromised Rag1tm1Mom (Rag1 KO) male mice deficient in B- and T-lymphocytes via combined Achilles tenotomy and burn injury. Microcomputed tomography quantified the extent of HO formation at the tenotomy site. Adipose-derived mesenchymal stem cells were harvested to evaluate osteogenic differentiation potential. RESULTS Areas of developing HO demonstrated substantial enrichment of CD45 + leukocytes at 3 wk after injury. HO from Rag1 KO mice was substantially less mature with foci of cartilage and disorganized trabecular bone present 12 wk after injury. Rag1 KO mice formed 60% less bone compared to immunocompetent controls (4.67 ± 1.5 mm versus 7.76 ± 0.65 mm; P = 0.001). Tartrate-resistant acid phosphatase staining and immunofluorescent analysis of osteoprotegerin and nuclear factor kappa-light-chain-enhancer of activated B cells demonstrated no appreciable difference in osteoclast number or activation. Alizarin red staining in vitro demonstrated a significant decrease in osteogenic potential in immunocompromised mice compared to controls (29.1 ± 0.54 mm versus 12.1 ± 0.14 mm; P < 0.001). CONCLUSIONS We demonstrate a prominent role for the adaptive immune system in the development of HO. In the absence of mature B- and T-lymphocytes, HO growth and development are attenuated. Furthermore, we demonstrate that mesenchymal populations from B- and T-cell deficient mice are inherently less osteogenic. This study identifies a potential therapeutic role for modulation of the adaptive immune system in the treatment of HO.
Collapse
Affiliation(s)
- Kavitha Ranganathan
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Jonathan Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | | | - Stewart C Wang
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Steven R Buchman
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan.
| |
Collapse
|
68
|
Trauma-induced heterotopic bone formation and the role of the immune system: A review. J Trauma Acute Care Surg 2016; 80:156-65. [PMID: 26491794 DOI: 10.1097/ta.0000000000000883] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.
Collapse
|
69
|
Risk factors for the development of heterotopic ossification in seriously burned adults: A National Institute on Disability, Independent Living and Rehabilitation Research burn model system database analysis. J Trauma Acute Care Surg 2016; 79:870-6. [PMID: 26496115 DOI: 10.1097/ta.0000000000000838] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a debilitating complication of burn injury; however, incidence and risk factors are poorly understood. In this study, we use a multicenter database of adults with burn injuries to identify and analyze clinical factors that predict HO formation. METHODS Data from six high-volume burn centers, in the Burn Injury Model System Database, were analyzed. Univariate logistic regression models were used for model selection. Cluster-adjusted multivariate logistic regression was then used to evaluate the relationship between clinical and demographic data and the development of HO. RESULTS Of 2,979 patients in the database with information on HO that addressed risk factors for development of HO, 98 (3.5%) developed HO. Of these 98 patients, 97 had arm burns, and 96 had arm grafts. When controlling for age and sex in a multivariate model, patients with greater than 30% total body surface area burn had 11.5 times higher odds of developing HO (p < 0.001), and those with arm burns that required skin grafting had 96.4 times higher odds of developing HO (p = 0.04). For each additional time a patient went to the operating room, odds of HO increased by 30% (odds ratio, 1.32; p < 0.001), and each additional ventilator day increased odds by 3.5% (odds ratio, 1.035; p < 0.001). Joint contracture, inhalation injury, and bone exposure did not significantly increase odds of HO. CONCLUSION Risk factors for HO development include greater than 30% total body surface area burn, arm burns, arm grafts, ventilator days, and number of trips to the operating room. Future studies can use these results to identify highest-risk patients to guide deployment of prophylactic and experimental treatments. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
70
|
Do Surrogates of Injury Severity Influence the Occurrence of Heterotopic Ossification in Fractures of the Acetabulum? J Orthop Trauma 2016; 30:213-6. [PMID: 26606599 DOI: 10.1097/bot.0000000000000490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the relationship between injury severity surrogates and other patient factors with the development and severity of heterotopic ossification (HO) following open reduction internal fixation of acetabular fractures treated with a posterior approach. DESIGN Retrospective review. SETTING Academic level 1 trauma center. PARTICIPANTS Two hundred forty-one patients who were treated through a posterior approach with a minimum of 6-month radiographic follow-up were identified from an acetabular fracture database. INTERVENTION None. MAIN OUTCOME MEASURES The occurrence and severity (Brooker Grade III/IV) of HO 6 months postsurgery. RESULTS Length of stay (LOS) in the intensive care unit (ICU), non-ICU LOS >10 days, and HO prophylaxis with external radiation beam therapy (XRT) were significantly associated with the development of HO in a multivariate model [ICU LOS: 1-2 days, odds ratio (OR) = 4.33, 95% confidence interval (CI): 1.03-18.25; 3-6 days, OR = 4.1, 95% CI, 1.27-13.27; >6 days, OR = 11.7, 95% CI, 3.24-42.22; non-ICU LOS >10 days (vs. 0-6 days): OR = 7.6, 95% CI, 2.6-22.25; XRT HO prophylaxis: OR = 0.29, 95% CI, 0.10-0.85]. Other variables evaluated in multivariate modeling not significantly associated with development and severity of HO included age, gender, mechanism of injury, injury severity score, presence of neurologic injury, Letournel fracture type, occurrence of hip dislocation, interval from injury to surgery, operative time, and estimated blood loss. CONCLUSIONS Surrogates of injury severity, including days in the ICU and non-ICU hospital LOS >10 days, were associated with the development of HO in our cohort of acetabular fracture patients. Prophylaxis with XRT was significantly protective against the development of HO, and the ability to provide prophylaxis is very likely related to the severity of injury. LEVEL OF EVIDENCE Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
71
|
Eisenstein NM, Cox SC, Williams RL, Stapley SA, Grover LM. Bedside, Benchtop, and Bioengineering: Physicochemical Imaging Techniques in Biomineralization. Adv Healthc Mater 2016; 5:507-28. [PMID: 26789418 DOI: 10.1002/adhm.201500617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/10/2015] [Indexed: 01/10/2023]
Abstract
The need to quantify physicochemical properties of mineralization spans many fields. Clinicians, mineralization researchers, and bone tissue bioengineers need to be able to measure the distribution, quantity, and the mechanical and chemical properties of mineralization within a wide variety of substrates from injured muscle to electrospun polymer scaffolds and everything in between. The techniques available to measure these properties are highly diverse in terms of their complexity and utility. Therefore it is of the utmost importance that those who intend to use them have a clear understanding of the advantages and disadvantages of each technique and its appropriateness to their specific application. This review provides all of this information for each technique and uses heterotopic ossification and engineered bone substitutes as examples to illustrate how these techniques have been applied. In addition, we provide novel data using advanced techniques to analyze human samples of combat related heterotopic ossification.
