51
|
Seta Y, Kimura K, Masahiro G, Tatsumori K, Murakami Y. SHED-CM: The Safety and Efficacy of Conditioned Media from Human Exfoliated Deciduous Teeth Stem Cells in Amyotrophic Lateral Sclerosis Treatment: A Retrospective Cohort Analysis. Biomedicines 2024; 12:2193. [PMID: 39457505 PMCID: PMC11504253 DOI: 10.3390/biomedicines12102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a progressive and irreversible neurodegenerative disease with limited treatment options. Advances in regenerative medicine have opened up new treatment options. The primary and exploratory objectives of this retrospective cohort study were to evaluate the safety and efficacy of stem cells from human exfoliated deciduous teeth-conditioned media (SHED-CM). METHODS Safety assessments included adverse events, vital signs, and laboratory test changes before and after administration, and efficacy was measured using the ALS Functional Rating Scale-Revised (ALSFRS-R), grip strength, and forced vital capacity in 24 patients with ALS treated at a single facility between 1 January 2022, and 30 November 2023. RESULTS While ALSFRS-R scores typically decline over time, the progression rate in this cohort was slower, suggesting a potential delay in disease progression. Alternatively, improvements in muscle strength and mobility were observed in some patients. Although adverse events were reported in only 3% of cases (no serious allergic reactions), the treatment-induced changes in vital signs and laboratory results were not clinically significant. CONCLUSIONS The SHED-CM treatment is a safe and potentially effective therapeutic option for patients with ALS. Further research is needed to optimize the SHED-CM treatment; however, this study lays the groundwork for future exploration of regenerative therapies for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
52
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
53
|
van der Geest AT, Jakobs CE, Ljubikj T, Huffels CFM, Cañizares Luna M, Vieira de Sá R, Adolfs Y, de Wit M, Rutten DH, Kaal M, Zwartkruis MM, Carcolé M, Groen EJN, Hol EM, Basak O, Isaacs AM, Westeneng HJ, van den Berg LH, Veldink JH, Schlegel DK, Pasterkamp RJ. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids. Acta Neuropathol Commun 2024; 12:152. [PMID: 39289761 PMCID: PMC11409520 DOI: 10.1186/s40478-024-01857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Astrid T van der Geest
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Channa E Jakobs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daan H Rutten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Kaal
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
54
|
Dow CT, Pierce ES, Sechi LA. Mycobacterium paratuberculosis: A HERV Turn-On for Autoimmunity, Neurodegeneration, and Cancer? Microorganisms 2024; 12:1890. [PMID: 39338563 PMCID: PMC11434025 DOI: 10.3390/microorganisms12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that, over millions of years, became integrated into the human genome. While normally inactive, environmental stimuli such as infections have contributed to the transcriptional reactivation of HERV-promoting pathological conditions, including the development of autoimmunity, neurodegenerative disease and cancer. What infections trigger HERV activation? Mycobacterium avium subspecies paratuberculosis (MAP) is a pluripotent driver of human disease. Aside from granulomatous diseases, Crohn's disease, sarcoidosis and Blau syndrome, MAP is associated with autoimmune disease: type one diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA) and autoimmune thyroiditis. MAP is also associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Autoimmune diabetes, MS and RA are the diseases with the strongest MAP/HERV association. There are several other diseases associated with HERV activation, including diseases whose epidemiology and/or pathology would prompt speculation for a causal role of MAP. These include non-solar uveal melanoma, colon cancer, glioblastoma and amyotrophic lateral sclerosis (ALS). This article further points to MAP infection as a contributor to autoimmunity, neurodegenerative disease and cancer via the un-silencing of HERV. We examine the link between the ever-increasing number of MAP-associated diseases and the MAP/HERV intersection with these diverse medical conditions, and propose treatment opportunities based upon this association.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Leonardo A. Sechi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
- Azienda Ospedaliera Universitaria di Sassari, Viale San Pietro, 07100 Sassari, Italy
| |
Collapse
|
55
|
Al Dera H, AlQahtani B. Molecular mechanisms and antisense oligonucleotide therapies of familial amyotrophic lateral sclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102271. [PMID: 39176177 PMCID: PMC11338942 DOI: 10.1016/j.omtn.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, presents considerable challenges in both diagnosis and treatment. It is categorized into sporadic and familial amyotrophic lateral sclerosis (fALS); the latter accounts for approximately 10% of cases and is primarily inherited in an autosomal dominant manner. This review summarizes the molecular genetics of fALS, highlighting key mutations that contribute to its pathogenesis, such as mutations in SOD1, FUS, and C9orf72. Central to this discourse is exploring antisense oligonucleotides (ASOs) that target these genetic aberrations, providing a promising therapeutic strategy. This review provides a detailed overview of the molecular mechanisms underlying fALS and the potential therapeutic value of ASOs, offering new insights into treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Bdour AlQahtani
