51
|
Khayyal MT, El-Hazek RM, El-Ghazaly MA. Propolis aqueous extract preserves functional integrity of murine intestinal mucosa after exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:901-906. [PMID: 26498266 DOI: 10.1016/j.etap.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The ability of a specially prepared water propolis extract (PWE) to preserve the functional activity of the intestinal mucosa after radiation exposure was studied. PWE was given orally (650 mg/kg) to rats five days prior to irradiation by 6 Gy and continued for further two days. Rats were sacrificed 24h later, intestinal segments were examined histologically and homogenates were used to assess relevant biochemical parameters reflecting intestinal injury. Irradiation led to a rise in the histological damage score, a rise in tissue TNF-α and TBARS, and a decrease in sucrase, alkaline phosphatase, GSH and cholecystokinin as well as a decrease in plasma citrulline. The findings reflect a decrease in intestinal functional activity. PWE preserved the intestinal integrity and largely protected against the changes induced in the histology damage score and all parameters measured, possibly as a result of the antioxidant and anti-inflammatory action of its caffeic acid content.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
52
|
Jin LG, Chu JJ, Pang QF, Zhang FZ, Wu G, Zhou LY, Zhang XJ, Xing CG. Caffeic acid phenethyl ester attenuates ionize radiation-induced intestinal injury through modulation of oxidative stress, apoptosis and p38MAPK in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:156-163. [PMID: 26122083 DOI: 10.1016/j.etap.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. This study aimed to investigate the radioprotective effects of CAPE on X-ray irradiation induced intestinal injury in rats. Rats were intragastrically administered with 10 μmol/kg/d CAPE for 7 consecutive days before exposing them to a single dose of X-ray irradiation (9Gy) to abdomen. Rats were sacrificed 72 h after exposure to radiation. We found that pretreatment with CAPE effectively attenuated intestinal pathology changes, apoptosis, oxidative stress, bacterial translocation, the content of nitric oxide and myeloperoxidase as well as the concentration of plasma tumor necrosis factor-α. Pretreatment with CAPE also reversed the activation of p38MAPK and the increased expression of intercellular cell adhesion molecule-1 induced by radiation in intestinal mucosa. Taken together, these results suggest that pretreatment with CAPE could be a promising candidate for treating radiation-induced intestinal injury.
Collapse
Affiliation(s)
- Liu-Gen Jin
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, 215004 Suzhou, China
| | - Jian-Jun Chu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Qing-Feng Pang
- Wuxi Medical School, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, China
| | - Fu-Zheng Zhang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Gang Wu
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Le-Yuan Zhou
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Xiao-Jun Zhang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, 214122 Wuxi, China
| | - Chun-Gen Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, 215004 Suzhou, China.
| |
Collapse
|
53
|
Abstract
Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options.
Collapse
Affiliation(s)
- Marc B. Grodsky
- Section of Colon and Rectal Surgery, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Shafik M. Sidani
- Department of Colorectal Surgery, Virginia Hospital Center Physician Group, Arlington, Virginia
| |
Collapse
|
54
|
Joseph K, Liu D, Severin D, Dickey M, Polkosnik LA, Warkentin H, Mihai A, Ghosh S, Field C. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator–based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer. Pract Radiat Oncol 2015; 5:e95-102. [DOI: 10.1016/j.prro.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/31/2022]
|
55
|
Wang Z, Yang WL, Jacob A, Aziz M, Wang P. Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats. PLoS One 2015; 10:e0118213. [PMID: 25671547 PMCID: PMC4325005 DOI: 10.1371/journal.pone.0118213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.