Collapse
Affiliation(s)
- Neil M. Eisenstein
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
- Royal Centre for Defence Medicine; ICT Centre; Vincent Drive; Edgbaston B15 2SQ UK
| | - Sophie C. Cox
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
| | | | - Sarah A. Stapley
- Royal Centre for Defence Medicine; ICT Centre; Vincent Drive; Edgbaston B15 2SQ UK
| | - Liam M. Grover
- Chemical Engineering; University of Birmingham; Edgbaston B15 2TT UK
| |
Collapse
|
72
|
Micha D, Voermans E, Eekhoff MEW, van Essen HW, Zandieh-Doulabi B, Netelenbos C, Rustemeyer T, Sistermans EA, Pals G, Bravenboer N. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone 2016; 84:169-180. [PMID: 26769004 DOI: 10.1016/j.bone.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Fibrodysplasia ossificans progressiva is a rare genetic disorder characterized by progressive heterotopic ossification. FOP patients develop soft tissue lumps as a result of inflammation-induced flare-ups which leads to the irreversible replacement of skeletal muscle tissue with bone tissue. Classical FOP patients possess a mutation (c.617G>A; R206H) in the ACVR1-encoding gene which leads to dysregulated BMP signaling. Nonetheless, not all FOP patients with this mutation exhibit equal severity in symptom presentation or disease progression which indicates a strong contribution by environmental factors. Given the pro-inflammatory role of TGFβ, we studied the role of TGFβ in the progression of osteogenic differentiation in primary dermal fibroblasts from five classical FOP patients based on a novel method of platelet lysate-based osteogenic transdifferentiation. During the course of transdifferentiation the osteogenic properties of the cells were evaluated by the mRNA expression of Sp7/Osterix, Runx2, Alp, OC and the presence of mineralization. During transdifferentiation the expression of osteoblast markers Runx2 (p<0.05) and Alp were higher in patient cells compared to healthy controls. All cell lines exhibited increase in mineralisation. FOP fibroblasts also expressed higher baseline Sp7/Osterix levels (p<0.05) confirming their higher osteogenic potential. The pharmacological inhibition of TGFβ signaling during osteogenic transdifferentiation resulted in the attenuation of osteogenic transdifferentiation in all cell lines as shown by the decrease in the expression of Runx2 (p<0.05), Alp and mineralization. We suggest that blocking of TGFβ signaling can decrease the osteogenic transdifferentiation of FOP fibroblasts.
Collapse
Affiliation(s)
- Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Elise Voermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marelise E W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Huib W van Essen
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Thomas Rustemeyer
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands.
| | - E A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
73
|
Abstract
Successful management of the mangled extremity is difficult; however, recent advancements are changing the outcomes of these difficult cases. Multiple centers are working on new bionic limbs with real-time feedback and better performance parameters. Research progress, particularly in the military sector, has aided in our understanding of heterotopic ossification after devastating limb injuries. This progress has also allowed a better treatment program for the residual limb in surgery and postsurgery. It is an exciting time in the management and rehabilitation of amputated limbs, as both biologic and technological advancements are enabling better patient satisfaction. This article looks at some of these discoveries and how they are changing the treatment of the residual limb.
Collapse
|
74
|
Tu B, Liu S, Liu G, Yan W, Wang Y, Li Z, Fan C. Macrophages derived from THP-1 promote the osteogenic differentiation of mesenchymal stem cells through the IL-23/IL-23R/β-catenin pathway. Exp Cell Res 2015; 339:81-89. [PMID: 26477825 DOI: 10.1016/j.yexcr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/29/2023]
Abstract
Abnormal bone formation is a clinically significant dilemma for many conditions in response to injury, inflammation or genetic disease. However, the effects of inflammation on the osteogenic differentiation of mesenchymal stem cells (MSCs) remain unclear. IL-23 secretion from macrophages might contribute to the development of bone formation. Here, we investigated the stimulatory effects of THP-1 macrophage conditioned medium (MΦ CM) on the osteogenic differentiation of human MSCs and the associated signaling pathways. The osteogenic differentiation of MSCs was induced after exposure to osteogenic differentiation medium (OM). MΦ CM significantly increased alkaline phosphate (ALP) activity and calcium mineralization in MSCs. Osteogenic marker genes, including RUNX2, ALP and osteocalcin (OCN), were also up-regulated in MSCs after exposure to MΦ CM. Moreover, western blotting revealed that MΦ CM treatment induced STAT3 and β-catenin activation in MSCs. Furthermore, blockade of IL-23 in MΦ CM not only impaired the osteogenic-promotion effects of macrophage but also decreased the expression of osteogenic maker genes. However, IL-23R silencing suppressed MΦ CM-induced calcium mineralization and osteogenic maker gene expression in MSCs. These data suggest that macrophages derived from THP-1 promote the osteoblastic differentiation of MSCs through the IL-23/IL-23R/β-catenin pathway and macrophages might contribute to the development of bone formation in inflammation.
