51
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Go S, Masuda H, Tsuru M, Inden M, Hozumi I, Kurita H. Exposure to a low concentration of methylmercury in neural differentiation downregulates NR4A1 expression with altered epigenetic modifications and inhibits neuronal spike activity in vitro. Toxicol Lett 2023; 374:68-76. [PMID: 36565944 DOI: 10.1016/j.toxlet.2022.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a well-known developmental neurotoxin. Our previous research showed that the inhibition of neurite extension by exposure to a low level of MeHg (1 nM) was attributed to the decrease of acetylation of histone H3 and the increase of DNA methylation. However, the target molecules responsible for the neurological dysfunctions caused by MeHg exposure have not been identified. This study focused on a nuclear receptor subfamily 4 group A member 1 (NR4A1), which is reported to be related to synaptic plasticity and neurite extension. LUHMES cells, which are derived from human fetal brain, were treated with 0.1 and 1 nM MeHg beginning at two days of differentiation and continued for 6 consecutive days. The present study showed that exposure to a 1 nM MeHg during neural differentiation inhibited neuronal spike activity and neurite extension. Furthermore, MeHg exposure increased DNA methylation, and altered histone modifications for transcriptional repression in the NR4A1 promoter region to decrease the levels of NR4A1 expression. In addition, MeHg exposure inhibited the mobilization of cAMP response element-binding protein (CREB) and CREB binding protein (CBP) in the NR4A1 promoter region. These results suggest that MeHg inhibits the recruitment of the CREB-CBP complex to the NR4A1 promoter region and impairs neuronal functions associated with NR4A1 repression via a decrease in acetylation of histone H3 lysine 14 levels. Conclusively, this study demonstrated that MeHg exposure during neuronal differentiation could induce neurological dysfunctions even at a low concentration in vitro. These dysfunctions could be associated with the transcriptional repression of NR4A1 by the dissociation of CREB and CBP from the NR4A1 promoter region due to the alterations of epigenetic modifications.
Collapse
Affiliation(s)
- Suzuna Go
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Haruka Masuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Mizuki Tsuru
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan.
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan.
| |
Collapse
|
53
|
Nguyen HD. Prognostic biomarker prediction for glioma induced by heavy metals and their mixtures: An in-silico study. Toxicol Appl Pharmacol 2023; 459:116356. [PMID: 36563751 DOI: 10.1016/j.taap.2022.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Although there is an association between heavy metals and glioma, the molecular mechanisms involved in glioma development remain unclear. Therefore, this study aimed to assess the molecular mechanisms implicated in glioma development induced by heavy metals and their mixtures using various methodologies and databases (CTD, Google Scholar, PubMed, ScienceDirect, SpringerLink, miRNAsong, GeneMANIA, Metascape, MIENTURNET, UALCAN). I found that heavy metals, particularly arsenic, mercury, lead, and cadmium, as well as their mixtures, have substantial influences on the etiology of gliomas. "glioblastoma signaling pathways," "integrated cancer pathway," "central carbon metabolism in cancer," "microRNAs in cancer," "p53 signaling pathway," "chemical carcinogenesis-DNA adducts," "glioma," "TP53 network," and "MAPK signaling pathway" were the predominant molecular pathways implicated in the glioma development induced by the studied heavy metals and their mixtures. Five genes (SOD1, CAT, GSTP1, PTGS2, TNF), two miRNAs (hsa-miR-26b-5p and hsa-miR-143-3p), and transcription factors (DR1 and HNF4) were identified as key components related to combined heavy metal and glioma development. Physical interactions were found to be the most common among the heavy metals and their mixtures studied (ranging from 45.2% to 77.6%). The expression level of SOD1 was significantly lower in glioblastoma multiforma samples compared to normal samples, whereas GSTP1 and TP53 expression levels were significantly higher. Brain lower and grade glioma patients who had higher levels of TP53, hsa-miR-25, hsa-miR-34, hsa-miR-222, and hsa-miR-143 had a reduced likelihood of survival. Our findings suggest that further priority should be given to investigating the impact of specific heavy metals or their mixtures on these molecular processes.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
54
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
55
|
Mogilicherla K, Roy A. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Front Genet 2023; 13:1044980. [PMID: 36685945 PMCID: PMC9853188 DOI: 10.3389/fgene.2022.1044980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Collapse
|
56
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
57
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
58
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
59
|
Jean-Pierre M, Michalovicz LT, Kelly KA, O'Callaghan JP, Nathanson L, Klimas N, J. A. Craddock T. A pilot reverse virtual screening study suggests toxic exposures caused long-term epigenetic changes in Gulf War Illness. Comput Struct Biotechnol J 2022; 20:6206-6213. [DOI: 10.1016/j.csbj.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
60
|
Cerdeña JP. Epigenetic citizenship and political claims-making: the ethics of molecularizing structural racism. BIOSOCIETIES 2022; 18:1-24. [PMID: 36277423 PMCID: PMC9579599 DOI: 10.1057/s41292-022-00286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Epigenetics has generated excitement over its potential to inform health disparities research by capturing the molecular signatures of social experiences. This paper highlights the concerns implied by these expectations of epigenetics research and discusses the possible ramifications of 'molecularizing' the forms of social suffering currently examined in epigenetics studies. Researchers working with oppressed populations-particularly racially marginalized groups-should further anticipate how their results might be interpreted to avoid fueling prejudiced claims of biological essentialism. Introducing the concept of 'epigenetic citizenship,' this paper considers the ways environmentally responsive methylation cues may be used in direct-to-consumer testing, healthcare, and biopolitical interactions. The conclusion addresses the future of social epigenetics research and the utility of an epigenetic citizenship framework.