Collapse
Affiliation(s)
- Zhimin Wang
- TheraSource LLC, Manhasset, NY, United States of America
| | - Weng Lang Yang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
- TheraSource LLC, Manhasset, NY, United States of America
| | - Asha Jacob
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
- TheraSource LLC, Manhasset, NY, United States of America
| | - Monowar Aziz
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
- * E-mail:
| |
Collapse
|
56
|
Kim JH, Kim HY, Lee IK, Oh ST, Kim JG, Lee YS. Intra-operative double-stapled colorectal or coloanal anastomotic complications of laparoscopic low anterior resection for rectal cancer: double-stapled anastomotic complication could result in persistent anastomotic leakage. Surg Endosc 2014; 29:3117-24. [PMID: 25519426 DOI: 10.1007/s00464-014-4035-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Laparoscopic surgery for rectal cancer is technically demanding and can be hindered by unexpected intra-operative complications. Among the various intra-operative complications, double-stapled anastomotic complications are more serious and complicated to manage. The purpose of this study is to analyze the impact of intra-operative double-stapled colorectal or coloanal anastomotic complications on short-term surgical outcomes and persistent leak, and risk factors of intra-operative double-stapled anastomotic complication. METHODS Consecutive 363 cases of laparoscopic low anterior resection from August 2004 to November 2012 were analyzed in this study. We retrospectively reviewed intra-operative double-stapled anastomotic complications and compared patient characteristics, surgical data, post-operative clinical data, and pathological data between groups with and without intra-operative double-stapled anastomotic complications. And we analyzed risk factors for double-stapled anastomotic complication. RESULTS There were 20 intra-operative double-stapled anastomotic complications among the patients (5.5 %). Operation time was longer (304.8 ± 122.0 vs. 197.1 ± 87.5 min, p = 0.001) and more diversion ileostomy were made (75 vs. 34.7 %, p < 0.001) in the group with double-stapled anastomotic complications. There were no differences in terms of surgical morbidity, conversion rate, anastomotic leakage, and hospital stay. However, there was more persistent anastomotic leakage (15 vs. 0.9 %, p = 0.003) in the group with double-stapled anastomotic complications. In univariate analysis, risk factors for double-stapled anastomotic complications were male, T4 stage lesion, and three or more stapler firings. CONCLUSIONS The double-stapled anastomotic complications during laparoscopic low anterior resection increased operation time and rate of diversion ileostomy. Although these factors did not adversely affect short-term surgical outcome including post-operative morbidity and anastomotic leakage, double-stapled anastomotic complications could increase persistent anastomotic leakage rate.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea
| | - Ho Young Kim
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea
| | - In Kyu Lee
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea
| | - Seung Teak Oh
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea
| | - Jun Gi Kim
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea
| | - Yoon Suk Lee
- Department of Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #665, Bupyung-6-dong, Bupyunggu, Incheon, 403-720, Korea.
| |
Collapse
|
57
|
Datta K, Suman S, Fornace AJ. Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell Biol 2014; 57:167-76. [PMID: 25449263 DOI: 10.1016/j.biocel.2014.10.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/14/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Abstract
While acute effects of toxic radiation doses on intestine are well established, we are yet to acquire a complete spectrum of sub-lethal radiation-induced chronic intestinal perturbations at the molecular level. We investigated persistent effects of a radiation dose (2 Gy) commonly used as a daily fraction in radiotherapy on oxidants and anti-oxidants, and autophagy pathways, which are interlinked processes affecting intestinal homeostasis. Six to eight weeks old C57BL/6J mice (n=10) were exposed to 2 Gy γ-ray. Mice were euthanized two or twelve months after radiation, intestine surgically removed, and flushed using sterile PBS. Parts of the intestine from jejunal-ilial region were fixed, frozen, or used for intestinal epithelial cell (IEC) isolation. While oxidant levels and mitochondrial status were assessed in isolated IEC, autophagy and oxidative stress related signaling pathways were probed in frozen and fixed samples using PCR-based expression arrays and immunoprobing. Radiation exposure caused significant alterations in the expression level of 26 autophagy and 17 oxidative stress related genes. Immunoblot results showed decreased Beclin1 and LC3-II and increased p62, PI3K/Akt, and mTOR. Flow cytometry data showed increased oxidant production and compromised mitochondrial integrity in irradiated samples. Immunoprobing of intestinal sections showed increased 8-oxo-dG and nuclear PCNA, and decreased autophagosome marker LC3-II in IEC after irradiation. We show that sub-lethal radiation could persistently downregulate anti-oxidants and autophagy signaling, and upregulate oxidant production and proliferative signaling. Radiation-induced promotion of oxidative stress and downregulation of autophagy could work in tandem to alter intestinal functions and have implications for post-radiation chronic gastrointestinal diseases.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Center of Excellence In Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
58
|
Yang C, Dai W, Chen H, Wu B. Application of human bone marrow-derived mesenchymal stem cells in the treatment of radiation-induced Gastrointestinal syndrome. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1177-82. [PMID: 25205377 DOI: 10.1007/s11427-014-4721-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/22/2013] [Indexed: 01/14/2023]
Abstract
Nuclear accidents and terrorism present a serious threat for mass casualty. Accidental or intended radiation exposure leads to radiation-induced gastrointestinal (GI) syndrome. However, currently there are no approved medical countermeasures for GI syndrome. Thus, developing novel treatments for GI syndrome is urgent. Mesenchymal stem cells (MSCs) derived from bone marrow are a subset of multipotent adult somatic stem cells that have the ability to undergo self-renewal, proliferation and pluripotent differentiation. MSCs have advantages over other stem cells; they can be easily isolated from patients or donors, readily expanded ex vivo, and they possess reparative and immunomodulatory properties. Moreover, MSCs have been shown to be powerful tools in gene therapy and can be effectively transduced with vectors containing therapeutic genes. Therefore, the therapeutic potential of MSCs has been brought into the spotlight for the clinical treatment of GI syndrome. In this review, we discuss the possible role of MSCs in radiation-induced GI syndrome.
