51
|
Wang J, Wu R, Liu Z, Qi L, Xu H, Yang H, Li Y, Liu L, Feng G, Zhang L. Core-Shell Structured Nanozyme with PDA-Mediated Enhanced Antioxidant Efficiency to Treat Early Intervertebral Disc Degeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5103-5119. [PMID: 38233333 DOI: 10.1021/acsami.3c15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Early intervention during intervertebral disc degeneration (IDD) plays a vital role in inhibiting its deterioration and activating the regenerative process. Aiming at the high oxidative stress (OS) in the IDD microenvironment, a core-shell structured nanozyme composed of Co-doped NiO nanoparticle (CNO) as the core encapsulated with a polydopamine (PDA) shell, named PDA@CNO, was constructed, hoping to regulate the pathological environment. The results indicated that the coexistence of abundant Ni3+/Ni2+and Co3+/Co2+redox couples in CNO provided rich catalytic sites; meanwhile, the quinone and catechol groups in the PDA shell could enable the proton-coupled electron transfer, thus endowing the PDA@CNO nanozyme with multiple antioxidative enzyme-like activities to scavenge •O2-, H2O2, and •OH efficiently. Under OS conditions in vitro, PDA@CNO could effectively reduce the intracellular ROS in nucleus pulposus (NP) into friendly H2O and O2, to protect NP cells from stagnant proliferation, abnormal metabolism (senescence, mitochondria dysfunction, and impaired redox homeostasis), and inflammation, thereby reconstructing the extracellular matrix (ECM) homeostasis. The in vivo local injection experiments further proved the desirable therapeutic effects of the PDA@CNO nanozyme in a rat IDD model, suggesting great potential in prohibiting IDD from deterioration.
Collapse
Affiliation(s)
- Jing Wang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ruibang Wu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huilun Xu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
52
|
Zhang W, Li G, Zhou X, Liang H, Tong B, Wu D, Yang K, Song Y, Wang B, Liao Z, Ma L, Ke W, Zhang X, Lei J, Lei C, Feng X, Wang K, Zhao K, Yang C. Disassembly of the TRIM56-ATR complex promotes cytoDNA/cGAS/STING axis-dependent intervertebral disc inflammatory degeneration. J Clin Invest 2024; 134:e165140. [PMID: 38488012 PMCID: PMC10940101 DOI: 10.1172/jci165140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kevin Yang
- Wuhan Britain-China School, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchi Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
53
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
54
|
Cheng YK, Lin CL, Huang YC, Lin GS, Lian ZY, Chuang CH. Accurate Intervertebral Disc Segmentation Approach Based on Deep Learning. Diagnostics (Basel) 2024; 14:191. [PMID: 38248069 PMCID: PMC10814817 DOI: 10.3390/diagnostics14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Automatically segmenting specific tissues or structures from medical images is a straightforward task for deep learning models. However, identifying a few specific objects from a group of similar targets can be a challenging task. This study focuses on the segmentation of certain specific intervertebral discs from lateral spine images acquired from an MRI scanner. In this research, an approach is proposed that utilizes MultiResUNet models and employs saliency maps for target intervertebral disc segmentation. First, a sub-image cropping method is used to separate the target discs. This method uses MultiResUNet to predict the saliency maps of target discs and crop sub-images for easier segmentation. Then, MultiResUNet is used to segment the target discs in these sub-images. The distance maps of the segmented discs are then calculated and combined with their original image for data augmentation to predict the remaining target discs. The training set and test set use 2674 and 308 MRI images, respectively. Experimental results demonstrate that the proposed method significantly enhances segmentation accuracy to about 98%. The performance of this approach highlights its effectiveness in segmenting specific intervertebral discs from closely similar discs.
Collapse
Affiliation(s)
- Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chih-Lung Lin
- Department of Neurosurgery, Asia University Hospital, Taichung 413, Taiwan;
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan
| | - Yi-Chi Huang
- Department of Radiology, Asia University Hospital, Taichung 413, Taiwan;
| | - Guo-Shiang Lin
- Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan;
| | - Zhen-You Lian
- Department of Artificial Intelligence and Computer Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan;
| | - Cheng-Hung Chuang
- Department of Artificial Intelligence and Computer Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan;
| |
Collapse
|
55
|
Wang HS, Lin S, Yu HM. Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs. Curr Stem Cell Res Ther 2024; 19:798-808. [PMID: 37150986 DOI: 10.2174/1574888x18666230504094233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.
Collapse
Affiliation(s)
- Han-Shi Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Hai-Ming Yu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
56
|
Miscusi M, Serrao M, Ricciardi L, Conte C, Castiglia SF, Ippolito G, Coppola G, Forcato S, Scerrati A, Raco A. Gait analysis, trunk movements, and electromyographic patterns after minimally invasive spine surgery for lumbar instability: An observational prospective study. World Neurosurg X 2024; 21:100262. [PMID: 38193093 PMCID: PMC10772388 DOI: 10.1016/j.wnsx.2023.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Objective The aim of the present study was to investigate trunk kinematics and spine muscle activation during walking after minimally invasive surgery in patients with L4-L5 degenerative spondylolisthesis suffering from lumbar instability (LI). Methods Eleven patients suffering from LI and 13 healthy controls (HC) were enrolled. Trunk kinematics and spine muscle activation patterns during walking were collected. Maximal trunk ranges of motion were also recorded from standing position. Assessments were performed pre-operatively (T0), 1 month (T1) and 3 months (T2) after MIS. Results We found significant improvement in spine muscle activation during walking at T2 compared to T0, mainly involving right/left symmetry at the operated level (L4-L5) and up-down synchronization from L3 to S1. Significant improvements in trunk rotation nearing to the HC group during walking were also found at T2 after surgery, though no changes were observed in the maximal range of motion of the trunk during standing. Furthermore, trunk rotation improvement correlated with a lower grade of residual disability. Conclusions Our findings indicate that trunk rotation improves after surgery, and impaired aspects of spine muscle activation can be improved with surgery. These biomechanical parameters could represent novel tools for monitoring the effect of surgery in LI and preventing impaired spine mobility and muscle activation.
Collapse
Affiliation(s)
- Massimo Miscusi
- Department of NESMOS, Sapienza University, via di Grottarossa 1035-1039, Rome, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome – Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
- Movement Analysis LAB, Policlinico Italia, Piazza del Campidano 6, 00162, Rome Italy
| | - Luca Ricciardi
- Department of NESMOS, Sapienza University, via di Grottarossa 1035-1039, Rome, Italy
| | - Carmela Conte
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome – Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
- Movement Analysis LAB, Policlinico Italia, Piazza del Campidano 6, 00162, Rome Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome – Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giorgio Ippolito
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome – Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gianluca Coppola
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome – Polo Pontino, Corso della Repubblica 79, 04100, Latina, Italy
| | - Stefano Forcato
- UO di Neurochirurgia, Pia Fondazione di Culto e Religione Cardinale G. Panico, Via San Pio X 4, 73039, Tricase, Italy
| | - Alba Scerrati
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Antonino Raco
- Department of NESMOS, Sapienza University, via di Grottarossa 1035-1039, Rome, Italy
| |
Collapse
|
57
|
Jiang C, Liu Y, Zhao W, Yang Y, Ren Z, Wang X, Hao D, Du H, Yin S. microRNA-365 attenuated intervertebral disc degeneration through modulating nucleus pulposus cell apoptosis and extracellular matrix degradation by targeting EFNA3. J Cell Mol Med 2024; 28:e18054. [PMID: 38009813 PMCID: PMC10826450 DOI: 10.1111/jcmm.18054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Youjun Liu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weigong Zhao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yimin Yang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiwei Ren
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Wang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Dingjun Hao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Heng Du
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Si Yin
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
58
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
59
|
Mohd Isa IL, Zulkiflee I, Ogaili RH, Mohd Yusoff NH, Sahruddin NN, Sapri SR, Mohd Ramli ES, Fauzi MB, Mokhtar SA. Three-dimensional hydrogel with human Wharton jelly-derived mesenchymal stem cells towards nucleus pulposus niche. Front Bioeng Biotechnol 2023; 11:1296531. [PMID: 38149172 PMCID: PMC10749916 DOI: 10.3389/fbioe.2023.1296531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Izzat Zulkiflee
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raed H. Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda Mohd Yusoff
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Natasya Nadia Sahruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaiful Ridzwan Sapri
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Kang X, Qian M, Liu M, Xu H, Xu B. Predictive Factors Associated with Chronic Neck Pain in Patients with Cervical Degenerative Disease: A Retrospective Cohort Study. J Pain Res 2023; 16:4229-4239. [PMID: 38107369 PMCID: PMC10723189 DOI: 10.2147/jpr.s423144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose To explore the predictive factors of neck pain (NP) in patients with cervical degenerative disease by retrospectively analyzing their occupational and demographic characteristics and to provide a valuable reference for preventing and treating chronic NP. Patients and Methods We retrospectively reviewed the occupational and demographic data of patients with cervical degenerative disease who had undergone anterior cervical surgery between June 2021 and December 2022 at our center. The patients were divided into NP and no-NP groups based on whether they had chronic NP before surgery. Relevant occupational and demographic data from all patients were statistically analyzed, and all variables were made categorical. Forward stepwise logistic regression models were constructed for preoperative chronic neck pain to explore the possible risk factors associated with chronic neck pain. Results The differences in smoking, being an office worker, BMI, and disease types between NP and no-NP groups were statistically significant. In contrast, there were no statistically significant in age, sex, academic level, duration, and degeneration grade between the two groups. Moreover, further logistic regression analysis indicated that smoking, being an office worker, having an abnormal BMI, and cervical spondylotic radiculopathy (CSR) were related to chronic neck pain. Conclusion The present study indicated that smoking, being an office worker, having an abnormal BMI, and CSR were predisposing risk factors for NP associated with cervical degenerative disease. Although intervertebral disc degeneration is the pathology basis of NP, the degeneration grade was not related to the occurrence of NP in our current study. Therefore, quitting smoking, avoiding sedentariness, and maintaining a normal BMI may prevent NP to some extent.
