51
|
Melnikov MV, Paschenkov MV, Boyko AN. [Dendritic cells in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:22-30. [PMID: 28617358 DOI: 10.17116/jnevro20171172222-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Main functions, structure and stages of development of dendritic cells (DCs) are reviewed. A role of DCs in the development of immune tolerance and autoimmune diseases as well as involvement of DCs in the immunopathogenesis of multiple sclerosis (MS and their therapeutic potential in the treatment of MS are discussed.
Collapse
Affiliation(s)
- M V Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Moscow City Center of Multiple Sclerosis, Moscow, Russia
| |
Collapse
|
52
|
Foote JR, Patel AA, Yona S, Segal AW. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets. Front Immunol 2019; 10:188. [PMID: 30881356 PMCID: PMC6405516 DOI: 10.3389/fimmu.2019.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naïve DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, University College London, London, United Kingdom
| | - Amit A Patel
- Division of Medicine, University College London, London, United Kingdom
| | - Simon Yona
- Division of Medicine, University College London, London, United Kingdom
| | - Anthony W Segal
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
53
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
54
|
S N SG, Raviraj R, Nagarajan D, Zhao W. Radiation-induced lung injury: impact on macrophage dysregulation and lipid alteration - a review. Immunopharmacol Immunotoxicol 2018; 41:370-379. [PMID: 30442050 DOI: 10.1080/08923973.2018.1533025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths and more than one million lung cancer patients will die every year worldwide. Radiotherapy (RT) plays an important role in lung cancer treatment, but the side effects of RT are pneumonitis and pulmonary fibrosis. RT-induced lung injury causes damage to alveolar-epithelial cells and vascular endothelial cells. Macrophages play an important role in the development of pulmonary fibrosis despite its role in immune response. These injury activated macrophages develop into classically activated M1 macrophage or alternative activated M2 macrophage. It secretes cytokines, interleukins, interferons, and nitric oxide. Several pro-inflammatory lipids and pro-apoptotic proteins cause lipotoxicity such as LDL, FC, DAG, and FFA. The overall findings in this review conclude the importance of macrophages in inducing toxic/inflammatory effects during RT of lung cancer, which is clinically vital to treat the radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sunil Gowda S N
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Raghavi Raviraj
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Devipriya Nagarajan
- a Radiation Biology Laboratory, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur , India
| | - Weiling Zhao
- b School of Biomedical Informatics , The University of Texas Health Sciences Center , Houston , TX , USA
| |
Collapse
|
55
|
Van Winkle JA, Robinson BA, Peters AM, Li L, Nouboussi RV, Mack M, Nice TJ. Persistence of Systemic Murine Norovirus Is Maintained by Inflammatory Recruitment of Susceptible Myeloid Cells. Cell Host Microbe 2018; 24:665-676.e4. [PMID: 30392829 PMCID: PMC6248887 DOI: 10.1016/j.chom.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Viral persistence can contribute to chronic disease and promote virus dissemination. Prior work demonstrated that timely clearance of systemic murine norovirus (MNV) infection depends on cell-intrinsic type I interferon responses and adaptive immunity. We now find that the capsid of the systemically replicating MNV strain CW3 promotes lytic cell death, release of interleukin-1α, and increased inflammatory cytokine release. Correspondingly, inflammatory monocytes and neutrophils are recruited to sites of infection in a CW3-capsid-dependent manner. Recruited monocytes and neutrophils are subsequently infected, representing a majority of infected cells in vivo. Systemic depletion of inflammatory monocytes or neutrophils from persistently infected Rag1-/- mice reduces viral titers in a tissue-specific manner. These data indicate that the CW3 capsid facilitates lytic cell death, inflammation, and recruitment of susceptible cells to promote persistence. Infection of continuously recruited inflammatory cells may be a mechanism of persistence broadly utilized by lytic viruses incapable of establishing latency.
Collapse
Affiliation(s)
- Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Bridget A Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - A Mack Peters
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lena Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ruth V Nouboussi
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Matthias Mack
- Department of Internal Medicine (Nephrology), University of Regensburg, Regensburg, Germany
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
56
|
Naranjo-Gómez JS, Castillo JA, Rojas M, Restrepo BN, Diaz FJ, Velilla PA, Castaño D. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology 2018; 156:147-163. [PMID: 30315653 DOI: 10.1111/imm.13011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Although dengue can progress to severe stages, the exact causes of this phenomenon are unknown; however, the possibility of monocyte participation is acknowledged. It has been suggested that monocyte subsets (classical, intermediate and non-classical) play differential roles in dengue immunopathology. Therefore, we determined the count of monocyte subsets and obtained the clinical information of patients with dengue. We noted a significant decrease in the count of non-classical monocytes in patients compared with controls. With this finding, we focused on studying the phenotype of non-classical monocytes in the present study. An increase in activation and differentiation markers, such as CD64, CD86, the percentage of tumor necrosis factor-α+ cells and exposure of phosphatidylserine, were recorded in the non-classical monocytes of patients compared with controls. Moreover, a significant decrease in the expression of CX3CR1 with a corresponding increase in the expressions of CCR2, CCR5, CD11b and CD54 was detected in the non-classical monocytes of patients in comparison with that of the controls. Significant increases in the frequency of microparticles from endothelium and in the concentrations of interleukin-6 (IL-6), IL-8 and IL-10 were noted in the plasma of patients. These findings demonstrate that in patients with dengue, non-classical monocytes are activated, exhibiting a phenotype associated with more differentiation, produces tumor necrosis factor-α and has a profile of less endothelial surveillance closer to the cellular migration. These changes were associated with hepatic compromise, endothelial alteration and high concentration of circulating cytokines. Hence, alterations of non-classical monocytes seem to be associated with the immunopathology of dengue infection.
Collapse
Affiliation(s)
- Juan S Naranjo-Gómez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jorge Andrés Castillo
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mauricio Rojas
- Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Berta N Restrepo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Francisco J Diaz
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Paula A Velilla
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
57
|
Zhang Y, Grosfeld EC, Camargo WA, Tang H, Magri AMP, van den Beucken JJJP. Efficacy of intraoperatively prepared cell-based constructs for bone regeneration. Stem Cell Res Ther 2018; 9:283. [PMID: 30359312 PMCID: PMC6203202 DOI: 10.1186/s13287-018-1026-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Conventional cell-based bone regeneration suffers from the major disadvantage of limited cell supply, time-consuming in vitro expansion cultures, and limited patient-friendliness related to cell isolation and multiple visits to the clinic. Here, we utilized an alternative concept using "easy access cells" that can be obtained in an intraoperative manner to prepare cell-based constructs. METHODS We used stromal vascular fraction (SVF) from human adipose tissue and human monocytes for intraoperative preparation of bone constructs. Conventional constructs grafted with expanded human adipose tissue mesenchymal stem cells (ADMSCs) derived from the same donor were set as positive controls. Additionally, we combined both cell types either or not with monocytes. The cellular interaction of human SVF and ADMSCs with human monocytes was evaluated in vitro. The feasibility and bone-regenerative capacity of intraoperative constructs were determined histologically and histomorphometrically in a rat femoral condyle bone defect model. RESULTS SVF displayed equal in vitro osteogenic differentiation compared to donor-matched expanded ADMSCs, which for both was significantly enhanced upon co-culture with monocytes. Moreover, SVF and ADMSCs displayed different immunoregulatory effects on monocytes/macrophages. Upon implantation in rat femoral bone defects, SVF constructs demonstrated superior bone formation compared to ADMSC constructs and cell-free controls; no effects of monocyte addition were observed. CONCLUSION In conclusion, we here demonstrate the feasibility of intraoperative SVF construct preparation and superior bone-regenerative capacity thereof compared to donor-matched ADMSC constructs. The superiority of SVF constructs was found to be linked to the distinct differences between immunoregulatory effects of SVF and ADMSCs.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomaterials, PO Box 9101, 6500HB Radboudumc, Nijmegen, the Netherlands
| | - Eline C Grosfeld
- Department of Biomaterials, PO Box 9101, 6500HB Radboudumc, Nijmegen, the Netherlands
| | - Winston A Camargo
- Department of Biomaterials, PO Box 9101, 6500HB Radboudumc, Nijmegen, the Netherlands
| | - Hongbo Tang
- Department of Biomaterials, PO Box 9101, 6500HB Radboudumc, Nijmegen, the Netherlands.,Department of Plastic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Angela M P Magri
- Department of Biomaterials, PO Box 9101, 6500HB Radboudumc, Nijmegen, the Netherlands.,Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | |
Collapse
|
58
|
Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis 2018; 278:156-165. [PMID: 30278358 DOI: 10.1016/j.atherosclerosis.2018.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS In dialysis patients, vascular morbidities are highly prevalent and linked to leukocyte extravasation, especially of polarized monocytes. Experimental data demonstrate that phenotypic changes in monocytes require Y-box binding protein-1 (YB-1) upregulation. METHODS We determined YB-1 expression in circulating and vessel-invading monocytes from healthy controls and dialysis patients to correlate results with intima plaque formation and systemic inflammation. RESULTS Compared to healthy subjects, dialysis patients have fewer classical and more intermediate and non-classical monocytes. Post-translationally modified YB-1 (lysine 301/304 acetylation) is detected at high levels in the nucleus of adherent and invading CD14+CD68+ monocytes from umbilical cord and atherosclerosis-prone vessels. The content of non-acetylated YB-1 is significantly decreased (p < 0.001), whereas acetylated YB-1 is correspondingly increased (p < 0.001) throughout all monocyte subpopulations, such that the overall content remains unchanged. CONCLUSIONS In dialysis patients the YB-1 acetylation status is higher with prevailing diabetes and intima plaque formation. Pro-inflammatory mediators TNFα, IL-6, uPAR, CCL2, M-CSF, progranulin, ANP, and midkine, as well as anti-inflammatory IL-10 are significantly increased in dialysis patients, emphasizing a systemic inflammatory milieu. Strong positive correlations of monocytic YB-1 content are seen with ANP, IP-10, IL-6, and IL-10 serum levels. This is the first study demonstrating an association of cold shock protein YB-1 expression with inflammation in hemodialysis patients.