Collapse
Affiliation(s)
- Jessica P. Cerdeña
- Department of Anthropology, Yale University, 10 Sachem Street, New Haven, CT 06511 USA
- Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
61
|
Abdelzaher H, Tawfik SM, Nour A, Abdelkader S, Elbalkiny ST, Abdelkader M, Abbas WA, Abdelnaser A. Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front Public Health 2022; 10:973000. [PMID: 36211706 PMCID: PMC9533016 DOI: 10.3389/fpubh.2022.973000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Climate change is an anthropogenic phenomenon that is alarming scientists and non-scientists alike. The emission of greenhouse gases is causing the temperature of the earth to rise and this increase is accompanied by a multitude of climate change-induced environmental exposures with potential health impacts. Tracking human exposure has been a major research interest of scientists worldwide. This has led to the development of exposome studies that examine internal and external individual exposures over their lifetime and correlate them to health. The monitoring of health has also benefited from significant technological advances in the field of "omics" technologies that analyze physiological changes on the nucleic acid, protein, and metabolism levels, among others. In this review, we discuss various climate change-induced environmental exposures and their potential health implications. We also highlight the potential integration of the technological advancements in the fields of exposome tracking, climate monitoring, and omics technologies shedding light on important questions that need to be answered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
62
|
Navarro-Lafuente F, Adoamnei E, Arense-Gonzalo JJ, Prieto-Sánchez MT, Sánchez-Ferrer ML, Parrado A, Fernández MF, Suarez B, López-Acosta A, Sánchez-Guillamón A, García-Marcos L, Morales E, Mendiola J, Torres-Cantero AM. Maternal urinary concentrations of bisphenol A during pregnancy are associated with global DNA methylation in cord blood of newborns in the "NELA" birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156540. [PMID: 35688234 DOI: 10.1016/j.scitotenv.2022.156540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) set a public health risk through disruption of normal physiological processes. The toxicoepigenetic mechanisms of developmental exposure to common EDCs, such as bisphenol A (BPA), are poorly known. The present study aimed to evaluate associations between perinatal maternal urinary concentrations of BPA, bisphenol S (BPS) and bisphenol F (BPF) and LINE-1 (long interspersed nuclear elements) and Alu (short interspersed nuclear elements, SINEs) DNA methylation levels in newborns, as surrogate markers of global DNA methylation. Data come from 318 mother-child pairs of the `Nutrition in Early Life and Asthma´ (NELA) birth cohort. Urinary bisphenol concentration was measured by dispersive liquid-liquid microextraction and ultrahigh performance liquid chromatography with tandem mass spectrometry detection. DNA methylation was quantitatively assessed by bisulphite pyrosequencing on 3 LINEs and 5 SINEs. Unadjusted linear regression analyses showed that higher concentration of maternal urinary BPA in 24th week's pregnancy was associated with an increase in LINE-1 methylation in all newborns (p = 0.01) and, particularly, in male newborns (p = 0.03). These associations remained in full adjusted models [beta = 0.09 (95 % CI = 0.03; 0.14) for all newborns; and beta = 0.10 (95 % CI = 0.03; 0.17) for males], including a non-linear association for female newborns as well (p-trend = 0.003). No associations were found between maternal concentrations of bisphenol and Alu sequences. Our results suggest that exposure to environmental levels of BPA may be associated with a modest increase in LINE-1 methylation -as a relevant marker of epigenomic stability- during human fetal development. However, any effects on global DNA methylation are likely to be small, and of uncertain biological significance.
Collapse
Affiliation(s)
| | - Evdochia Adoamnei
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Julián J Arense-Gonzalo
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María T Prieto-Sánchez
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - María L Sánchez-Ferrer
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - Antonio Parrado
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mariana F Fernández
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Suarez
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Luis García-Marcos
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | - Eva Morales
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jaime Mendiola
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto M Torres-Cantero
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
63
|
Holliday KM, Gondalia R, Baldassari A, Justice AE, Stewart JD, Liao D, Yanosky JD, Jordahl KM, Bhatti P, Assimes TL, Pankow JS, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Vokonas PS, Ward-Caviness CK, Wilson R, Wolf K, Waldenberger M, Cyrys J, Peters A, Boezen HM, Vonk JM, Sayols-Baixeras S, Lee M, Baccarelli AA, Whitsel EA. Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of U.S. adults. ENVIRONMENTAL RESEARCH 2022; 212:113360. [PMID: 35500859 PMCID: PMC9354583 DOI: 10.1016/j.envres.2022.113360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/03/2023]
Abstract
Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
Collapse
Affiliation(s)
- Katelyn M Holliday
- Department of Family Medicine and Community Health, School of Medicine, Duke University, Durham, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Schools of Medicine and Public Health, Boston University, Boston, MA, USA
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilians University, Munich, Germany
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, the Netherlands
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, Hospital Del Mar Medical Research Institute (IMIM), Campus Del Mar, Universitat Pompeu Fabra, Barcelona, Spain; Consorcio CIBER, M.P. Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
64
|
Tulsyan S, Aftab M, Sisodiya S, Khan A, Chikara A, Tanwar P, Hussain S. Molecular basis of epigenetic regulation in cancer diagnosis and treatment. Front Genet 2022; 13:885635. [PMID: 36092905 PMCID: PMC9449878 DOI: 10.3389/fgene.2022.885635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The global cancer cases and mortality rates are increasing and demand efficient biomarkers for accurate screening, detection, diagnosis, and prognosis. Recent studies have demonstrated that variations in epigenetic mechanisms like aberrant promoter methylation, altered histone modification and mutations in ATP-dependent chromatin remodelling complexes play an important role in the development of carcinogenic events. However, the influence of other epigenetic alterations in various cancers was confirmed with evolving research and the emergence of high throughput technologies. Therefore, alterations in epigenetic marks may have clinical utility as potential biomarkers for early cancer detection and diagnosis. In this review, an outline of the key epigenetic mechanism(s), and their deregulation in cancer etiology have been discussed to decipher the future prospects in cancer therapeutics including precision medicine. Also, this review attempts to highlight the gaps in epigenetic drug development with emphasis on integrative analysis of epigenetic biomarkers to establish minimally non-invasive biomarkers with clinical applications.
Collapse
Affiliation(s)
- Sonam Tulsyan
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR- National Institute of Cancer Prevention and Research, Noida, India
| | - Mehreen Aftab
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR- National Institute of Cancer Prevention and Research, Noida, India
| | - Sandeep Sisodiya
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR- National Institute of Cancer Prevention and Research, Noida, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Asiya Khan
- Laboratory Oncology Unit, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Chikara
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR- National Institute of Cancer Prevention and Research, Noida, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Showket Hussain
- Division of Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR- National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
65
|
Alshaya DS. Genetic and epigenetic factors associated with depression: An updated overview. Saudi J Biol Sci 2022; 29:103311. [PMID: 35762011 PMCID: PMC9232544 DOI: 10.1016/j.sjbs.2022.103311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a complex psychiatric disturbance involving many environmental, genetic, and epigenetic factors. Until now, genetic, and non-genetic studies are still on the way to understanding the complex mechanism of this disease, and there are still many questions that have not yet been answered. Depression includes a large spectrum of heterogeneous symptoms correlated to the deficit of a range of psychological, cognitive, and emotional processes, and it affects various age groups. It is classified into several types according to the severity of symptoms, time of occurrence, and time. Following the World Health Organization (WHO), depression attacks near 350 million persons globally. Several factors overlap in causing depression, including genetic and epigenetic factors, environmental conditions, various stresses, lack of some nutrients to which people are exposed, and excessive stress and abuse in childhood. This study included conducting surveys on depression and new treatment trends based on epigenetic factors associated with the occurrence of the disease. Epigenetic factors provide a completely novel dimension to therapeutic approaches as most diseases are not monogenic, and it is likely that the environment has a significant contribution. Epigenetic inheritance is included in many mental and psychiatric disorders such as depression. In general, epigenetic modifications could be summarized in 3 major points: DNA methylation, histone modification, and non-mediated regulation of RNA (ncRNA). This study also describes some genes associated with one of the depressive disorders using bioinformatics tools and gene bank and had the genes: SLC6A4, COMT, TPH2, FKBP5, MDD1, HTR2A, and MDD2. As in this study, the awareness of Saudi society about depression and its genetic and non-genetic causes was estimated. The results showed that an encouraging percentage of more than half of the research sample possessed correct information about this disorder.