Collapse
Affiliation(s)
- Xinjian Kang
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Qinhuangdao, Qinhuangdao, Hebei, People’s Republic of China
- Tianjin Medical University, Graduate School, Tianjin, People’s Republic of China
| | - Man Qian
- Department of Refractive Surgery, Qinhuangdao Aier Ophthalmic Hospital, Qinhuangdao, Hebei, People’s Republic of China
| | - Mingli Liu
- Tianjin Medical University, Graduate School, Tianjin, People’s Republic of China
| | - Haiwei Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
61
|
Altan L, Metin Ökmen B, Tuncer T, Sindel D, Fatih Çay H, Hepgüler S, Sarıkaya S, Ayhan F, Bal A, Bilgilisoy M, Çapkın E, Cerrahoğlu L, Çevik R, Dülgeroğlu D, Durmaz B, Duruöz T, Gürer G, Gürsoy S, Hizmetli S, Kaçar C, Kaptanoğlu E, Ecesoy H, Melikoğlu M, Nas K, Nur H, Özçakır Ş, Şahin N, Şahin Ö, Sarıdoğan M, Faruk Şendur Ö, Sezer İ, Taşçı Bozbaş G, Tıkız C, Uğurlu H. Correlation of clinical signs and magnetic resonance imaging findings in patients with lumbar spondylosis. Arch Rheumatol 2023; 38:512-520. [PMID: 38125064 PMCID: PMC10728734 DOI: 10.46497/archrheumatol.2023.9806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The purpose of the study was to contribute further to this debated topic by investigating the correlation of magnetic resonance imaging (MRI) findings with the clinical picture in lumbar spondylosis patients. Patients and methods This multicenter retrospective study (as part of the epidemiological project of the TLAR-OASG [Turkish League Against Rheumatism-Osteoarthritis Study Group]) included 514 patients (101 males, 413 females; mean age: 63.6±10.8 years; range, 40 to 85 years) who were diagnosed as lumbar spondylosis by clinical examination and direct X-ray between December 2016 and June 2018. Demographic characteristics of patients, Visual Analog Scale for pain, presence of radiating pain, Roland-Morris disability questionnaire, straight leg raise test, deep tendon reflexes, neurogenic intermittent claudication symptoms, any decrease of muscle strength, and abnormality of sensation were recorded. Lumbar MRI findings of the patients were recorded as positive or negative in terms of disc herniation, intervertebral disc degeneration, root compression, osteophytes, spinal stenosis. Statistical analysis was done to assess the correlation between the clinical symptoms, physical examination, and MRI findings. Results Correlation analysis of the MRI results and the clinical findings showed a significant correlation between straight leg raise test and root compression (p<0.001, r=0.328) and a significant correlation between neurogenic intermittent claudication and spinal stenosis (p<0.001, r=0.376). Roland-Morris disability questionnaire had a significant correlation with all MRI findings (p<0.05, r<0.200). Conclusion The results of this study corroborate the notion that diligent patient history and physical examination are more valuable than MRI findings, even though a higher incidence of abnormal MRI findings have been obtained in patients with disability and dermatomal radiating pain.
Collapse
Affiliation(s)
- Lale Altan
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Uludağ University School of Medicine, Bursa, Türkiye
| | - Burcu Metin Ökmen
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Türkiye
| | - Tiraje Tuncer
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Dilşad Sindel
- Department of Physical Medicine and Rehabilitation, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Hasan Fatih Çay
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Simin Hepgüler
- Department of Physical Medicine and Rehabilitation, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Selda Sarıkaya
- Department of Physical Medicine and Rehabilitation, Bülent Ecevit University Faculty of Medicine, Zonguldak, Türkiye
| | - Figen Ayhan
- Department of Physical Medicine and Rehabilitation, Atılım University Medical School, Ankara, Türkiye
| | - Ajda Bal
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Türkiye
| | - Meral Bilgilisoy
- Department of Physical Medicine and Rehabilitation, Health Science University, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Erhan Çapkın
- Department of Physical Medicine and Rehabilitation, Karadeniz Technical University Faculty of Medicine, Trabzon, Türkiye
| | - Lale Cerrahoğlu
- Department of Physical Medicine and Rehabilitation, Celal Bayar University Faculty of Medicine, Manisa, Türkiye
| | - Remzi Çevik
- Department of Physical Medicine and Rehabilitation, Dicle University Faculty of Medicine, Diyarbakır, Türkiye
| | - Deniz Dülgeroğlu
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Türkiye
| | - Berrin Durmaz
- Department of Physical Medicine and Rehabilitation, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Tuncay Duruöz
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Marmara University Faculty of Medicine, Istanbul, Türkiye
| | - Gülcan Gürer
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Savaş Gürsoy
- Department of Physical Medicine and Rehabilitation, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Sami Hizmetli
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Cumhuriyet University Faculty of Medicine, Sivas, Türkiye
| | - Cahit Kaçar
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Ece Kaptanoğlu
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Başkent University Faculty of Medicine, Zübeyde Hanım Hospital, Izmir, Türkiye
| | - Hilal Ecesoy
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Karamanoğlu Mehmetbey University Faculty of Medicine, Konya, Türkiye
| | - Meltem Melikoğlu
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Atatürk University Faculty of Medicine, Erzurum, Türkiye
| | - Kemal Nas
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology and Immunology, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Hakan Nur
- Department of Physical Medicine and Rehabilitation, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Şüheda Özçakır
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Uludağ University School of Medicine, Bursa, Türkiye
| | - Nilay Şahin
- Department of Physical Medicine and Rehabilitation, Balıkesir University Faculty of Medicine, Balıkesir, Türkiye
| | - Özlem Şahin
- Department of Physical Medicine and Rehabilitation, Cumhuriyet University Faculty of Medicine, Sivas, Türkiye
| | - Merih Sarıdoğan
- Department of Physical Medicine and Rehabilitation, Istanbul Üniversitesi-Cerrahpaşa, Cerrahpaşa Tıp Fakültesi, Istanbul, Türkiye
| | - Ömer Faruk Şendur
- Department of Physical Medicine and Rehabilitation and Algology, Medicana International Hospital, Izmir, Türkiye
| | - İlhan Sezer
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Akdeniz University Faculty of Medicine, Antalya, Türkiye
| | - Gülnur Taşçı Bozbaş
- Department of Physical Medicine and Rehabilitation, Adnan Menderes University Faculty of Medicine, Aydın, Türkiye
| | - Canan Tıkız
- Department of Physical Medicine and Rehabilitation, Celal Bayar University Faculty of Medicine, Manisa, Türkiye
| | - Hatice Uğurlu
- Department of Physical Medicine and Rehabilitation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Türkiye
| |
Collapse
|
62
|
Wang Y, Wang Z, Tang Y, Chen Y, Fang C, Li Z, Jiao G, Chen X. Diagnostic model based on key autophagy-related genes in intervertebral disc degeneration. BMC Musculoskelet Disord 2023; 24:927. [PMID: 38041088 PMCID: PMC10691083 DOI: 10.1186/s12891-023-06886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Current research on autophagy is mainly focused on intervertebral disc tissues and cells, while there is few on human peripheral blood sample. therefore, this study constructed a diagnostic model to identify autophagy-related markers of intervertebral disc degeneration (IVDD). METHODS GSE150408 and GSE124272 datasets were acquired from the Gene Expression Omnibus database, and differential expression analysis was performed. The IVDD-autophagy genes were obtained using Weighted Gene Coexpression Network Analysis, and a diagnostic model was constructed and validated, followed by Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Meanwhile, miRNA-gene and transcription factor-gene interaction networks were constructed. In addition, drug-gene interactions and target genes of methylprednisolone and glucosamine were analyzed. RESULTS A total of 1,776 differentially expressed genes were identified between IVDD and control samples, and the composition of the four immune cell types was significantly different between the IVDD and control samples. The Meturquoise and Mebrown modules were significantly related to immune cells, with significant differences between the control and IVDD samples. A diagnostic model was constructed using five key IVDD-autophagy genes. The area under the curve values of the model in the training and validation datasets were 0.907 and 0.984, respectively. The enrichment scores of the two pathways were significantly different between the IVDD and healthy groups. Eight pathways in the IVDD and healthy groups had significant differences. A total of 16 miRNAs and 3 transcription factors were predicted to be of great value. In total, 84 significantly related drugs were screened for five key IVDD-autophagy genes in the diagnostic model, and three common autophagy-related target genes of methylprednisolone and glucosamine were predicted. CONCLUSION This study constructs a reliable autophagy-related diagnostic model that is strongly related to the immune microenvironment of IVD. Autophagy-related genes, including PHF23, RAB24, STAT3, TOMM5, and DNAJB9, may participate in IVDD pathogenesis. In addition, methylprednisolone and glucosamine may exert therapeutic effects on IVDD by targeting CTSD, VEGFA, and BAX genes through apoptosis, as well as the sphingolipid and AGE-RAGE signaling pathways in diabetic complications.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Zhiwei Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Chuanyuan Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Zhihui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Genlong Jiao
- Department of Spine Surgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong, 523570, P.R. China.
| | - Xiongsheng Chen
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China.