Collapse
|
59
|
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, Ji Y, Wang J, Yang XF, Wang H. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol 2018; 11:97. [PMID: 30064449 PMCID: PMC6069866 DOI: 10.1186/s13045-018-0637-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Immune cells were traditionally considered as major pro-inflammatory contributors. Recent advances in molecular immunology prove that immune cell lineages are composed of different subsets capable of a vast array of specialized functions. These immune cell subsets share distinct duties in regulating innate and adaptive immune functions and contribute to both immune activation and immune suppression responses in peripheral tissue. Here, we summarized current understanding of the different subsets of major immune cells, including T cells, B cells, dendritic cells, monocytes, and macrophages. We highlighted molecular characterization, frequency, and tissue distribution of these immune cell subsets in human and mice. In addition, we described specific cytokine production, molecular signaling, biological functions, and tissue population changes of these immune cell subsets in both cardiovascular diseases and cancers. Finally, we presented a working model of the differentiation of inflammatory mononuclear cells, their interaction with endothelial cells, and their contribution to tissue inflammation. In summary, this review offers an updated and comprehensive guideline for immune cell development and subset differentiation, including subset characterization, signaling, modulation, and disease associations. We propose that immune cell subset differentiation and its complex interaction within the internal biological milieu compose a “pathophysiological network,” an interactive cross-talking complex, which plays a critical role in the development of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Dai
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Lauren Cole
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Javier Andres Camacho
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingfeng Wang
- Cardiovascular Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Medical Education and Research Building, Room 1060, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Montague K, Simeoli R, Valente J, Malcangio M. A novel interaction between CX 3CR 1 and CCR 2 signalling in monocytes constitutes an underlying mechanism for persistent vincristine-induced pain. J Neuroinflammation 2018; 15:101. [PMID: 29625610 PMCID: PMC5889528 DOI: 10.1186/s12974-018-1116-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A dose-limiting side effect of chemotherapeutic agents such as vincristine (VCR) is neuropathic pain, which is poorly managed at present. Chemokine-mediated immune cell/neuron communication in preclinical VCR-induced pain forms an intriguing basis for the development of analgesics. In a murine VCR model, CX3CR1 receptor-mediated signalling in monocytes/macrophages in the sciatic nerve orchestrates the development of mechanical hypersensitivity (allodynia). CX3CR1-deficient mice however still develop allodynia, albeit delayed; thus, additional underlying mechanisms emerge as VCR accumulates. Whilst both patrolling and inflammatory monocytes express CX3CR1, only inflammatory monocytes express CCR2 receptors. We therefore assessed the role of CCR2 in monocytes in later stages of VCR-induced allodynia. METHODS Mechanically evoked hypersensitivity was assessed in VCR-treated CCR2- or CX3CR1-deficient mice. In CX3CR1-deficient mice, the CCR2 antagonist, RS-102895, was also administered. Immunohistochemistry and Western blot analysis were employed to determine monocyte/macrophage infiltration into the sciatic nerve as well as neuronal activation in lumbar DRG, whilst flow cytometry was used to characterise monocytes in CX3CR1-deficient mice. In addition, THP-1 cells were used to assess CX3CR1-CCR2 receptor interactions in vitro, with Western blot analysis and ELISA being used to assess expression of CCR2 and proinflammatory cytokines. RESULTS We show that CCR2 signalling plays a mechanistic role in allodynia that develops in CX3CR1-deficient mice with increasing VCR exposure. Indeed, the CCR2 antagonist, RS-102895, proves ineffective in mice possessing functional CX3CR1 receptors but reduces VCR-induced allodynia in CX3CR1-deficient mice, in which CCR2+ monocytes are elevated by VCR. We suggest that a novel interaction between CX3CR1 and CCR2 receptors in monocytes accounts for the therapeutic effect of RS-102895 in CX3CR1-deficient mice. Indeed, we observe that CCR2, along with its ligand, CCL2, is elevated in the sciatic nerve in CX3CR1-deficient mice, whilst in THP-1 cells (human monocytes), downregulating CX3CR1 upregulates CCR2 expression via p38 MAP kinase signalling. We also show that the CX3CR1-CCR2 interaction in vitro regulates the release of pronociceptive cytokines TNF-α and IL1β. CONCLUSIONS Our data suggests that CCL2/CCR2 signalling plays a crucial role in VCR-induced allodynia in CX3CR1-deficient mice, which arises as a result of an interaction between CX3CR1 and CCR2 in monocytes.
Collapse
Affiliation(s)
- Karli Montague
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Raffaele Simeoli
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK.,Infectology and Clinical Trials Research Department, Bambino Gesu` Children's Hospital, IRCCS, Rome, Italy
| | - Joao Valente
- Vascular Biology and Inflammation Section, Cardiovascular School of Medicine & Science, British Heart Foundation Centre of Excellence, King's College London, Franklin-Wilkins Building, 150 Stamford Street, King's College London, London, SE1 9NH, UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
61
|
Luong VH, Chino T, Oyama N, Matsushita T, Sasaki Y, Ogura D, Niwa SI, Biswas T, Hamasaki A, Fujita M, Okamoto Y, Otsuka M, Ihn H, Hasegawa M. Blockade of TGF-β/Smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. Arthritis Res Ther 2018; 20:46. [PMID: 29544542 PMCID: PMC5855969 DOI: 10.1186/s13075-018-1534-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β)/Smad signaling is well known to play a critical role in the pathogenesis of systemic sclerosis (SSc). We previously developed an artificial molecule, the histidine-pyridine-histidine ligand derivative HPH-15, which may have an antifibrotic effect. The purpose of the present study was to clarify the effects of this drug in human skin fibroblasts and in a preclinical model of SSc. Methods The effects of HPH-15 on expression of extracellular matrix components and TGF-β signaling in human dermal fibroblasts were analyzed. The antifibrotic properties of HPH-15 and its mechanisms were also examined in a bleomycin-induced skin fibrosis mouse model. Results HPH-15 suppressed the TGF-β-induced phosphorylation of Smad3 and inhibited the expression of collagen I, fibronectin 1, connective tissue growth factor, and α-smooth muscle actin induced by TGF-β in cultured human skin fibroblasts. In the bleomycin-induced skin fibrosis model, oral administration of HPH-15 protected against the development of skin fibrosis and ameliorated established skin fibrosis. Additionally, HPH-15 suppressed the phosphorylation of Smad3 in various cells, including macrophages in the bleomycin-injected skin. Further, in the treated mice, dermal infiltration of proinflammatory macrophages (CD11b+Ly6Chi) and M2 profibrotic macrophages (CD11b+CD204+ or CD11b+CD206+) was significantly decreased during the early and late stages, respectively. HPH-15 treatment resulted in decreased messenger RNA (mRNA) expression of the M2 macrophage markers arginase 1 and Ym-1 in the skin, whereas it inversely augmented expression of Friend leukemia integration 1 and Krüppel-like factor 5 mRNAs, the transcription factors that repress collagen synthesis. No apparent adverse effects of HPH-15 were found during the treatment. Conclusions HPH-15 may inhibit skin fibrosis by inhibiting the phosphorylation of Smad3 in dermal fibroblasts and possibly in macrophages. Our results demonstrate several positive qualities of HPH-15, including oral bioavailability, a good safety profile, and therapeutic effectiveness. Thus, this TGF-β/Smad inhibitor is a potential candidate therapeutic for SSc clinical trials. Electronic supplementary material The online version of this article (10.1186/s13075-018-1534-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vu Huy Luong
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | - Tanima Biswas
- Department of Bioorganic Medicinal Chemistry, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hamasaki
- Department of Bioorganic Medicinal Chemistry, Kumamoto University, Kumamoto, Japan
| | - Mikako Fujita
- Research Institute for Drug Discovery, Kumamoto University, Kumamoto, Japan
| | - Yoshinari Okamoto
- Department of Bioorganic Medicinal Chemistry, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
62
|
Nabatanzi R, Cose S, Joloba M, Jones SR, Nakanjako D. Effects of HIV infection and ART on phenotype and function of circulating monocytes, natural killer, and innate lymphoid cells. AIDS Res Ther 2018; 15:7. [PMID: 29544508 PMCID: PMC5853105 DOI: 10.1186/s12981-018-0194-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda.