Collapse
Key Words
- COMT, Catechol-O-methyltransferase
- Depression
- Epigenetic factors
- FKBP5, FKBP Prolyl Isomerase 5
- Genetic factors
- HTR2A, hydroxy tryptamine receptor 2A
- MBCT, Mindfulness-based cognitive therapy
- MDD1, Major Depressive Disorder 1
- MDD2, Major Depressive Disorder 2
- NICE, National Institute for Health and Care Excellence
- NIMH, National Institute of Mental Health
- SAD, Seasonal Affective Disorder
- SLC6A4, Solute Carrier Family 6 Member 4
- Symptoms
- TPH2, Tryptophan hydroxylase 2
- Treatment
Collapse
Affiliation(s)
- Dalal S. Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
66
|
Guo L, Liu Z, Li P, Ji Y, Song S, Zheng N, Zhao L, Jia Y, Fang J, Wang H, Byun HM. Association between mitochondrial DNA methylation and internal exposure to polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) in young adults from Tianjin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113799. [PMID: 35772359 DOI: 10.1016/j.ecoenv.2022.113799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) are environmental pollutants with adverse effects on human health. The correlation between the concentrations of PAHs, NPAHs and OPAHs in human plasma and the methylation level of mitochondrial DNA (mtDNA) was investigated using data from 110 plasma samples collected in Tianjin, China. The median concentrations of PAHs, NPAHs and OPAHs were 16.0 (IQR: 14.4-20.7) ng/mL, 82.2 (IQR: 63.1-97.6) ng/mL and 49.6 (IQR: 28.6-53.8) ng/mL, and the mean proportions were 13.4%, 56.5% and 30.1%, respectively. Bisulfite-PCR pyrosequencing was used to measure the methylation level of MT-CO1 and tRNA-Leu. The methylation levels of two mitochondrial genes (MT-CO1, tRNA-Leu) including four CpG sites (MT-CO1-P1, MT-CO1-P2, tRNA-Leu-P1 and tRNA-Leu-P2) were 0.67% ± 1.38%, 13.54% ± 2.59%, 7.23% ± 5.35% and 1.64% ± 2.94%, respectively. To the best of our knowledge, this is the first time that significant correlations were found between PAHs and their derivatives exposure and mtDNA methylation levels.
Collapse
Affiliation(s)
- Liqiong Guo
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ziquan Liu
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China; National Institute of Metrology, Beijing 100029, China
| | - Na Zheng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin 300384, China
| | - Lei Zhao
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yaning Jia
- Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China; Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junkai Fang
- Tianjin Healthcare Affairs Center, Tianjin 300070, China
| | - Huiyu Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hyang-Min Byun
- Population Health Science Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne NE4 5PL, UK
| |
Collapse
|
67
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
68
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
69
|
Hepatic RNA adduction derived from metabolic activation of retrorsine in vitro and in vivo. Chem Biol Interact 2022; 365:110047. [DOI: 10.1016/j.cbi.2022.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
70
|
Song AY, Feinberg JI, Bakulski KM, Croen LA, Fallin MD, Newschaffer CJ, Hertz-Picciotto I, Schmidt RJ, Ladd-Acosta C, Volk HE. Prenatal Exposure to Ambient Air Pollution and Epigenetic Aging at Birth in Newborns. Front Genet 2022; 13:929416. [PMID: 35836579 PMCID: PMC9274082 DOI: 10.3389/fgene.2022.929416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
In utero air pollution exposure has been associated with adverse birth outcomes, yet effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of vulnerability during pregnancy are not well understood. There is evidence that epigenetic alterations may contribute to these effects. DNA methylation (DNAm) based age estimators have been developed and studied extensively with health outcomes in recent years. Growing literature suggests environmental factors, such as air pollution and smoking, can influence epigenetic aging. However, little is known about the effect of prenatal air pollution exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure to air pollution and epigenetic aging at birth. DNAm age was computed using existing epigenetic clock algorithms for cord blood tissue-Knight and Bohlin. Epigenetic age acceleration was defined as the residual of regressing chronological gestational age on DNAm age, accounting for cell type proportions. Multivariable linear regression models and distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites, year of birth, maternal education, were completed. In the single-pollutant analysis, we observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy period were associated with decelerated epigenetic aging at birth. For example, pregnancy average PM10 exposure (per 10 unit increase) was associated with epigenetic age deceleration at birth (weeks) for both Knight and Bohlin clocks (β = -0.62, 95% CI: -1.17, -0.06; β = -0.32, 95% CI: -0.63, -0.01, respectively). Weekly DLMs revealed that increasing PM2.5 during the first trimester and second trimester were associated with decelerated epigenetic aging and that increasing PM10 during the preconception period was associated with decelerated epigenetic aging, using the Bohlin clock estimate. Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was associated with decelerated epigenetic aging at birth.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
71
|
Yu H, Tuminello S, Alpert N, van Gerwen M, Yoo S, Mulholland DJ, Aaronson SA, Donovan M, Oh WK, Gong Y, Wang L, Zhu J, Taioli E. Global DNA methylation of WTC prostate cancer tissues show signature differences compared to non-exposed cases. Carcinogenesis 2022; 43:528-537. [PMID: 35239955 PMCID: PMC9234756 DOI: 10.1093/carcin/bgac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
There is increased incidence of prostate cancer (PC) among World Trade Center (WTC)-exposed responders and community members, with preliminary evidence suggestive of more aggressive disease. While previous research is supportive of differences in DNA methylation and gene expression as a consequence of WTC exposure, as measured in blood of healthy individuals, the epigenetics of WTC PC tissues has yet to be explored. Patients were recruited from the World Trade Center Health Program. Non-WTC PC samples were frequency matched on age, race/ethnicity and Gleason score. Bisulfite-treated DNA was extracted from tumor tissue blocks and used to assess global DNA methylation with the MethylationEPIC BeadChip. Differential and pathway enrichment analyses were conducted. RNA from the same tumor blocks was used for gene expression analysis to further support DNA methylation findings. Methylation data were generated for 28 samples (13 WTC and 15 non-WTC). Statistically significant differences in methylation were observed for 3,586 genes; on average WTC samples were statistically significantly more hypermethylated (P = 0.04131). Pathway enrichment analysis revealed hypermethylation in epithelial mesenchymal transition (EMT), hypoxia, mitotic spindle, TNFA signaling via NFKB, WNT signaling, and TGF beta signaling pathways in WTC compared to non-WTC samples. The androgen response, G2M and MYC target pathways were hypomethylated. These results correlated well with RNA gene expression. In conclusion, long-term epigenic changes associated with WTC dust exposure were observed in PC tissues. These occurred in genes of critical pathways, likely increasing prostate tumorigenesis potential. This warrants analysis of larger WTC groups and other cancer types.