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China.
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, P.R. China.
| |
Collapse
|
63
|
Leite Pereira C, Grad S, Gonçalves RM. Biomarkers for intervertebral disc and associated back pain: From diagnosis to disease prognosis and personalized treatment. JOR Spine 2023; 6:e1280. [PMID: 38156062 PMCID: PMC10751979 DOI: 10.1002/jsp2.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 12/30/2023] Open
Abstract
Biomarkers are commonly recognized as objective indicators of a medical state or clinical outcome and have been widely used as clinical and diagnostic tools and surrogate endpoints in many pathological conditions. In the context of intervertebral disc (IVD) and associated back pain, also known as degenerative disc disease (DDD), the use of biomarkers has been poorly explored. DDD is currently diagnosed using imaging techniques and subjective pain scales, limiting an objective association between DDD and pain levels, as well as an evaluation of disease progression. There is a need for objective and reliable measurements for DDD, pain and pathology progression. DDD predictors could also help clinicians in deciding on the optimal treatment for distinct patient groups. This review addresses the current candidate biomarkers in DDD, including imaging, genetic, metabolite and protein-based parameters, both at the tissue and systemic levels, that may become a major advance in the diagnosis and prognosis of the disease, as well as in the management of therapeutic approaches to DDD.
Collapse
Affiliation(s)
- Catarina Leite Pereira
- I3S, Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB, Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | | | - Raquel M. Gonçalves
- I3S, Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB, Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS, Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
64
|
Zhang C, Guo LX. Prediction of the biomechanical behaviour of the lumbar spine under multi-axis whole-body vibration using a whole-body finite element model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3764. [PMID: 37539646 DOI: 10.1002/cnm.3764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Low back pain has been reported to have a high prevalence among occupational drivers. Whole-body vibration during the driving environment has been found to be a possible factor leading to low back pain. Vibration loads might lead to degeneration and herniation of the intervertebral disc, which would increase incidence of low back problems among drivers. Some previous studies have reported the effects of whole-body vibration on the human body, but studies on the internal dynamic responses of the lumbar spine under multi-axis vibration are limited. In this study, the internal biomechanical response of the intervertebral disc was extracted to investigate the biomechanical behaviour of the lumbar spine under a multi-axial vibration in a whole-body environment. A whole-body finite element model, including skin, soft tissues, the bone skeleton, internal organs and a detailed ligamentous lumbar spine, was used to provide a whole-body condition for analyses. The results showed that both vibrations close to vertical and fore-and-aft resonance frequencies would increase the transmission of vibrations in the intervertebral disc, and vertical vibration might have a greater effect on the lumbar spine than fore-and-aft vibration. The larger deformation of the posterior region of the intervertebral disc in a multi-axis vibration environment might contribute to the higher susceptibility of the posterior region of the intervertebral disc to injury. The findings of this study revealed the dynamic behaviours of the lumbar spine in multi-axis vehicle vibration conditions, and suggested that both vertical and fore-and-aft vibration should be considered for protecting the lumbar health of occupational drivers.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
65
|
Yurube T, Han I, Sakai D. Concepts of Regeneration for Spinal Diseases in 2023. Int J Mol Sci 2023; 24:16335. [PMID: 38003526 PMCID: PMC10671128 DOI: 10.3390/ijms242216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is our pleasure to announce the publication of the Special Issue "Regeneration for Spinal Diseases 3.0" in the International Journal of Molecular Sciences (ISSN 1422-0067) [...].
Collapse
Affiliation(s)
- Takashi Yurube
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Daisuke Sakai
- Department of Orthopedic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan;
| |
Collapse
|
66
|
Druszcz A, Miś M, Paprocka-Borowicz M, Rosińczuk J, Czapiga B. Comparative Analysis of Early and Long-Term Outcomes of Patients with Degenerative Lumbar Spine Disease Using the DIAM Stabilizer and Standard Rehabilitation Program: A Preliminary Prospective Randomized Controlled Trial with 1-Year Follow-Up. Healthcare (Basel) 2023; 11:2956. [PMID: 37998448 PMCID: PMC10671364 DOI: 10.3390/healthcare11222956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Low back pain (LBP) is a leading cause of disability and work absenteeism. The cause of LBP may be degeneration of the intervertebral disc. LBP is characterized by considerable variability and tends to develop into chronic pain. Treatment of LBP includes conservative and rehabilitative treatments, surgery, and so-called minimally invasive treatment. One of the most commonly performed procedures is interspinous stabilization using a dynamic interspinous DIAM (device for intervertebral assisted motion) stabilizer. There is still no clear, strong evidence for the effectiveness and superiority of surgical treatment over conservative treatment. This study aimed to compare the early and long-term outcomes of patients with LBP using the DIAM interspinous stabilizer in relation to patients treated conservatively. A group of 86 patients was prospectively randomized into two comparison groups: A (n = 43), treated with the DIAM dynamic stabilizer for degenerative lumbar spine disease (mean age = 43.4 years ± SD = 10.8 years), and B (n = 43), treated conservatively. Pain severity was assessed using the visual analog scale (VAS), whereas disability was assessed using the Oswestry disability index (ODI). The difference in preoperative and postoperative ODI scores ≥ 15 points was used as a criterion for treatment effectiveness, and the difference in VAS scores ≥ 1 point was used as a criterion for pain reduction. In patients under general anesthesia, the procedure only included implantation of the DIAM system. Patients in the control group underwent conservative treatment, which included rehabilitation, a bed regimen, analgesic drug treatment and periarticular spinal injections of anti-inflammatory drugs. It was found that all patients (n = 43) continued to experience LBP after DIAM implantation (mean VAS score of 4.2). Of the 36 patients who experienced LBP with sciatica before the procedure, 80.5% (n = 29) experienced a reduction in pain. As for the level of fitness, the average ODI score was 19.3 ± 10.3 points. As for the difference in ODI scores in the pre-treatment results vs. after treatment, the average score was 9.1 ± 10.6. None of the patients required reoperation at 12 months after surgery. There were no statistically significant differences between the two groups in either early (p = 0.45) or long-term outcomes (p = 0.37). In conclusion, neurosurgical treatment with the DIAM interspinous stabilizer was as effective as conservative treatment and rehabilitation during the one-year follow-up period.
Collapse
Affiliation(s)
- Adam Druszcz
- Department of Neurosurgery, Provincial Specialist Hospital in Legnica, 59-220 Legnica, Poland;
| | - Maciej Miś
- Department of Neurosurgery, Specialist Hospital in Walbrzych, 58-309 Walbrzych, Poland;
| | | | - Joanna Rosińczuk
- Department of Nursing and Obstetrics, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Bogdan Czapiga
- Department of Neurosurgery, 4th Military Clinical Hospital in Wroclaw, 50-981 Wroclaw, Poland;
| |
Collapse
|
67
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
68
|
Sadeghpour Ezbarami S, Zarei F, Haghani S. Evaluation of a mobile-application educational intervention on the knowledge, attitude, and practice of patients in postoperative care for lumbar disk herniation surgery: A randomized control trial. SAGE Open Med 2023; 11:20503121231203684. [PMID: 37900969 PMCID: PMC10612435 DOI: 10.1177/20503121231203684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
Objective We aimed to evaluate the impact of a mobile-based educational program on patients' postoperative care for lumbar disk herniation surgery. Methods A randomized controlled trial was conducted at Fayaz-Bakhsh Hospital, Tehran, Iran. Patients with lumbar disc herniation surgery experience were randomized to the intervention and control groups (learning with the LUmbar CAring Training-app). Participants' knowledge, attitudes, and practices of postoperative care for lumbar disc herniation surgery were assessed using a validated questionnaire at three-time points: pre-test (baseline), post-test one (immediately after program completion), and post-test two (8 weeks after program completion). The primary outcome measures were knowledge, attitudes, and practices scores variations. Secondary outcomes were not considered in our study. Results In total, 150 patients were enrolled, with 75 patients in each group. Patients in the intervention group demonstrated increased knowledge, modified attitudes, and practice than those in the control group (p < 0.05). The post-test knowledge, attitudes, and practices scores in the intervention group were significantly higher than those in the control group (p < 0.05). Conclusion Mobile-application-based education was a practical and feasible approach to improve patients' postoperative care for lumbar disc herniation surgery in Iran.