- College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
57
|
Zelina P, de Ruiter AA, Kolsteeg C, van Ginneken I, Vos HR, Supiot LF, Burgering BMT, Meye FJ, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated C21ORF2 variant disrupts DNA damage repair, mitochondrial metabolism, neuronal excitability and NEK1 levels in human motor neurons. Acta Neuropathol Commun 2024; 12:144. [PMID: 39227882 PMCID: PMC11373222 DOI: 10.1186/s40478-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease leading to motor neuron loss. Currently mutations in > 40 genes have been linked to ALS, but the contribution of many genes and genetic mutations to the ALS pathogenic process remains poorly understood. Therefore, we first performed comparative interactome analyses of five recently discovered ALS-associated proteins (C21ORF2, KIF5A, NEK1, TBK1, and TUBA4A) which highlighted many novel binding partners, and both unique and shared interactors. The analysis further identified C21ORF2 as a strongly connected protein. The role of C21ORF2 in neurons and in the nervous system, and of ALS-associated C21ORF2 variants is largely unknown. Therefore, we combined human iPSC-derived motor neurons with other models and different molecular cell biological approaches to characterize the potential pathogenic effects of C21ORF2 mutations in ALS. First, our data show C21ORF2 expression in ALS-relevant mouse and human neurons, such as spinal and cortical motor neurons. Further, the prominent ALS-associated variant C21ORF2-V58L caused increased apoptosis in mouse neurons and movement defects in zebrafish embryos. iPSC-derived motor neurons from C21ORF2-V58L-ALS patients, but not isogenic controls, show increased apoptosis, and changes in DNA damage response, mitochondria and neuronal excitability. In addition, C21ORF2-V58L induced post-transcriptional downregulation of NEK1, an ALS-associated protein implicated in apoptosis and DDR. In all, our study defines the pathogenic molecular and cellular effects of ALS-associated C21ORF2 mutations and implicates impaired post-transcriptional regulation of NEK1 downstream of mutant C21ORF72 in ALS.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Anna Aster de Ruiter
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christy Kolsteeg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ilona van Ginneken
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
58
|
Gupta M, Hussain MS, Thapa R, Bhat AA, Kumar N. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis. PHARMANUTRITION 2024; 29:100406. [DOI: 10.1016/j.phanu.2024.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
59
|
Faggioli G, Menotti L, Marchesin S, Chió A, Dagliati A, de Carvalho M, Gromicho M, Manera U, Tavazzi E, Di Nunzio GM, Silvello G, Ferro N. An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. J Biomed Semantics 2024; 15:16. [PMID: 39210467 PMCID: PMC11363415 DOI: 10.1186/s13326-024-00317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Automatic disease progression prediction models require large amounts of training data, which are seldom available, especially when it comes to rare diseases. A possible solution is to integrate data from different medical centres. Nevertheless, various centres often follow diverse data collection procedures and assign different semantics to collected data. Ontologies, used as schemas for interoperable knowledge bases, represent a state-of-the-art solution to homologate the semantics and foster data integration from various sources. This work presents the BrainTeaser Ontology (BTO), an ontology that models the clinical data associated with two brain-related rare diseases (ALS and MS) in a comprehensive and modular manner. BTO assists in organizing and standardizing the data collected during patient follow-up. It was created by harmonizing schemas currently used by multiple medical centers into a common ontology, following a bottom-up approach. As a result, BTO effectively addresses the practical data collection needs of various real-world situations and promotes data portability and interoperability. BTO captures various clinical occurrences, such as disease onset, symptoms, diagnostic and therapeutic procedures, and relapses, using an event-based approach. Developed in collaboration with medical partners and domain experts, BTO offers a holistic view of ALS and MS for supporting the representation of retrospective and prospective data. Furthermore, BTO adheres to Open Science and FAIR (Findable, Accessible, Interoperable, and Reusable) principles, making it a reliable framework for developing predictive tools to aid in medical decision-making and patient care. Although BTO is designed for ALS and MS, its modular structure makes it easily extendable to other brain-related diseases, showcasing its potential for broader applicability.Database URL https://zenodo.org/records/7886998 .