Collapse
Affiliation(s)
- Bing Tu
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Shen Liu
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Guangwang Liu
- Department of Orthopaedic Surgery, the Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Xuzhou Hospital (Affiliated with Medical College of Southeast University), Jiangsu 221009, China
| | - Wei Yan
- Department of Bone and Joint Surgery, Wendeng Orthopaedic Hospital of Shandong Province, Shandong 264400, China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, China
| | - Zhiwei Li
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
75
|
Davies OG, Grover LM, Eisenstein N, Lewis MP, Liu Y. Identifying the Cellular Mechanisms Leading to Heterotopic Ossification. Calcif Tissue Int 2015; 97:432-44. [PMID: 26163233 DOI: 10.1007/s00223-015-0034-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the de novo development of bone within non-osseous soft tissues, and can be either hereditary or acquired. The hereditary condition, fibrodysplasia ossificans progressiva is rare but life threatening. Acquired HO is more common and results from a severe trauma that produces an environment conducive for the formation of ectopic endochondral bone. Despite continued efforts to identify the cellular and molecular events that lead to HO, the mechanisms of pathogenesis remain elusive. It has been proposed that the formation of ectopic bone requires an osteochondrogenic cell type, the presence of inductive agent(s) and a permissive local environment. To date several lineage-tracing studies have identified potential contributory populations. However, difficulties identifying cells in vivo based on the limitations of phenotypic markers, along with the absence of established in vitro HO models have made the results difficult to interpret. The purpose of this review is to critically evaluate current literature within the field in an attempt identify the cellular mechanisms required for ectopic bone formation. The major aim is to collate all current data on cell populations that have been shown to possess an osteochondrogenic potential and identify environmental conditions that may contribute to a permissive local environment. This review outlines the pathology of endochondral ossification, which is important for the development of potential HO therapies and to further our understanding of the mechanisms governing bone formation.
Collapse
Affiliation(s)
- O G Davies
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK.
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - N Eisenstein
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - M P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough, UK
- National Centre for Sport and Exercise Medicine, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Y Liu
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK
| |
Collapse
|
76
|
Abstract
BACKGROUND Heterotopic ossification (HO) affects the majority of combat-related lower extremity wounds involving severe fracture and amputation. Defining the timing of early osteogenic-related genes may help identify candidate prophylactic agents and guide the timing of prophylactic therapy after blast and other combat-related extremity injuries. QUESTIONS/PURPOSES Using a recently developed animal model of combat-related HO, we sought to determine (1) the timing of early chondrogenesis, cartilage formation, and radiographic ectopic bone development; and (2) the early cartilage and bone-related gene and protein patterns in traumatized soft tissue. METHODS We used an established rat HO model consisting of blast exposure, controlled femur fracture, crush injury, and transfemoral amputation through the zone of injury. Postoperatively, rats were euthanized on Days 3 to 28. We assessed evidence of early ectopic bone formation by micro-CT and histology and performed proteomic and gene expression analysis. RESULTS All rats showed radiographic evidence of HO within 28 days. Key chondrogenic (collagen type I alpha 1 [COL1α1], p = 0.016) and osteogenic-related genes (Runt-related transcription factor 2 [RUNX-2], p = 0.029; osteoclacin [OCN], p = 0.032; phosphate-regulating neutral endopeptidase, X-linked [PHEX], p = 0.0290, and POU domain class 5 transcription factor [POU5F], p = 0.016) and proteins (Noggin [NOG], p = 0.04, OCN, p = 0.02, RUNX- 2, p = 0.04, and substance P-1 [SP-1], p = 0.01) in the injured soft tissue, normalized to the contralateral limb and/or sham-treated naïve rats, increased on Days 3 to 14 postinjury. By 14 days, foci of hypertrophic chondrocytes, hyaline cartilage, and woven bone were present in the soft tissue surrounding the amputation site. CONCLUSIONS We found that genes that regulate early chondrogenic and osteogenic signaling and bone development (COL1α1, RUNX-2, OCN, PHEX, and POU5F1) are induced early during the tissue reparative/healing phase in a rat model simulating a combat-related extremity injury. CLINICAL RELEVANCE The ability to correlate molecular events with histologic and morphologic changes will assist researchers and clinicians to understand HO and hence formulate therapeutic interventions.