Collapse
Affiliation(s)
- Sohaila Sadeghpour Ezbarami
- Department of Health Education and Health Promotion, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Fatemeh Zarei
- Department of Health Education and Health Promotion, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Shima Haghani
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Luo M, Cao Q, Zhao Z, Shi Y, Yi Q, Chen J, Zeng X, Wang Z, Wang H, Yang Y, Chen J, Yang G, Zhou B, Liang C, Tan R, Wang D, Tang S, Huang J, Xiao Z, Mei Z. Risk factors of epidural hematoma in patients undergoing spinal surgery: a meta-analysis of 29 cohort studies. Int J Surg 2023; 109:3147-3158. [PMID: 37318854 PMCID: PMC10583939 DOI: 10.1097/js9.0000000000000538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The authors conducted this meta-analysis to identify risk factors for spinal epidural haematoma (SEH) among patients following spinal surgery. METHODS The authors systematically searched Pub: Med, Embase, and the Cochrane Library for articles that reported risk factors associated with the development of SEH in patients undergoing spinal surgery from inception to 2 July 2022. The pooled odds ratio (OR) was estimated using a random-effects model for each investigated factor. The evidence of observational studies was classified as high quality (Class I), moderate quality (Class II or III) and low quality (Class IV) based on sample size, Egger's P value and between-study heterogeneity. In addition, subgroup analyses stratified by study baseline characteristics and leave-one-out sensitivity analyses were performed to explore the potential sources of heterogeneity and the stability of the results. RESULTS Of 21 791 articles screened, 29 unique cohort studies comprising 150 252 patients were included in the data synthesis. Studies with high-quality evidence showed that older patients (≥60 years) (OR, 1.35; 95% CI, 1.03-1.77) were at higher risk for SEH. Studies with moderate-quality evidence suggested that patients with a BMI greater than or equal to 25 kg/m² (OR, 1.39; 95% CI, 1.10-1.76), hypertension (OR, 1.67; 95% CI, 1.28-2.17), and diabetes (OR, 1.25; 95% CI, 1.01-1.55) and those undergoing revision surgery (OR, 1.92; 95% CI, 1.15-3.25) and multilevel procedures (OR, 5.20; 95% CI, 2.89-9.37) were at higher risk for SEH. Meta-analysis revealed no association between tobacco use, operative time, anticoagulant use or American Society of Anesthesiologists (ASA) classification and SEH. CONCLUSIONS Obvious risk factors for SEH include four patient-related risk factors, including older age, obesity, hypertension and diabetes, and two surgery-related risk factors, including revision surgery and multilevel procedures. These findings, however, must be interpreted with caution because most of these risk factors had small effect sizes. Nonetheless, they may help clinicians identify high-risk patients to improve prognosis.
Collapse
Affiliation(s)
- Mingjiang Luo
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Qi Cao
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou
| | - Yuxin Shi
- Department of Pediatric Dentistry, First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi
| | - Qilong Yi
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Jiang Chen
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Xin Zeng
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Zhongze Wang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Haoyun Wang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Yuxin Yang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Juemiao Chen
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Gaigai Yang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Beijun Zhou
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Can Liang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Ridong Tan
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Di Wang
- Hengyang Medical School, University of South China, Hengyang City, Hunan Province
| | - Siliang Tang
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Jinshan Huang
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Zhihong Xiao
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
| | - Zubing Mei
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- Anorectal Disease Institute of Shuguang Hospital, Shanghai
| |
Collapse
|
70
|
Xu H, Li J, Fei Q, Jiang L. Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. Connect Tissue Res 2023; 64:413-427. [PMID: 37161923 DOI: 10.1080/03008207.2023.2212051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province, China
| |
Collapse
|
71
|
Belavy DL, Tagliaferri SD, Tegenthoff M, Enax-Krumova E, Schlaffke L, Bühring B, Schulte TL, Schmidt S, Wilke HJ, Angelova M, Trudel G, Ehrenbrusthoff K, Fitzgibbon B, Van Oosterwijck J, Miller CT, Owen PJ, Bowe S, Döding R, Kaczorowski S. Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study. PLoS One 2023; 18:e0282346. [PMID: 37603539 PMCID: PMC10441794 DOI: 10.1371/journal.pone.0282346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 08/23/2023] Open
Abstract
In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The "PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain" (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18-55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.
Collapse
Affiliation(s)
- Daniel L. Belavy
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Scott D. Tagliaferri
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Björn Bühring
- Internistische Rheumatologie, Krankenhaus St. Josef Wuppertal, Wuppertal, Germany
| | - Tobias L. Schulte
- Department of Orthopaedics and Trauma Surgery, St. Josef-Hospital Bochum, Ruhr University Bochum, Bochum, Germany
| | - Sein Schmidt
- Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, University Hospital Ulm, Ulm, Germany
| | - Maia Angelova
- School of Information Technology, Deakin University, Geelong, Australia
| | - Guy Trudel
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Katja Ehrenbrusthoff
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Bernadette Fitzgibbon
- Monarch Research Institute, Monarch Mental Health Group, Melbourne, Australia
- School of Psychology and Medicine, Australian National University, Canberra, Australia
- Department of Psychiatry, Monash University, Melbourne, Australia
| | | | - Clint T. Miller
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Patrick J. Owen
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Steven Bowe
- Faculty of Health, Deakin University, Geelong, Australia
- Te Kura Tātai Hauora-The School of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Rebekka Döding
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Svenja Kaczorowski
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| |
Collapse
|
72
|
Teo KYW, Tan R, Wong KL, Hey DHW, Hui JHP, Toh WS. Small extracellular vesicles from mesenchymal stromal cells: the next therapeutic paradigm for musculoskeletal disorders. Cytotherapy 2023; 25:837-846. [PMID: 37191613 DOI: 10.1016/j.jcyt.2023.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Musculoskeletal disorders are one of the biggest contributors to morbidity and place an enormous burden on the health care system in an aging population. Owing to their immunomodulatory and regenerative properties, mesenchymal stromal/stem cells (MSCs) have demonstrated therapeutic efficacy for treatment of a wide variety of conditions, including musculoskeletal disorders. Although MSCs were originally thought to differentiate and replace injured/diseased tissues, it is now accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly extracellular vesicles (EVs). Endowed with a diverse cargo of bioactive lipids, proteins, nucleic acids and metabolites, MSC-EVs have been shown to elicit diverse cellular responses and interact with many cell types needed in tissue repair. The present review aims to summarize the latest advances in the use of native MSC-EVs for musculoskeletal regeneration, examine the cargo molecules and mechanisms underlying their therapeutic effects, and discuss the progress and challenges in their translation to the clinic.
Collapse
Affiliation(s)
- Kristeen Ye Wen Teo
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore
| | - Rachel Tan
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Keng Lin Wong
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Orthopedic Surgery, Sengkang General Hospital, Singapore Health Services, Singapore, Republic of Singapore
| | - Dennis Hwee Weng Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - James Hoi Po Hui
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Wei Seong Toh
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Republic of Singapore; Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
73
|
Molinos M, Fiordalisi MF, Caldeira J, Almeida CR, Barbosa MA, Gonçalves RM. Alterations of bovine nucleus pulposus cells with aging. Aging Cell 2023; 22:e13873. [PMID: 37254638 PMCID: PMC10410011 DOI: 10.1111/acel.13873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Collapse
Affiliation(s)
- Maria Molinos
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Morena F. Fiordalisi
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | - Catarina R. Almeida
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- iBiMED – Institute of Biomedicine, Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Raquel M. Gonçalves
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
74
|
Maschke M, Diener HC. [Chronic Back Pain]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:326-339. [PMID: 37463575 DOI: 10.1055/a-2055-5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chronic back pain is one of the most common diseases in Germany. In many cases, no morphological change is found, so that the genesis remains unspecific in over 90% of patients. This article is intended to provide an overview of drug therapy as well as non-drug measures and summarizes the corresponding guideline recommendations.
Collapse
|
75
|
Miranda L, Quaranta M, Oliva F, Maffulli N. Stem cells and discogenic back pain. Br Med Bull 2023; 146:73-87. [PMID: 37164906 PMCID: PMC10788843 DOI: 10.1093/bmb/ldad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chronic low back pain, common from the sixth decade, negatively impacts the quality of life of patients and health care systems. Recently, mesenchymal stem cells (MSCs) have been introduced in the management of degenerative discogenic pain. The present study summarizes the current knowledge on the effectiveness of MSCs in patients with discogenic back pain. SOURCES OF DATA We performed a systematic review of the literature following the PRISMA guidelines. We searched PubMed and Google Scholar database, and identified 14 articles about management of chronic low back pain with MSCs injection therapy. We recorded information on type of stem cells employed, culture medium, clinical scores and MRI outcomes. AREAS OF AGREEMENT We identified a total of 303 patients. Ten studies used bone marrow stem cells. In the other four studies, different stem cells were used (of adipose, umbilical, or chondrocytic origin and a pre-packaged product). The most commonly used scores were Visual Analogue Scale and Oswestry Disability Index. AREAS OF CONTROVERSY There are few studies with many missing data. GROWING POINTS The studies analysed demonstrate that intradiscal injections of MSCs are effective on discogenic low-back pain. This effect may result from inhibition of nociceptors, reduction of catabolism and repair of injured or degenerated tissues. AREAS TIMELY FOR DEVELOPING RESEARCH Further research should define the most effective procedure, trying to standardize a single method.