| | - Stephen Cose
- MRC/UVRI Uganda Research Unit on AIDS and London School of Hygiene & Tropical Medicine, London, UK
| | - Moses Joloba
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | | | - Damalie Nakanjako
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
63
|
Faure F, Jouve M, Lebhar-Peguillet I, Sadaka C, Sepulveda F, Lantz O, Berre S, Gaudin R, Sánchez-Ramón S, Amigorena S. Blood monocytes sample MelanA/MART1 antigen for long-lasting cross-presentation to CD8 + T cells after differentiation into dendritic cells. Int J Cancer 2018; 142:133-144. [PMID: 28884480 DOI: 10.1002/ijc.31037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Human blood monocytes are very potent to take up antigens. Like macrophages in tissue, they efficiently degrade exogenous protein and are less efficient than dendritic cells (DCs) at cross-presenting antigens to CD8+ T cells. Although it is generally accepted that DCs take up tissue antigens and then migrate to lymph nodes to prime T cells, the mechanisms of presentation of antigens taken up by monocytes are poorly documented so far. In the present work, we show that monocytes loaded in vitro with MelanA long peptides retain the capacity to stimulate antigen-specific CD8+ T cell clones after 5 days of differentiation into monocytes-derived dendritic cells (MoDCs). Tagged-long peptides can be visualized in electron-dense endocytic compartments distinct from lysosomes, suggesting that antigens can be protected from degradation for extended periods of time. To address the pathophysiological relevance of these findings, we screened blood monocytes from 18 metastatic melanoma patients and found that CD14+ monocytes from two patients effectively activate a MelanA-specific CD8 T cell clone after in vitro differentiation into MoDCs. This in vivo sampling of tumor antigen by circulating monocytes might alter the tumor-specific immune response and should be taken into account for cancer immunotherapy.
Collapse
Affiliation(s)
- Florence Faure
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, CNRS UMR3215, Paris, 75005, France
| | | | - Charlotte Sadaka
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Fernando Sepulveda
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Stefano Berre
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Raphael Gaudin
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | |
Collapse
|
64
|
Monocytes from patients with Primary Ciliary Dyskinesia show enhanced inflammatory properties and produce higher levels of pro-inflammatory cytokines. Sci Rep 2017; 7:14657. [PMID: 29116124 PMCID: PMC5676706 DOI: 10.1038/s41598-017-15027-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Patients with Primary Ciliary Dyskinesia (PCD) suffer from recurrent upper and lower airway infections due to defects in the cilia present on the respiratory epithelium. Since chronic inflammatory conditions can cause changes in innate immune responses, we investigated whether monocytes isolated from the peripheral blood of pediatric PCD patients respond differently to inflammatory stimuli, compared to monocytes from healthy children and adults. The receptor for C5a (C5aR) was upregulated in PCD, whereas expression levels of the leukocyte chemoattractant receptors CCR1, CCR2, CCR5, BLT1 and FPR1 on PCD monocytes were similar to those on monocytes from healthy individuals. Also in vitro migration of PCD monocytes towards the ligands of those receptors (CCL2, fMLP, C5a and LTB4) was normal. Compared to healthy children, PCD patients had a higher percentage of the non-classic monocyte subset (CD14+CD16++) in circulation. Finally, PCD monocytes produced higher levels of pro-inflammatory cytokines (IL-1β and TNF-α) and chemokines (CCL3, CCL5, CCL18 and CCL22) in response to LPS, peptidoglycan and/or dsRNA stimulation. These data suggest that monocytes might exacerbate inflammatory reactions in PCD patients and might maintain a positive feedback-loop feeding the inflammatory process.
Collapse
|
65
|
Zasada M, Lenart M, Rutkowska-Zapała M, Stec M, Mól N, Czyz O, Siedlar M, Kwinta P. Analysis of selected aspects of inflammasome function in the monocytes from neonates born extremely and very prematurely. Immunobiology 2017; 223:18-24. [PMID: 29042061 DOI: 10.1016/j.imbio.2017.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inflammasomes regulate activation of caspase-1, which cleaves and activates interleukin (IL)-1β and IL-18, the cytokines that trigger pro-inflammatory and antimicrobial responses. There is very little known about inflammasome function in the subsets of monocytes (MO) isolated from preterm neonates born extremely and very prematurely. METHODS A group of 76 very low birth weight patients without early-onset sepsis was divided into extremely preterm (<28 gestational week) or very preterm (28-32 gestational week) neonates. The first blood sample was collected on the 5th day of life (5th DOL) to analyse MO subsets as well as the intracellular IL-1β expression and supernatant concentration of IL-1β and IL-18. Secondary blood samples were collected within 24h of late-onset sepsis (LOS) development and analysed as above. RESULTS On the 5th DOL, the extremely preterm neonates were characterized by a significantly higher absolute count of MO, in particular in the classical and intermediate subsets, as compared to the very preterm group. The counts of the intermediate and non-classical MO subsets increased during LOS in all neonates. We did not observe significant differences in the intracellular IL-1β expression between the analysed groups. Furthermore, the levels of the analysed cytokines in the MO supernatants were comparable between the extremely and very preterm neonates on the 5th DOL. Finally, a higher level of IL-18 was observed in the supernatant of the extremely preterm group during LOS. CONCLUSIONS During LOS, extremely preterm neonates excrete a higher level of IL-18 cytokines compared to very preterm neonates. Further studies are required to determine whether this observation is a result of a higher count of the circulating MO or is a true reflection of increased inflammasome function in this particular group of newborns.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland.
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Nina Mól
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Ola Czyz
- Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Przemko Kwinta
- Department of Paediatrics, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| |
Collapse
|
66
|
Abstract
Monocytes are short-lived mononuclear phagocytes that circulate in the bloodstream and comprise two main subpopulations that in the mouse are best defined by the Ly6C marker. Intravascular functions of "classical" Ly6C+ monocytes and their interactions with other lymphoid and myeloid leukocytes in the circulation remain poorly understood. Rather, these cells are known to efficiently extravasate into tissues. Indeed, Ly6C+ monocytes and their descendants have emerged as a third, highly plastic and dynamic cellular system that complements the two classical, tissue-resident mononuclear phagocyte compartments, i.e., macrophages and dendritic cells, on demand. Following recruitment to injured tissue, Ly6C+ monocytes respond to local cues and can critically contribute to the initiation and resolution of inflammatory reactions. The second main murine monocyte subset, Ly6C- cells, derive in steady state from Ly6C+ monocytes and remain in the vasculature, where the cells act as scavengers. Moreover, a major fraction of Ly6C- monocytes adheres to the capillary endothelium and patrols the vessel wall for surveillance. Given the central role of monocytes in homeostasis and pathology, in-depth study of this cellular compartment can be highly informative on the health state of the organism and provides an attractive target for therapeutic intervention.