Collapse
|
77
|
Radowsky JS, Brown TS, Lisboa FA, Rodriguez CJ, Forsberg JA, Elster EA. Serum Inflammatory Cytokine Markers of Invasive Fungal Infection in Previously Immunocompetent Battle Casualties. Surg Infect (Larchmt) 2015; 16:526-32. [PMID: 26110227 DOI: 10.1089/sur.2013.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Invasive fungal infection (IFI) is described increasingly in individuals experiencing high-energy military trauma. Hallmarks of successful treatment involve aggressive surgical debridement and early initiation of systemic antimicrobial therapy. Currently, intravenous anti-fungal therapy commences based on appearance of wounds and patient's clinical course. Whereas some clinical protocols exist to predict which critically injured patients should receive anti-fungal therapies, there are no established serum markers associated with IFI. Our hypothesis is that serum inflammatory cytokines exist that can assist in identifying individuals at risk for IFI. METHODS This is a retrospective case control study at a single institution. Nine patients with IFI (Saksenaea vasiformis, Fusarium sp., Graphium sp., Scedosporium sp., Aspergillus sp., Mucor sp., and Alternaria sp.) after battlefield trauma were matched to nine individuals with similar injury patterns whose laboratory results were negative for IFI. The combination of serum inflammatory cytokines from the first and second debridements was examined with multiplex platform proteomic analysis. We defined statistical significance as a two-tailed α<0.05 after adjusting for multiple comparisons using the false discovery rate method. This model was refined further with correlation-based filter selection and the area under the curve of the receiver operating characteristics (AUROC) was tested. RESULTS Both groups had similar Injury Severity Scores (ISS) (mean±standard deviation [SD]) (26.8±15.5 vs. 29.2±16.8, p=0.766). Elevated RANTES (regulated on activation, normal T cell expressed and secreted) alone (10,492.8±4,450.1 vs. 5,333.3±4,162.2, p=0.006) correlated with IFI. Also, the combination of persistent elevations in RANTES, interleukin (IL)-2R, and IL-15 was a robust model for predicting IFI with the AUROC being 0.9. CONCLUSIONS Elevation in serum cytokines, particularly RANTES, correlated with IFI in this small group of patients. This demonstrates the potential of future rapid serum testing for early initiation and guidance of anti-fungal therapies.
Collapse
Affiliation(s)
- Jason S Radowsky
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Trevor S Brown
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Felipe A Lisboa
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Carlos J Rodriguez
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Jonathan A Forsberg
- 2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,3 Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| | - Eric A Elster
- 1 Department of General Surgery, Walter Reed National Military Medical Center, Bethesda , Maryland.,2 Naval Medical Research Center , Regenerative Medicine Department, Silver Spring, Maryland.,4 Norman M. Rich Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences , Department of Surgery, Bethesda, Maryland
| |
Collapse
|
78
|
Edwards DS, Barbur SAR, Bull AMJ, Stranks GJ. Posterior mini-incision total hip arthroplasty controls the extent of post-operative formation of heterotopic ossification. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2015; 25:1051-5. [PMID: 25953634 PMCID: PMC4512268 DOI: 10.1007/s00590-015-1646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/16/2015] [Indexed: 01/17/2023]
Abstract
Heterotopic ossification (HO) is the formation of bone at extra-skeletal sites. Reported rates of HO after hip arthroplasty range from 8 to 90 %; however, it is only severe cases that cause problems clinically, such as joint stiffness. The effects of surgical-related controllable intra-operative risk factors for the formation of HO were investigated. Data examined included gender, age of patient, fat depth, length of operation, incision length, prosthetic fixation method, the use of pulsed lavage and canal brush, and component size and material. All cases were performed by the same surgeon using the posterior approach. A total of 510 cases of hip arthroplasty were included, with an overall rate of HO of 10.2 %. Longer-lasting operations resulted in higher grades of HO (p = 0.047). Incisions >10 cm resulted in more widespread HO formation (p = 0.021). No further correlations were seen between HO formation and fat depth, blood loss, instrumentation, fixation methods or prosthesis material. The mini-incision approach is comparable to the standard approach in the aetiology of HO formation, and whilst the rate of HO may not be controllable, a posterior mini-incision approach can limit its extent.
Collapse
Affiliation(s)
- D S Edwards
- Royal Centre for Defence Medicine, Birmingham, UK,
| | | | | | | |
Collapse
|
79
|
Akers KS, Rowan MP, Niece KL, Graybill JC, Mende K, Chung KK, Murray CK. Antifungal wound penetration of amphotericin and voriconazole in combat-related injuries: case report. BMC Infect Dis 2015; 15:184. [PMID: 25886578 PMCID: PMC4403850 DOI: 10.1186/s12879-015-0918-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/31/2015] [Indexed: 12/02/2022] Open
Abstract
Background Survivors of combat trauma can have long and challenging recoveries, which may be complicated by infection. Invasive fungal infections are a rare but serious complication with limited treatment options. Currently, aggressive surgical debridement is the standard of care, with antifungal agents used adjunctively with uncertain efficacy. Anecdotal evidence suggests that antifungal agents may be ineffective in the absence of surgical debridement, and studies have yet to correlate antifungal concentrations in plasma and wounds. Case presentation Here we report the systemic pharmacokinetics and wound effluent antifungal concentrations of five wounds from two male patients, aged 28 and 30 years old who sustained combat-related blast injuries in southern Afghanistan, with proven or possible invasive fungal infection. Our data demonstrate that while voriconazole sufficiently penetrated the wound resulting in detectable effluent levels, free amphotericin B (unbound to plasma) was not present in wound effluent despite sufficient concentrations in circulating plasma. In addition, considerable between-patient and within-patient variability was observed in antifungal pharmacokinetic parameters. Conclusion These data highlight the need for further studies evaluating wound penetration of commonly used antifungals and the role for therapeutic drug monitoring in providing optimal care for critically ill and injured war fighters.
Collapse
Affiliation(s)
- Kevin S Akers
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Matthew P Rowan
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Krista L Niece
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - John C Graybill
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA.
| | - Katrin Mende
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Kevin K Chung
- United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Clinton K Murray
- Department of Medicine, Infectious Disease Service, San Antonio Military Medical Center, 3698 Chambers Pass, JBSA Fort Sam Houston, TX, 78234, USA. .,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
80
|
Convente MR, Wang H, Pignolo RJ, Kaplan FS, Shore EM. The immunological contribution to heterotopic ossification disorders. Curr Osteoporos Rep 2015; 13:116-24. [PMID: 25687936 PMCID: PMC4417939 DOI: 10.1007/s11914-015-0258-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of bone outside the endogenous skeleton is a significant clinical event, rendering affected individuals with immobility and a diminished quality of life. This bone, termed heterotopic ossification (HO), can appear in patients following invasive surgeries and traumatic injuries, as well as progressively manifest in several congenital disorders. A unifying feature of both genetic and nongenetic episodes of HO is immune system involvement at the early stages of disease. Activation of the immune system sets the stage for the downstream anabolic events that eventually result in ectopic bone formation, rendering the immune system a particularly appealing site of early therapeutic intervention for optimal management of disease. In this review, we will discuss the immunological contributions to HO disorders, with specific focus on contributing cell types, signaling pathways, relevant in vivo animal models, and potential therapeutic targets.