Collapse
Affiliation(s)
- Luca Miranda
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via Salvador Allende, 43, Baronissi SA 84081, Italy
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo, Salerno 84131, Italy
| | - Marco Quaranta
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via Salvador Allende, 43, Baronissi SA 84081, Italy
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo, Salerno 84131, Italy
| | - Francesco Oliva
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via Salvador Allende, 43, Baronissi SA 84081, Italy
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo, Salerno 84131, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via Salvador Allende, 43, Baronissi SA 84081, Italy
- Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo, Salerno 84131, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England
- Guy Hilton Research Centre, Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, England
| |
Collapse
|
76
|
Fujii T, Daimon K, Ozaki M, Suzuki S, Takahashi Y, Tsuji O, Nagoshi N, Yagi M, Michikawa T, Matsumoto M, Nakamura M, Watanabe K. 10-year Longitudinal MRI Study of Intervertebral Disk Degeneration in Patients With Lumbar Spinal Canal Stenosis After Posterior Lumbar Decompression Surgery. Spine (Phila Pa 1976) 2023; 48:815-824. [PMID: 37026757 DOI: 10.1097/brs.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
STUDY DESIGN A prospective longitudinal magnetic resonance imaging (MRI) study. OBJECTIVE The objective of this study was to describe the progression of intervertebral disk (IVD) degeneration in patients who underwent posterior decompression surgery for lumbar spinal canal stenosis (LSS). SUMMARY OF BACKGROUND DATA IVD degeneration contributes to the pathogenesis of LSS; however, the long-term consequences of degenerative changes after decompression surgery remain unknown. MATERIALS AND METHODS Of 258 consecutive patients who underwent posterior lumbar decompression surgery for LSS, 62 who underwent MRI at their 10-year follow-up were included; 17 age-matched asymptomatic volunteers were analyzed as controls. Three MRI findings representing IVD degeneration were graded on their severity: decrease in signal intensity, posterior disk protrusion (PDP), and disk space narrowing (DSN). Clinical outcome was assessed using the low back pain (LBP) score from the Japanese Orthopaedic Association scoring system. We examined the association between the progression of degenerative changes on MRI and LBP/associated factors using logistic regression adjusting for age at baseline and sex. RESULTS The severity of IVD degeneration tended to be higher in patients with LSS than asymptomatic volunteers at both baseline and follow-up. IVD degeneration progressed in all patients during the 10-year follow-up period. Progression of decrease in signal intensity and PDP was observed at L1/2 in 73% and at L2/3 in 34%, respectively (the highest frequencies in the lumbar spine). Progression of DSN was highest at L4/5 in 42%. The rates of PDP and DSN progression during the 10-year follow-up period tended to be greater in patients with LSS than in asymptomatic volunteers. No significant difference in the proportion of LBP deterioration was evident for individuals with and without MRI findings of progression. CONCLUSIONS Our study reveals a natural history of the long-term postoperative course of IVD degeneration after posterior decompression surgery for LSS. Compared with healthy controls, patients with LSS seemed to be predisposed to IVD degeneration. Lumbar decompression surgery may promote the progression of DSN; however, progression of IVD degeneration after lumbar decompression surgery was not associated with worsening LBP scores.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Kenshi Daimon
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Yagi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
77
|
Hamaguchi H, Kitagawa M, Sakamoto D, Katscher U, Sudo H, Yamada K, Kudo K, Tha KK. Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation. Tomography 2023; 9:1029-1040. [PMID: 37218944 DOI: 10.3390/tomography9030084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Whether diurnal variation exists in quantitative MRI indices such as the T1rho relaxation time (T1ρ) of the intervertebral disc (IVD) is yet to be explored. This prospective study aimed to evaluate the diurnal variation in T1ρ, apparent diffusion coefficient (ADC), and electrical conductivity (σ) of lumbar IVD and its relationship with other MRI or clinical indices. Lumbar spine MRI, including T1ρ imaging, diffusion-weighted imaging (DWI), and electric properties tomography (EPT), was conducted on 17 sedentary workers twice (morning and evening) on the same day. The T1ρ, ADC, and σ of IVD were compared between the time points. Their diurnal variation, if any, was tested for correlation with age, body mass index (BMI), IVD level, Pfirrmann grade, scan interval, and diurnal variation in IVD height index. The results showed a significant decrease in T1ρ and ADC and a significant increase in the σ of IVD in the evening. T1ρ variation had a weak correlation with age and scan interval, and ADC variation with scan interval. Diurnal variation exists for the T1ρ, ADC, and σ of lumbar IVD, which should be accounted for in image interpretation. This variation is thought to be due to diurnal variations in intradiscal water, proteoglycan, and sodium ion concentration.
Collapse
Affiliation(s)
- Hiroyuki Hamaguchi
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Kitagawa
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Daiki Sakamoto
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Ulrich Katscher
- Philips Research Laboratories, Roentgenstrasse 24-26, 22335 Hamburg, Germany
| | - Hideki Sudo
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
| | - Katsuhisa Yamada
- Department of Orthopaedic Surgery, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo 060-8648, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
78
|
Mordechai HS, Aharonov A, Sharon SE, Bonshtein I, Simon C, Sivan SS, Sharabi M. Toward a mechanically biocompatible intervertebral disc: Engineering of combined biomimetic annulus fibrosus and nucleus pulposus analogs. J Biomed Mater Res A 2023; 111:618-633. [PMID: 36815687 DOI: 10.1002/jbm.a.37519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Intervertebral disc (IVD) degeneration and accompanying lower back pain impose global medical and societal challenges, affecting over 600 million people worldwide. The IVD complex fibrocartilaginous structure is responsible for the spine biomechanical function. The nucleus pulposus (NP), composed of swellable glycosaminoglycan (GAG), transfers compressive loads to the surrounding fiber-reinforced annulus fibrosus (AF) lamellae, which stretches under tension. Together, these substructures allow the IVD to withstand extremely high and complex loads. Key to mimic the complete disc must consider the properties of its substructures. This study presents three novel substructures-a biomimetic silk-reinforced composite lamella for the AF, a GAG analog for the NP, and a novel biomimetic combined AF-NP construct. The biomimetic AF demonstrates nonlinear, hyperelastic, and anisotropic behavior similar to the native human AF, while the NP analog demonstrates mechanical behavior similar to the human NP. The synergized biomimetic AF-NP demonstrates similar behavior to the unconfined NP, with significantly increased deformations indicating improved performance. Validation of the AF-NP construct mechanics using a finite element model yields results compatible with native human IVD under various physiological loadings. The ability of our AF-NP construct to mimic the native IVD offers a revolutionary concept for the potential development of a fully functional IVD.
Collapse
Affiliation(s)
- Haim S Mordechai
- Department of Mechanical Engineering & Mechatronics, Ariel University, Ariel, Israel
| | - Adi Aharonov
- Department of Mechanical Engineering & Mechatronics, Ariel University, Ariel, Israel
| | - Smadar E Sharon
- Department of Mechanical Engineering & Mechatronics, Ariel University, Ariel, Israel
| | - Iris Bonshtein
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Chen Simon
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Sarit S Sivan
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Mirit Sharabi
- Department of Mechanical Engineering & Mechatronics, Ariel University, Ariel, Israel
| |
Collapse
|
79
|
Mertimo T, Heikkala E, Niinimäki J, Blanco Sequeiros R, Määttä J, Kankaanpää M, Oura P, Karppinen J. The role of co-occurring insomnia and mental distress in the association between lumbar disc degeneration and low back pain related disability. BMC Musculoskelet Disord 2023; 24:293. [PMID: 37060071 PMCID: PMC10103434 DOI: 10.1186/s12891-023-06365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Lumbar disc degeneration (LDD) is associated with low back pain (LBP). Although both insomnia and mental distress appear to influence the pain experience, their role in the association between LDD and LBP is uncertain. Our objective was to investigate the role of co-occurring insomnia and mental distress in the association between LDD and LBP-related disability. METHODS A total of 1080 individuals who had experienced LBP during the previous year underwent 1.5-T lumbar magnetic resonance imaging, responded to questionnaires, and participated in a clinical examination at the age of 47. Full data was available for 843 individuals. The presence of LBP and LBP-related disability (numerical rating scale, range 0-10) were assessed using a questionnaire. LDD was assessed by a Pfirrmann-based sum score (range 0-15, higher values indicating higher LDD). The role of insomnia (according to the five-item Athens Insomnia Scale) and mental distress (according to the Hopkins Symptom Check List-25) in the association between the LDD sum score and LBP-related disability was analyzed using linear regression with adjustments for sex, smoking, body mass index, education, leisure-time physical activity, occupational physical exposure, Modic changes, and disc herniations. RESULTS A positive association between LDD and LBP-related disability was observed among those with absence of both mental distress and insomnia (adjusted B = 0.132, 95% CI = 0.028-0.236, p = 0.013), and among those with either isolated mental distress (B = 0.345 CI = 0.039-0.650, p = 0.028) or isolated insomnia (B = 0.207, CI = 0.040-0.373, p = 0.015). However, among individuals with co-occurring insomnia and mental distress, the association was not significant (B = -0.093, CI = -0.346-0.161, p = 0.470). CONCLUSIONS LDD does not associate with LBP-related disability when insomnia and mental distress co-occur. This finding may be useful when planning treatment and rehabilitation that aim to reduce disability among individuals with LDD and LBP. Future prospective research is warranted.
