51
|
Abstract
Chronic granulomatous disease (CGD) is the most common symptomatic phagocytic defect. It is caused by mutations in genes encoding protein subunits of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. CGD is characterized by a defective intracellular killing of phagocytosed organisms due to a defective oxidative burst in the neutrophils and macrophages. It is inherited in either X-linked recessive or autosomal recessive pattern. Staphylococcus aureus and Aspergillus species are the most common organisms reported. Infections with Burkholderia, Serratia, and Nocardia warrant a screen for CGD. Suppurative lymphadenitis, cutaneous abscesses, pneumonia and diarrhea constitute the most common problems in children with CGD. A small percentage of children develop autoimmune manifestations (e.g., rheumatoid arthritis, systemic lupus erythematosus, colitis, autoimmune hepatitis) and warrant immunosuppression. X-linked carriers of CGD are at an increased risk of developing autoimmune diseases. Nitroblue-tetrazolium dye reduction test and dihydro-rhodamine assay by flow cytometry are the screening tests for this disorder. While most children do well on long term antibiotic and antifungal prophylaxis, those with severe forms warrant hematopoietic stem cell transplant. The role of regular interferon-γ injections is debatable. Evidence for white cell transfusions is sparse, and gene therapy is under trial.This current review highlights various aspects and studies in CGD. X-linked form of CGD has been noted to carry a poorer prognosis compared to autosomal recessive variants. However, recent evidence suggests that outcome in CGD is determined by the amount of residual NADPH oxidase activity irrespective of mode of inheritance.
Collapse
Affiliation(s)
- Amit Rawat
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sagar Bhattad
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
52
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
53
|
Mycobacterial disease in patients with chronic granulomatous disease: A retrospective analysis of 71 cases. J Allergy Clin Immunol 2016; 138:241-248.e3. [PMID: 26936803 DOI: 10.1016/j.jaci.2015.11.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare primary immunodeficiency caused by inborn errors of the phagocyte nicotinamide adenine dinucleotide phosphate oxidase complex. From the first year of life onward, most affected patients display multiple, severe, and recurrent infections caused by bacteria and fungi. Mycobacterial infections have also been reported in some patients. OBJECTIVE Our objective was to assess the effect of mycobacterial disease in patients with CGD. METHODS We analyzed retrospectively the clinical features of mycobacterial disease in 71 patients with CGD. Tuberculosis and BCG disease were diagnosed on the basis of microbiological, pathological, and/or clinical criteria. RESULTS Thirty-one (44%) patients had tuberculosis, and 53 (75%) presented with adverse effects of BCG vaccination; 13 (18%) had both tuberculosis and BCG infections. None of these patients displayed clinical disease caused by environmental mycobacteria, Mycobacterium leprae, or Mycobacterium ulcerans. Most patients (76%) also had other pyogenic and fungal infections, but 24% presented solely with mycobacterial disease. Most patients presented a single localized episode of mycobacterial disease (37%), but recurrence (18%), disseminated disease (27%), and even death (18%) were also observed. One common feature in these patients was an early age at presentation for BCG disease. Mycobacterial disease was the first clinical manifestation of CGD in 60% of these patients. CONCLUSION Mycobacterial disease is relatively common in patients with CGD living in countries in which tuberculosis is endemic, BCG vaccine is mandatory, or both. Adverse reactions to BCG and severe forms of tuberculosis should lead to a suspicion of CGD. BCG vaccine is contraindicated in patients with CGD.
Collapse
|
54
|
Romero MM, Basile JI, Corra Feo L, López B, Ritacco V, Alemán M. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria. Cell Microbiol 2016; 18:875-86. [DOI: 10.1111/cmi.12562] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Affiliation(s)
- María Mercedes Romero
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Juan Ignacio Basile
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Laura Corra Feo
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Beatriz López
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Viviana Ritacco
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Mercedes Alemán
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| |
Collapse
|
55
|
de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PVS, Schimke LF, Klaver S, Buzolin M, Blancas-Galicia L, Santos-Argumedo L, Pietropaolo-Cienfuegos DR, Espinosa-Rosales F, King A, Sorensen R, Porras O, Roxo-Junior P, Forte WCN, Orellana JC, Lozano A, Galicchio M, Regairaz L, Grumach AS, Costa-Carvalho BT, Bustamante J, Bezrodnik L, Oleastro M, Danielian S, Condino-Neto A. Clinical and Genotypic Spectrum of Chronic Granulomatous Disease in 71 Latin American Patients: First Report from the LASID Registry. Pediatr Blood Cancer 2015; 62:2101-7. [PMID: 26185101 DOI: 10.1002/pbc.25674] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
AIM We analyzed data from 71 patients with chronic granulomatous disease (CGD) with a confirmed genetic diagnosis, registered in the online Latin American Society of Primary Immunodeficiencies (LASID) database. RESULTS Latin American CGD patients presented with recurrent and severe infections caused by several organisms. The mean age at disease onset was 23.9 months, and the mean age at CGD diagnosis was 52.7 months. Recurrent pneumonia was the most frequent clinical condition (76.8%), followed by lymphadenopathy (59.4%), granulomata (49.3%), skin infections (42%), chronic diarrhea (41.9%), otitis (29%), sepsis (23.2%), abscesses (21.7%), recurrent urinary tract infection (20.3%), and osteomyelitis (15.9%). Adverse reactions to bacillus Calmette-Guérin (BCG) vaccination were identified in 30% of the studied Latin American CGD cases. The genetic diagnoses of the 71 patients revealed 53 patients from 47 families with heterogeneous mutations in the CYBB gene (five novel mutations: p.W361G, p.C282X, p.W483R, p.R226X, and p.Q93X), 16 patients with the common deletion c.75_76 del.GT in exon 2 of NCF1 gene, and two patients with mutations in the CYBA gene. CONCLUSION The majority of Latin American CGD patients carry a hemizygous mutation in the CYBB gene. They also presented a wide range of clinical manifestations most frequently bacterial and fungal infections of the respiratory tract, skin, and lymph nodes. Thirty percent of the Latin American CGD patients presented adverse reactions to BCG, indicating that this vaccine should be avoided in these patients.