Collapse
|
67
|
Role of the JAK2/STAT3 signaling pathway in the pathogenesis of type 2 diabetes mellitus with macrovascular complications. Oncotarget 2017; 8:96958-96969. [PMID: 29228585 PMCID: PMC5722537 DOI: 10.18632/oncotarget.18555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
This study investigated the role of the JAK2/STAT3/SOCS pathway in type 2 diabetes mellitus (T2DM) and macrovascular complications (DV) (T2DM+DV) conditions. Human umbilical vein endothelial cells (HUVECs) were co-cultured with human monocytes (THP-1) and exposed to peripheral blood sera from 30 T2DM patients, 30 patients with T2DM+DV and 30 healthy controls; the groups were divided into the control, T2DM, DV, T2DM+AG490 and DV+AG490 groups. Chemotaxis of treated HUVECs toward THP-1 cells was assessed using Transwell migration. The mRNA expression of JAK2, STAT3, VEGF and FLT1 was evaluated using RT-PCR, whereas the protein levels of ICAM-1, p-JAK2, JAK2, STAT3, p-STAT3, SOCS1 and SOCS3 were determined using western blotting. p-STAT3 was observed using immunofluorescence. The IL-1β concentrations were assessed by ELISA. AG90 was used as a specific inhibitor of JAK2/STAT3 signaling. The chemotaxis assays revealed a migratory order of DV>DM>control, and AG490 treatment decreased chemotaxis. Additionally, p-STAT3 fluorescence was noticeably increased in the DM group and more so in the DV group. The mRNA expression of JAK2, STAT3, VEGF and FLT1 and the protein levels of ICAM-1, p-JAK2, p-STAT3, SOCS1 and SOCS3 were significantly higher in the T2DM and DV groups than in the control group and in the AG490-treated groups than in the untreated groups. The supernatant concentrations of IL-1β in the DV and T2DM groups were higher than those in the control group, and treatment with AG490 decreased the IL-1β concentration. The JAK2/STAT3/SOCS axis contributes to the development of DV by mediating inflammation associated with vascular endothelial cells and/or monocytes.
Collapse
|
68
|
Abstract
Injuries to the peripheral nervous system are major sources of disability and often result in painful neuropathies or the impairment of muscle movement and/or normal sensations. For gaps smaller than 10 mm in rodents, nearly normal functional recovery can be achieved; for longer gaps, however, there are challenges that have remained insurmountable. The current clinical gold standard used to bridge long, nonhealing nerve gaps, the autologous nerve graft (autograft), has several drawbacks. Despite best efforts, engineering an alternative "nerve bridge" for peripheral nerve repair remains elusive; hence, there is a compelling need to design new approaches that match or exceed the performance of autografts across critically sized nerve gaps. Here an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.
Collapse
|
69
|
Lavin Y, Kobayashi S, Leader A, Amir EAD, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe'er D, Rahman A, Amit I, Merad M. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 2017; 169:750-765.e17. [PMID: 28475900 PMCID: PMC5737939 DOI: 10.1016/j.cell.2017.04.014] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soma Kobayashi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - El-Ad David Amir
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naama Elefant
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Camille Bigenwald
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Remark
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sweeney
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian D Becker
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Klaus Meinhof
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Chow
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Shulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Hanjie Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | - Alexander Solovyov
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Greenbaum
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
70
|
Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One 2017; 12:e0176460. [PMID: 28445506 PMCID: PMC5406034 DOI: 10.1371/journal.pone.0176460] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 01/03/2023] Open
Abstract
Human monocytes have been grouped into classical (CD14++CD16-), non-classical (CD14dimCD16++), and intermediate (CD14++CD16+) subsets. Documentation of normal function and variation in this complement of subtypes, particularly their differentiation potential to dendritic cells (DC) or macrophages, remains incomplete. We therefore phenotyped monocytes from peripheral blood of healthy subjects and performed functional studies on high-speed sorted subsets. Subset frequencies were found to be tightly controlled over time and across individuals. Subsets were distinct in their secretion of TNFα, IL-6, and IL-1β in response to TLR agonists, with classical monocytes being the most producers and non-classical monocytes the least. Monocytes, particularly those of the non-classical subtype, secreted interferon-α (IFN-α) in response to intracellular TLR3 stimulation. After incubation with IL-4 and GM-CSF, classical monocytes acquired monocyte-derived DC (mo-DC) markers and morphology and stimulated allogeneic T cell proliferation in MLR; intermediate and non-classical monocytes did not. After incubation with IL-3 and Flt3 ligand, no subset differentiated to plasmacytoid DC. After incubation with GM-CSF (M1 induction) or macrophage colony-stimulating factor (M-CSF) (M2 induction), all subsets acquired macrophage morphology, secreted macrophage-associated cytokines, and displayed enhanced phagocytosis. From these studies we conclude that classical monocytes are the principal source of mo-DCs, but all subsets can differentiate to macrophages. We also found that monocytes, in particular the non-classical subset, represent an alternate source of type I IFN secretion in response to virus-associated TLR agonists.
Collapse
Affiliation(s)
- Lisa B. Boyette
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Camila Macedo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kevin Hadi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Beth D. Elinoff
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John T. Walters
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bala Ramaswami
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Geetha Chalasani
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Juan M. Taboas
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fadi G. Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
71
|
Will T, Helms V. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. BMC SYSTEMS BIOLOGY 2017; 11:44. [PMID: 28376810 PMCID: PMC5379774 DOI: 10.1186/s12918-017-0400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. RESULTS Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. CONCLUSIONS Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
- Graduate School of Computer Science, Saarland University, Campus E1.3, Saarbrücken, 66123 Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
| |
Collapse
|
72
|
Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 2017; 14:387-400. [PMID: 28300081 DOI: 10.1038/nrcardio.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. Monocytes and macrophages are involved in cardiovascular disease progression, and are associated with the development of unstable atherosclerotic plaques. Hyperlipidaemia can accelerate cardiovascular disease progression. However, monocyte responses to hyperlipidaemia are poorly understood. In the past decade, accumulating data describe the relationship between the dynamic blood lipid environment and the heterogeneous circulating monocyte pool, which might have profound consequences for cardiovascular disease. In this Review, we explore the updated view of monocytes in cardiovascular disease and their relationship with macrophages in promoting the homeostatic and inflammatory responses related to atherosclerosis. We describe the different definitions of dyslipidaemia, highlight current theories on the ontogeny of monocyte heterogeneity, discuss how dyslipidaemia might alter monocyte production, and explore the mechanistic interface linking dyslipidaemia with monocyte effector functions, such as migration and the inflammatory response. Finally, we discuss the role of dietary and endogenous lipid species in mediating dyslipidaemic responses, and the role of these lipids in promoting the risk of cardiovascular disease through modulation of monocyte behaviour.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Lab, Baker IDI Heart &Diabetes Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kevin J Woollard
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
73
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
74
|
López-López C, Jaramillo-Polanco J, Portales-Pérez DP, Gómez-Coronado KS, Rodríguez-Meléndez JG, Cortés-García JD, Espinosa-Luna R, Montaño LM, Barajas-López C. Two P2X1 receptor transcripts able to form functional channels are present in most human monocytes. Eur J Pharmacol 2016; 793:82-88. [PMID: 27823931 DOI: 10.1016/j.ejphar.2016.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
Abstract
To characterize the presence and general properties of P2X1 receptors in single human monocytes we used RT-PCR, flow cytometry, and the patch-clamp and the two-electrode voltage-clamp techniques. Most human monocytes expressed the canonical P2X1 (90%) and its splicing variant P2X1del (88%) mRNAs. P2X1 receptor immunoreactivity was also observed in 70% of these cells. Currents mediated by P2X1 (EC50=1.9±0.8µm) and P2X1del (EC50 >1000µm) channels, expressed in Xenopus leavis oocytes, have different ATP sensitivity and kinetics. Both currents mediated by P2X1 and P2X1del channels kept increasing during the continuous presence of high ATP concentrations. Currents mediated by the native P2X1 receptors in human monocytes showed an EC50=6.3±0.2µm. Currents have kinetics that resemble those observed for P2X1 and P2X1del receptors in oocytes. Our study is the first to demonstrate the expression of P2X1 transcript and its splicing variant P2X1del in most human monocytes. We also, for the first time, described functional homomeric P2X1del channels and demonstrated that currents mediated by P2X1 or P2X1del receptors, during heterologous expression, increased in amplitude when activated with high ATP concentrations in a similar fashion to those channels that increase their conductance under similar conditions, such as P2X7, P2X2, and P2X4 channels.
Collapse
Affiliation(s)
- Cintya López-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Josue Jaramillo-Polanco
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | | | - Karen S Gómez-Coronado
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Jessica G Rodríguez-Meléndez
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Juan D Cortés-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
| | - Carlos Barajas-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México.
| |
Collapse
|
75
|
Madeeva D, Cines DB, Poncz M, Rauova L. Role of monocytes and endothelial cells in heparin-induced thrombocytopenia. Thromb Haemost 2016; 116:806-812. [PMID: 27487857 DOI: 10.1160/th16-02-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022]
Abstract
Heparin-induced thrombocytopenia (HIT) is an autoimmune disorder characterised by thrombocytopenia and thrombosis. The mechanisms leading to platelet destruction are complex and the thrombotic complications of HIT appear to be due to multiple different intravascular targets. The dual binding of HIT antibodies to platelet surface PF4/GAG complexes and to FcγRIIA likely leads to both platelet clearance and to their direct activation. Monocytes and endothelial cells bind PF4 with higher avidity than platelets and are more resistant to competitive removal of surface-bound PF4 in the presence of heparin. Binding of HIT antibodies to PF4/glycosaminoglycan complexes on the surface on these cells leads to their activation and increased procoagulant activity. Binding of higher levels of PF4 released from activated platelets to the endothelium may lead to changes of the anticoagulant properties of the glycocalyx and target the endothelial cells for HIT antibodies. Pathogenic antibodies bound to endothelial cells further promote prothrombotic conditions by a mechanism that is independent of FcγR activation, yet not completely understood. A more detailed understanding of the role of monocytes and endothelium may identify new targets for intervention to mitigate the risk of thrombosis with less impact on systemic haemostasis than current approaches to treatment for this serious disorder.