Collapse
Affiliation(s)
- Michael R Convente
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, 19104, USA,
| | | | | | | | | |
Collapse
|
81
|
Harris M, Cilwa K, Elster EA, Potter BK, Forsberg JA, Crane NJ. Pilot study for detection of early changes in tissue associated with heterotopic ossification: moving toward clinical use of Raman spectroscopy. Connect Tissue Res 2015; 56:144-52. [PMID: 25738521 DOI: 10.3109/03008207.2015.1013190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over 60% of combat-wounded patients develop heterotopic ossification (HO). Nearly 33% of them require surgical excision for symptomatic lesions, a procedure that is both fraught with complications and can delay or regress functional rehabilitation. Relative medical contraindications limit widespread use of conventional means of primary prophylaxis, such as nonspecific nonsteroidal anti-inflammatory medications and radiotherapy. Better methods for risk stratification are needed to both mitigate the risk of current means of primary prophylaxis as well as to evaluate novel preventive strategies currently in development. We asked whether Raman spectral changes, measured ex vivo, could be associated with histologic evidence of the earliest signs of HO formation and substance P (SP) expression in tissue biopsies from the wounds of combat casualties. In this pilot study, we compared normal muscle tissue, injured muscle tissue, very early HO lesions (< 16 d post-injury), early HO lesions (> 16 d post-injury) and mature HO lesions. The Raman spectra of these tissues demonstrate clear differences in the Amide I and III spectral regions of HO lesions compared to normal tissue, denoted by changes in the Amide I band center (p < 0.01) and the 1340/1270 cm(-1) (p < 0.05) band area and band height ratios. SP expression in the HO lesions appears to peak between 16 and 30 d post-injury, as determined by SP immunohistochemistry of corresponding tissue sections, potentially indicating optimal timing for administration of therapeutics. Raman spectroscopy may therefore prove a useful, non-invasive and early diagnostic modality to detect HO formation before it becomes evident either clinically or radiographically.
Collapse
Affiliation(s)
- Mitchell Harris
- Department of Surgery, Uniformed Services University of Health Science , Bethesda, MD , USA
| | | | | | | | | | | |
Collapse
|
82
|
Perosky JE, Peterson JR, Eboda ON, Morris MD, Wang SC, Levi B, Kozloff KM. Early detection of heterotopic ossification using near-infrared optical imaging reveals dynamic turnover and progression of mineralization following Achilles tenotomy and burn injury. J Orthop Res 2014; 32:1416-23. [PMID: 25087685 PMCID: PMC4408934 DOI: 10.1002/jor.22697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/24/2014] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is the abnormal formation of bone in soft tissue. Current diagnostics have low sensitivity or specificity to incremental progression of mineralization, especially at early time points. Without accurate and reliable early diagnosis and intervention, HO progression often results in incapacitating conditions of limited range of motion, nerve entrapment, and pain. We hypothesized that non-invasive near-infrared (NIR) optical imaging can detect HO at early time points and monitor heterotopic bone turnover longitudinally. C57BL6 mice received an Achilles tenotomy on their left hind limb in combination with a dorsal burn or sham procedure. A calcium-chelating tetracycline derivative (IRDye 680RD BoneTag) was injected bi-weekly and imaged via NIR to measure accumulative fluorescence for 11 wk and compared to in vivo microCT images. Percent retention of fluorescence was calculated longitudinally to assess temporal bone resorption. NIR detected HO as early as five days and revealed a temporal response in HO formation and turnover. MicroCT could not detect HO until 5 wk. Confocal microscopy confirmed fluorophore localization to areas of HO. These findings demonstrate the ability of a near-infrared optical imaging strategy to accurately and reliably detect and monitor HO in a murine model.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamin Levi
- Department of Plastic Surgery, University of Michigan
| | | |
Collapse
|
83
|
CORR Insights®: Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 2014; 472:2855-6. [PMID: 24973084 PMCID: PMC4117882 DOI: 10.1007/s11999-014-3728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 01/31/2023]
|
84
|
Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 2014; 472:2845-54. [PMID: 24879568 PMCID: PMC4117913 DOI: 10.1007/s11999-014-3694-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/09/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND After a decade of war in Iraq and Afghanistan, we have observed an increase in combat-related injury survival and a paradoxical increase in injury severity, mainly because of the effects of blasts. These severe injuries have a devastating effect on each patient's immune system resulting in massive upregulation of the systemic inflammatory response. By examining inflammatory mediators, preliminary data suggest that it may be possible to correlate complications such as wound failure and heterotopic ossification (HO) with distinct systemic and local inflammatory profiles, but this is a relatively new topic. QUESTIONS/PURPOSES We asked whether systemic or local markers of inflammation could be used as an objective means, independent of demographic and subjective factors, to estimate the likelihood of (1) HO and/or (2) wound failure (defined as wounds requiring surgical débridement after definitive closure, or wounds that were not closed or covered within 21 days of injury) in patients sustaining combat wounds. METHODS Two hundred combat wounded active-duty service members who sustained high-energy extremity injuries were prospectively enrolled between 2008 and 2012. Of these 200 patients, 189 had