Collapse
Affiliation(s)
- Guglielmo Faggioli
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Laura Menotti
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Stefano Marchesin
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Adriano Chió
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Cittá della Salute e della Scienza, Turin, Italy
| | - Arianna Dagliati
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Mamede de Carvalho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Gromicho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Umberto Manera
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | - Gianmaria Silvello
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Nicola Ferro
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
60
|
Silva ST, Costa IM, Souza AA, Pondofe K, Melo LP, Resqueti VR, Valentim R, Gonçalves F, Ribeiro TS. Physical therapy for the management of global function, fatigue and quality of life in amyotrophic lateral sclerosis: systematic review and meta-analyses. BMJ Open 2024; 14:e076541. [PMID: 39182937 PMCID: PMC11404137 DOI: 10.1136/bmjopen-2023-076541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES To critically evaluate the effectiveness of physical therapy interventions in improving global function, quality of life and fatigue in individuals with amyotrophic lateral sclerosis (ALS). DESIGN Systematic review and meta-analyses. DATA SOURCES MEDLINE, EMBASE, Cochrane Library (CENTRAL) and Physiotherapy Evidence Database (PEDro) were searched through 31 January 2023. ELIGIBILITY CRITERIA We included randomised clinical trials (RCTs) that compared physical therapy interventions that act on global function, fatigue and quality of life in individuals with ALS with any other non-physiotherapeutic methods and techniques, placebo or non-intervention. The primary outcome measure was the evaluation of global function. Secondary outcomes were quality of life, fatigue and adverse events. DATA EXTRACTION AND SYNTHESIS Two independent authors used a researcher-developed extraction form and the Rayyan software to search, screen and code included studies. The risk of bias was assessed using the PEDro scale. Meta-analyses were conducted employing random effects. Outcomes were succinctly presented in Grading of Recommendations, Assessment, Development and Evaluation evidence profiles. RESULTS Our searches identified 39 415 references. After study selection, three studies were included in the review. Such studies involved 62 participants with a mean age of 54.6 years. In the evaluated trials, 40 were male, while 22 participants were female. Regarding the type of onset of the disease, 58 participants had spinal onset of ALS, and four had bulbar. CONCLUSIONS Physical therapy intervention may improve the global function of individuals with ALS in the short term; however, clinically, it was inconclusive. In terms of quality of life and fatigue, physical therapy intervention is not more effective than control in the short term. Adverse events are not increased by physical therapy intervention in the short term. Due to significant methodological flaws, small sample sizes, wide CIs and clinical interpretation, our confidence in the effect estimate is limited. PROSPERO REGISTRATION NUMBER CRD42021251350.