Collapse
Affiliation(s)
| | | | | | - Lubica Rauova
- Lubica Rauova, MD, PhD, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, ARC, Rm. 316F, Philadelphia, PA 19104, USA, Tel.: +1 215 590 4667, Fax: +1 267 426 5476, E-mail:
| |
Collapse
|
76
|
Nielsen J, Nilsson P, Dahlman-Höglund A, Kronholm Diab K, Albin M, Kåredal M, Jönsson B, Wierzbicka A, Gudmundsson A. Dust-free bleaching powder may not prevent symptoms in hairdressers with bleaching-associated rhinitis. J Occup Health 2016; 58:470-476. [PMID: 27488042 PMCID: PMC5356981 DOI: 10.1539/joh.16-0073-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Hairdressers have an increased risk for airway symptoms especially when using hair-bleaching powder containing persulfate. To minimize exposure, dust-free bleaching powder (DFP) has been made available. We studied the effects of regular powder (RP) or DFP on the airway symptoms of hairdressers with hair-bleaching associated rhinitis. Methods: Twelve hairdressers each performed three hair-bleachings on a wig in an exposure chamber. Half of the subjects used RP and half used DFP. Exposure to persulfate and ammonia was measured. Before and after each bleaching, the participants stated their degree of airway symptoms on a visual analogue scale. Nasal lavage and blood were sampled before exposure, after the last bleaching, and in the morning after exposure to measure inflammatory markers. Results: Exposure to persulfate was higher when using RP compared to DFP, 22 (11-55) vs. 12 (8-13) μg/m3; median (min-max). Exposure to ammonia did not differ between the groups. Both groups reported an increase in asthma-like symptoms and this increase was significant. Neutrophils, lymphocytes, and monocytes increased after exposure in both groups; monocytes decreased the day after. In nasal lavage, IL-8 was increased the morning after for both types of powder, and the increase was significant in the total group. IL-6 increased immediately after exposure and the day after only in the group using RP. Conclusions: Although DFP powder emits lower levels of persulfate, effects are still elicited in symptomatic hairdressers.
Collapse
Affiliation(s)
- Jörn Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
78
|
Martirosyan A, Petrek M, Kishore A, Manukyan G. Immunomodulatory effects of therapeutic plasma exchange on monocytes in antiphospholipid syndrome. Exp Ther Med 2016; 12:1189-1195. [PMID: 27446342 DOI: 10.3892/etm.2016.3441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis and recurrent fetal loss, with the persistent presence of antiphospholipid antibodies (aPLs). aPLs exert their pathogenic effect via the overproduction of tissue factor and activation of complement and several cell types, including endothelial cells, platelets and notably monocytes. As a result, a hypercoagulable state develops leading to APS-associated obstetric complications and fetal loss. Despite being far from optimal, treatment of APS usually includes heparin and low dose aspirin. Recently, plasma exchange (PE) therapy was successfully used in patients with APS with obstetric complications who did not respond to the standard treatment. Therefore, the present study investigated the mechanism underlying PE action, and aimed to determine whether PE affects the functional activity of APS monocytes by examining the expression of 11 mRNA transcripts encoding cytokines, signaling molecules and transcription factors. Monocytes were collected prior to and following the PE treatment from women with APS who experienced recurrent pregnancy losses, as well as from healthy volunteers. Compared with control cells, APS monocytes showed deregulated expression of interleukin (IL)-1β, IL-6, IL-23, chemokine (C-C motif) ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), toll-like receptor 2, and signal transducer and activator of transcription 3. PE treatment resulted in increased IL-1β, IL-6, IL-23, CCL2, P2X7 and tumor necrosis factor-α mRNA transcripts in APS monocytes, restoring the mRNA expression levels to within normal ranges. Furthermore, PE therapy counterbalanced the expression levels of CCL2 and CXCL10, the levels of which are indicative of T helper cell 1/2 balance. The results of the present study indicate that the altered transcriptional profile in APS monocytes was restored by the immunomodulatory effect of plasmapheresis.
Collapse
Affiliation(s)
- Anush Martirosyan
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic; Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014, Armenia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic
| | - Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic
| | - Gayane Manukyan
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic; Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014, Armenia
| |
Collapse
|
79
|
Ramishetti S, Landesman-Milo D, Peer D. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. J Drug Target 2016; 24:780-786. [PMID: 27030014 DOI: 10.3109/1061186x.2016.1172587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Srinivas Ramishetti
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dalit Landesman-Milo
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dan Peer
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
80
|
Franken L, Schiwon M, Kurts C. Macrophages: sentinels and regulators of the immune system. Cell Microbiol 2016; 18:475-87. [PMID: 26880038 DOI: 10.1111/cmi.12580] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Abstract
The important role of macrophages in host defense against a variety of pathogens has long been recognized and has been documented and reviewed in numerous publications. Recently, it has become clear that tissue macrophages are not entirely derived from monocytes, as has been assumed for a long time, but rather show an ontogenetic dichotomy in most tissues: while part of the tissue macrophages are derived from monocytes, a major subset is prenatally seeded from the yolk sac. The latter subset shows a remarkable longevity and is maintained by self-renewal in the adult animal. This paradigm shift poses interesting questions: are these two macrophage subsets functionally equivalent cells that are recruited into the tissue at different development stages, or are both macrophage subsets discrete cell types with distinct functions, which have to exist side by side? Is the functional specialization that can be observed in most macrophages due to their lineage or due to their anatomical niche? This review will give an overview about what we know of macrophage ontogeny and will discuss the influence of the macrophage lineage and location on their functional specialization.
Collapse
Affiliation(s)
- Lars Franken
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| | - Marzena Schiwon
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University, Sigmund-Freud-Str. 25, Bonn, 53105, Germany
| |
Collapse
|
81
|
Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol 2016; 131:379-91. [PMID: 26576561 DOI: 10.1007/s00401-015-1504-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Abstract
Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.
Collapse
|
82
|
Baëhl S, Garneau H, Lorrain D, Viens I, Svotelis A, Lord JM, Cabana F, Larbi A, Dupuis G, Fülöp T. Alterations in Monocyte Phenotypes and Functions after a Hip Fracture in Elderly Individuals: A 6-Month Longitudinal Study. Gerontology 2016; 62:477-90. [PMID: 26812523 DOI: 10.1159/000443142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Healthy elderly individuals are particularly prone to catastrophic events at any moment of their lives. One stressful event for individuals aged 65 and older is a fall that results in a fracture of the hip (HF). HF causes a state of inflammation that may affect immune responses. In this connection, we have reported that HF induced alterations in neutrophil functions. OBJECTIVE To assess the impact of HF on classical (cM), intermediate (iM) and non-classical (ncM) monocyte subsets. METHODS Distribution, functions (chemotaxis, phagocytosis, superoxide production and cytokine production), phenotype and activation (NF-x03BA;B and PI3K) were evaluated in monocyte subsets before surgery and 6 weeks and 6 months after the event. RESULTS The distribution of cM and ncM was unchanged, but iM transiently increased before surgery. Sustained increases (iM response to CCL2 and CX3CL1) and decreases (cM and ncM response to CCL2) in chemotaxis were observed. Phagocytosis and superoxide production were impaired in cM but not in iM or ncM. Sustained expression of HLA-DR occurred in cM but not in iM and ncM. Sustained decreased expression of CD11b occurred only in ncM. Sustained decreases (cM and ncM) and increases (iM) in CCR2 expression were observed. An elevated expression of CX3CR1 was found only in iM. cM produced elevated quantities of TNFα. There was a transient oxidative burst of production before surgery in iM and a sustained decrease in ncM. IL-10 production was severely impaired in cM and decreased in iM prior to surgery. Sustained activation (cM), inhibition (ncM) and transient activation (iM) of NF-x03BA;B were observed. Activation of PI3K was severely impaired in cM and ncM but was sustained in iM. CONCLUSION HF had more impact on cM and ncM functions than on iM. HF triggered a switch in cM functions from phagocytic to inflammatory elevated TNFα-producing cells. These changes may impact clinical outcomes of HF with respect to inflammation, opportunistic infections and physical recovery.