Collapse
Affiliation(s)
| | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Prando
- Children's Hospital Little Prince, Research Institute Pelé Little Prince, Curitiba, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lena-Friederick Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stefanie Klaver
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia Buzolin
- Center for Investigation in Pediatrics, State University of Campinas Medical School, Campinas, Brazil
| | | | - Leopoldo Santos-Argumedo
- Centro de Investigacion de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | - Ricardo Sorensen
- Department of Pediatrics and JMF Diagnostic Center for PIDD, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Oscar Porras
- Hospital Nacional de Niños, "Dr. Carlos Sáenz Herrera", San Jose, Costa Rica
| | - Persio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Julio Cesar Orellana
- Division Alergia e Inmunologia Clinica, Hospital de Ninos de la Santisima Trinidad, Cordoba, Argentina
| | - Alejandro Lozano
- Department of Allergy and Immunology, Queen Fabiola University Clinic, Catholic University of Cordoba, Cordoba, Argentina
| | | | - Lorena Regairaz
- Unidad de Inmunología, Hospital de Niños Sor María Ludovica La Plata, Buenos Aires, Argentina
| | | | | | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, INSERM U1163 Imagine Institute, University Paris Descartes, Paris, France.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker-Enfants Malades Hospital, Paris, France
| | - Liliana Bezrodnik
- Dr. Ricardo Gutierrez Children's Hospital, Immunology, Buenos Aires, Argentina
| | - Matias Oleastro
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
57
|
Lin CJ, Wang SC, Ku CL, Kao JK, Chen M, Liu CS. Successful Unrelated Cord Blood Stem Cell Transplantation in an X-linked Chronic Granulomatous Disease Patient with Disseminated BCG-induced Infection. Pediatr Neonatol 2015; 56:346-50. [PMID: 23680261 DOI: 10.1016/j.pedneo.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/06/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022] Open
Abstract
A 19-month-old boy with chronic granulomatous disease (CGD) received umbilical cord blood transplantation (UCBT) from an unrelated donor after experiencing a life-threatening disseminated Bacillus Calmette-Guérin infection. After busulfan and cyclophosphamide conditioning, we performed a 5/6-matched UCBT. Engraftment and mixed chimerism was 100% in peripheral blood, and 100% of his neutrophils had normal oxidative burst activity on day 17. The patient is now 3 years old, free from infection, and growing well. To our knowledge, this is the second case of CGD treated with UCBT in Taiwan. His successful outcome illustrates that UCBT in a patient with CGD should be considered early if a human leukocyte antigen-matched donor is not available or the patient has just recovered from a severe infection.
Collapse
Affiliation(s)
- Chao-Jen Lin
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC; School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC.
| | - Shih-Chung Wang
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
| | - Cheng-Lung Ku
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Tao-Yuan, Taiwan, ROC
| | - Jun-Kai Kao
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
| | - Ming Chen
- Center for Medical Genetics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
| |
Collapse
|
58
|
Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic Biol Med 2015; 84:344-354. [PMID: 25819161 PMCID: PMC4459714 DOI: 10.1016/j.freeradbiomed.2015.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection.
Collapse
Affiliation(s)
- Priyanka Tyagi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 67, India
| | - Allimuthu T Dharmaraja
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India
| | - Ashima Bhaskar
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 08, India.
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore-12, India.
| |
Collapse
|
59
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
60
|
Molecular confirmation of Bacillus Calmette Guerin vaccine related adverse events among Saudi Arabian children. PLoS One 2014; 9:e113472. [PMID: 25409184 PMCID: PMC4237431 DOI: 10.1371/journal.pone.0113472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bacillus Calmette Guerin (BCG) is the only available vaccine for tuberculosis (TB). Low grade complications in healthy recipients and disseminated vaccine associated complications among immuno-suppressed individuals were noticed globally after administration. Recently a series of clinically suspected BCG associated suppurative and non-suppurative lymphadenitis cases were reported from different regions of Saudi Arabia. However a molecular confirmative analysis was lacking to prove these claims. METHODOLOGY During 2009-2010, 42 Mycobacterium bovis BCG suspected clinical isolates from children diagnosed with suppurative lymphadenitis from different provinces of the country were collected and subjected to 24 loci based MIRU-VNTR typing, spoligotyping and first line anti-TB drugs susceptibility testing. PRINCIPAL FINDINGS Of the total 42 cases, 41 (97.6%) were Saudi nationals and particularly male (64.3%). Majority of the cases were aged below 6 months (83.3%) with a median of age 4 months. All the enrolled subjects showed left axillary mass which suppurated in a median of 4 months after vaccination. Among the study subjects, 1 (2.4%) case was reactive to HIV antigen and 2 (4.8%) case had severe combined immunodeficiency. Genotyping results showed that, 41 (97.6%) isolates were identical to the vaccine strain Danish 1331 and one to Tokyo 172-1. Phylogenetic analysis revealed all the Danish 1331 isolates in a single cluster. CONCLUSION Elevated proportion of suppurative lymphadenitis caused by M. bovis BCG reported in the country recently is majorly related to the vaccine strain Danish 1331. However lack of nationwide data on real magnitude of BCG related adverse events warrants population centric, long term future studies.
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Chronic granulomatous disease (CGD), characterized 50 years ago as a primary immunodeficiency disorder of phagocytic cells (resulting in failure to kill a defined spectrum of bacteria and fungi and in concomitant chronic granulomatous inflammation) now comprises five genetic defects impairing one of the five subunits of phagocyte NADPH oxidase (Phox). Phox normally generates reactive oxygen species (ROS) engaged in intracellular and extracellular host defence and resolving accompanying inflammatory processes. 'Fatal' granulomatous disease has now changed into a chronic inflammatory condition with a median survival of 35 years and is now of interest to both paediatricians and internists. Clinical vigilance and expert knowledge are needed for early recognition and tailored treatment of this relatively rare genetic disorder. RECENT FINDINGS Infections by unanticipated pathogens and noncirrhotic portal hypertension need to be recognized as new CGD manifestations. Adult-onset CGD too is increasingly observed even in the elderly. Conservative treatment of fungal infections needs close monitoring due to the spread of azole resistance following extensive use of azoles in agriculture. Curative haematopoietic stem cell transplantation (HSCT) in early childhood has expanded with impressive results following use of matched, unrelated or cord blood donors and of a reduced intensity conditioning (RIC) regimen. Gene therapy, however, still has major limitations, remaining experimental. SUMMARY CGD is more prevalent than initially believed with a birth prevalence of 1: 120 000. As patients are increasingly diagnosed around the world and grow older, further manifestations of CGD are expected. While fungal infections have lost some threat, therapeutic research focuses on two other important aims: pharmacologic cure of chronic inflammation and long-term cure of CGD by gene therapy.