Collapse
Affiliation(s)
- Stephano Tomaz Silva
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Isabela Macedo Costa
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aline Alves Souza
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Karen Pondofe
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luciana Protásio Melo
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vanessa R Resqueti
- Fisioterapia, Laboratório de Inovação Tecnológica em Reabilitação e PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ricardo Valentim
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Filipe Gonçalves
- Portuguese Association of Amyotrophic Lateral Sclerosis, Faculty of Health Sciences, University of A Coruna, A Coruna, Spain
| | - Tatiana Souza Ribeiro
- Department of Physical Therapy and Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
61
|
Reis J, Spencer PS. An introduction to environmental neurotoxicology: Lessons from a clinical perspective. J Neurol Sci 2024; 463:123108. [PMID: 38991324 DOI: 10.1016/j.jns.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- J Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - P S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
62
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
63
|
Lillo P, Zitko P, Godoy-Reyes G, Asenjo G, Sáez D, Cea G, Navarrete P, Valenzuela D, Hughes R, Heverin M, Logroscino G, Hardiman O. Incidence of amyotrophic lateral sclerosis in Chile. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:528-532. [PMID: 38506473 DOI: 10.1080/21678421.2024.2329706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE This study aimed to estimate amyotrophic lateral sclerosis (ALS) incidence and survival rates in the Metropolitan region of Chile. METHODS We conducted a cohort study of ALS cases in the Metropolitan Region from 2016 to 2019. A total of 219 ALS patients were recruited from Corporación ELA-Chile registry, in collaboration with neurologists from Sociedad de Neurología, Psiquiatría y Neurocirugía de Chile. We calculated incidence rates by sex and age and determined median survival from onset and diagnosis. Survival analysis used the Kaplan-Meier statistic, estimating hazard ratios for age, sex, time from symptom onset and from diagnosis using a Weibull regression model. All analyses were done using R 4.1.0. RESULTS Overall, ALS diagnosis incidence was 0.97 cases per 100,000 inhabitants, peaking in the 70-79 age group and declining thereafter. The male-to-female ratio was 1.23. The median time to death from diagnosis was 2.3 years (95% confidence interval [CI]: 1.9-2.5), and from the first symptom, it was 3.1 years (95% CI: 2.8-3.5). CONCLUSIONS This is the first population-based study reporting ALS incidence and survival rates in Chile's Metropolitan region. Incidence resembled other Latin American studies. Median survival from diagnosis and from the first symptom were in line with previous findings. Our results corroborated lower ALS rates in Latin America, consistent with prior research.
Collapse
Affiliation(s)
- Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Unidad de Neurología, Hospital San José, SSMN, Santiago, Chile
| | - Pedro Zitko
- Departamento de Salud Global, Escuela de Salud Pública, Universidad de Chile, Santiago, Chile
| | - Gladys Godoy-Reyes
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Servicio de Neurología, Complejo Asistencial Barros Luco, Servicio de Salud Metropolitano Sur, Santiago, Chile
| | - Gabriela Asenjo
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Sáez
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Servicio de Neurología, Complejo Asistencial Barros Luco, Servicio de Salud Metropolitano Sur, Santiago, Chile
| | - Gonzalo Cea
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pamela Navarrete
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniel Valenzuela
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Servicio de Neurología, Complejo Asistencial Barros Luco, Servicio de Salud Metropolitano Sur, Santiago, Chile
| | - Ricardo Hughes
- Unidad de Neurología, Hospital San José, SSMN, Santiago, Chile
- Servicio de Neurología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mark Heverin
- Academic Unit of Neurology, Clinical Medicine, Trinity College Dublin, Dublin, Ireland, and
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain. Fondazione "Card. G. Panico" Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Orla Hardiman
- Academic Unit of Neurology, Clinical Medicine, Trinity College Dublin, Dublin, Ireland, and
| |
Collapse
|
64
|