Collapse
Affiliation(s)
- Sarra Baëhl
- Division of Geriatrics and Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Que., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
A Review of Monocytes and Monocyte-Derived Cells in Hypertrophic Scarring Post Burn. J Burn Care Res 2016; 37:265-72. [DOI: 10.1097/bcr.0000000000000312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
84
|
Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. Whole-Lung Irradiation Results in Pulmonary Macrophage Alterations that are Subpopulation and Strain Specific. Radiat Res 2015; 184:639-49. [PMID: 26632857 DOI: 10.1667/rr14178.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exposure of the lung to radiation produces injury and inflammatory responses that result in microenvironmental alterations, which can promote the development of pneumonitis and/or pulmonary fibrosis. It has been shown that after other toxic insults, macrophages become phenotypically polarized in response to microenvironmental signals, orchestrating the downstream inflammatory responses. However, their contribution to the development of the late consequences of pulmonary radiation exposure remains unclear. To address this issue, fibrosis-prone C57BL/6J mice or pneumonitis-prone C3H/HeJ mice were whole-lung irradiated with 0 or 12.5 Gy and lung digests were collected between 3 and 26 weeks after radiation exposure. CD45(+) leukocytes were isolated and characterized by flow cytometry, and alveolar, interstitial and infiltrating macrophages were also detected. Ly6C, expressed by pro-inflammatory monocytes and macrophages, and mannose receptor (CD206), a marker of alternative activation, were assessed in each subpopulation. While the total number of pulmonary macrophages was depleted at 3 weeks after lung irradiation relative to age-matched controls in both C57 and C3H mice, identification of discrete subpopulations showed that this loss in cell number occurred in the alveolar, but not the interstitial or infiltrating, subsets. In the alveolar macrophages of both C57 and C3H mice, this correlated with a loss in the proportion of cells that expressed CD206 and F4/80. In contrast, in interstitial and infiltrating macrophages, the proportion of cells expressing these markers was increased at several time points after irradiation, with this response generally more pronounced in C3H mice. Radiation exposure was also associated with elevations in the proportion of alveolar and interstitial macrophage subpopulations expressing Ly6C and F4/80, with this response occurring at earlier time points in C57 mice. Although the radiation dose used in this study was not isoeffective for the inflammatory response in the two strains, the differences observed in the responses of these discrete macrophage populations between the fibrosis-prone versus pneumonitis-prone mice nonetheless suggest a possible role for these cells in the development of long-term consequences of pulmonary radiation exposure.
Collapse
Affiliation(s)
- Angela M Groves
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Carl J Johnston
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Ravi S Misra
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jacob N Finkelstein
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
85
|
Normandin MD, Yuan H, Wilks MQ, Chen HH, Kinsella JM, Cho H, Guehl NJ, Absi-Halabi N, Hosseini SM, El Fakhri G, Sosnovik DE, Josephson L. Heat-Induced Radiolabeling of Nanoparticles for Monocyte Tracking by PET. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
Normandin MD, Yuan H, Wilks MQ, Chen HH, Kinsella JM, Cho H, Guehl NJ, Absi-Halabi N, Hosseini SM, El Fakhri G, Sosnovik DE, Josephson L. Heat-Induced Radiolabeling of Nanoparticles for Monocyte Tracking by PET. Angew Chem Int Ed Engl 2015; 54:13002-6. [PMID: 26368132 PMCID: PMC4754124 DOI: 10.1002/anie.201505525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Indexed: 12/29/2022]
Abstract
Heat-induced radiolabeling (HIR) yielded (89) Zr-Feraheme (FH) nanoparticles (NPs) that were used to determine NP pharmacokinetics (PK) by positron emission tomography (PET). Standard uptake values indicated a fast hepatic uptake that corresponded to blood clearance, and a second, slow uptake process by lymph nodes and spleen. By cytometry, NPs were internalized by circulating monocytes and monocytes in vitro. Using an IV injection of HIR (89) Zr-FH (rather than in vitro cell labeling), PET/PK provided a view of monocyte trafficking, a key component of the immune response.
Collapse
Affiliation(s)
- Marc D Normandin
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Hushan Yuan
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Moses Q Wilks
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Howard H Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129 (USA)
| | - Joseph M Kinsella
- McGill University, Department of Bioengineering, 817 Sherbrook Street, Montreal, Quebec H3A 0C3 (Canada)
| | - Hoonsung Cho
- School of Materials Science and Engineering, Chonnam National University, Gwangju, 500-75 (South Korea)
| | - Nicolas J Guehl
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Nader Absi-Halabi
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Seyed Mohammadreza Hosseini
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA)
| | - David E Sosnovik
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129 (USA)
| | - Lee Josephson
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (USA).
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129 (USA).
| |
Collapse
|
87
|
Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. Mediators Inflamm 2015; 2015:946509. [PMID: 26568666 PMCID: PMC4629053 DOI: 10.1155/2015/946509] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 12/30/2022] Open
Abstract
Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.
Collapse
|
88
|
Gonzalez OA, Novak MJ, Kirakodu S, Stromberg A, Nagarajan R, Huang CB, Chen KC, Orraca L, Martinez-Gonzalez J, Ebersole JL. Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues. Immunol Invest 2015; 44:643-64. [PMID: 26397131 DOI: 10.3109/08820139.2015.1070269] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent evidence has determined a phenotypic and functional heterogeneity for macrophage populations. This plasticity of macrophage function has been related to specific properties of subsets (M1 and M2) of these cells in inflammation, adaptive immune responses and resolution of tissue destructive processes. This investigation hypothesized that targeted alterations in the distribution of macrophage phenotypes in aged individuals, and with periodontitis would be skewed towards M1 inflammatory macrophages in gingival tissues. The study used a non-human primate model to evaluate gene expression profiles as footprints of macrophage variation in healthy and periodontitis gingival tissues from animals 3-23 years of age and in periodontitis tissues in adult and aged animals. Significant increases in multiple genes reflecting overall increases in macrophage activities were observed in healthy aged tissues, and were significantly increased in periodontitis tissues from both adults and aged animals. Generally, gene expression patterns for M2 macrophages were similar in healthy young, adolescent and adult tissues. However, modest increases were noted in healthy aged tissues, similar to those seen in periodontitis tissues from both age groups. M1 macrophage gene transcription patterns increased significantly over the age range in healthy tissues, with multiple genes (e.g. CCL13, CCL19, CCR7 and TLR4) significantly increased in aged animals. Additionally, gene expression patterns for M1 macrophages were significantly increased in adult health versus periodontitis and aged healthy versus periodontitis. The findings supported a significant increase in macrophages with aging and in periodontitis. The primary increases in both healthy aged tissues and, particularly periodontitis tissues appeared in the M1 phenotype.
Collapse
Affiliation(s)
- O A Gonzalez
- a Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington , KY , USA
| | - M J Novak
- a Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington , KY , USA
| | - S Kirakodu
- a Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington , KY , USA
| | - A Stromberg
- b Department of Statistics , College of Arts and Sciences, University of Kentucky , Lexington , KY , USA
| | - R Nagarajan
- c Department of Biostatistics , College of Public Health, University of Puerto Rico , San Juan , PR , USA
| | - C B Huang
- a Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington , KY , USA
| | - K C Chen
- d Microarray Core Facility, College of Medicine, University of Puerto Rico , San Juan , PR , USA
| | - L Orraca
- e School of Dental Medicine, University of Puerto Rico , San Juan , PR , USA , and
| | - J Martinez-Gonzalez
- f Caribbean Primate Research Center, University of Puerto Rico , San Juan , PR , USA
| | - J L Ebersole
- a Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington , KY , USA
| |
Collapse
|
89
|
Triglyceride-Rich Lipoproteins Modulate the Distribution and Extravasation of Ly6C/Gr1(low) Monocytes. Cell Rep 2015; 12:1802-15. [PMID: 26344769 PMCID: PMC4590546 DOI: 10.1016/j.celrep.2015.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. However, their response to hyperlipidemia remains poorly understood. Here, we report that in the presence of elevated levels of triglyceride-rich lipoproteins, induced by administration of poloxamer 407, the blood numbers of non-classical Ly6C/Gr1(low) monocytes drop, while the number of bone marrow progenitors remains similar. We observed an increased crawling and retention of the Gr1(low) monocytes at the endothelial interface and a marked accumulation of CD68(+) macrophages in several organs. Hypertriglyceridemia was accompanied by an increased expression of tissue, and plasma CCL4 and blood Gr1(low) monocyte depletion involved a pertussis-toxin-sensitive receptor axis. Collectively, these findings demonstrate that a triglyceride-rich environment can alter blood monocyte distribution, promoting the extravasation of Gr1(low) cells. The behavior of these cells in response to dyslipidemia highlights the significant impact that high levels of triglyceride-rich lipoproteins may have on innate immune cells.