Collapse
Affiliation(s)
- Haocheng Yu
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Stephanie Tuminello
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health, New York University Langone Health, New York, NY, USA
| | - Naomi Alpert
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maaike van Gerwen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - David J Mulholland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yixuan Gong
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Wang
- Sema4, a Mount Sinai venture, Stamford, CT, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Sema4, a Mount Sinai venture, Stamford, CT, USA
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NYUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
72
|
Agrawal M, Allin KH, Petralia F, Colombel JF, Jess T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 2022; 19:399-409. [PMID: 35301463 PMCID: PMC9214275 DOI: 10.1038/s41575-022-00593-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
73
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
74
|
Tuminello S, Zhang Y, Yang L, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Chen Y, Shao Y, Reibman J, Arslan AA. Global DNA Methylation Profiles in Peripheral Blood of WTC-Exposed Community Members with Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095104. [PMID: 35564499 PMCID: PMC9105091 DOI: 10.3390/ijerph19095104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022]
Abstract
Breast cancer represents the most common cancer diagnosis among World Trade Center (WTC)-exposed community members, residents, and cleanup workers enrolled in the WTC Environmental Health Center (WTC EHC). The primary aims of this study were (1) to compare blood DNA methylation profiles of WTC-exposed community members with breast cancer and WTC-unexposed pre-diagnostic breast cancer blood samples, and (2) to compare the DNA methylation differences among the WTC EHC breast cancer cases and WTC-exposed cancer-free controls. Gene pathway enrichment analyses were further conducted. There were significant differences in DNA methylation between WTC-exposed breast cancer cases and unexposed prediagnostic breast cancer cases. The top differentially methylated genes were Intraflagellar Transport 74 (IFT74), WD repeat-containing protein 90 (WDR90), and Oncomodulin (OCM), which are commonly upregulated in tumors. Probes associated with established tumor suppressor genes (ATM, BRCA1, PALB2, and TP53) were hypermethylated among WTC-exposed breast cancer cases compared to the unexposed group. When comparing WTC EHC breast cancer cases vs. cancer-free controls, there appeared to be global hypomethylation among WTC-exposed breast cancer cases compared to exposed controls. Functional pathway analysis revealed enrichment of several gene pathways in WTC-exposed breast cancer cases including endocytosis, proteoglycans in cancer, regulation of actin cytoskeleton, axon guidance, focal adhesion, calcium signaling, cGMP-PKG signaling, mTOR, Hippo, and oxytocin signaling. The results suggest potential epigenetic links between WTC exposure and breast cancer in local community members enrolled in the WTC EHC program.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- Correspondence: (S.T.); (A.A.A.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
| | - Lei Yang
- Foundation Medicine, Cambridge, MA 02141, USA;
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Alan A. Arslan
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (Y.Z.); (A.Z.-J.); (Y.C.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (S.T.); (A.A.A.)
| |
Collapse
|
75
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
76
|
Yu CH, Yang SQ, Li L, Xin Y, Zhang F, Liu XF, Yi ZC. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol Toxicol 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. METHODS K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. RESULTS Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. CONCLUSIONS This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Xin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Fang Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiao-Fan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
77
|
Ghosh K, Chatterjee B, Nalla K, Behera B, Mukherjee A, Kanade SR. Di-(2-ethylhexyl) phthalate triggers DNA methyltransferase 1 expression resulting in elevated CpG-methylation and enrichment of MECP2 in the p21 promoter in vitro. CHEMOSPHERE 2022; 293:133569. [PMID: 35033518 DOI: 10.1016/j.chemosphere.2022.133569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Leaching of the plastic constituents leading to their chronic exposure to humans is a major concern for our environmental and occupational health. Our previous and other numerous studies have demonstrated that environmental chemicals like di (2-Ethylhexyl)-phthalate (DEHP) could pose a risk towards the epigenetic mechanisms. Yet, the mechanisms underlying its possible epigenotoxicity are poorly understood. We aimed to assess the impact of DEHP exposure to the human breast cancer cells (MCF-7) and resultant changes in DNA methylation regulators ultimately altering the expression of the cell cycle regulator p21 as a model gene. The MCF-7 cells were exposed to environmentally relevant concentrations (50-500 nM) for 24 h. The results showed that DEHP was proliferative towards the MCF-7 cells while it induced global DNA hypermethylation with selective upregulation of DNMT1 and MECP2. In addition, DEHP significantly reduced p53 protein and its enrichment to the DNMT1 promoter binding site, while elevating SP1 and E2F1 transcription factor levels, stimulating their binding to the promoter DNA. Coincidently, increased DNMT1 level was highly associated with loss of p21 expression and increased cyclin D1 levels. Importantly, the p21, but not cyclin D1 promoter CpG-dinucleotides were hypermethylated after exposure to 500 nM DEHP for 24 h. Furthermore, it was observed that DEHP significantly enriched DNMT1 and MECP2 to the p21 promoter to induce DNA methylation-based epigenetic silencing of p21, resulting in increased cell proliferation. Our results suggest DEHP could potentially induce the epigenetic alterations that might increase the risk of breast cancer, given that the underlying mechanisms should be fully elucidated.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - KiranKumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India
| | - Bablu Behera
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, JN Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India.
| |
Collapse
|
78
|
Hallberg I, Persson S, Olovsson M, Moberg M, Ranefall P, Laskowski D, Damdimopoulou P, Sirard MA, Rüegg J, Sjunnesson YC. Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reprod Toxicol 2022; 109:19-30. [DOI: 10.1016/j.reprotox.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
79
|
Chen YX, He LL, Xiang XP, Shen J, Qi HY. O 6-methylguanine DNA methyltransferase is upregulated in malignant transformation of gastric epithelial cells via its gene promoter DNA hypomethylation. World J Gastrointest Oncol 2022; 14:664-677. [PMID: 35321285 PMCID: PMC8919019 DOI: 10.4251/wjgo.v14.i3.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the mispairing base O6-methyl-guanine induced by environmental and experimental carcinogens. It can transfer the alkyl group to a cysteine residue in its active site and became inactive. The chemical carcinogen N-nitroso compounds (NOCs) can directly bind to the DNA and induce the O6-methylguanine adducts, which is an important cause of gene mutation and tumorigenesis. However, the underlying regulatory mechanism of MGMT involved in NOCs-induced tumorigenesis, especially in the initiation phase, remains largely unclear.
AIM To investigate the molecular regulatory mechanism of MGMT in NOCs-induced gastric cell malignant transformation and tumorigenesis.
METHODS We established a gastric epithelial cell malignant transformation model induced by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) or N-methyl-N-nitroso-urea (MNU) treatment. Cell proliferation, colony formation, soft agar, cell migration, and xenograft assays were used to verify the malignant phenotype. By using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis, we detected the MGMT expression in malignant transformed cells. We also confirmed the MGMT expression in early stage gastric tumor tissues by qPCR and immunohistochemistry. MGMT gene promoter DNA methylation level was analyzed by methylation-specific PCR and bisulfite sequencing PCR. The role of MGMT in cell malignant transformation was analyzed by colony formation and soft agar assays.