Collapse
Affiliation(s)
- Chao Yang
- Gastrointestinal Department of Southern Building, General Hospital of Chinese PLA, Beijing, 100853, China
| | | | | | | |
Collapse
|
59
|
Archambeau JO, Tovmasyan A, Pearlstein RD, Crapo JD, Batinic-Haberle I. Superoxide dismutase mimic, MnTE-2-PyP(5+) ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol 2013; 1:599-607. [PMID: 24363995 PMCID: PMC3863774 DOI: 10.1016/j.redox.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023] Open
Abstract
Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.
Collapse
Key Words
- AP-1, activator protein-1
- CGE, cobalt gray equivalent
- GSH, glutathione
- HIF-1α, hypoxia inducible factor-1
- Mn porphyrin
- MnP, Mn(III) porphyrins
- MnTDE-2-ImP5+, Mn(III) meso-tetrakis(N,N’-diethylimidazolium-2-yl)porphyrin (AEOL10150)
- MnTE-2-PyP5+
- MnTE-2-PyP5+, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (AEOL10113, BMX-010)
- MnTM-2-PyP5+, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin (AEOL10112)
- MnTnBuOE-2-PyP5+, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin
- MnTnHex-2-PyP5+, Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (BMX-001)
- NF-κB, nuclear factor κB
- PT, proton therapy
- Proton beam therapy
- Radiation proctitis
- Radioprotector
- SOD mimic
- SOD, superoxide dismutase
- SP-1, specificity protein-1
- TF, transcription factor
- kcat(O2−), the rate constant for the catalysis of O2− dismutation by Mn porphyrin or SOD enzyme
Collapse
Affiliation(s)
- John O Archambeau
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert D Pearlstein
- Department of Surgery (Neurosurgery), Duke University School of Medicine, Durham, NC 27710, USA
| | - James D Crapo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO 80206, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
60
|
Ito Y, Kinoshita M, Yamamoto T, Sato T, Obara T, Saitoh D, Seki S, Takahashi Y. A combination of pre- and post-exposure ascorbic acid rescues mice from radiation-induced lethal gastrointestinal damage. Int J Mol Sci 2013; 14:19618-35. [PMID: 24084715 PMCID: PMC3821576 DOI: 10.3390/ijms141019618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022] Open
Abstract
The development of an effective therapy for radiation-induced gastrointestinal damage is important, because it is currently a major complication of treatment and there are few effective therapies available. Although we have recently demonstrated that pretreatment with ascorbic acid attenuates lethal gastrointestinal damage in irradiated mice, more than half of mice eventually died, thus indicating that better approach was needed. We then investigated a more effective therapy for radiation-induced gastrointestinal damage. Mice receiving abdominal radiation at 13 Gy were orally administered ascorbic acid (250 mg/kg/day) for three days before radiation (pretreatment), one shot of engulfment (250 mg/kg) at 8 h before radiation, or were administered the agent for seven days after radiation (post-treatment). None of the control mice survived the abdominal radiation at 13 Gy due to severe gastrointestinal damage (without bone marrow damage). Neither pretreatment with ascorbic acid (20% survival), engulfment (20%), nor post-treatment (0%) was effective in irradiated mice. However, combination therapy using ascorbic acid, including pretreatment, engulfment and post-treatment, rescued all of the mice from lethal abdominal radiation, and was accompanied by remarkable improvements in the gastrointestinal damage (100% survival). Omitting post-treatment from the combination therapy with ascorbic acid markedly reduced the mouse survival (20% survival), suggesting the importance of post-treatment with ascorbic acid. Combination therapy with ascorbic acid may be a potent therapeutic tool for radiation-induced gastrointestinal damage.
Collapse
Affiliation(s)
- Yasutoshi Ito
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo 154-8566, Japan; E-Mails: (Y.I.); (T.Y.); (T.S.); (T.O.); (Y.T.)