adequate followups to determine the presence or absence of HO, and 191 had adequate followups to determine the presence or absence of wound failure. In addition to injury-specific and demographic data, we quantified 24 cytokines and chemokines during each débridement. Patients were followed clinically for 6 weeks, and radiographs were obtained 3 months after definitive wound closure. Associations were investigated between these markers and wound failure or HO, while controlling for known confounders. RESULTS The presence of an amputation (p < 0.001; odds ratio [OR], 6.1; 95% CI. 1.63-27.2), Injury Severity Score (p = 0.002; OR, 33.2; 95% CI, 4.2-413), wound surface area (p = 0.001; OR, 1.01; 95% CI, 1.002-1.009), serum interleukin (IL)-3 (p = 0.002; OR, 2.41; 95% CI, 1.5-4.5), serum IL-12p70 (p = 0.01; OR, 0.49; 95% CI, 0.27-0.81), effluent IL-3 (p = 0.02; OR, 1.75; 95% CI, 1.2-2.9), and effluent IL-13 (p = 0.006; OR, 0.67; 95% CI, 0.50-0.87) were independently associated with HO formation. Injury Severity Score (p = 0.05; OR, 18; 95% CI, 5.1-87), wound surface area (p = 0.05; OR, 28.7; 95% CI, 1.5-1250), serum procalcitonin ([ProCT] (p = 0.03; OR, 1596; 95% CI, 5.1-1,758,613) and effluent IL-6 (p = 0.02; OR, 83; 95% CI, 2.5-5820) were independently associated with wound failure. CONCLUSIONS We identified associations between patients' systemic and local inflammatory responses and wound-specific complications such as HO and wound failure. However, future efforts to model these data must account for their complex, time dependent, and nonlinear nature. LEVEL OF EVIDENCE Level II, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Jonathan A. Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Section of Orthopaedics and Sports Medicine, Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Benjamin K. Potter
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| | - Elizabeth M. Polfer
- Regenerative Medicine Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD USA ,Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA
| | - Shawn D. Safford
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Eric A. Elster
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD USA ,Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD USA ,Surgical Critical Care Initiative (SC2I), Bethesda, MD USA
| |
Collapse
|
85
|
Guthrie HC, Martin KR, Taylor C, Spear AM, Whiting R, Macildowie S, Clasper JC, Watts SA. A pre-clinical evaluation of silver, iodine and Manuka honey based dressings in a model of traumatic extremity wounds contaminated with Staphylococcus aureus. Injury 2014; 45:1171-8. [PMID: 24908627 DOI: 10.1016/j.injury.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 02/02/2023]
Abstract
Prevention of extremity war wound infection remains a clinical challenge. Staphylococcus aureus is the most common pathogen in delayed infection. We hypothesised that choice of wound dressings may affect bacterial burden over 7 days reflecting the current practice of delayed primary closure of wounds within this timeframe. A randomised controlled trial of 3 commercially available dressings (Inadine(®) (Johnson & Johnson, NJ, USA), Acticoat(®) (Smith & Nephew, Hull, UK), Activon Tulle (Advancis Medical, Nottingham, UK)) was conducted in a rabbit model of contaminated forelimb muscle injury. A positive control group treated with antibiotics was included. Groups were compared to a saline soaked gauze control. The primary outcome was a statistically significant reduction (p < 0.05) in tissue S. aureus at 7 days post-injury. Secondary outcome measurements included bacteraemias, observational data, whole blood determination, ELISA for plasma biomarkers, PCR array analysis of wound healing gene expression and muscle/lymph node histopathology. Antibiotic, Inadine and Acticoat groups had statistically significant lower bacterial counts (mean 7.13 [95% CI 0.00-96.31]×10(2); 1.66 [0.94-2.58]×10(5); 8.86 [0.00-53.35]×10(4)cfu/g, respectively) and Activon Tulle group had significantly higher counts (2.82 [0.98-5.61]×10(6)cfu/g) than saline soaked gauze control (7.58 [1.65-17.83]×10(5)cfu/g). There were no bacteraemias or significant differences in observational data or whole blood determination. There were no significant differences in muscle/loss or pathology and lymph node cross-sectional area or morphology. There were some significant differences between treatment groups in the plasma cytokines IL-4, TNFα and MCP-1 in comparison to the control. PCR array data demonstrated more general changes in gene expression in the muscle tissue from the Activon Tulle group than the Inadine or Acticoat dressings with a limited number of genes showing significantly altered expression compared to control. This study has demonstrated that both Acticoat(®) and Inadine(®) dressings can reduce the bacteria burden in a heavily contaminated soft tissue wound and so they may offer utility in the clinical setting particularly where surgical treatment is delayed.
Collapse
Affiliation(s)
- Hugo C Guthrie
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, United Kingdom.
| | - Kevin R Martin
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Christopher Taylor
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Abigail M Spear
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Rachel Whiting
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Sara Macildowie
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom
| | - Jonathan C Clasper
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Birmingham B15 2SQ, United Kingdom
| | - Sarah A Watts
- Biomedical Sciences Department, Building 245, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, United Kingdom.
| |
Collapse
|
86
|
Microbial profiling of combat wound infection through detection microarray and next-generation sequencing. J Clin Microbiol 2014; 52:2583-94. [PMID: 24829242 DOI: 10.1128/jcm.00556-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden.