Collapse
Affiliation(s)
- Teija Mertimo
- Faculty of Medicine and Health Technology, Tampere University Hospital and University of Tampere, P.O. Box 607, Tampere, FI-33014, Finland.
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI- 90014, Finland.
| | - Eveliina Heikkala
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI- 90014, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
| | - Jaakko Niinimäki
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
| | - Roberto Blanco Sequeiros
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Department of Radiology, Turku University Hospital, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Juhani Määttä
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
| | - Markku Kankaanpää
- Department of Rehabilitation and Psychosocial Support, Tampere University Hospital, P.O. Box 2000, Tampere, FI-33521, Finland
| | - Petteri Oura
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, Oulu, FI-90014, Finland
- Rehabilitation Services of South Karelia Social and Health Care District, Valto Käkelän katu 3, Lappeenranta, FI- 53130, Finland
- Finnish Institute of Occupational Health, Aapistie 1, Oulu, FI-90220, Finland
| |
Collapse
|
80
|
Jin L, Jiang C, Gu L, Jiang M, Shi Y, Qu Q, Shen N, Shi W, Cao Y, Chen Z, Jiang C, Feng Z, Shen L, Jiang X. Predictive Classification System for Low Back Pain Based on Unsupervised Clustering. Global Spine J 2023; 13:630-635. [PMID: 33896208 DOI: 10.1177/21925682211001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE Lumbar magnetic resonance imaging (MRI) findings are believed to be associated with low back pain (LBP). This study sought to develop a new predictive classification system for low back pain. METHOD Normal subjects with repeated lumbar MRI scans were retrospectively enrolled. A new classification system, based on the radiological features on MRI, was developed using an unsupervised clustering method. RESULTS One hundred and fifty-nine subjects were included. Three distinguishable clusters were identified with unsupervised clustering that were significantly correlated with LBP (P = .017). The incidence of LBP was highest in cluster 3 (57.14%), nearly twice the incidence in cluster 1 (30.11%). There were obvious differences in the sagittal parameters among the 3 clusters. Cluster 3 had the smallest intervertebral height. Based on follow-up findings, 27% of subjects changed clusters. More subjects changed from cluster 1 to clusters 2 or 3 (14.5%) than changed from cluster 2 or cluster 3 to cluster 1 (5%). Participation in sport was more frequent in subjects who changed from cluster 3 to cluster 1. CONCLUSION Using an unsupervised clustering method, we developed a new classification system comprising 3 clusters, which were significantly correlated with LBP. The prediction of LBP is independent of age and better than that based on individual sagittal parameters derived from MRI. A change in cluster during follow-up may partially predict lumbar degeneration. This study provides a new system for the prediction of LBP that should be useful for its diagnosis and treatment.
Collapse
Affiliation(s)
- Lixia Jin
- Department of Rehabilitation Medicine, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chang Jiang
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lishu Gu
- Shenzhen Digital Life Institute, Shenzhen, Guangdong Province, People's Republic of China
| | - Mengying Jiang
- Shenzhen Digital Life Institute, Shenzhen, Guangdong Province, People's Republic of China
| | - Yuanlu Shi
- Shenzhen Digital Life Institute, Shenzhen, Guangdong Province, People's Republic of China
| | - Qixun Qu
- Shenzhen Digital Life Institute, Shenzhen, Guangdong Province, People's Republic of China
| | - Na Shen
- Health Consultation Department, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weibin Shi
- Health Consultation Department, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuanwu Cao
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zixian Chen
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chun Jiang
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhenzhou Feng
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Linghao Shen
- Shenzhen Digital Life Institute, Shenzhen, Guangdong Province, People's Republic of China
| | - Xiaoxing Jiang
- Department of Orthopedics, Shanghai 92323Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
81
|
Wan ZY, Zhang J, Shan H, Liu TF, Song F, Samartzis D, Wang HQ. Epidemiology of Lumbar Degenerative Phenotypes of Children and Adolescents: A Large-Scale Imaging Study. Global Spine J 2023; 13:599-608. [PMID: 33843321 DOI: 10.1177/21925682211000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVE Recently, there has been a rise in children and adolescents developing low back pain and/or sciatica. Degenerative lumbar spine MRI phenotypes can occur in this population but reports have been sporadic and the true incidence of such spine changes remains debatable. As such, the study aimed to address the epidemiology of MRI phenotypes of the lumbar spine in this young population. METHODS 597 children and adolescents with lumbar MRIs were included in the study. T1- and T2-weighted lumbar images from L1/2 to L5/S1 were analyzed in axial and sagittal planes. Global phenotype assessment was performed of each level and based on established nomenclature protocols. RESULTS The cohort consisted of 57.3% (342) boys and 42.7% (255) girls, with a mean age of 10.75 ± 5.25 years (range: 0 to 18 years). The prevalence of imaging findings of lumbar disc degeneration (LDD) and lumbar disc herniation (LDH) were 2.2% (95% CI: 0.93-3.43) and 5.8% (95%CI: 2.58-8.99), respectively. There was significant difference between each disc segment from L1/2 to L5/S1 for both LDD and LDH. Schmorl's nodes were noted in 16 cases (2.7%, youngest case as 15 years), with 11 boys (68.8%) and most frequent segment as L3/4. Modic changes and high-intensity zones were absent in this cohort. CONCLUSIONS LDD can emerge as early as the first decade of life with Schmorl's nodes, without additional specific phenotypes, including Modic changes and high-intensity zones. The study provides valuable information of a unique age group that is often under-represented but equally important as adults.
Collapse
Affiliation(s)
- Zhong-Yuan Wan
- Department of Orthopedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Zhang
- Department of Orthopedics, Baoji Central Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Hua Shan
- Institute of Integrative Medicine, 107652Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Tang-Fen Liu
- Institute of Integrative Medicine, 107652Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | - Fang Song
- Department of Stomatology, PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Dino Samartzis
- Department of Orthopaedic Surgery, 2468Rush University Medical Center, Chicago, IL, USA
| | - Hai-Qiang Wang
- Institute of Integrative Medicine, 107652Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
82
|
Widmayer F, Neidlinger-Wilke C, Witz F, Jansen JU, Ignatius A, Haffner-Luntzer M, Teixeira GQ. Oestrogen and Vibration Improve Intervertebral Disc Cell Viability and Decrease Catabolism in Bovine Organ Cultures. Int J Mol Sci 2023; 24:ijms24076143. [PMID: 37047116 PMCID: PMC10094023 DOI: 10.3390/ijms24076143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17β-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.
Collapse
Affiliation(s)
- Franziska Widmayer
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Fiona Witz
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Jan U Jansen
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | | | - Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
83
|
Liang T, Gao B, Zhou J, Qiu X, Qiu J, Chen T, Liang Y, Gao W, Qiu X, Lin Y. Constructing intervertebral disc degeneration animal model: A review of current models. Front Surg 2023; 9:1089244. [PMID: 36969323 PMCID: PMC10036602 DOI: 10.3389/fsurg.2022.1089244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinlang Zhou
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Taiqiu Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanfang Liang
- Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| |
Collapse
|
84
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
85
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|
86
|
Wang F, Cheung CW, Wong SSC. Regenerative medicine for the treatment of chronic low back pain: a narrative review. J Int Med Res 2023; 51:3000605231155777. [PMID: 36802994 PMCID: PMC9941606 DOI: 10.1177/03000605231155777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Low back pain (LBP) is a common and important clinical problem. In addition to pain, patients are also affected by personal, social, and economic burdens. Intervertebral disc (IVD) degeneration is a common cause of LBP, further increasing the patient's morbidity and medical costs. The limitations of current treatment strategies for long-term pain relief mean that increasing attention has been paid to regenerative medicine. We carried out a narrative review to explore the roles of four types of regenerative medicine for treating LBP: marrow-derived stem cells, growth factors, platelet-rich plasma, and prolotherapy. Marrow-derived stem cells are regarded as an ideal cell source for IVD regeneration. Growth factors may stimulate the synthesis of extracellular matrix and attenuate or reverse the degenerative process in IVD, while platelet-rich plasma, which contains multiple growth factors, is thought to be a promising alternative therapy for IVD degeneration. Prolotherapy can initiate the body's inflammatory healing response to repair injured joints and connective tissues. This review summarizes the mechanisms, in vitro and in vivo studies, and clinical applications of these four types of regenerative medicine in patients with LBP.