RESULTS We observed a constant increase in MGMT mRNA and protein expression in gastric epithelial cell malignant transformation induced by MNNG or MNU treatment. Moreover, we found a reduction of MGMT gene promoter methylation level by methylation-specific PCR and bisulfite sequencing PCR in MNNG/MNU-treated cells. Inhibition of the MGMT expression by O6-benzylguanine promoted the MNNG/MNU-induced malignant phenotypes. Overexpression of MGMT partially reversed the cell malignant transformation process induced by MNNG/MNU. Clinical gastric tissue analysis showed that MGMT was upregulated in the precancerous lesions and metaplasia tissues, but downregulated in the gastric cancer tissues.
CONCLUSION Our finding indicated that MGMT upregulation is induced via its DNA promoter hypomethylation. The highly expressed MGMT prevents the NOCs-induced cell malignant transformation and tumorigenesis, which suggests a potential novel approach for chemical carcinogenesis intervention by regulating aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Yue-Xia Chen
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Pathology, Third Hospital of Nanchang, Nanchang 330000, Jiangxi Province, China
| | - Lu-Lu He
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Ping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Shen
- Department of Pathology and Pathophysiology andDepartment of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Hong-Yan Qi
- Department of Pathology and Pathophysiology and Department of Radiation Oncology of the Second Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
80
|
Liu Y, Eliot MN, Papandonatos GD, Kelsey KT, Fore R, Langevin S, Buckley J, Chen A, Lanphear BP, Cecil KM, Yolton K, Hivert MF, Sagiv SK, Baccarelli AA, Oken E, Braun JM. Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37005. [PMID: 35266797 PMCID: PMC8911098 DOI: 10.1289/ehp10118] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA methylation. OBJECTIVES We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006; Cincinnati, Ohio). METHODS We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n=266) and peripheral leukocytes at 12 years of age (n=160) using the Illumina HumanMethylation EPIC BeadChip. We analyzed associations between log2-transformed PFAS concentrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms between children's age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project Viva (1999-2002; Boston, Massachusetts) to replicate significant associations. RESULTS After adjusting for covariates, 435 cytosine-guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q<0.05). Specifically, we identified 2 CpGs for PFOS, 12 for PFOA, 8 for PFHxS, and 413 for PFNA; none overlapped. Among these, 2 CpGs for PFOA and 4 for PFNA were replicated in Project Viva. Some of the PFAS-associated CpG sites annotated to gene regions related to cancers, cognitive health, cardiovascular disease, and kidney function. We found little evidence that the associations between PFAS and DNA methylation differed by children's age. DISCUSSION In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between gestational PFAS exposure and health. https://doi.org/10.1289/EHP10118.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Melissa N. Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - George D. Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Laboratory Medicine and Pathology, Brown University, Providence, Rhode Island, USA
| | - Ruby Fore
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Langevin
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim M. Cecil
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Sagiv
- Department of Epidemiology, Berkeley School of Public Health, University of California, Berkeley, California, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| |
Collapse
|
81
|
Aigner GP, Nenning P, Fiechtner B, Šrut M, Höckner M. DNA Methylation and Detoxification in the Earthworm Lumbricus terrestris Exposed to Cadmium and the DNA Demethylation Agent 5-aza-2'-deoxycytidine. TOXICS 2022; 10:100. [PMID: 35202286 PMCID: PMC8879108 DOI: 10.3390/toxics10020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Earthworms are well-established model organisms for testing the effects of heavy metal pollution. How DNA methylation affects cadmium (Cd) detoxification processes such as the expression of metallothionein 2 (MT2), however, is largely unknown. We therefore exposed Lumbricus terrestris to 200 mg concentrations of Cd and 5-aza-2'-deoxycytidine (Aza), a demethylating agent, and sampled tissue and coelomocytes, cells of the innate immune system, for 48 h. MT2 transcription significantly increased in the Cd- and Cd-Aza-treated groups. In tissue samples, a significant decrease in MT2 in the Aza-treated group was detected, showing that Aza treatment inhibits basal MT2 gene activity but has no effect on Cd-induced MT2 levels. Although Cd repressed the gene expression of DNA-(cytosine-5)-methyltransferase-1 (DNMT1), which is responsible for maintaining DNA methylation, DNMT activity was unchanged, meaning that methylation maintenance was not affected in coelomocytes. The treatment did not influence DNMT3, which mediates de novo methylation, TET gene expression, which orchestrates demethylation, and global levels of hydroxymethylcytosine (5hmC), a product of the demethylation process. Taken together, this study indicates that Aza inhibits basal gene activity, in contrast to Cd-induced MT2 gene expression, but does not affect global DNA methylation. We therefore conclude that Cd detoxification based on the induction of MT2 does not relate to DNA methylation changes.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; (G.P.A.); (P.N.); (B.F.); (M.Š.)