Collapse
|
87
|
Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Elster E, Luciw P. Proteomic sample preparation for blast wound characterization. Proteome Sci 2014; 12:10. [PMID: 24529238 PMCID: PMC3943455 DOI: 10.1186/1477-5956-12-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background Blast wounds often involve diverse tissue types and require substantial time and treatment for appropriate healing. Some of these subsequent wounds become colonized with bacteria requiring a better understanding of how the host responds to these bacteria and what proteomic factors contribute wound healing outcome. In addition, using reliable and effective proteomic sample preparation procedures can lead to novel biomarkers for improved diagnosis and therapy. Results To address this need, suitable sample preparation for 2-D DIGE proteomic characterization of wound effluent and serum samples from combat-wounded patients was investigated. Initial evaluation of crude effluent and serum proved the necessity of high abundant protein depletion. Subsequently, both samples were successfully depleted using Agilent Multiple Affinity Removal system and showed greatly improved 2-D spot maps, comprising 1,800 and 1,200 protein spots, respectively. Conclusion High abundant protein removal was necessary for both wound effluent and serum. This is the first study to show a successful method for high abundant protein depletion from wound effluent which is compatible with downstream 2-D DIGE analysis. This development allows for improved biomarker discovery in wound effluent and serum samples.
Collapse
Affiliation(s)
- Brett A Chromy
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
88
|
Osteogenic gene expression correlates with development of heterotopic ossification in war wounds. Clin Orthop Relat Res 2014; 472:396-404. [PMID: 24136804 PMCID: PMC3890153 DOI: 10.1007/s11999-013-3325-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/30/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a frequent complication of modern wartime extremity injuries. The biological mechanisms responsible for the development of HO in traumatic wounds remain elusive. QUESTION/PURPOSES The aims of our study were to (1) characterize the expression profile of osteogenesis-related gene transcripts in traumatic war wounds in which HO developed; and (2) determine whether expression at the mRNA level correlated with functional protein expression and HO formation. METHODS Biopsy specimens from 54 high-energy penetrating extremity wounds obtained at the initial and final surgical débridements were evaluated. The levels of selected osteogenic-related gene transcripts from RNA extracts were assessed by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. As a result of its key role in osteogenesis, the concentration of BMP-2 in the effluent of 29 wounds also was determined. RESULTS The transcripts of 13 genes (ALPL [p = 0.006], BMP-2 [p < 0.001], BMP-3 [p = 0.06], COL2A1 [p < 0.001], COLL10A1 [p < 0.001], COL11A1 [p = 0.006], COMP [p = 0.02], CSF2 [p = 0.003], CSF3 [p = 0.012], MMP8 [p < 0.001], MMP9 [p = 0.014], SMAD1 [p = 0.024], and VEGFA [p = 0.017]) were upregulated greater than twofold in wounds in which HO developed compared with wounds in which it did not develop. Gene transcript expression of BMP-2 also correlated directly with functional protein expression in the wounds that formed HO (p = 0.029). CONCLUSIONS Important differences exist in the osteogenic gene expression profile of wounds in which HO developed compared with wounds in which it did not develop. The upregulation of multiple osteogenesis-related gene transcripts indicates the presence of a proosteogenic environment necessary for ectopic bone formation in traumatic wounds. CLINICAL RELEVANCE Understanding the osteogenic environment associated with war wounds may allow for the development of novel therapeutic strategies for HO.
Collapse
|
89
|
Dolomisiewicz EA, Miller ME, Potter BK. Fulminant heterotopic ossification after combat-related amputation: a report of 2 cases. PM R 2013; 6:279-83. [PMID: 24374089 DOI: 10.1016/j.pmrj.2013.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 09/29/2013] [Accepted: 10/12/2013] [Indexed: 11/24/2022]
Abstract
Heterotopic ossification (HO) is the process of abnormal formation of lamellar bone in nonosseous tissues. In this case presentation, we describe patients with aggressive HO, which becomes symptomatic shortly after injury for which we have suggested the term "fulminant heterotopic ossification." These atypical presentations of fulminant HO highlight the necessity for continued research directed at improved understanding of HO and may suggest a role for early partial surgical excision as a definitive management strategy.
Collapse
Affiliation(s)
- Edward A Dolomisiewicz
- Department of Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889(∗).
| | - Matthew E Miller
- Department of Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD(†)
| | - Benjamin K Potter
- Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD(‡)
| |
Collapse
|
90
|
Crane NJ, Polfer E, Elster EA, Potter BK, Forsberg JA. Raman spectroscopic analysis of combat-related heterotopic ossification development. Bone 2013; 57:335-42. [PMID: 24012700 DOI: 10.1016/j.bone.2013.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022]
Abstract
Over 60% of our severely combat-injured patient population develops radiographically apparent heterotopic ossification. Nearly a third of these require surgical excision of symptomatic lesions, a procedure that is fraught with complications, and delays or regresses functional rehabilitation in many cases. Unfortunately, for the combat injured, medical contraindications and logistical limitations limit widespread use of conventional means of primary prophylaxis. Better means of risk stratification are needed to both mitigate the risk of current means of primary prophylaxis as well as to evaluate novel preventive strategies currently in development. We asked whether Raman spectral changes, measured ex vivo, correlated with histologic evidence of the earliest signs of HO formation using tissue biopsies from the wounds of combat casualties. In doing so, we compared normal muscle tissue to injured muscle tissue, unmineralized HO tissue, and mineralized HO tissue. The Raman spectra of these tissues demonstrate clear differences in the amide I and amide III spectral regions of HO tissue compared to normal tissue, denoted by changes in the 1640/1445cm(-1)(p<0.01), and 1340/1270cm(-1) (p<0.01) band area ratios (BARs). Additionally, analysis of the bone mineral in HO by Raman spectroscopy appears capable of determining bone maturity by measuring both the 945/960cm(-1) and the 1070/1445cm(-1) BARs. Raman may therefore prove a useful, non-invasive, and early diagnostic modality to detect HO formation prior to it becoming evident clinically or radiographically. This technique could ostensibly be utilized as a non-invasive means to risk stratify individual wounds at a time thought to be amenable to various means of primary prophylaxis.