Collapse
Affiliation(s)
| | | | - Stanley Sau Ching Wong
- Stanley Sau Ching Wong, Room 424, Block K, Queen Mary Hospital, 102 Pok Fu Lam Road, Hong Kong 852, China.
| |
Collapse
|
87
|
Zhou Z, Suo Y, Bai J, Lin F, Gao X, Shan H, Ni Y, Zhou X, Sheng L, Dai J. Matrix Stiffness Activating YAP/TEAD1-Cyclin B1 in Nucleus Pulposus Cells Promotes Intervertebral Disc Degeneration. Aging Dis 2023:AD.2023.00205. [PMID: 37196128 DOI: 10.14336/ad.2023.00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/05/2023] [Indexed: 05/19/2023] Open
Abstract
Intervertebral disc degeneration is a leading cause of disability in the elderly population. Rigid extracellular matrix is a critical pathological feature of disc degeneration, leading to aberrant nucleus pulposus cells (NPCs) proliferation. However, the underlying mechanism is unclear. Here, we hypothesize that increased matrix stiffness induces proliferation and thus degenerative phenotypes of NPCs through YAP/TEAD1 signaling pathway. We established hydrogel substrates to mimic stiffness of degenerated human nucleus pulposus tissues. RNA-sequencing identified differentially expressed genes between primary rat NPCs cultured on rigid and soft hydrogels. Dual luciferase assay and gain- and loss-function experiments evaluated the correlation between YAP/TEAD1 and Cyclin B1. Furthermore, single-cell RNA-sequencing of human NPCs was performed to identify specific cell clusters with high YAP expression. Matrix stiffness increased in severely degenerated human nucleus pulposus tissues (p < 0.05). Rigid substrate enhanced rat NPCs proliferation mainly through Cyclin B1, which was directly targeted and positively regulated by YAP/TEAD1. Depletion of YAP or Cyclin B1 arrested G2/M phase progression of rat NPCs and reduced fibrotic phenotypes including MMP13 and CTGF (p < 0.05). Fibro NPCs with high YAP expression were identified in human tissues and responsible for fibrogenesis during degeneration. Furthermore, inhibition of YAP/TEAD interaction by verteporfin suppressed cell proliferation and alleviated degeneration in the disc needle puncture model (p < 0.05). Our results demonstrate that elevated matrix stiffness stimulates fibro NPCs proliferation through YAP/TEAD1-Cyclin B1 axis, indicating a therapeutic target for disc degeneration.
Collapse
Affiliation(s)
- Zijie Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yinxuan Suo
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fanguo Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yichao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
88
|
Dai Z, Xia C, Zhao T, Wang H, Tian H, Xu O, Zhu X, Zhang J, Chen P. Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction. Mater Today Bio 2023; 18:100512. [PMID: 36536658 PMCID: PMC9758573 DOI: 10.1016/j.mtbio.2022.100512] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction causes the production of reactive oxygen species (ROS) and oxidative damage, and oxidative stress and inflammation are considered key factors causing intervertebral disc degeneration (IVDD). Thus, restoring the mitochondrial dysfunction is an attractive strategy for treating IVDD. Platelet-derived extracellular vesicles (PEVs) are nanoparticles that target inflammation. Moreover, the vesicles produced by platelets (PLTs) have considerable anti-inflammatory effects. We investigate the use of PEVs as a therapeutic strategy for IVDD in this study. We extract PEVs and evaluate their properties; test their effects on H2O2-induced oxidative damage of nucleus pulposus (NP) cells; verify the role of PEVs in repairing H2O2-induced cellular mitochondrial dysfunction; and demonstrate the therapeutic effects of PEVs in a rat IVDD model. The results confirm that PEVs can restore impaired mitochondrial function, reduce oxidative stress, and restore cell metabolism by regulating the sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α)-mitochondrial transcription factor A (TFAM) pathway; in rat models, PEVs retard the progression of IVDD. Our results demonstrate that the injection of PEVs can be a promising strategy for treating patients with IVDD.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Ouyuan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College People's Hospital, Hangzhou, Zhejiang, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, Zhejiang, China
| |
Collapse
|
89
|
Dong YL, Tang N, Zhao H, Liang JQ. Nucleus Pulposus Cells from Calcified Discs Promote the Degradation of the Extracellular Matrix through Upregulation of the GATA3 Expression. Curr Med Sci 2023; 43:146-155. [PMID: 36821040 DOI: 10.1007/s11596-022-2686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Disc calcification is strongly associated with disc degeneration; however, the underlying mechanisms driving its pathogenesis are poorly understood. This study aimed to provide a gene expression profile of nucleus pulposus cells (NPCs) from calcified discs, and clarify the potential mechanism in disc degeneration. METHODS Primary NPCs were isolated from calcified and control discs (CAL-NPC and CON-NPC), respectively. The proliferation and extracellular matrix (ECM) metabolism capacities of the cells were evaluated using MTT and Western blotting, respectively. RNA sequencing was used to identify differentially expressed genes (DEGs) in the CAL-NPCs. The biological functions of the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The transcription factor database and Cytoscape software were used to construct the transcription factor-DEGs regulatory network. The role of the verified transcription factor in NPC proliferation and ECM metabolism was also investigated. RESULTS The CAL-NPCs exhibited a lower proliferation rate and higher ECM degradation capacity than the CON-NPCs. In total, 375 DEGs were identified in the CAL-NPCs. The GO and KEGG analyses showed that the DEGs were primarily involved in the regulation of ribonuclease activity and NF-kappa B and p53 signaling pathways. GATA-binding protein 3 (GATA3) with the highest verified levels was selected for further studies. Overexpression of GATA3 in the CON-NPCs significantly inhibited their proliferation and promoted their ECM degradation function, while the knockdown of GATA3 in the CAL-NPCs resulted in the opposite phenotypes. CONCLUSION This study provided a comprehensive gene expression profile of the NPCs from the calcified discs and supported that GATA3 could be a potential target for reversing calcification-associated disc degeneration.
Collapse
Affiliation(s)
- Yu-Lei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ning Tang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jin-Qian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
90
|
Lin Z, Wang H, Song J, Xu G, Lu F, Ma X, Xia X, Jiang J, Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023; 31:158-166. [PMID: 36375758 DOI: 10.1016/j.joca.2022.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.
Collapse
Affiliation(s)
- Z Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - H Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - G Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - X Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - J Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - F Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
91
|
Böger A, Treptow-Wünsche S, Bosse F. Neuroorthopädisch-funktionelle Untersuchung als Voraussetzung einer erfolgreichen Therapie bei Rückenschmerzen. DEUTSCHE ZEITSCHRIFT FÜR AKUPUNKTUR 2023. [DOI: 10.1007/s42212-022-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Wang T, Zhao H, Jing S, Fan Y, Sheng G, Ding Q, Liu C, Wu H, Liu Y. Magnetofection of miR-21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion. J Nanobiotechnology 2023; 21:27. [PMID: 36694219 PMCID: PMC9875474 DOI: 10.1186/s12951-023-01789-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.
Collapse
Affiliation(s)
- Tianqi Wang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hongqi Zhao
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shaoze Jing
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Yang Fan
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Gaohong Sheng
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Ding
- grid.412793.a0000 0004 1799 5032Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chaoxu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hua Wu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yang Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
93
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
94
|
Rayrikar AY, Wagh GA, Santra MK, Patra C. Ccn2a-FGFR1-SHH signaling is necessary for intervertebral disc homeostasis and regeneration in adult zebrafish. Development 2023; 150:dev201036. [PMID: 36458546 PMCID: PMC10108606 DOI: 10.1242/dev.201036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Intervertebral disc (IVD) degeneration is the primary cause of back pain in humans. However, the cellular and molecular pathogenesis of IVD degeneration is poorly understood. This study shows that zebrafish IVDs possess distinct and non-overlapping zones of cell proliferation and cell death. We find that, in zebrafish, cellular communication network factor 2a (ccn2a) is expressed in notochord and IVDs. Although IVD development appears normal in ccn2a mutants, the adult mutant IVDs exhibit decreased cell proliferation and increased cell death leading to IVD degeneration. Moreover, Ccn2a overexpression promotes regeneration through accelerating cell proliferation and suppressing cell death in wild-type aged IVDs. Mechanistically, Ccn2a maintains IVD homeostasis and promotes IVD regeneration by enhancing outer annulus fibrosus cell proliferation and suppressing nucleus pulposus cell death through augmenting FGFR1-SHH signaling. These findings reveal that Ccn2a plays a central role in IVD homeostasis and regeneration, which could be exploited for therapeutic intervention in degenerated human discs.