| |
Collapse
|
82
|
Mahmoodpoor A, Sanaie S, Roudbari F, Sabzevari T, Sohrabifar N, Kazeminasab S. Understanding the role of telomere attrition and epigenetic signatures in COVID-19 severity. Gene 2022; 811:146069. [PMID: 34848322 PMCID: PMC8634871 DOI: 10.1016/j.gene.2021.146069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
Within the past several decades, the emergence and spread of infectious diseases with pandemic potential have endangered human lives. Coronavirus disease 2019 (COVID-19) outbreak represents an unprecedented threat for all health systems worldwide. The clinical spectrum of COVID-19 is highly heterogeneous, ranging from asymptomatic and mild upper respiratory tract illness to severe interstitial pneumonia with respiratory failure and even death. Highly age-dependent patterns of immune response potentially explain the higher rates of the severe forms of COVID-19 in elderly patients. However, genetic and epigenetic architecture can influence multiple biological processes during the lifespan, therefore as far as our knowledge shows, vulnerability to viral infection concerning telomere length and epigenetic signature is not a new idea. This review aims is to summarize the current understanding of the role of telomere length and epigenetic mechanisms on the severity of COVID-19. The current knowledge highlights the significant association between the shorter telomere length and the higher risk of developing severe COVID-19. Differential DNA methylation patterns and miRNA expression profiles imply that these hallmarks can play a pivotal role in COVID- 19 pathogenesis. Understanding the causes of inter-individual variations in COVID-19 outcomes could provide clues to the development of the personalized therapeutic intervention.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tara Sabzevari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Vice-Chancellor, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
83
|
Wan QL, Meng X, Wang C, Dai W, Luo Z, Yin Z, Ju Z, Fu X, Yang J, Ye Q, Zhang ZH, Zhou Q. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat Commun 2022; 13:768. [PMID: 35140229 PMCID: PMC8828817 DOI: 10.1038/s41467-022-28469-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
As a major risk factor to human health, obesity presents a massive burden to people and society. Interestingly, the obese status of parents can cause progeny's lipid accumulation through epigenetic inheritance in multiple species. To date, many questions remain as to how lipid accumulation leads to signals that are transmitted across generations. In this study, we establish a nematode model of C. elegans raised on a high-fat diet (HFD) that leads to measurable lipid accumulation, which can transmit the lipid accumulation signal to their multigenerational progeny. Using this model, we find that transcription factors DAF-16/FOXO and SBP-1/SREBP, nuclear receptors NHR-49 and NHR-80, and delta-9 desaturases (fat-5, fat-6, and fat-7) are required for transgenerational lipid accumulation. Additionally, histone H3K4 trimethylation (H3K4me3) marks lipid metabolism genes and increases their transcription response to multigenerational obesogenic effects. In summary, this study establishes an interaction between a network of lipid metabolic genes and chromatin modifications, which work together to achieve transgenerational epigenetic inheritance of obesogenic effects.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.,Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao Meng
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhinan Yin
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regeneration Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaodie Fu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qunshan Ye
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhan-Hui Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China. .,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
84
|
Saleh SAK, Adly HM, Aljahdali IA, Khafagy AA. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Protiens. Biomolecules 2022; 12:biom12020260. [PMID: 35204761 PMCID: PMC8961663 DOI: 10.3390/biom12020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) are considered the most serious cancer risk. This study was conducted to assess the effect of acute exposure to cPAHs on cancer biomarker proteins p53 and p21 in occupational workers during the hajj season in Makkah. One hundred five participants were recruited, including occupational workers and apparently healthy individuals; air samples were collected using personal sample monitors to identify the subjects’ exposure to cPAHs. Quantitative analyses of benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), dibenzo(a,h)fluronathene (DBA), indeno(1,2,3-c,d)pyrene (IND) and chyresene (CRY) were carried out using the GC/Mass technique. Serum p53 and p21 proteins were analyzed using ELISA. The ambient air samples collected by the occupationally exposed group were more highly polluted by cPAHs, (90.25 ± 14.1) ng/m3, than those of the unexposed control groups, (30.12 ± 5.56) ng/m3. The concentration of distributive cPAHs was markedly more elevated in the air samples of the exposed group than in those taken from the non-exposed group. The study results demonstrated significant links between short-term exposure to cPAHs and serum p53 and p21 levels. Serum p53 and p21 proteins potentially influence biomarkers when exposed to ambient air cPAHs.
Collapse
Affiliation(s)
- Saleh A. K. Saleh
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo 11435, Egypt
| | - Heba M. Adly
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
- Correspondence:
| | - Imad A. Aljahdali
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| | - Abdullah A. Khafagy
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| |
Collapse
|
85
|
Xu Y, Lindh CH, Fletcher T, Jakobsson K, Engström K. Perfluoroalkyl substances influence DNA methylation in school-age children highly exposed through drinking water contaminated from firefighting foam: a cohort study in Ronneby, Sweden. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac004. [PMID: 35308102 PMCID: PMC8931254 DOI: 10.1093/eep/dvac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 05/31/2023]
Abstract
Perfluoroalkyl substances (PFASs) are widespread synthetic substances with various adverse health effects. A potential mechanism of toxicity for PFASs is via epigenetic changes, such as DNA methylation. Previous studies have evaluated associations between PFAS exposure and DNA methylation among newborns and adults. However, no study has evaluated how PFASs influence DNA methylation among children of school age. In this exploratory study with school-age children exposed to PFASs through drinking water highly contaminated from firefighting foams, we aimed to investigate whether exposure to PFASs was associated with alteration in DNA methylation and epigenetic age acceleration. Sixty-three children aged 7-11 years from the Ronneby Biomarker Cohort (Sweden) were included. The children were either controls with only background exposure (n = 32; perfluorooctane sulfonic acid: median 2.8 and range 1-5 ng/ml) or those exposed to very high levels of PFASs (n = 31; perfluorooctane sulfonic acid: median 295 and range 190-464 ng/ml). These two groups were matched on sex, age, and body mass index. Genome-wide methylation of whole-blood DNA was analyzed using the Infinium MethylationEPIC BeadChip kit. Epigenetic age acceleration was derived from the DNA methylation data. Twelve differentially methylated positions and seven differentially methylated regions were found when comparing the high-exposure group to the control group. There were no differences in epigenetic age acceleration between these two groups (P = 0.66). We found that PFAS exposure was associated with DNA methylation at specific genomic positions and regions in children at school age, which may indicate a possible mechanism for linking PFAS exposure to health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Medicinaregatan 18A, Gothenburg 413 90, Sweden
| | - Christian H Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 2, Lund 223 63, Sweden
| | - Tony Fletcher
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Medicinaregatan 18A, Gothenburg 413 90, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Medicinaregatan 16 A, Gothenburg 413 90, Sweden
| | - Karin Engström
- **Correspondence address. Department of Laboratory Medicine, EPI@LUND, Division of Occupational and Environmental Medicine, Lund University, Biskopsgatan 9, Lund 223 62, Sweden. Tel: +46 46 222 16 38; E-mail:
| |
Collapse
|
86
|
Harney E, Paterson S, Collin H, Chan BH, Bennett D, Plaistow SJ. Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evol Lett 2022; 6:118-135. [PMID: 35386832 PMCID: PMC8966472 DOI: 10.1002/evl3.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome‐wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long‐term legacy of pollutant exposure distinct from the persistent effects. Pollutant‐induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.