Collapse
|
90
|
Zhao Z, Hou X, Yin X, Li Y, Duan R, Boyce BF, Yao Z. TNF Induction of NF-κB RelB Enhances RANKL-Induced Osteoclastogenesis by Promoting Inflammatory Macrophage Differentiation but also Limits It through Suppression of NFATc1 Expression. PLoS One 2015; 10:e0135728. [PMID: 26287732 PMCID: PMC4545392 DOI: 10.1371/journal.pone.0135728] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/26/2015] [Indexed: 12/19/2022] Open
Abstract
TNF induces bone loss in common bone diseases by promoting osteoclast formation directly and indirectly, but it also limits osteoclast formation by inducing expression of NF-κB p100. Osteoclast precursors (OCPs) are derived from M1 (inflammatory) and M2 (resident) macrophages. However, it is not known if TNF stimulates or limits osteoclast formation through regulation of M1 or M2 differentiation or if RelB, a partner of p100, is involved. To investigate these questions, we treated bone marrow cells (BMCs) with M-CSF alone or in combination with TNF to enrich for OCPs, which we called M-OCPs and T-OCPs, respectively. We found that TNF switched CD11b+F4/80+ M-OCPs from Ly6C-Gr1- M2 to Ly6C+Gr1-CD11c+ and Ly6C-Gr1-CD11c+ M1 cells. RANKL induced osteoclast formation from both Ly6C+Gr1- and Ly6C-Gr1- T-OCPs, but only from Ly6C+Gr1- M-OCPs, which formed significantly fewer osteoclasts than T-OCPs. Importantly, Ly6C+Gr1- cells from both M- and T-OCPs have increased expression of the M1 marker genes, iNOS, TNF, IL-1β and TGFβ1, compared to Ly6C-Gr1- cells, and Ly6C-Gr1- cells from T-OCPs also have increased expression of iNOS and TGFβ1 compared to cells from M-OCPs. Both RANKL and TNF increased RelB mRNA expression. TNF significantly increased RelB protein levels, but RANKL did not because it also induced RelB proteasomal degradation. TNF inhibited RANKL-induced NFATc1 mRNA expression and osteoclast formation from M-OCPs, but not from T-OCPs, and it did not induce Ly6C+Gr1-CD11c+ or Ly6C-Gr1-CD11c+ M1 macrophages from RelB-/- BMCs. Furthermore, overexpression of RelB in M-OCPs reduced RANKL-induced osteoclast formation and NFATc1 mRNA expression, but it increased TNF-induced OC formation without affecting NFATc1 levels. Thus, TNF induction of RelB directly mediates terminal osteoclast differentiation independent of NFATc1 and limits RANKL-induced osteoclastogenesis by inhibiting NFATc1 activation. However, the dominant role of TNF is to expand the OCP pool by switching the differentiation of M-CSF-induced M2 to M1 macrophages with enhanced osteoclast forming potential. Strategies to degrade RelB could prevent TNF-induced M2/M1 switching and reduce osteoclast formation.
Collapse
Affiliation(s)
- Zhijun Zhao
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
| | - Xiaodong Hou
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Xiaoxiang Yin
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Yanyun Li
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Rong Duan
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Brendan F. Boyce
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Zhenqiang Yao
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
- * E-mail:
| |
Collapse
|
91
|
Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 2015; 40:225-35. [PMID: 26557038 PMCID: PMC4637384 DOI: 10.5114/ceji.2015.51359] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Cathelicidins, like other antimicrobial peptides, exhibit direct antimicrobial activities against a broad spectrum of microbes, including both Gram-positive and Gram-negative bacteria, enveloped viruses, and fungi. These host-derived peptides kill the invaded pathogens by perturbing their cell membranes and can neutralize biological activities of endotoxin. Nowadays, more and more data indicate that these peptides, in addition to their antimicrobial properties, possess various immunomodulatory activities. Cathelicidins have the potential to influence and modulate, both directly and indirectly, the activity of various cell populations involved in inflammatory processes and in host defense against invading pathogens. They induce migration of neutrophils, monocytes/macrophages, eosinophils, and mast cells and prolong the lifespan of neutrophils. These peptides directly activate inflammatory cells to production and release of different pro-inflammatory and immunoregulatory mediators, cytokines, and chemokines, however cathelicidins might mediate the generation of anti-inflammatory cytokines as well. Cathelicidins also modulate epithelial cell/keratinocyte responses to infecting pathogens. What is more, they affect activity of monocytes, dendritic cells, keratinocytes, or epithelial cells acting in synergy with cytokines or β-defensins. In addition, these peptides indirectly balance TLR-mediated responses of monocytes, macrophages, dendritic cells, epithelial cells, and keratinocytes. This review discusses the role and significance of cathelicidins in inflammation and innate immunity against pathogens.
Collapse
|
92
|
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107:321-30. [PMID: 25990461 PMCID: PMC4592323 DOI: 10.1093/cvr/cvv147] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Monocytes fundamentally contribute to immune surveillance and the inflammatory response in immunoinflammatory diseases like atherosclerosis. Recruitment of these cells to the site of injury requires their trafficking across the blood vessel wall. A series of events, including capture, rolling, slow rolling, arrest, adhesion strengthening, and lateral locomotion, precede monocyte transmigration. Recent investigations have revealed new aspects of this cascade. This article revisits some conventional paradigms and selectively highlights new findings, including novel insights into monocyte differentiation and recently identified functional mediators, signalling pathways, and new structural aspects of monocyte extravasation. The emerging roles of endothelial junctional molecules like vascular endothelial-cadherin and the junctional adhesion molecule family, adhesion molecules such as intercellular adhesion molecule-1, molecules localized to the lateral border recycling compartment like cluster of differentiation 99, platelet/endothelial cell adhesion molecule-1, and poliovirus receptor (CD155), as well as other cell surface molecules such as cluster of differentiation 146 and ephrins in transendothelial migration are discussed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| |
Collapse
|
93
|
Smedman C, Ernemar T, Gudmundsdotter L, Gille-Johnson P, Somell A, Nihlmark K, Gårdlund B, Andersson J, Paulie S. FluoroSpot Analysis of TLR-Activated Monocytes Reveals Several Distinct Cytokine-Secreting Subpopulations. Scand J Immunol 2015; 75:249-58. [PMID: 21955279 PMCID: PMC3321223 DOI: 10.1111/j.1365-3083.2011.02641.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monocytes have long been considered a heterogeneous group of cells both in terms of morphology and function. In humans, three distinct subsets have been described based on their differential expression of the cell surface markers CD14 and CD16. However, the relationship between these subsets and the production of cytokines has for the most part been based on ELISA measurements, making it difficult to draw conclusions as to their functional profile on the cellular level. In this study, we have investigated lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced cytokine secretion by monocytes using the FluoroSpot technique. This method measures the number of cytokine-secreting cells on the single-cell level and uses fluorescent detection, allowing for the simultaneous analysis of two cytokines from the same population of isolated cells. By this approach, human monocytes from healthy volunteers could be divided into several subgroups as IL-1β, IL-6, TNF-α and MIP-1β were secreted by larger populations of responding cells (25.9–39.2%) compared with the smaller populations of GM-CSF (9.1%), IL-10 (1.3%) and IL-12p40 (1.2%). Furthermore, when studying co-secretion in FluoroSpot, an intricate relationship between the monocytes secreting IL-1β and/or IL-6 and those secreting TNF-α, MIP-1β, GM-CSF, IL-10 and IL-12p40 was revealed. In this way, dissecting the secretion pattern of the monocytes in response to TLR-2 or TLR-4 stimulation, several subpopulations with distinct cytokine-secreting profiles could be identified.