Collapse
Affiliation(s)
- Nicole J Crane
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA; Department of Surgery, Uniformed Services University of Health Science, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
91
|
Immunoinflammatory response in critically ill patients: severe sepsis and/or trauma. Mediators Inflamm 2013; 2013:362793. [PMID: 24371374 PMCID: PMC3859159 DOI: 10.1155/2013/362793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022] Open
Abstract
Immunoinflammatory response in critically ill patients is very complex. This review explores some of the new elements of immunoinflammatory response in severe sepsis, tumor necrosis factor-alpha in severe acute pancreatitis as a clinical example of immune response in sepsis, immune response in severe trauma with or without secondary sepsis, and genetic aspects of host immuno-inflammatory response to various insults in critically ill patients.
Collapse
|
92
|
Davis TA, Lazdun Y, Potter BK, Forsberg JA. Ectopic bone formation in severely combat-injured orthopedic patients -- a hematopoietic niche. Bone 2013; 56:119-26. [PMID: 23727270 DOI: 10.1016/j.bone.2013.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/24/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Combat-related heterotopic ossification (HO) has emerged as a common and problematic complication of modern wartime extremity injuries, contributing to substantial patient morbidity and loss of function. We have previously reported that HO-forming patients exhibit a more pronounced systemic and local inflammatory response very early in the wound healing process. Moreover, traumatized muscle-derived mesenchymal progenitor cells from these patients have a skewed differentiation potential toward bone. Here, we demonstrate that HO lesions excised from this patient population contain highly vascularized, mature, cancellous bone containing adipogenic marrow. Histologic analysis showed immature hematopoietic cells located within distinct foci in perivascular regions. The adipogenic marrow often contained low numbers of functional erythroid (BFU-E), myeloid (CFU-GM, CFU-M) and multilineage (CFU-GEMM) colony-forming hematopoietic progenitor cells (HPCs). Conversely, tissue from control muscle and non-HO traumatic wound granulation tissue showed no evidence of hematopoietic progenitor cell activity. In summary, our findings suggest that ectopic bone can provide an appropriate hematopoietic microenvironment for supporting the proliferation and differentiation of HPCs. This reactive and vibrant cell population may help maintain normal hematopoietic function, particularly in those with major extremity amputations who have sustained both massive blood loss, prompting systemic marrow stimulation, as well as loss of available native active marrow space. These findings begin to characterize the functional biology of ectopic bone and elucidate the interactions between HPC and non-hematopoietic cell types within the ectopic intramedullary hematopoietic microenvironmental niche identified.
Collapse
Affiliation(s)
- Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | | | | | | |
Collapse
|
93
|
Abstract
Heterotopic ossification (HO) can be defined as the pathologic formation of bone in extraskeletal tissues. There has been a substantial amount of recent research on the pathophysiology, prophylaxis, and treatment of HO and traumatic conditions associated with the development of HO. This research has advanced our understanding of this disease and helped to clarify evidence-based approaches to both the prophylaxis and treatment of HO. This article reviews the literature on these topics with a focus on their application in orthopaedic trauma.
Collapse
|
94
|
Wang L, Huang MJ, Liu B, Zhang ZM, Zheng XC, Yan B, Chen TY, Jin DD, Bai XC. Could heterotopic ossification be prevented by varying dietary n-3/n-6 polyunsaturated fatty acid ratio: a novel perspective to its treatment? Med Hypotheses 2012; 80:57-60. [PMID: 23159103 DOI: 10.1016/j.mehy.2012.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is a common complication following with musculoskeletal trauma and surgical procedures. It usually decreases joint mobility and eventually causes loss of joint function. Despite nonsteroidal anti-inflammatory drugs (NSAIDs), the inhibitor of cyclooxygenase(COX), have been proven to prevent HO effectively via prostaglandin E2 synthesis regulation and modulation of tissue responsiveness to pro-inflammatory signaling, HO prevention is still a matter of debate for clinicians to avoid the side effect of NSAIDs. Interestingly, it is suggested that PGE2 production and pro-inflammatory microenvironment in body could be modified by varying the ratio of the precursor fatty acids in the diet. On account of the effect of dietary (n-6)/(n-3) PUFAs ratio on both COX metabolism and pro-inflammatory cytokines mediated biological responsiveness, we hypothesized lowering dietary (n-6)/(n-3) PUFAs ratio may not only directly reduce the substrate of COX-2 and COX-2 activity, but also partially ameliorate tissue inflammatory responsiveness to cytokines correlated with HO development,exerting an inhibitory effect on PGE2 synthesis to prevent HO formation. The negative role of lowering dietary (n-6)/(n-3) PUFAs ratio on angiogenesis, cytokines-induced apoptosis, inflammatory responsiveness and osteogenesis could also contribute to its action on HO development. If our hypothesis is proved to be corrected, it could be an innovative method to treat HO.
Collapse
Affiliation(s)
- Liang Wang
- Department of Orthopaedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, Guangdong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Alfieri KA, Forsberg JA, Potter BK. Blast injuries and heterotopic ossification. Bone Joint Res 2012; 1:192-7. [PMID: 23610689 PMCID: PMC3626224 DOI: 10.1302/2046-3758.18.2000102] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 07/02/2012] [Indexed: 12/02/2022] Open
Abstract
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive in vivo testing using Raman spectroscopy
may become a feasible modality for early detection, and a wound-specific model
designed to detect the early gene transcript signatures associated
with HO is being tested. Through a combined effort, the goals of
early detection, risk stratification, and development of novel systemic
and local prophylaxis may soon be attainable.
Collapse
Affiliation(s)
- K A Alfieri
- Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889, USA
| | | | | |
Collapse
|