Collapse
|
62
|
Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018499. [PMID: 25377142 DOI: 10.1101/cshperspect.a018499] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195 Department of Medicine, University of Washington, Seattle, Washington 98195 Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
63
|
Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 2014; 26:454-70. [PMID: 25453225 DOI: 10.1016/j.smim.2014.09.008] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare condition characterized by predisposition to clinical disease caused by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy individuals with no overt abnormalities in routine hematological and immunological tests. MSMD designation does not recapitulate all the clinical features, as patients are also prone to salmonellosis, candidiasis and tuberculosis, and more rarely to infections with other intramacrophagic bacteria, fungi, or parasites, and even, perhaps, a few viruses. Since 1996, nine MSMD-causing genes, including seven autosomal (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, and IRF8) and two X-linked (NEMO, and CYBB) genes have been discovered. The high level of allelic heterogeneity has already led to the definition of 18 different disorders. The nine gene products are physiologically related, as all are involved in IFN-γ-dependent immunity. These disorders impair the production of (IL12B, IL12RB1, IRF8, ISG15, NEMO) or the response to (IFNGR1, IFNGR2, STAT1, IRF8, CYBB) IFN-γ. These defects account for only about half the known MSMD cases. Patients with MSMD-causing genetic defects may display other infectious diseases, or even remain asymptomatic. Most of these inborn errors do not show complete clinical penetrance for the case-definition phenotype of MSMD. We review here the genetic, immunological, and clinical features of patients with inborn errors of IFN-γ-dependent immunity.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker-Enfants Malades Hospital, Paris, France, EU.
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM-U1163, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU
| |
Collapse
|
64
|
Deffert C, Schäppi MG, Pache JC, Cachat J, Vesin D, Bisig R, Ma Mulone X, Kelkka T, Holmdahl R, Garcia I, Olleros ML, Krause KH. Bacillus calmette-guerin infection in NADPH oxidase deficiency: defective mycobacterial sequestration and granuloma formation. PLoS Pathog 2014; 10:e1004325. [PMID: 25188296 PMCID: PMC4154868 DOI: 10.1371/journal.ppat.1004325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 01/21/2023] Open
Abstract
Patients with chronic granulomatous disease (CGD) lack generation of reactive oxygen species (ROS) through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M. bovis BCG was most commonly described (74%). The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and Cybb knock-out mice. In addition, we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter). Wild-type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (∼ 50%). Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild-type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-α, IFN-γ, IL-17 and IL-12) early after BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine production and impaired granuloma formation.
Collapse
Affiliation(s)
- Christine Deffert
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Michela G Schäppi
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Jean-Claude Pache
- Division of Clinical Pathology, Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Julien Cachat
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Ruth Bisig
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Xiaojuan Ma Mulone
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Tiina Kelkka
- Section of Medical Inflammation Research, Medicity Research Laboratory, University of Turku, Finland; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Medicity Research Laboratory, University of Turku, Finland; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Irene Garcia
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Maria L Olleros
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical Faculty and University of Geneva, Geneva, Switzerland
| |
Collapse
|
65
|
Xu H, Tian W, Li SJ, Zhang LY, Liu W, Zhao Y, Zhang ZY, Tang XM, Wang M, Wu DQ, Shi JS, Ding Y, Zhao XD, Yang XQ, Jiang LP. Clinical and molecular features of 38 children with chronic granulomatous disease in mainland china. J Clin Immunol 2014; 34:633-641. [PMID: 24943880 DOI: 10.1007/s10875-014-0061-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/15/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an inherited disorder, with phagocytes failing to produce antimicrobial superoxide due to deficient NADPH oxidase activity. Mutations in the gene encoding CYBB are responsible for the majority of the CGD cases. To date, there have been no reports on large samples of children with CGD in China. Therefore, in this study, we described the clinical and molecular features of 38 suspected CGD patients from 36 unrelated Chinese families. METHODS Clinical diagnosis was performed using dihydrorhodamine assays detected by flow cytometry. Molecular analysis was used to identify underlying CGD-causative genes. RESULTS The mean age of onset in our 38 patients was 3.4 months, while the mean age at diagnosis was 31.7 months. Apart from recurrent pneumonia and abscesses, tuberculosis (TB) and Bacille Calmette-Guerin (BCG) infections were notable features in our cohort. Overall, 17 cases died and patient 1 did not participate in the follow-up period . In total, we identified 29 different CYBB gene mutations in 31 patients. We found NCF1 and CYBA mutations in 3 and 2 patients, respectively. In addition, we identified 31 carriers and prenatally diagnosed 4 CGD and 4 healthy fetuses. CONCLUSIONS The results of our study demonstrate that children with BCG infections or recurrent TB infections should have immune function screening tests performed. Moreover, newborns with family histories of primary immunodeficiency diseases should avoid of BCG vaccination. Molecular analysis is an important tool for identifying patients, carriers, and high-risk CGD fetuses.
Collapse
Affiliation(s)
- Huan Xu
- Clinical Immunology Laboratory, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, No. 136 Zhongshan 2nd Road, Chongqing, 400014, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol 2014; 16:1168-78. [PMID: 24916152 DOI: 10.1111/cmi.12322] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022]
Abstract
Infection of humans with Mycobacterium tuberculosis remains frequent and may still lead to death. After primary infection, the immune system is often able to control M. tuberculosis infection over a prolonged latency period, but a decrease in immune function (from HIV to immunosenescence) leads to active disease. Available vaccines against tuberculosis are restricted to BCG, a live vaccine with an attenuated strain of M. bovis. Immunodeficiency may not only be associated with an increased risk of tuberculosis, but also with local or disseminated BCG infection. Genetic deficiency in the reactive oxygen species (ROS)-producing phagocyte NADPH oxidase NOX2 is called chronic granulomatous disease (CGD). CGD is among the most common primary immune deficiencies. Here we review our knowledge on the importance of NOX2-derived ROS in mycobacterial infection. A literature review suggests that human CGD patient frequently have an increased susceptibility to BCG and to M. tuberculosis. In vitro studies and experiments with CGD mice are incomplete and yielded - at least in part - contradictory results. Thus, although observations in human CGD patients leave little doubt about the role of NOX2 in the control of mycobacteria, further studies will be necessary to unequivocally define and understand the role of ROS.
Collapse
Affiliation(s)
- Christine Deffert
- Laboratory for Biological Fluids, University Hospitals and Faculty of Medicine of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva, 14, Switzerland; Department of Pathology and Immunology, Medical Faculty and University of Geneva, 1211, Geneva, 4, Switzerland
| | | | | |
Collapse
|
67
|
Abstract
Macrophages are capable of assuming distinct, meta-stable, functional phenotypes in response to environmental cues-a process referred to as macrophage polarization. The identity and plasticity of polarized macrophage subsets as well as their functions in the maintenance of homeostasis and the progression of various pathologies have become areas of intense interest. Yet, the mechanisms by which they achieve subset-specific functions at the cellular level remain unclear. It is becoming apparent that phagocytosis and phagosome maturation differ depending on the polarization of macrophages. This minireview summarizes recent progress in this field, highlighting developing trends and discussing the molecular mechanisms that underlie subset-specific functions.