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8613, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-4-2995-1541; Fax: +81-4-2996-5194
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo 154-8566, Japan; E-Mails: (Y.I.); (T.Y.); (T.S.); (T.O.); (Y.T.)
| | - Tomohito Sato
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo 154-8566, Japan; E-Mails: (Y.I.); (T.Y.); (T.S.); (T.O.); (Y.T.)
| | - Takeyuki Obara
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo 154-8566, Japan; E-Mails: (Y.I.); (T.Y.); (T.S.); (T.O.); (Y.T.)
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8613, Japan; E-Mail:
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8613, Japan; E-Mail:
| | - Yukihiro Takahashi
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo 154-8566, Japan; E-Mails: (Y.I.); (T.Y.); (T.S.); (T.O.); (Y.T.)
| |
Collapse
|
61
|
Boerma M, Wang J, Sridharan V, Herbert JM, Hauer-Jensen M. Pharmacological induction of transforming growth factor-beta1 in rat models enhances radiation injury in the intestine and the heart. PLoS One 2013; 8:e70479. [PMID: 23936211 PMCID: PMC3723823 DOI: 10.1371/journal.pone.0070479] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/20/2013] [Indexed: 12/30/2022] Open
Abstract
Radiation therapy in the treatment of cancer is dose limited by radiation injury in normal tissues such as the intestine and the heart. To identify the mechanistic involvement of transforming growth factor-beta 1 (TGF-β1) in intestinal and cardiac radiation injury, we studied the influence of pharmacological induction of TGF-β1 with xaliproden (SR 57746A) in rat models of radiation enteropathy and radiation-induced heart disease (RIHD). Because it was uncertain to what extent TGF-β induction may enhance radiation injury in heart and intestine, animals were exposed to irradiation schedules that cause mild to moderate (acute) radiation injury. In the radiation enteropathy model, male Sprague-Dawley rats received local irradiation of a 4-cm loop of rat ileum with 7 once-daily fractions of 5.6 Gy, and intestinal injury was assessed at 2 weeks and 12 weeks after irradiation. In the RIHD model, male Sprague-Dawley rats received local heart irradiation with a single dose of 18 Gy and were followed for 6 months after irradiation. Rats were treated orally with xaliproden starting 3 days before irradiation until the end of the experiments. Treatment with xaliproden increased circulating TGF-β1 levels by 300% and significantly induced expression of TGF-β1 and TGF-β1 target genes in the irradiated intestine and heart. Various radiation-induced structural changes in the intestine at 2 and 12 weeks were significantly enhanced with TGF-β1 induction. Similarly, in the RIHD model induction of TGF-β1 augmented radiation-induced changes in cardiac function and myocardial fibrosis. These results lend further support for the direct involvement of TGF-β1 in biological mechanisms of radiation-induced adverse remodeling in the intestine and the heart.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | | | | | |
Collapse
|
62
|
Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J Gastroenterol 2013; 19:185-98. [PMID: 23345941 PMCID: PMC3547560 DOI: 10.3748/wjg.v19.i2.185] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/31/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
Ionising radiation therapy is a common treatment modality for different types of cancer and its use is expected to increase with advances in screening and early detection of cancer. Radiation injury to the gastrointestinal tract is important factor working against better utility of this important therapeutic modality. Cancer survivors can suffer a wide variety of acute and chronic symptoms following radiotherapy, which significantly reduces their quality of life as well as adding an extra burden to the cost of health care. The accurate diagnosis and treatment of intestinal radiation injury often represents a clinical challenge to practicing physicians in both gastroenterology and oncology. Despite the growing recognition of the problem and some advances in understanding the cellular and molecular mechanisms of radiation injury, relatively little is known about the pathophysiology of gastrointestinal radiation injury or any possible susceptibility factors that could aggravate its severity. The aims of this review are to examine the various clinical manifestations of post-radiation gastrointestinal symptoms, to discuss possible patient and treatment factors implicated in normal gastrointestinal tissue radiosensitivity and to outline different mechanisms of intestinal tissue injury.