Collapse
Affiliation(s)
- Ewan Harney
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Institute of Evolutionary Biology (CSIC‐UPF) CMIMA Building Barcelona 08003 Spain
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Hélène Collin
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Brian H.K. Chan
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT United Kingdom
| | - Daimark Bennett
- Molecular and Physiology Cell Signalling, Institute of Systems, Molecular and Integrative Biology University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Stewart J. Plaistow
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| |
Collapse
|
87
|
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front Genet 2022; 12:810689. [PMID: 34976029 PMCID: PMC8714670 DOI: 10.3389/fgene.2021.810689] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Zhangwei Zeng
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chenghao Shang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
88
|
Deng YL, Liao JQ, Zhou B, Zhang WX, Liu C, Yuan XQ, Chen PP, Miao Y, Luo Q, Cui FP, Zhang M, Sun SZ, Zheng TZ, Xia W, Li YY, Xu SQ, Zeng Q. Early life exposure to air pollution and cell-mediated immune responses in preschoolers. CHEMOSPHERE 2022; 286:131963. [PMID: 34426263 DOI: 10.1016/j.chemosphere.2021.131963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to air pollution has been linked with altered immune function in adults, but little is known about its effects on early life. This study aimed to investigate the effects of exposure to air pollution during prenatal and postnatal windows on cell-mediated immune function in preschoolers. METHODS Pre-school aged children (2.9 ± 0.5 y old, n = 391) were recruited from a mother-child cohort study in Wuhan, China. We used a spatial-temporal land use regression (LUR) model to estimate exposures of particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) and ≤10 μm (PM10), and nitrogen dioxide (NO2) during the specific trimesters of pregnancy and the first two postnatal years. We measured peripheral blood T lymphocyte subsets and plasma cytokines as indicators of cellular immune function. We used multiple informant models to examine the associations of prenatal and postnatal exposures to air pollution with cell-mediated immune function. RESULTS Prenatal exposures to PM2.5, PM10, and NO2 during early pregnancy were negatively associated with %CD3+ and %CD3+CD8+ cells, and during late pregnancy were positively associated with %CD3+ cells. Postnatal exposures to these air pollutants during 1-y or 2-y childhood were positively associated with IL-4, IL-5, IL-6, and TNF-α. We also observed that the associations of prenatal or postnatal air pollution exposures with cellular immune responses varied by child's sex. CONCLUSIONS Our results suggest that exposure to air pollution during different critical windows of early life may differentially alter cellular immune responses, and these effects appear to be sex-specific.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Qiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Zhou
- Wuhan Medical and Health Center for Women and Children, Wuhan, Hubei, China
| | - Wen-Xin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Sheng-Zhi Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuan-Yuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun-Qing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
89
|
Cong X, Zhang J, Sun R, Pu Y. Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118387. [PMID: 34673158 DOI: 10.1016/j.envpol.2021.118387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM2.5 exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18-46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF25-75, FEV1, and FEV1/FVC and a decrease in PM2.5 in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10-5 (0.05/734) used, personal PM2.5 data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM2.5 exposure and FEF25-75 [B (95%CI) = -1.342 (-2.810, -0.113)], PEF [B (95%CI) = -1.793 (-3.926, -0.195)], and FEV1/FVC [B (95%CI) = -0.119‰ (-0.224‰, -0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM2.5 with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
90
|
Mohd Ghozali N, Giribabu N, Salleh N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int J Endocrinol 2022; 2022:6453882. [PMID: 35859985 PMCID: PMC9293580 DOI: 10.1155/2022/6453882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency is a common health problem worldwide. Despite its known skeletal effects, studies have begun to explore its extra-skeletal effects, that is, in preventing metabolic diseases such as obesity, hyperlipidemia, and diabetes mellitus. The mechanisms by which vitamin D deficiency led to these unfavorable metabolic consequences have been explored. Current evidence indicates that the deficiency of vitamin D could impair the pancreatic β-cell functions, thus compromising its insulin secretion. Besides, vitamin D deficiency could also exacerbate inflammation, oxidative stress, and apoptosis in the pancreas and many organs, which leads to insulin resistance. Together, these will contribute to impairment in glucose homeostasis. This review summarizes the reported metabolic effects of vitamin D, in order to identify its potential use to prevent and overcome metabolic diseases.
Collapse
Affiliation(s)
- Nurulmuna Mohd Ghozali
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| |
Collapse
|
91
|
Yadav S, Longkumer I, Garg PR, Joshi S, Rajkumari S, Devi NK, Saraswathy KN. Association of air pollution and homocysteine with global DNA methylation: A population-based study from North India. PLoS One 2021; 16:e0260860. [PMID: 34855899 PMCID: PMC8638980 DOI: 10.1371/journal.pone.0260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation. METHODS We examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively. RESULTS Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37-1.97) vs. low-0.96 (0.45-2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34-1.90) vs. low-0.93 (0.45-3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37-1.29) vs. low-1.21 (0.45-3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60-5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36-1.63)] compared to vitamin B12 normal individuals [0.54 (0.26-1.13), p = 0.04]. CONCLUSIONS High homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.
Collapse
Affiliation(s)
- Suniti Yadav
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal, India
| | - Sunanda Rajkumari
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Naorem Kiranmala Devi
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Kallur Nava Saraswathy
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
92
|
Hu F, Yin L, Dong F, Zheng M, Zhao Y, Fu S, Zhang W, Chen X. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106014. [PMID: 34739975 DOI: 10.1016/j.aquatox.2021.106014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental contaminant, posing serious threats to aquatic organisms. The aims of the present study were to investigate the effects of long-term Cd exposure on the growth, GH/IGF axis, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). To this end, juvenile Nile tilapia were exposed to 0, 10 and 50 µg∙L-1 Cd for 45 and 90 days. The obtained results revealed that exposure to high concentrations of Cd significantly decreased body mass and body length, and down-regulated mRNA levels of GHRs, IGF-I and IGF-II in the liver of Nile tilapia. Cd exposure induced oxidative stress including the reduction of antioxidant activities and increases of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) contents. Beside, the global DNA methylation levels significantly decreased with increasing Cd concentration and exposure time, which might result from increased oxidative DNA damage, the down-regulated expression of DNMT3a and DNMT3b and up-regulated expression of TET1 and TET2. In conclusion, long-term Cd exposure could inhibit growth, reduce antioxidant capacity and lead to oxidative damages to lipid and DNA, and decrease global DNA methylation level in juvenile Nile tilapia.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Yin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shirong Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
93
|
Prenatal Lead and Depression Exposures Jointly Influence Birth Outcomes and NR3C1 DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212169. [PMID: 34831923 PMCID: PMC8620070 DOI: 10.3390/ijerph182212169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Many gestational exposures influence birth outcomes, yet the joint contribution of toxicant and psychosocial factors is understudied. Moreover, associated gestational epigenetic mechanisms are unknown. Lead (Pb) and depression independently influence birth outcomes and offspring NR3C1 (glucocorticoid receptor) DNA methylation. We hypothesized that gestational Pb and depression would jointly influence birth outcomes and NR3C1 methylation. Pregnancy exposure information, DNA methylation, and birth outcome data were collected prospectively from n = 272 mother–infant pairs. Factor analysis was used to reduce the dimensionality of NR3C1. Multivariable linear regressions tested for interaction effects between gestational Pb and depression exposures with birth outcomes and NR3C1. Interaction effects indicated that higher levels of Pb and depression jointly contributed to earlier gestations, smaller infant size at birth, and asymmetric fetal growth. Pb and depression were also jointly associated with the two primary factor scores explaining the most variability in NR3C1 methylation; NR3C1 scores were associated with some infant outcomes, including gestational age and asymmetric fetal growth. Pb and depression can cumulatively influence birth outcomes and epigenetic mechanisms, which may lay the foundation for later health risk. As toxicants and social adversities commonly co-occur, research should consider the life course consequences of these interconnected exposures.
Collapse
|
94
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
95
|
Naidu R, Biswas B, Willett IR, Cribb J, Kumar Singh B, Paul Nathanail C, Coulon F, Semple KT, Jones KC, Barclay A, Aitken RJ. Chemical pollution: A growing peril and potential catastrophic risk to humanity. ENVIRONMENT INTERNATIONAL 2021; 156:106616. [PMID: 33989840 DOI: 10.1016/j.envint.2021.106616] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 05/14/2023]
Abstract
Anthropogenic chemical pollution has the potential to pose one of the largest environmental threats to humanity, but global understanding of the issue remains fragmented. This article presents a comprehensive perspective of the threat of chemical pollution to humanity, emphasising male fertility, cognitive health and food security. There are serious gaps in our understanding of the scale of the threat and the risks posed by the dispersal, mixture and recombination of chemicals in the wider environment. Although some pollution control measures exist they are often not being adopted at the rate needed to avoid chronic and acute effects on human health now and in coming decades. There is an urgent need for enhanced global awareness and scientific scrutiny of the overall scale of risk posed by chemical usage, dispersal and disposal.