Collapse
Affiliation(s)
- Johnathan Canton
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
68
|
Tsenova L, O'Brien P, Holloway J, Peixoto B, Soteropoulos P, Fallows D, Kaplan G, Subbian S. Etanercept exacerbates inflammation and pathology in a rabbit model of active pulmonary tuberculosis. J Interferon Cytokine Res 2014; 34:716-26. [PMID: 24831609 DOI: 10.1089/jir.2013.0123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of chronic inflammatory diseases with tumor necrosis factor alpha (TNF-α) antagonists has been associated with increased risk of tuberculosis (TB). We examined the usefulness of the rabbit model of active pulmonary TB for studying the impact of the human immune modulatory reagent etanercept on the host immune response. Control of Mycobacterium tuberculosis (Mtb) infection, disease pathology, and the global transcriptional response in Mtb-infected lungs of rabbits were studied. Etanercept treatment exacerbated disease pathology and reduced bacillary control in the lungs, compared with infected untreated animals. Reduced collagen and fibrin deposition in the granulomas was associated with significant downregulation of the collagen metabolism and fibrosis network genes and upregulation of genes in the inflammatory response and cell recruitment networks in the lungs of etanercept treated, compared with untreated rabbits. Our results suggest that targeting the TNF-α signaling pathway disrupts the tissue remodeling process, which is required for the formation and maintenance of well-differentiated granulomas and for control of Mtb growth in the lungs. These results validate the use of the rabbit model for investigating the impact of selected human immune modulatory drugs, such as a TNF-α antagonist, on the host immune response and pathogenesis in TB.
Collapse
Affiliation(s)
- Liana Tsenova
- 1 Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey , Newark, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130428. [PMID: 24821915 PMCID: PMC4024222 DOI: 10.1098/rstb.2013.0428] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, , 75015 Paris, France
| | | | | | | | | |
Collapse
|
70
|
Castaño D, García LF, Rojas M. Differentiation of human mononuclear phagocytes increases their innate response to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2014; 94:207-18. [DOI: 10.1016/j.tube.2014.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
|
71
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
72
|
Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection. PLoS Pathog 2014; 10:e1003902. [PMID: 24497832 PMCID: PMC3907381 DOI: 10.1371/journal.ppat.1003902] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH ) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH , suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.
Collapse
|
73
|
Rawat A, Singh S, Suri D, Gupta A, Saikia B, Minz RW, Sehgal S, Vaiphei K, Kamae C, Honma K, Nakagawa N, Imai K, Nonoyama S, Oshima K, Mitsuiki N, Ohara O, Chan KW, Lau YL. Chronic granulomatous disease: two decades of experience from a tertiary care centre in North West India. J Clin Immunol 2014; 34:58-67. [PMID: 24276928 DOI: 10.1007/s10875-013-9963-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/27/2013] [Indexed: 12/31/2022]
Abstract
Chronic granulomatous disease (CGD) results from an inherited defect in the phagocytic cells of the immune system. It is a genetically heterogenous disease caused by defects in one of the five major subunits of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. There is a paucity of data from India on CGD. We herein describe the clinical features in 17 children with CGD from a single tertiary referral center in India. A detailed analysis of the clinical features, laboratory investigations and outcome of 17 children 7 with X-linked (XL) and 10 with autosomal recessive (AR) form was performed. Diagnosis of CGD was based on an abnormal granulocyte oxidative burst evaluated by either Nitroblue Tetrazolium (NBT) test or flow cytometry based Dihyrorhodamine 123 assay or both. The molecular diagnosis was confirmed by genetic mutation analysis in 13 cases. The mean age at diagnosis and the age at onset of symptoms was significantly lower in children diagnosed with XL- CGD compared those with AR disease. Mutations were detected in CYBB gene in 6 patients with XL-CGD and NCF-1 gene mutations were observed in 7 cases of AR- CGD. The course and outcome of the disease was much worse in children diagnosed with X-linked form of disease compared to AR forms of the disease; 4/7 (57%) children with X-CGD were dead at the time of data analysis. This is one of the largest series on chronic granulomatous disease from any developing country.
Collapse
Affiliation(s)
- Amit Rawat
- Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mahdaviani SA, Mohajerani SA, Rezaei N, Casanova JL, Mansouri SD, Velayati AA. Pulmonary manifestations of chronic granulomatous disease. Expert Rev Clin Immunol 2013; 9:153-60. [PMID: 23390946 DOI: 10.1586/eci.12.98] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited disorder, characterized by defects in superoxide-generating NADPH oxidase of phagocytes. The genetic defects in CGD induce failure to activate the respiratory burst in the phagocytes, leading to severe recurrent infections and unexplained prolonged inflammatory reactions that may produce granulomatous lesions. A noble advance in curative therapy for CGD is hematopoietic stem cell transplantation. Since the most common site of involvement in CGD is the lung, the pulmonologists (pediatrics or adult) may be among the first to recognize the pattern of infection, inflammation and granuloma formation, leading to diagnosis of CGD. Pulmonologists need to be aware of different lung manifestations of CGD.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
75
|
Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol 2013; 2013:781320. [PMID: 23762096 PMCID: PMC3666431 DOI: 10.1155/2013/781320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 02/08/2023]
Abstract
One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN- γ -producing T cells. As a result, infected infants are 5-10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease.
Collapse
Affiliation(s)
- Koen Vanden Driessche
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Alexander Persson
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Ben J. Marais
- Sydney Institute for Emerging Infectious Diseases and Biosecurity and The Children's Hospital at Westmead, University of Sydney, Locked Bag 4100, Sydney, NSW 2145, Australia
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Kevin B. Urdahl
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
76
|
Lee WI, Huang JL, Wu TS, Lee MH, Chen IJ, Yu KH, Liu CY, Yang CH, Hsieh MY, Lin YL, Shih YF, Jaing TH, Huang SC, Kuo TT, Ku CL. Patients with inhibitory and neutralizing auto-antibodies to interferon-γ resemble the sporadic adult-onset phenotype of Mendelian Susceptibility to Mycobacterial Disease (MSMD) lacking Bacille Calmette–Guerin (BCG)-induced diseases. Immunobiology 2013; 218:762-71. [DOI: 10.1016/j.imbio.2012.08.281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/26/2012] [Indexed: 12/30/2022]
|
77
|
Oxidative stress and free-radical oxidation in bcg granulomatosis development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:452546. [PMID: 23738038 PMCID: PMC3655644 DOI: 10.1155/2013/452546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 12/24/2022]
Abstract
Background. Little is known about the role of free-radical and oxidative stress signaling in granuloma maturation and resolution. We aimed to study the activity of free-radical oxidation processes in the dynamics of BCG-induced generalized granulomatosis in mice. Methods. Chronic granulomatous inflammation was induced in male BALB/c mice by intravenously injecting the BCG vaccine, and the production of oxidative stress (activity of free-radical oxidation processes) and histological changes in the lungs, liver, and peritoneal exudate were measured 3, 30, 60, and 90 days after infection. Results. The tuberculous granuloma numerical density and diameter continuously increased from day 30 to day 90, and the macrophage content within the granulomas progressively diminished with a concomitant elevation in the number of epithelioid cells. The activity of the free-radical oxidation processes in the liver (i.e., the intensity of the homogenate chemiluminescence) reached a maximum at postinfection day 60 and subsequently began to decrease. The peak generation of reactive oxygen species by phagocytes in the peritoneal exudate (measured using flow cytometry) was also shifted in time and fell on day 30. Conclusions. The rise in the steady-state concentration of H2O2 in the liver of mice with BCG-induced granulomatosis is not related to local H2O2 production by phagocytes, and a decrease in the severity of generalized inflammation precedes the resolution of local inflammation.