Collapse
|
63
|
Zheng J, Garg S, Wang J, Loose DS, Hauer-Jensen M. Laser capture microdissected mucosa versus whole tissue specimens for assessment of radiation-induced dynamic molecular and pathway changes in the small intestine. PLoS One 2013; 8:e53711. [PMID: 23341980 PMCID: PMC3544848 DOI: 10.1371/journal.pone.0053711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background The intestinal mucosa is the compartment that sustains the most severe injury in response to radiation and is therefore of primary interest. The use of whole gut extracts for analysis of gene expression may confound important changes in the mucosa. On the other hand, laser capture microdissection (LCM) is hampered by the unstable nature of RNA and by a more complicated collection process. This study assessed, in parallel samples from a validated radiation model, the indications for use of LCM for intestinal gene expression analysis. Methodology/Principal Findings RNA was extracted from mouse whole intestine and from mucosa by LCM at baseline and 4 h, 24 h, and 3.5 d after total body irradiation and subjected to microarray analysis. Among mucosal genes that were altered > = 2-fold, less than 7% were present in the whole gut at 4 and 24 h, and 25% at 3.5 d. As expected, pathway analysis of mucosal LCM samples showed that radiation activated the coagulation system, lymphocyte apoptosis, and tight junction signaling, and caused extensive up-regulation of cell cycle and DNA damage repair pathways. Using similar stringent criteria, regulation of these pathways, with exception of the p53 pathway, was undetectable in the whole gut. Radiation induced a dramatic increase of caspase14 and ectodysplasin A2 receptor (Eda2r), a TNFα receptor, in both types of samples. Conclusions/Significance LCM-isolated mucosal specimens should be used to study cellular injury, cell cycle control, and DNA damage repair pathways. The remarkable increase of caspase14 and Eda2r suggests a novel role for these genes in regulating intestinal radiation injury. Comparative gene expression data from complex tissues should be interpreted with caution.
Collapse
Affiliation(s)
- Junying Zheng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | | | | | |
Collapse
|
64
|
Radiation-induced platelet-endothelial cell interactions are mediated by P-selectin and P-selectin glycoprotein ligand-1 in the colonic microcirculation. Surgery 2012; 151:606-11. [DOI: 10.1016/j.surg.2011.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/26/2011] [Indexed: 11/23/2022]
|
65
|
Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB. Imaging radiation-induced normal tissue injury. Radiat Res 2012; 177:449-66. [PMID: 22348250 DOI: 10.1667/rr2530.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.
Collapse
Affiliation(s)
- Mike E Robbins
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Cameron S, Schwartz A, Sultan S, Schaefer IM, Hermann R, Rave-Fränk M, Hess CF, Christiansen H, Ramadori G. Radiation-induced damage in different segments of the rat intestine after external beam irradiation of the liver. Exp Mol Pathol 2011; 92:243-58. [PMID: 22227376 DOI: 10.1016/j.yexmp.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The out-of-field effects on the intestine, caused by radiation treatment of a parenchymatous organ, have not previously been studied. METHODS A single dose of 25Gy was administered percutaneously to the liver of male Wistar rats after a planning CT-scan. Sham-irradiated animals served as controls. At 1, 6, 24, 96h, 1.5 and 3months the duodenum, jejunum, ileum and distal colon were removed, washed and deep-frozen or prepared for paraffin staining. RESULTS All animals survived the treatment. Epithelial cell damage occurred in all small-intestinal segments. However, prolonged denudation of the villi together with destruction of the crypt lining was only observed in the ileum, resulting in deficient regeneration. In the colon, changes were minor. Radiation mucositis with granulocyte (MP0+) infiltration was seen from 1 to 24h in the duodenum and jejunum, when ED1+ macrophages, CD3+ T-lymphocytes, and CD34+ hematopoietic precursor cells were recruited, accompanied by an increase in the chemokines MCP-1, MIP-1α, MIP3α and Il-8. In the ileum, early granulocyte infiltration was delayed but continuous. Recruitment of macrophages and lymphocytes was deficient and induction of chemokines as of the adhesion molecules PECAM-1, ICAM-1 was lacking. CONCLUSION Post-irradiation damage to the ileum was delayed and followed by an altered repair process with structural changes of the villi. The observed changes might result from a higher sensitivity to oxidative stress mechanisms with subsequent damage of the regenerative capacity of the crypt-villus axis, accompanied by a sustained "inflammatory response" and vascular damage with a lack of regeneratory cell recruitment.