Collapse
Affiliation(s)
- C Smedman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - T Ernemar
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - L Gudmundsdotter
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - P Gille-Johnson
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - A Somell
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - K Nihlmark
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - B Gårdlund
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - J Andersson
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - S Paulie
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, SwedenMabtech AB, Nacka Strand, SwedenDepartment of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
94
|
PU.1-Regulated Long Noncoding RNA lnc-MC Controls Human Monocyte/Macrophage Differentiation through Interaction with MicroRNA 199a-5p. Mol Cell Biol 2015; 35:3212-24. [PMID: 26149389 DOI: 10.1128/mcb.00429-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/26/2015] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in mammalian development, but little is known about their roles in monocyte/macrophage differentiation. Here we identified a long noncoding monocytic RNA (lnc-MC) that exhibits increased expression during monocyte/macrophage differentiation of THP-1 and HL-60 cells as well as CD34(+) hematopoietic stem/progenitor cells (HSPCs) and is transcriptionally activated by PU.1. Gain- and loss-of-function assays demonstrate that lnc-MC promotes monocyte/macrophage differentiation of THP-1 cells and CD34(+) HSPCs. Mechanistic investigation reveals that lnc-MC acts as a competing endogenous RNA to sequester microRNA 199a-5p (miR-199a-5p) and alleviate repression on the expression of activin A receptor type 1B (ACVR1B), an important regulator of monocyte/macrophage differentiation. We also noted a repressive effect of miR-199a-5p on lnc-MC expression and function, but PU.1-dominant downregulation of miR-199a-5p weakens the role of miR-199a-5p in the reciprocal regulation between miR-199a-5p and lnc-MC. Altogether, our work demonstrates that two PU.1-regulated noncoding RNAs, lnc-MC and miR-199a-5p, have opposing roles in monocyte/macrophage differentiation and that lnc-MC facilitates the differentiation process, enhancing the effect of PU.1, by soaking up miR-199a-5p and releasing ACVR1B expression. Thus, we reveal a novel regulatory mechanism, comprising PU.1, lnc-MC, miR-199a-5p, and ACVR1B, in monocyte/macrophage differentiation.
Collapse
|
95
|
Peng XX, Zhang SH, Wang XL, Ye TJ, Li H, Yan XF, Wei L, Wu ZP, Hu J, Zou CP, Wang YH, Hu XD. Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages. Chin Med 2015; 10:15. [PMID: 26155304 PMCID: PMC4493833 DOI: 10.1186/s13020-015-0045-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Background Panax Notoginseng flower saponins (PNFS) are the main active component of Panax notoginseng (Burk) F. H. Chen flower bud (PNF) and possess significant anti-inflammatory efficacy. This study aims to explore the mechanisms underlying PNFS’ antiflammatory action in RAW264.7 macrophages. Methods A cell counting kit-8 assay was used to determine the viability of RAW264.7 macrophages. Anti-inflammation effects of PNFS in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were measured based on the detection of nitric oxide (NO) overproduction (Griess method, DAF-FM DA fluorescence assay and NO2− scavenging assay), and interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha gene overexpression (real-time PCR and ELISA). Inducible nitric oxide synthase (iNOS) gene overexpression was determined by real-time PCR and western blotting. iNOS enzyme activity was also assayed. The mechanisms underlying the suppression of iNOS gene overexpression by PNFS were explored using real-time PCR and western blotting to assess mRNA and protein levels of components of the Toll-like receptor 4 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-kappa B) signaling pathways. Results PNFS (50, 100, 200 μg/mL) significantly reduced LPS-induced overproduction of NO (P < 0.001, P < 0.001, P < 0.001) and IL-6 (P = 0.103, P < 0.001, P < 0.001), but did not affect TNF-alpha overproduction. PNFS (50, 100, 200 μg/mL) also markedly decreased LPS-activated iNOS (P < 0.001, P < 0.001, P < 0.001) and TLR4 gene overexpression (P = 0.858, P = 0.046, P = 0.005). Furthermore, treatment with PNFS (200 μg/mL) suppressed the phosphorylation of MAPKs including P38 (P = 0.001), c-Jun N-terminal kinase (JNK) (P = 0.036) and extracellular-signal regulated kinase (ERK) 1/2 (P = 0.021). PNFS (200 μg/mL) inhibited the activation of the NF-kappa B signaling pathway by preventing the phosphorylation of inhibitor of NF-kappa B alpha (I-kappa B alpha) (P = 0.004) and P65 (P = 0.023), but PNFS (200 μg/mL) could not activate the LPS-induced PI3K-Akt signaling pathway. Conclusions PNFS significantly down-regulated iNOS gene overexpression and thereby decreased NO overproduction via the inhibition of TLR4-mediated MAPK/NF-kappa B signaling pathways, but not the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Xu Peng
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Shu-Hui Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People's Republic of China
| | - Xiao-Ling Wang
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Ting-Jie Ye
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Hua Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Xiao-Feng Yan
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Li Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Zhong-Ping Wu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Jing Hu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - Chun-Pu Zou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| | - You-Hua Wang
- Hypertension Laboratory, Cardiovascular Department, Long Hua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 People's Republic of China
| | - Xu-Dong Hu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People's Republic of China
| |
Collapse
|
96
|
Perrotta C, De Palma C, Clementi E, Cervia D. Hormones and immunity in cancer: are thyroid hormones endocrine players in the microglia/glioma cross-talk? Front Cell Neurosci 2015; 9:236. [PMID: 26157361 PMCID: PMC4477169 DOI: 10.3389/fncel.2015.00236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano Milano, Italy
| | - Clara De Palma
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano Milano, Italy ; Scientific Institute IRCCS Eugenio Medea Bosisio Parini, Italy
| | - Davide Cervia
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Unit of Clinical Pharmacology, National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano Milano, Italy ; Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università della Tuscia, Largo dell'Università snc Viterbo, Italy
| |
Collapse
|
97
|
McArthur S, Gobbetti T, Kusters DHM, Reutelingsperger CP, Flower RJ, Perretti M. Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes during the Resolution Phase of Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1139-51. [PMID: 26101324 PMCID: PMC4505961 DOI: 10.4049/jimmunol.1500733] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/21/2015] [Indexed: 01/13/2023]
Abstract
Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer’s disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14+CD16− monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2–dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1−/− or alx/fpr2/3−/− mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1−/− and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes.
Collapse
Affiliation(s)
- Simon McArthur
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom;
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Dennis H M Kusters
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, the Netherlands; and Department of Biochemistry, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Christopher P Reutelingsperger
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, the Netherlands; and Department of Biochemistry, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Roderick J Flower
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom;
| |
Collapse
|
98
|
Xu X, Yin P, Wan C, Chong X, Liu M, Cheng P, Chen J, Liu F, Xu J. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation 2015; 37:956-65. [PMID: 24473904 DOI: 10.1007/s10753-014-9816-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.
Collapse
Affiliation(s)
- Xiaolong Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No.2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lapp T, Maier P, Birnbaum F, Schlunck G, Reinhard T. [Immunosuppressives to prevent rejection reactions after allogeneic corneal transplantation]. Ophthalmologe 2015; 111:270-82. [PMID: 24633461 DOI: 10.1007/s00347-013-3016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In order to prevent rejection of an allogeneic corneal transplant after perforating (high risk) keratoplasty, active agents from different classes of pharmacological substances are used, as with solid organ transplantation. In addition to glucocorticoids, antiproliferative agents, small molecule inhibitors and antibodies, those belonging to the group of macrolides with their many derivatives represent an interesting class of substances in this context. As a supplement to cyclosporin A (CSA) the most successful macrolide in transplantation medicine, animal experiments are currently being carried out to test newer macrolide derivatives, such as sanglifehrin A (SFA). This overview describes the classes of drugs and modes of action of currently administered standard medications in the clinical routine and new developments are presented.
Collapse
Affiliation(s)
- T Lapp
- Klinik für Augenheilkunde, Universitätsklinikum Freiburg, Killianstr. 5, 79106, Freiburg im Breisgau, Deutschland,
| | | | | | | | | |
Collapse
|
100
|
Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 2015; 125:3618-26. [PMID: 25852055 DOI: 10.1182/blood-2015-01-620781] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/ myeloproliferative neoplasm whose diagnosis is currently based on the elevation of peripheral blood monocytes to >1 × 10(9)/L, measured for ≥3 months. Diagnosis can be ambiguous; for example, with prefibrotic myelofibrosis or reactive monocytosis. We set up a multiparameter flow cytometry assay to distinguish CD14(+)/CD16(-) classical from CD14(+)/CD16(+) intermediate and CD14(low)/CD16(+) nonclassical monocyte subsets in peripheral blood mononucleated cells and in total blood samples. Compared with healthy donors and patients with reactive monocytosis or another hematologic malignancy, CMML patients demonstrate a characteristic increase in the fraction of CD14(+)/CD16(-) cells (cutoff value, 94.0%). The associated specificity and sensitivity values were 95.1% and 90.6% in the learning cohort (175 samples) and 94.1% and 91.9% in the validation cohort (307 samples), respectively. The accumulation of classical monocytes, which demonstrate a distinct gene expression pattern, is independent of the mutational background. Importantly, this increase disappears in patients who respond to hypomethylating agents. We conclude that an increase in the fraction of classical monocytes to >94.0% of total monocytes is a highly sensitive and specific diagnostic marker that rapidly and accurately distinguishes CMML from confounding diagnoses.
Collapse
|