Collapse
|
78
|
Kong XF, Bousfiha A, Rouissi A, Itan Y, Abhyankar A, Bryant V, Okada S, Ailal F, Bustamante J, Casanova JL, Hirst J, Boisson-Dupuis S. A novel homozygous p.R1105X mutation of the AP4E1 gene in twins with hereditary spastic paraplegia and mycobacterial disease. PLoS One 2013; 8:e58286. [PMID: 23472171 PMCID: PMC3589270 DOI: 10.1371/journal.pone.0058286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
We report identical twins with intellectual disability, progressive spastic paraplegia and short stature, born to a consanguineous family. Intriguingly, both children presented with lymphadenitis caused by the live Bacillus Calmette-Guérin (BCG) vaccine. Two syndromes – hereditary spastic paraplegia (HSP) and mycobacterial disease – thus occurred simultaneously. Whole-exome sequencing (WES) revealed a homozygous nonsense mutation (p.R1105X) of the AP4E1 gene, which was confirmed by Sanger sequencing. The p.R1105X mutation has no effect on AP4E1 mRNA levels, but results in lower levels of AP-4ε protein and of the other components of the AP-4 complex, as shown by western blotting, immunoprecipitation and immunofluorescence. Thus, the C-terminal part of the AP-4ε subunit plays an important role in maintaining the integrity of the AP-4 complex. No abnormalities of the IL-12/IFN-γ axis or oxidative burst pathways were identified. In conclusion, we identified twins with autosomal recessive AP-4 deficiency associated with HSP and mycobacterial disease, suggesting that AP-4 may play important role in the neurological and immunological systems.
Collapse
Affiliation(s)
- Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ben-Ari J, Wolach O, Gavrieli R, Wolach B. Infections associated with chronic granulomatous disease: linking genetics to phenotypic expression. Expert Rev Anti Infect Ther 2013; 10:881-94. [PMID: 23030328 DOI: 10.1586/eri.12.77] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency characterized by the absence or malfunction of the NADPH oxidase in phagocytic cells. As a result, there is an impaired ability to generate superoxide anions and the subsequent reactive oxygen intermediates. Consequently, CGD patients suffer from two clinical manifestations: recurrent, life-threatening bacterial and fungal infections and excessive inflammatory reactions leading to granulomatous lesions. Although the genotype of CGD was linked to the phenotypic expression of the disease, this connection is still controversial and poorly understood. Certain correlations were reported, but the clinical expression of the disease is usually unpredictable, regardless of the pattern of inheritance. CGD mainly affects the lungs, lymph nodes, skin, GI tract and liver. Patients are particularly susceptible to catalase-positive microorganisms, including Staphyloccocus aureus, Nocardia spp. and Gram-negative bacteria, such as Serratia marcescens, Burkholderia cepacea and Salmonella spp. Unusually, catalase-negative microorganisms were reported as well. New antibacterial and antimycotic agents considerably improved the prognosis of CGD. Therapy with IFN-γ is still controversial. Bone marrow stem cell transplantation is currently the only curative treatment and gene therapy needs further development. In this article, the authors discuss the genetic, functional and molecular aspects of CGD and their impact on the clinical expression, infectious complications and the hyperinflammatory state.
Collapse
Affiliation(s)
- Josef Ben-Ari
- Pediatric Intensive Care Unit, Meir Medical Center, Kfar Saba, Israel
| | | | | | | |
Collapse
|
80
|
Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 2013; 12:301-12. [PMID: 22980327 DOI: 10.1016/j.chom.2012.07.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/24/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022]
Abstract
Neutrophils are typically the first responders in host defense against invading pathogens, which they destroy by both oxidative and nonoxidative mechanisms. However, despite a longstanding recognition of neutrophil presence at disease sites in tuberculosis, their role in defense against mycobacteria is unclear. Here we exploit the genetic tractability and optical transparency of zebrafish to monitor neutrophil behavior and its consequences during infection with Mycobacterium marinum, a natural fish pathogen. In contrast to macrophages, neutrophils do not interact with mycobacteria at initial infection sites. Neutrophils are subsequently recruited to the nascent granuloma in response to signals from dying infected macrophages within the granuloma, which they phagocytose. Some neutrophils then rapidly kill the internalized mycobacteria through NADPH oxidase-dependent mechanisms. Our results provide a mechanistic link to the observed patterns of neutrophils in human tuberculous granulomas and the susceptibility of humans with chronic granulomatous disease to mycobacterial infection.
Collapse
Affiliation(s)
- Chao-Tsung Yang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
81
|
Changes in activity of free radical oxidation processes in the early stages of BCG granulomatosis. Bull Exp Biol Med 2013; 154:213-6. [PMID: 23330128 DOI: 10.1007/s10517-012-1915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the intensity of free radical oxidation in the liver and activity of oxidative metabolism in mouse peritoneal exudate phagocytes at the early stages of chronic generalized BCG-induced granulomatosis (days 3 and 30 after a single intraperitoneal or intravenous administration of 0.5 mg of BCG vaccine). It was found that both methods of injection did not change the intensity of free radical lipid peroxidation in the liver in comparison with the control, but activity of free radical oxidation mediated by production of hydrogen peroxide was increased in the liver and peritoneal exudate at the stages of mature granuloma formation (day 30). At the same time, intraperitoneal injection contributed to more pronounced activation of lipid peroxidation and synthesis of hydrogen peroxide in the liver.