Collapse
Affiliation(s)
- Silke Cameron
- Department of Gastroenterology and Endocrinology, University Clinic of the Georg August University, Robert-Koch-Str. 40, D-37099 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Membrive Conejo I, Reig Castillejo A, Rodríguez de Dios N, Foro Arnalot P, Sanz Latiesas J, Lozano Galán J, Lacruz Bassols M, Quera Jordana J, Fernández-Velilla Cepria E, Algara López M. Prevention of acute radiation enteritis: efficacy and tolerance of glutamine. Clin Transl Oncol 2011; 13:760-3. [DOI: 10.1007/s12094-011-0729-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Sullivan MC, Roman SA, Sosa JA. Emergency Surgery in Patients Who Have Undergone Recent Radiotherapy is Associated With Increased Complications and Mortality: Review of 536 Patients. World J Surg 2011; 36:31-8. [DOI: 10.1007/s00268-011-1230-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
69
|
Late symptoms in long-term gynaecological cancer survivors after radiation therapy: a population-based cohort study. Br J Cancer 2011; 105:737-45. [PMID: 21847122 PMCID: PMC3171018 DOI: 10.1038/bjc.2011.315] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: We surveyed the occurrence of physical symptoms among long-term gynaecological cancer survivors after pelvic radiation therapy, and compared with population-based control women. Methods: We identified a cohort of 789 eligible gynaecological cancer survivors treated with pelvic radiation therapy alone or combined with surgery in Stockholm or Gothenburg, Sweden. A control group of 478 women was randomly sampled from the Swedish Population Registry. Data were collected through a study-specific validated postal questionnaire with 351 questions concerning gastrointestinal and urinary tract function, lymph oedema, pelvic bones and sexuality. Clinical characteristics and treatment details were retrieved from medical records. Results: Participation rate was 78% for gynaecological cancer survivors and 72% for control women. Median follow-up time after treatment was 74 months. Cancer survivors reported a higher occurrence of symptoms from all organs studied. The highest age-adjusted relative risk (RR) was found for emptying of all stools into clothing without forewarning (RR 12.7), defaecation urgency (RR 5.7), difficulty feeling the need to empty the bladder (RR 2.8), protracted genital pain (RR 5.0), pubic pain when walking indoors (RR 4.9) and erysipelas on abdomen or legs at least once during the past 6 months (RR 3.6). Survivors treated with radiation therapy alone showed in general higher rates of symptoms. Conclusion: Gynaecological cancer survivors previously treated with pelvic radiation report a higher occurrence of symptoms from the urinary and gastrointestinal tract as well as lymph oedema, sexual dysfunction and pelvic pain compared with non-irradiated control women. Health-care providers need to actively ask patients about specific symptoms in order to provide proper diagnostic investigations and management.
Collapse
|
70
|
Fu Q, Berbée M, Wang W, Boerma M, Wang J, Schmid HA, Hauer-Jensen M. Preclinical evaluation of Som230 as a radiation mitigator in a mouse model: postexposure time window and mechanisms of action. Radiat Res 2011; 175:728-35. [PMID: 21529145 DOI: 10.1667/rr2507.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The somatostatin analog SOM230 has potent radioprophylactic and radiation mitigating properties that are unrelated to cytoprotection but appear to be due to suppression of secretion of pancreatic enzymes into the intestinal lumen. To determine the maximal postirradiation time window for administration, male CD2F1 mice were exposed to 8.5-11 Gy total-body radiation; SOM230 (0.5, 2 or 5 mg/kg) or vehicle was given by twice daily subcutaneous injections for 14 days, beginning 24-72 h after irradiation, and 30-day animal survival was recorded. The contribution of the gut to systemic cytokine levels was estimated by analyzing plasma samples obtained simultaneously from the portal vein and carotid artery. The effect of SOM230 on cell trypsin secretion was assessed in vitro and intestinal proteolytic activity was measured in vivo. SOM230 was associated with a 40-60% absolute improvement in overall postirradiation survival when treatment was started 48 h after irradiation and even exhibited a statistically significant survival benefit when started at 72 h. SOM230 ameliorated the radiation-induced decrease in chemokine (C-X-C motif) ligand 9 (CXCL9). SOM230 inhibited pancreatic acinar cell trypsin secretion in vitro in a dose-dependent fashion and reduced intraluminal and intestinal tissue proteolytic activity in vivo. SOM230 is an excellent radiation mitigator with a postirradiation time window in excess of 48 h. The mechanism likely involves preservation of intestinal barrier function due to decreased secretion of pancreatic enzymes into the bowel lumen.