Collapse
Affiliation(s)
- Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ian R Willett
- School of Agriculture & Food Systems, The University of Melbourne, VIC 3052, Australia
| | - Julian Cribb
- Australian National Centre for the Public Awareness of Science (as an adjunct), Australian National University, Canberra 0200, Australia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | | | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Adam Barclay
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
96
|
Luviano N, Lopez M, Gawehns F, Chaparro C, Arimondo PB, Ivanovic S, David P, Verhoeven K, Cosseau C, Grunau C. The methylome of Biomphalaria glabrata and other mollusks: enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenetics Chromatin 2021; 14:48. [PMID: 34702322 PMCID: PMC8549274 DOI: 10.1186/s13072-021-00422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Epigenetic Chemical Biology (EpiChBio), Department Structural Biology and Chemistry, UMR 3523, CNRS, Institute Pasteur, 75015, Paris, France
| | - Slavica Ivanovic
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ. Montpellier, CNRS - Université Paul Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Koen Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France.
| |
Collapse
|
97
|
Cao P, Wang X, Sun J, Liang J, Zhou P, Xu H, Yang H, Zhang L. Association of exposure to deoxynivalenol with DNA methylation in white blood cells in children in China. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals worldwide. Dietary exposure to DON is a subject of great public health concern, but studies on the health effects of chronic exposure to DON are not available. In this study, we investigated the connection between DNA methylation levels and DON exposure in children. The DNA methylation status of white blood cells from 32 children aged 2~15 years old in Henan, China, was profiled. A total of 378 differentially methylated CpGs were identified between the high and low DON exposure groups, and 8 KEGG pathways were found to be significantly enriched among the differentially methylated genes. In addition, the quantitative methylation of EIF2AK4, EMID2 and GNASAS was analysed using the Sequenom MassARRAY platform. The results showed that the methylation level of EIF2AK4 was significantly different between the two groups, and the methylation levels were associated with exposure to DON. Conclusively, our study found that chronic exposure to DON during childhood could affect DNA methylation levels.
Collapse
Affiliation(s)
- P. Cao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - X.D. Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - J.F. Sun
- School of Public Health, Southeast University, No. 87 Dingjiaqiao, Gu Lou District, 210009 Nanjing, China P.R
| | - J. Liang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - P.P. Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - H.B. Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - H. Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| | - L. Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No. 2 Building, Guangqu Road 37, Chao Yang District, 100022 Beijing, China P.R
| |
Collapse
|
98
|
Childebayeva A, Goodrich JM, Chesterman N, Leon-Velarde F, Rivera-Ch M, Kiyamu M, Brutsaert TD, Bigham AW, Dolinoy DC. Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. ENVIRONMENT INTERNATIONAL 2021; 155:106587. [PMID: 33940396 PMCID: PMC9903334 DOI: 10.1016/j.envint.2021.106587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan Chesterman
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Ch
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
99
|
Ergun H, Cayir A. Exposure to glyphosate and tetrachlorvinphos induces cytotoxicity and global DNA methylation in human cells. Toxicol Ind Health 2021; 37:610-618. [PMID: 34542374 DOI: 10.1177/07482337211033149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two organophosphate pesticides-glyphosate and tetrachlorvinphos-have been announced as carcinogens to humans by various authorities, including the European Chemical Agency and the Environmental Protection Agency. We aimed to investigate molecular mechanisms associated with carcinogenicity and to examine changes in global m5C DNA methylation and cytotoxic potential in A549 lung epithelial cells in response to glyphosate and tetrachlorvinphos, and differential gene expression of m5C DNA methyltransferase genes in Sprague Dawley rats to Roundup (commercial formulation of glyphosate). Global m5C level significantly increased after 1500 μM glyphosate exposure for 24 h. We determined that exposure to tetrachlorvinphos did not significantly increase the m5C level in A549 cells for 24 h. Additionally, we did not observe significant DNA methylation alteration for both pesticides after 12 h exposure. In the animal study, we observed that DNA methyltransferase genes (DNMT3b and DNMT3a) showed significantly higher expression in Roundup-exposed rats than the control group in the liver and kidney. We also observed that a significant cytotoxic effect was determined after the treatment of the cells with higher concentrations of glyphosate and tetrachlorvinphos. Our results revealed that DNA methylation could be modified by exposure to glyphosate and that exposure to Roundup was associated with the differential expression level of m5C DNA methylation methyltransferase. Finally, exposure to both pesticides increased cytotoxicity.
Collapse
Affiliation(s)
- Hacer Ergun
- Health Institute, 52950Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Akin Cayir
- Vocational Health College, 52950Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
100
|
Yamazaki J, Toyomaki H, Nakayama SMM, Yabe J, Muzandu K, Jelinek J, Yokoyama S, Ikenaka Y, Takiguchi M, Ishizuka M. Genome-wide DNA methylation analysis of dogs with high lead exposure living near a lead mining area in Kabwe, Zambia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117229. [PMID: 33975213 DOI: 10.1016/j.envpol.2021.117229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a heavy metal that has been proven to be toxic to both animals and humans. Genom-wide DNA methylation in domestic dogs exposed to high levels of Pb in Kabwe, Zambia was analyzed in this study. Using next-generation sequencing on samples from 20 domestic dogs (mean blood Pb concentration: 43.6 μg/dL and 7.2 μg/dL in the high and low exposure groups), a digital restriction enzyme analysis of methylation was performed to identify the genomic locations of differentially methylated CpG sites. A validation study on an additional 20 dogs followed (blood Pb concentration: 4.9-29.7 μg/dL). The cluster analysis resolved two broad clusters indicating high and low Pb exposure. The study identified 827 (1.2%) CpG sites with differences in methylation (101 CpG sites were hypermethylated in the low exposure group and 726 were hypermethylated in the high exposure group). The sites corresponded to 26 genes with differentially methylated CpG sites at their promoter regions, including the NGF gene. The methylation of four CpG sites was validated using bisulfite pyrosequencing. The results indicate that aberrant hypermethylation is prevalent in dogs exposed to Pb. The altered DNA methylation of the genes identified in this study contributes to a greater understanding of the epigenetic changes caused by Pb exposure and highlights novel biomarker discoveries across species.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; One Health Research Center, Hokkaido University, Japan
| | - Haruya Toyomaki
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Japan.
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia; Dept of Pathobiology, Faculty of Agriculture & Natural Resources, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Kaampwe Muzandu
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | | | - Shoko Yokoyama
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|