Collapse
|
82
|
Gantzer A, Neven B, Picard C, Brousse N, Lortholary O, Fischer A, Bodemer C, Fraitag S. Severe cutaneous bacillus Calmette-Guérin infection in immunocompromised children: the relevance of skin biopsy. J Cutan Pathol 2012; 40:30-7. [DOI: 10.1111/cup.12048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/30/2012] [Accepted: 08/27/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Amélie Gantzer
- Department of Dermatology, Hôpital Necker-Enfants Malades; Université René Descartes, APHP; Paris; France
| | - Bénédicte Neven
- Department of Hematology-Immunology and Rheumatology; Hopital Necker-Enfants Malades, APHP; Paris; France
| | - Capucine Picard
- Department of Hematology-Immunology and Rheumatology; Hopital Necker-Enfants Malades, APHP; Paris; France
| | - Nicole Brousse
- Department of Pathology; Hôpital Necker-Enfants Malades, APHP; Paris; France
| | - Olivier Lortholary
- Department of Infectious and Tropical Diseases; Hôpital Necker-Enfants Malades, APHP; Paris; France
| | - Alain Fischer
- Department of Hematology-Immunology and Rheumatology; Hopital Necker-Enfants Malades, APHP; Paris; France
| | - Christine Bodemer
- Department of Dermatology, Hôpital Necker-Enfants Malades; Université René Descartes, APHP; Paris; France
| | - Sylvie Fraitag
- Department of Pathology; Hôpital Necker-Enfants Malades, APHP; Paris; France
| |
Collapse
|
83
|
Jakobsen MA, Katzenstein TL, Valerius NH, Roos D, Fisker N, Mogensen TH, Jensen PØ, Barington T. Genetical Analysis of All Danish Patients Diagnosed with Chronic Granulomatous Disease. Scand J Immunol 2012; 76:505-11. [DOI: 10.1111/j.1365-3083.2012.02771.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. A. Jakobsen
- Department of Clinical Immunology; Odense University Hospital; Odense; Denmark
| | - T. L. Katzenstein
- Department of Infectious Diseases; Copenhagen University Hospital Righospitalet; Copenhagen; Denmark
| | - N. H. Valerius
- Department of Paediatrics; Copenhagen University Hospital; Hvidovre; Copenhagen; Denmark
| | - D. Roos
- Sanquin Research; Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam; The Netherlands
| | - N. Fisker
- H.C. Andersen Children's Hospital; Odense University Hospital; Odense; Denmark
| | - T. H. Mogensen
- Department of Infectious Diseases; Aarhus University Hospital; Skejby; Aarhus; Denmark
| | - P. Ø. Jensen
- Department of Clinical Microbiology; Copenhagen University Hospital Rigshospitalet; Copenhagen; Denmark
| | - T. Barington
- Department of Clinical Immunology; Odense University Hospital; Odense; Denmark
| |
Collapse
|
84
|
Sun J, Wang Y, Liu D, Yu Y, Wang J, Ying W, Wang X. Prenatal Diagnosis of X-Linked Chronic Granulomatous Disease by Percutaneous Umbilical Blood Sampling. Scand J Immunol 2012; 76:512-8. [PMID: 22924737 DOI: 10.1111/j.1365-3083.2012.02772.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Sun
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| | - Y. Wang
- Centre of Prenatal Diagnosis; International Peace Maternity and Child Health Hospital; School of Medicine; ShanghaiJiaoTong University; Shanghai; China
| | - D. Liu
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| | - Y. Yu
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| | - J. Wang
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| | - W. Ying
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| | - X. Wang
- Department of Clinical Immunology; Children's Hospital of Fudan University; Shanghai; China
| |
Collapse
|
85
|
Khotaei G, Hirbod-Mobarakeh A, Amirkashani D, Manafi F, Rezaei N. Mycobacterium tuberculosis meningitis as the first presentation of chronic granulomatous disease. Braz J Infect Dis 2012; 16:491-2. [DOI: 10.1016/j.bjid.2012.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/18/2012] [Indexed: 10/27/2022] Open
|
86
|
Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava AK, Narasimhulu KV, Redding KE, Vashi N, Kumar D, Steyn AJC, Singh A. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 2012; 85:1148-65. [PMID: 22780904 PMCID: PMC3438311 DOI: 10.1111/j.1365-2958.2012.08165.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Host-generated oxidative stress is considered one of the main mechanisms constraining Mycobacterium tuberculosis (Mtb) growth. The redox-sensing mechanisms in Mtb are not completely understood. Here we show that WhiB4 responds to oxygen (O2) and nitric oxide (NO) via its 4Fe-4S cluster and controls the oxidative stress response in Mtb. The WhiB4 mutant (MtbΔwhiB4) displayed an altered redox balance and a reduced membrane potential. Microarray analysis demonstrated that MtbΔwhiB4 overexpresses the antioxidant systems including alkyl hydroperoxidase (ahpC-ahpD) and rubredoxins (rubA-rubB). DNA binding assays showed that WhiB4 [4Fe-4S] cluster is dispensable for DNA binding. However, oxidation of the apo-WhiB4 Cys thiols induced disulphide-linked oligomerization, DNA binding and transcriptional repression, whereas reduction reversed the effect. Furthermore, WhiB4 binds DNA with a preference for GC-rich sequences. Expression analysis showed that oxidative stress repressed whiB4 and induced antioxidants in Mtb, while their hyper-induction was observed in MtbΔwhiB4. MtbΔwhiB4 showed increased resistance to oxidative stress in vitro and enhanced survival inside the macrophages. Lastly, MtbΔwhiB4 displayed hypervirulence in the lungs of guinea pigs, but showed a defect in dissemination to their spleen. These findings suggest that WhiB4 systematically calibrates the activation of oxidative stress response in Mtb to maintain redox balance, and to modulate virulence.
Collapse
Affiliation(s)
- Manbeena Chawla
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Clinical isolates of Mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin Dev Immunol 2012; 2012:152546. [PMID: 22778761 PMCID: PMC3388301 DOI: 10.1155/2012/152546] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/29/2012] [Indexed: 11/17/2022]
Abstract
Tuberculosis pathogenesis was earlier thought to be mainly related to the host but now it appears to be clear that bacterial factors are also involved. Genetic variability of Mycobacterium tuberculosis (Mtb) could be slight but it may lead to sharp phenotypic differences. We have previously reported that nonopsonized Mtb H37Rv induce apoptosis of polymorphonuclear neutrophils (PMNs) by a mechanism that involves the p38 pathway. Here we evaluated the capability to induce PMN apoptosis of two prevalent Mtb lineages in Argentina, the Latin America and Mediterranean (LAM), and Haarlem, using the H37Rv as a reference strain. Results showed that LAM strains strongly induced apoptosis of PMN which correlated with the induction of reactive oxygen species (ROS) production and p38 activation. Interestingly, the highly prosperous multidrug-resistant M strain, belonging to the Haarlem lineage, lacked the ability to activate and to induce PMN apoptosis as a consequence of (1) a weak ROS production and (2) the contribution of antiapoptotic mechanisms mediated at least by ERK. Although with less skill, M is able to enter the PMN so that phenotypic differences could lead PMN to be a reservoir allowing some pathogens to prevail and persist over other strains in the community.
Collapse
|
88
|
Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012; 64:543-54. [PMID: 22430715 PMCID: PMC4792288 DOI: 10.1016/j.jinf.2012.03.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/23/2012] [Accepted: 03/12/2012] [Indexed: 01/16/2023]
Abstract
Primary immunodeficiency diseases (PIDs) are a group of inherited disorders, characterized by defects of the immune system predisposing individuals to variety of manifestations, including recurrent infections and unusual vaccine complications. There are a number of PIDs prone to Bacillus Calmette-Guérin (BCG) complications. This review presents an update on our understanding about the BCGosis-susceptible PIDs, including severe combined immunodeficiency, chronic granulomatous disease, and Mendelian susceptibility to mycobacterial diseases.