Collapse
Affiliation(s)
- Qiang Fu
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Roche M, Kemp FW, Agrawal A, Attanasio A, Neti PVSV, Howell RW, Ferraris RP. Marked changes in endogenous antioxidant expression precede vitamin A-, C-, and E-protectable, radiation-induced reductions in small intestinal nutrient transport. Free Radic Biol Med 2011; 50:55-65. [PMID: 20970494 PMCID: PMC3014460 DOI: 10.1016/j.freeradbiomed.2010.10.689] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/20/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022]
Abstract
Rapidly proliferating epithelial crypt cells of the small intestine are susceptible to radiation-induced oxidative stress, yet there is a dearth of data linking this stress to expression of antioxidant enzymes and to alterations in intestinal nutrient absorption. We previously showed that 5-14 days after acute γ-irradiation, intestinal sugar absorption decreased without change in antioxidant enzyme expression. In the present study, we measured antioxidant mRNA and protein expression in mouse intestines taken at early times postirradiation. Observed changes in antioxidant expression are characterized by a rapid decrease within 1h postirradiation, followed by dramatic upregulation within 4h and then downregulation a few days later. The cell type and location expressing the greatest changes in levels of the oxidative stress marker 4HNE and of antioxidant enzymes are, respectively, epithelial cells responsible for nutrient absorption and the crypt region comprising mainly undifferentiated cells. Consumption of a cocktail of antioxidant vitamins A, C, and E, before irradiation, prevents reductions in transport of intestinal sugars, amino acids, bile acids, and peptides. Ingestion of antioxidants may blunt radiation-induced decreases in nutrient transport, perhaps by reducing acute oxidative stress in crypt cells, thereby allowing the small intestine to retain its absorptive function when those cells migrate to the villus days after the insult.
Collapse
Affiliation(s)
- Marjolaine Roche
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Francis W Kemp
- Department of Preventive Medicine & Community Health, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Amit Agrawal
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Alicia Attanasio
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Prasad VSV Neti
- Department of Radiology, New Jersey Medical School Cancer Center, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
- Corresponding Author, Ronaldo P. Ferraris, Ph.D., Department of Pharmacology & Physiology, MSB H621, UMDNJ New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, 973-972-4519,
| |
Collapse
|
72
|
Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI. Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Curr Drug Targets 2010; 11:1413-22. [PMID: 20583976 PMCID: PMC3068470 DOI: 10.2174/1389450111009011413] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/05/2010] [Indexed: 01/05/2023]
Abstract
Radiation-induced brain injury remains a major cause of morbidity in cancer patients with primary or metastatic brain tumors. Approximately 200,000 individuals/year are treated with fractionated partial or whole-brain irradiation, and > half will survive long enough (≤6 months) to develop radiation-induced brain injury, including cognitive impairment. Although short-term treatments have shown efficacy, no long-term treatments or preventive approaches are presently available for modulating radiation-induced brain injury. Based on previous preclinical studies clearly demonstrating that renin-angiotensin system (RAS) blockers can modulate radiation-induced late effects in the kidney and lung, we and others hypothesized that RAS blockade would similarly modulate radiation-induced brain injury. Indeed, studies in the last 5 years have shown that both angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor antagonists (AT(1)RAs) can prevent/ameliorate radiation-induced brain injury, including cognitive impairment, in the rat. The mechanistic basis for this RAS blocker-mediated effect remains the subject of ongoing investigations. Putative mechanisms include, i] blockade of Ang II/NADPH oxidase-mediated oxidative stress and neuroinflammation, and ii] a change in the balance of angiotensin (Ang) peptides from the pro-inflammatory and pro-oxidative Ang II to the anti-inflammatory and anti-oxidative Ang-1-7). However, given that both ACEIs and AT(1)RAs are 1] well-tolerated drugs routinely prescribed for hypertension, 2] exhibit some antitumor properties, and 3] can prevent/ameliorate radiation-induced brain injury, they appear to be ideal drugs for future clinical trials, offering the promise of improving the quality of life of brain tumor patients receiving brain irradiation.
Collapse
Affiliation(s)
- M E Robbins
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
73
|
Naymagon S, Warner RRP, Patel K, Harpaz N, Machac J, Weintraub JL, Kim MK. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci 2010; 55:2450-8. [PMID: 20198431 DOI: 10.1007/s10620-010-1156-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/04/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microsphere radioembolization is a method of delivering radiation therapy directly to tumors, thereby minimizing toxicity to adjacent structures. Despite the relatively high precision of this modality, numerous adverse effects have been recognized. One particularly untoward complication is the development of severe gastroduodenal ulceration. METHODS In order to further characterize gastroduodenal ulceration associated with radioembolization, our institutional experience as well as the reported literature were reviewed. RESULTS The current evidence suggests that radioembolization-associated gastroduodenal ulceration results from inadvertent delivery of microspheres to the microvasculature of the gastrointestinal tract, leading to direct radiation toxicity. The reported incidence of this entity ranges between 2.9% and 4.8%. Most patients with this complication present with abdominal pain, often associated with nausea, vomiting, and anorexia. Symptoms can arise from hours to months after radioembolization treatment; diagnosis is made by endoscopic biopsy and histopathologic evaluation of the ulcer specimen. Radiation-induced ulcers have proven to be extremely difficult to treat. Current therapy based on acid suppression has had limited success, and the evidence for the addition of antioxidants and anti-inflammatory agents is still sparse. CONCLUSIONS The increasing utilization of radioembolization will lead to adverse events including gastroduodenal ulceration. This entity must be considered in any patient treated with radioactive microspheres presenting with symptoms of dyspepsia. Accurate diagnosis and aggressive treatment are necessary to improve patient outcomes.