Collapse
Affiliation(s)
- Amey Y. Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
- S P Pune University, Pune, Maharashtra 411007, India
| | - Ganesh A. Wagh
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
- S P Pune University, Pune, Maharashtra 411007, India
| | - Manas K. Santra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India
- S P Pune University, Pune, Maharashtra 411007, India
| |
Collapse
|
95
|
Morbée L, Vereecke E, Laloo F, Chen M, Herregods N, Jans LBO. Common incidental findings on sacroiliac joint MRI: Added value of MRI-based synthetic CT. Eur J Radiol 2023; 158:110651. [PMID: 36535080 DOI: 10.1016/j.ejrad.2022.110651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To determine the prevalence of incidental findings on sacroiliac joint MRI and to determine the added value of MRI-based synthetic CT in the detection and evaluation of these incidental findings. METHOD In this retrospective study 210 patients clinically suspected of spondyloarthritis who underwent MRI of the sacroiliac joint with synthetic CT sequence were included. The images were reviewed by two radiologists in consensus for the prevalence of sacroiliitis, incidental findings, and the ability of synthetic CT and the conventional MRI to detect and diagnose these findings. RESULTS In 44.7% of patients sacroiliitis was present. In 89.0% of patients MRI showed at least one incidental finding other than sacroiliitis. Degeneration of the sacroiliac joint was the most prevalent finding (140 patients, 66.6%). The most frequent incidental findings outside the sacroiliac joint were facet joint degeneration (29.0%), disc degeneration (25.2%), enostosis (19.5%) and lumbosacral transitional vertebrae (14.3%). A total of 788 lesions was recorded and synthetic CT was found to be problem solving or necessary for diagnosis in 543 (68.9%) of these lesions. 42.1% of lesions were not visible on conventional MRI (T1 TSE and STIR), most often degenerative osteophytes in the sacroiliac joint or lower lumbar spine. CONCLUSION Incidental findings are seen more frequently on sacroiliac joint MRI than sacroiliitis, which is relevant as some will have clinical significance or require treatment. Nearly half of these incidental lesions were only visible on synthetic CT, which additionally has been shown to be problem solving for diagnosis in many other cases.
Collapse
Affiliation(s)
- Lieve Morbée
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Elke Vereecke
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Frederiek Laloo
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Min Chen
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Nele Herregods
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lennart B O Jans
- Department of Radiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
96
|
Brenneis M, Jenei-Lanzl Z, Kupka J, Braun S, Junker M, Zaucke F, Rickert M, Meurer A. Correlation between Adrenoceptor Expression and Clinical Parameters in Degenerated Lumbar Intervertebral Discs. Int J Mol Sci 2022; 23:ijms232315358. [PMID: 36499685 PMCID: PMC9739018 DOI: 10.3390/ijms232315358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Despite advanced knowledge of the cellular and biomechanical processes of intervertebral disc degeneration (IVDD), the trigger and underlying mechanisms remain unclear. Since the sympathetic nervous system (SNS) has been shown to exhibit catabolic effects in osteoarthritis pathogenesis, it is attractive to speculate that it also influences IVDD. Therefore, we explored the adrenoceptor (AR) expression profile in human IVDs and correlated it with clinical parameters of patients. IVD samples were collected from n = 43 patients undergoing lumbar spinal fusion surgery. AR gene expression was analyzed by semi-quantitative polymerase chain reaction. Clinical parameters as well as radiological Pfirrmann and Modic classification were collected and correlated with AR expression levels. In total human IVD homogenates α1A-, α1B-, α2A-, α2B-, α2C-, β1- and β2-AR genes were expressed. Expression of α1A- (r = 0.439), α2A- (r = 0.346) and β2-AR (r = 0.409) showed a positive and significant correlation with Pfirrmann grade. α1A-AR expression was significantly decreased in IVD tissue of patients with adjacent segment disease (p = 0.041). The results of this study indicate that a relationship between IVDD and AR expression exists. Thus, the SNS and its neurotransmitters might play a role in IVDD pathogenesis. The knowledge of differential AR expression in different etiologies could contribute to the development of new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
- Correspondence: or
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Johannes Kupka
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marius Junker
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Marcus Rickert
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
97
|
Role of Pyroptosis in Intervertebral Disc Degeneration and Its Therapeutic Implications. Biomolecules 2022; 12:biom12121804. [PMID: 36551232 PMCID: PMC9775394 DOI: 10.3390/biom12121804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a progressive and multifactorial pathological process, is predominantly associated with low back pain and permanent disability. Pyroptosis is a type of lytic programmed cell death triggered by the activation of inflammasomes and caspases. Unlike apoptosis, pyroptosis is characterized by the rupture of the plasma membrane and the release of inflammatory mediators, accelerating the destruction of the extracellular matrix (ECM). Recent studies have shown that pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in nucleus pulposus (NP) cells is activated in the progression of IDD. Furthermore, targeting pyroptosis in IDD demonstrates the excellent capacity of ECM remodeling and its anti-inflammatory properties, suggesting that pyroptosis is involved in the IDD process. In this review, we briefly summarize the molecular mechanism of pyroptosis and the pathogenesis of IDD. We also focus on the role of pyroptosis in the pathological progress of IDD and its targeted therapeutic application.
Collapse
|
98
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
99
|
Co M, Dong H, Boulter DJ, Nguyen XV, Khan SN, Raterman B, Klamer B, Kolipaka A, Walter BA. Magnetic Resonance Elastography of Intervertebral Discs: Spin-Echo Echo-Planar Imaging Sequence Validation. J Magn Reson Imaging 2022; 56:1722-1732. [PMID: 35289470 PMCID: PMC9475395 DOI: 10.1002/jmri.28151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is an imaging technique that can noninvasively assess the shear properties of the intervertebral disc (IVD). Unlike the standard gradient recalled echo (GRE) MRE technique, a spin-echo echo-planar imaging (SE-EPI) sequence has the potential to improve imaging efficiency and patient compliance. PURPOSE To validate the use of an SE-EPI sequence for MRE of the IVD compared against the standard GRE sequence. STUDY TYPE Cross-over. SUBJECTS Twenty-eight healthy volunteers (15 males and 13 females, age range: 19-55). FIELD STRENGTH/SEQUENCE 3 T; GRE, SE-EPI with breath holds (SE-EPI-BH) and SE-EPI with free breathing (SE-EPI-FB) MRE sequences. ASSESSMENT MRE-derived shear stiffnesses were calculated via principal frequency analysis. SE-EPI derived shear stiffness and octahedral shear strain signal-to-noise ratios (OSS-SNR) were compared against those derived using the GRE sequence. The reproducibility and repeatability of SE-EPI stiffness measurements were determined. Shear stiffness was evaluated in the nucleus pulposus (NP) and annulus fibrosus (AF) regions of the disc. Scan times between sequences were compared. STATISTICAL TESTS Linear mixed models, Bland-Altman plots, and Lin's concordance correlation coefficients (CCCs) were used with P < 0.05 considered statistically significant. RESULTS Good correlation was observed between shear stiffnesses derived from the SE-EPI sequences with those derived from the GRE sequence with CCC values greater than 0.73 and 0.78 for the NP and AF regions, respectively. OSS-SNR was not significantly different between GRE and SE-EPI sequences (P > 0.05). SE-EPI sequences generated highly reproducible and repeatable stiffness measurements with CCC values greater than 0.97 in the NP and AF regions and reduced scan time by at least 51% compared to GRE. SE-EPI-BH and SE-EPI-FB stiffness measurements were similar with CCC values greater than 0.98 for both regions. DATA CONCLUSION SE-EPI-based MRE-derived stiffnesses were highly reproducible and repeatable and correlated with current standard GRE MRE-derived stiffness estimates while reducing scan times. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Megan Co
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel J Boulter
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xuan V Nguyen
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Safdar N Khan
- Department of Orthopedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brett Klamer
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin A Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Spine Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
100
|
Zhang C, Guo LX. Effect of whole-body vibration at different frequencies on the lumbar spine: A finite element study based on a whole human body model. Proc Inst Mech Eng H 2022; 236:1752-1761. [DOI: 10.1177/09544119221135688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many previous studies have found that occupational drivers commonly suffered from low back pain, and low back pain and degeneration of the intervertebral disc might be associated with vibration conditions. However, the biomechanical mechanisms of whole-body vibration that caused pain and injury were not clear. In this study, a validated whole human body finite element model was used, and vibration loads at frequencies of 3, 5, 7 and 9 Hz were loaded to evaluate the frequency effects on the spine. The results showed that the responses of the spine were strong at the 5 Hz vibration load. Vibration loads would produce alternating stresses and bulges in the annulus fibrosus and change the direction of the pressure in the nucleus pulposus. The posterior region of the intervertebral disc showed greater stress fluctuations than the anterior region. The Risk Factors showed that long-term exposure to whole-body vibrations at 5 and 7 Hz might have greater adverse effects on the spine. The findings of this study confirmed that vibrations near the resonance frequency of the human body would cause more injuries to the spine than other frequencies. Alternating stress and bulge might cause fatigue and the degeneration of the intervertebral disc, which might be the mechanisms of spinal injury caused by whole-body vibration, and the posterior regions of the intervertebral disc were more susceptible to degeneration. Some appropriate measures should be taken to reduce the adverse effects of whole-body vibration on spinal health.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|