Collapse
Affiliation(s)
- Sayna Norouzi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sergio D. Rosenzweig
- Infectious Diseases Susceptibility Unit, Laboratory of Host Defenses, Primary Immunodeficiency Clinic, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Immunology Research Center, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infection and Immunity, School of Medicine and Biomedical Sciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
89
|
Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol 2012; 14:1109-21. [DOI: 10.1111/j.1462-5822.2012.01783.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
90
|
Bustamante J, Picard C, Boisson-Dupuis S, Abel L, Casanova JL. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann N Y Acad Sci 2012; 1246:92-101. [PMID: 22236433 DOI: 10.1111/j.1749-6632.2011.06273.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare syndrome conferring predisposition to clinical disease caused by weakly virulent mycobacteria, such as Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccines and nontuberculous, environmental mycobacteria (EM). Since 1996, MSMD-causing mutations have been found in six autosomal genes involved in IL-12/23-dependent, IFN-γ-mediated immunity. The aim of this review is to provide the description of the two described forms of X-linked recessive (XR) MSMD. Germline mutations in two genes, NEMO and CYBB, have long been known to cause other human diseases-incontinentia pigmenti (IP) and anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) (NEMO/IKKG), and X-linked chronic granulomatous disease (CGD) (CYBB)-but specific mutations in either of these two genes have recently been shown to cause XR-MSMD. NEMO is an essential component of several NF-κB-dependent signaling pathways. The MSMD-causing mutations in NEMO selectively affect the CD40-dependent induction of IL-12 in mononuclear cells. CYBB encodes gp91(phox) , which is an essential component of the NADPH oxidase in phagocytes. The MSMD-causing mutation in CYBB selectively affects the respiratory burst in macrophages. Mutations in NEMO and CYBB may therefore cause MSMD by selectively exerting their deleterious impact on a single signaling pathway (CD40-IL-12, NEMO) or a single cell type (macrophages, CYBB). These experiments of Nature illustrate how specific germline mutations in pleiotropic genes can dissociate signaling pathways or cell lineages, thereby resulting in surprisingly narrow clinical phenotypes.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | | | | | | | | |
Collapse
|
91
|
Fontanilla JM, Barnes A, von Reyn CF. Current diagnosis and management of peripheral tuberculous lymphadenitis. Clin Infect Dis 2012; 53:555-62. [PMID: 21865192 DOI: 10.1093/cid/cir454] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral tuberculous lymphadenitis accounts for ~10% of tuberculosis cases in the United States. Epidemiologic characteristics include a 1.4:1 female-to-male ratio, a peak age range of 30-40 years, and dominant foreign birth, especially East Asian. Patients present with a 1-2 month history of painless swelling of a single group of cervical lymph nodes. Definitive diagnosis is by culture or nucleic amplification of Mycobacterium tuberculosis; demonstration of acid fast bacilli and granulomatous inflammation may be helpful. Excisional biopsy has the highest sensitivity at 80%, but fine-needle aspiration is less invasive and may be useful, especially in immunocompromised hosts and in resource-limited settings. Antimycobacterial therapy remains the cornerstone of treatment, but response is slower than with pulmonary tuberculosis; persistent pain and swelling are common, and paradoxical upgrading reactions may occur in 20% of patients. The role of steroids is controversial. Initial excisional biopsy deserves consideration for both optimal diagnosis and management of the otherwise slow response to therapy.
Collapse
Affiliation(s)
- Jose-Mario Fontanilla
- Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | | | | |
Collapse
|
92
|
Lee PPW, Lau YL. Improving care, education, and research: the Asian primary immunodeficiency network. Ann N Y Acad Sci 2012; 1238:33-41. [PMID: 22129051 DOI: 10.1111/j.1749-6632.2011.06225.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The field of primary immunodeficiencies (PIDs) is marked by continuous discoveries in the mechanisms of disease, genetic etiologies, and treatments. A widening gap between cutting-edge scientific research and its translation to clinical practice is noticeable. To narrow this gap, collaborative networks must be made that bring together a critical mass of specialists to share the knowledge required for the next innovations. In this paper, we describe the current status of the Asian primary immunodeficiency network, which links 40 hospitals in China and Southeast Asia. Over the past 10 years, genetic studies performed on more than 500 patients have led to genetic confirmation of primary immunodeficiency in 272 patients, as well as generating cohort studies that have provided unique phenotypic observations. The network has a dynamic capacity to accommodate priorities and interests of collaborating units, from consultations and genetic testing to scientific research involving next-generation sequencing technologies.
Collapse
Affiliation(s)
- Pamela Pui-Wah Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, China
| | | |
Collapse
|
93
|
Lee WI, Huang JL, Yeh KW, Jaing TH, Lin TY, Huang YC, Chiu CH. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc 2011; 110:750-8. [PMID: 22248828 DOI: 10.1016/j.jfma.2011.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 12/22/2022] Open
Abstract
Natural human immunity to the mycobacteria group, including Mycobacterium tuberculosis, Bacille Calmette-Guérin (BCG) or nontuberculous mycobacteria (NTM), and/or Salmonella species, relies on the functional IL-12/23-IFN-γ integrity of macrophages (monocyte/dendritic cell) connecting to T lymphocyte/NK cells. Patients with severe forms of primary immunodeficiency diseases (PIDs) have more profound immune defects involving this impaired circuit in patients with severe combined immunodeficiencies (SCID) including complete DiGeorge syndrome, X-linked hyper IgM syndrome (HIGM) (CD40L mutation), CD40 deficiency, immunodeficiency with or without anhidrotic ectodermal dysplasia (NEMO and IKBA mutations), chronic granulomatous disease (CGD) and hyper IgE recurrent infection syndromes (HIES). The patients with severe PIDs have broader diverse infections rather than mycobacterial infections. In contrast, patients with an isolated inborn error of the IL-12/23-IFN-γ pathway are exclusively prone to low-virulence mycobacterial infections and nontyphoid salmonella infections, known as Mendelian susceptibility to the mycobacterial disease (MSMD) phenotype. Restricted defective molecules in the circuit, including IFN-γR1, IFN-γR2, IL-12p40, IL-12R-β1, STAT-1, NEMO, IKBA and the recently discovered CYBB responsible for autophagocytic vacuole and proteolysis, and interferon regulatory factor 8 (IRF8) for dendritic cell immunodeficiency, have been identified in around 60% of patients with the MSMD phenotype. Among all of the patients with PIDs referred for investigation since 1985, we have identified four cases with the specific defect (IFNRG1 for three and IL12RB for one), presenting as both BCG-induced diseases and NTM infections, in addition to some patients with SCID, HIGM, CGD and HIES. Furthermore, manifestations in patients with autoantibodies to IFN-γ (autoAbs-IFN-γ), which is categorized as an anticytokine autoantibody syndrome, can resemble the relatively persistent MSMD phenotype lacking BCG-induced diseases.