Collapse
Affiliation(s)
- Steven Naymagon
- Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice. Int J Radiat Oncol Biol Phys 2010; 77:1536-44. [PMID: 20637981 DOI: 10.1016/j.ijrobp.2010.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/23/2022]
|
75
|
Mihaescu A, Santen S, Jeppsson B, Thorlacius H. p38 Mitogen-activated protein kinase signalling regulates vascular inflammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis. Br J Surg 2010; 97:226-34. [PMID: 20034051 DOI: 10.1002/bjs.6811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND : Microvascular injury and epithelial barrier dysfunction are rate-limiting aspects in radiation enteropathy. This study examined the role of p38 mitogen-activated protein kinase (p38 MAPK) signalling in radiation-induced colitis in an experimental model. METHODS : The p38 MAPK inhibitor SB239063 was administered to mice immediately before exposure to 20 Gy radiation. Leucocyte- and platelet-endothelium interactions in the colonic microcirculation were assessed by intravital microscopy. Levels of myeloperoxidase (MPO) and CXC chemokines (macrophage inflammatory protein (MIP) 2 and cytokine-induced neutrophil chemoattractant (KC)), and albumin leakage were quantified 16 h after irradiation. RESULTS : Irradiation induced an increase in leucocyte and platelet recruitment, MPO activity, CXC chemokine levels and intestinal leakage. Inhibition of p38 MAPK by SB239063 decreased radiation-induced leucocyte and platelet recruitment (leucocyte rolling and adhesion by 70 and 90 per cent, both P < 0.001; that of platelets by 70 and 74 per cent, both P < 0.001). It also reduced radiation-provoked increases in colonic MPO activity by 88 per cent (P < 0.001), formation of MIP-2 and KC by 72 and 74 per cent respectively (P = 0.003 and P < 0.001), and intestinal leakage by 81 per cent (P < 0.001). CONCLUSION : p38 MAPK is an important signalling pathway in radiation-induced colitis.
Collapse
Affiliation(s)
- A Mihaescu
- Department of Surgery, Malmö University Hospital, Lund University, 205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
76
|
Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med 2010; 16:137-43. [PMID: 20101281 DOI: 10.2119/molmed.2009.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/15/2010] [Indexed: 02/02/2023] Open
Abstract
The threat of nuclear terrorism has led to growing worldwide concern about exposure to radiation. Acute radiation syndrome, or radiation sickness, develops after whole-body or a partial-body irradiation with a high dose of radiation. In the terrorist radiation exposure scenario, however, radiation victims likely suffer from additional injuries such as trauma, burns, wounds or sepsis. Thus, high-dose radiation injuries and appropriate therapeutic interventions must be studied. Despite advances in our understanding of the pathophysiology of radiation injury, very little information is available on the therapeutic approaches to radiation combined injury. In this review, we describe briefly the pathological consequences of ionizing radiation and provide an overview of the animal models of radiation combined injury. We highlight the combined radiation and sepsis model we recently established and suggest the use of ghrelin, a novel gastrointestinal hormone, as a potential therapy for radiation combined injury.
Collapse
Affiliation(s)
- Asha Jacob
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Great Neck, New York, United States of America
| | | | | | | |
Collapse
|
77
|
Photochemical internalization: a new tool for gene and oligonucleotide delivery. Top Curr Chem (Cham) 2010; 296:251-81. [PMID: 21504105 DOI: 10.1007/128_2010_63] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photochemical internalization (PCI) is a novel technology for release of endocytosed macromolecules into the cytosol. The technology is based on the use of photosensitizers located in endocytic vesicles. Upon activation by light such photosensitizers induce a release of macromolecules from their compartmentalization in endocytic vesicles. PCI has been shown to increase the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins, immunotoxins, plasmids, adenovirus, various oligonucleotides, dendrimer-based delivery of chemotherapeutica and unconjugated chemotherapeutica such as bleomycin and doxorubicin. This review will present the basis for the PCI concept and the most recent significant developments.
Collapse
|