Collapse
Affiliation(s)
- Wen-I Lee
- Primary Immunodeficiency Care And Research (PICAR) Institute, Chang Gung Medical Hospital and Children's Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
94
|
Inheritance pattern and clinical aspects of 93 Iranian patients with chronic granulomatous disease. J Clin Immunol 2011; 31:792-801. [PMID: 21789723 DOI: 10.1007/s10875-011-9567-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/03/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare immunodeficiency due to a genetic defect in one of the NADPH-oxidase components. We studied CGD inheritance forms (autosomal recessive (AR) or X-linked (XL)) and AR-CGD subtypes in Iran. METHODS Clinical and functional investigations were conducted in 93 Iranian CGD patients from 75 families. RESULTS Most of the patients were AR-CGD (87.1%). This was related to consanguineous marriages (p = 0.001). The age of onset of symptoms and diagnosis were lower in XL-CGD compared with AR-CGD (p < 0.0001 for both). Among AR-CGD patients, p47phox defect was the predominant subtype (55.5%). The most common clinical features in patients were lymphadenopathy (65.6%) and pulmonary involvement (57%). XL-CGD patients were affected more frequently with severe infectious manifestations. CONCLUSIONS Although XL-CGD is the most common type of the disease worldwide, only 12 patients (12.9%) were XL-CGD in our study. The relatively high frequency of AR-CGD is probable due to widely common consanguineous marriages in Iran.
Collapse
|
95
|
Song E, Jaishankar GB, Saleh H, Jithpratuck W, Sahni R, Krishnaswamy G. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy 2011; 9:10. [PMID: 21624140 PMCID: PMC3128843 DOI: 10.1186/1476-7961-9-10] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/31/2011] [Indexed: 01/18/2023] Open
Abstract
Chronic Granulomatous Disease is the most commonly encountered immunodeficiency involving the phagocyte, and is characterized by repeated infections with bacterial and fungal pathogens, as well as the formation of granulomas in tissue. The disease is the result of a disorder of the NADPH oxidase system, culminating in an inability of the phagocyte to generate superoxide, leading to the defective killing of pathogenic organisms. This can lead to infections with Staphylococcus aureus, Psedomonas species, Nocardia species, and fungi (such as Aspergillus species and Candida albicans). Involvement of vital or large organs can contribute to morbidity and/or mortality in the affected patients. Major advances have occurred in the diagnosis and treatment of this disease, with the potential for gene therapy or stem cell transplantation looming on the horizon.
Collapse
Affiliation(s)
- Eunkyung Song
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Quillen College of Medicine, East Tennessee State University, USA.
| | | | | | | | | | | |
Collapse
|
96
|
|
97
|
Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Jannière L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 2011; 12:213-21. [PMID: 21278736 PMCID: PMC3097900 DOI: 10.1038/ni.1992] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/31/2010] [Indexed: 12/31/2022]
Abstract
Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This 'experiment of nature' indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, Avcin T, de Boer M, Bustamante J, Condino-Neto A, Di Matteo G, He J, Hill HR, Holland SM, Kannengiesser C, Köker MY, Kondratenko I, van Leeuwen K, Malech HL, Marodi L, Nunoi H, Stasia MJ, Maria Ventura A, Witwer CT, Wolach B, Gallin JI. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 2010; 45:246-65. [PMID: 20729109 PMCID: PMC4360070 DOI: 10.1016/j.bcmd.2010.07.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Joachim Roesler
- Dept of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Tadashi Ariga
- Dept of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadej Avcin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, Ljubljana, Slovenia
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM, U550, and René Descartes University, Necker Medical School, Paris, France
| | - Antonio Condino-Neto
- Dept of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gigliola Di Matteo
- Dept of Public Health and Cellular Biology, Tor Vergata University, Rome, Italy
| | - Jianxin He
- Lung Function Lab, Pediatric Research Institute, Beijing Children’ Hospital affiliated to Capital Medical University, Beijing, People’s Republic of China
| | - Harry R. Hill
- Depts of Pathology, Pediatrics and Medicine, University of Utah, and the ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Caroline Kannengiesser
- Assistance Publique des Hôpitaux de Paris, Bichat-Claude Bernard Hospital, Hormonal Biochemistry and Genetic Service, Paris, F-75018, and INSERM, Biomedical Research Center Bichat-Beaujon, U773, Paris, F-75018, France
| | - M. Yavuz Köker
- Immunology Laboratory and Cappadocia Transplant Centre, University of Erciyes, Kayseri, Turkey
| | - Irina Kondratenko
- Dept of Clinical Immunology, Russian Children’s Clinical Hospital, Moscow, Russia
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA ()
| | - László Marodi
- Dept of Infectiology and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Hiroyuki Nunoi
- Dept of Reproductive and Developmental Medicine, Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Marie-José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre, University Hospital Grenoble, Therex-TIMC/Imag UMR CNRS 5525, University J. Fourrier, Grenoble, France
| | - Anna Maria Ventura
- Department of Biomedicine of Development Age, University of Bari, Bari, Italy
| | - Carl T. Witwer
- Depts of Pathology, Pediatrics and Medicine, University of Utah, and the ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Baruch Wolach
- Dept of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Centre, Kfar Saba, Israel
| | - John I. Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA ()
| |
Collapse
|
99
|
Fujita M, Harada E, Matsumoto T, Mizuta Y, Ikegame S, Ouchi H, Inoshima I, Yoshida S, Watanabe K, Nakanishi Y. Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease. Clin Exp Immunol 2010; 160:457-60. [PMID: 20089078 DOI: 10.1111/j.1365-2249.2010.04092.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Patients with chronic granulomatous disease (CGD), an inherited disorder of phagocytic cells, often contract recurrent life-threatening bacterial and fungal infections. CGD is considered to arise from a functional defect of the O(2)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes. To determine whether or not NADPH oxidase is crucial to the host defence against Mycobacterium avium, we investigated the response against M. avium using CGD model mice (gp91-phox(-)) of C57BL/6 strain. A tracheal injection of 1 x 10(7) colony-forming units (CFU)/head of M. avium strain FN into the CGD mice resulted in a pulmonary infection, while also increasing the mortality rate. In contrast, normal C57BL/6 mice injected with same dose of the organisms did not develop severe pulmonary infection and were able to survive through 2 months of observation. The macrophages obtained from the CGD mice were observed to have a higher burden of the bacterial growth than macrophages from normal C57BL/6 mice. These results suggest that the defect of the NADPH oxidase function impairs the host defence against M. avium infection.
Collapse
Affiliation(s)
- M Fujita
- Research Institute for Diseases of the Chest, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
|