Talbott EO, Malek AM, Arena VC, Wu F, Steffes K, Sharma RK, Buchanich J, Rager JR, Bear T, Hoffman CA, Lacomis D, Donnelly C, Mauna J, Vena JE. Case-control study of environmental toxins and risk of amyotrophic lateral sclerosis involving the national ALS registry. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:533-542. [PMID: 38591179 DOI: 10.1080/21678421.2024.2336108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Neurotoxic chemicals are suggested in the etiology of amyotrophic lateral sclerosis (ALS). We examined the association of environmental and occupational risk factors including persistent organochlorine pesticides (OCPs) and ALS risk among cases from the Centers for Disease Control and Prevention National ALS Registry and age, sex, and county-matched controls. METHODS Participants completed a risk factor survey and provided a blood sample for OCP measurement. ALS cases were confirmed through the Registry. Conditional logistic regression assessed associations between ALS and risk factors including OCP levels. RESULTS 243 matched case-control pairs (61.7% male, mean [SD] age = 62.9 [10.1]) were included. Fifteen of the 29 OCPs examined had sufficient detectable levels for analysis. Modest correlations of self-reported years of exposure to residential pesticide mixtures and OCP serum levels were found (p<.001). Moreover, occupational exposure to lead including soldering and welding with lead/metal dust and use of lead paint/gasoline were significantly related to ALS risk (OR = 1.77, 95% CI: 1.11-2.83). Avocational gardening was a significant risk factor for ALS (OR = 1.57, 95% CI: 1.04-2.37). ALS risk increased for each 10 ng/g of α-Endosulfan (OR = 1.42, 95% CI: 1.14-1.77) and oxychlordane (OR = 1.24, 95% CI: 1.01-1.53). Heptachlor (detectable vs. nondetectable) was also associated with ALS risk (OR = 3.57, 95% CI: 1.50-8.52). CONCLUSION This national case-control study revealed both survey and serum levels of OCPs as risk factors for ALS. Despite the United States banning many OCPs in the 1970s and 1980s, their use abroad and long half-lives continue to exert possible neurotoxic health effects.
Collapse
Affiliation(s)
- Evelyn O Talbott
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Vincent C Arena
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Fan Wu
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Kristen Steffes
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Ravi K Sharma
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Jeanine Buchanich
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Judith R Rager
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Caroline A Hoffman
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - David Lacomis
- Departments of Neurology and Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA, and
| | - Chris Donnelly
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jocelyn Mauna
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
65
|
Sopranzi FM, Faragalli A, Pompili M, Carle F, Gesuita R, Ceravolo MG. Incidence of amyotrophic lateral sclerosis before and during the COVID-19 pandemic: evidence from an 8-year population-based study in Central Italy based on healthcare utilization databases. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:554-562. [PMID: 38557366 DOI: 10.1080/21678421.2024.2336127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder with a high multidimensional burden, with an obscure etiopathogenesis. METHODS We designed a longitudinal, population-based study of people residing in Central Italy (Marche Region) who were beneficiaries of the National Health System. People with an unprecedented ALS hospitalization (335.20 ICD-9 CM) or tagged with an ALS exemption between 2014 and 2021 were considered incident cases. ALS cases residing in the region for <3 years or with an active ALS exemption or hospitalized for ALS before 2014 were excluded. We used secondary sources to identify new ALS diagnoses. The regional referral center for ALS's database was used to test the accuracy of secondary sources in detecting cases. ALS mean incidence was compared to that reported in similar studies conducted in Italy. The incidence rate trend adjusted by sex and age was evaluated using the Poisson regression model. RESULTS We detected 425 new ALS cases (median age: 70y) in the 2014-2021 period, with a mean incidence of 3.5:100,000 py (95%CI: 3.2-3.8; M:F = 1.2), similar to that reported in similar studies conducted in Italy. No trend was observed during 2014-2019. After including 2020-2021 in the model, we observed a mean decrease in incidence of 5.8% (95% CI 2.0%; 9.5%, p = 0.003). CONCLUSION We show a decrease in the incidence rate of ALS in Marche, during the 2014-2021 period, as a possible outcome of a delayed neurological assessment and diagnosis during the pandemic. An ad hoc developed identification algorithm, based on healthcare utilization databases, is a valuable tool to assess the health impact of global contingencies.
Collapse
Affiliation(s)
- Federico Maria Sopranzi
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Faragalli
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | | | - Flavia Carle
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic University of Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy, and
| | - Maria Gabriella Ceravolo
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
66
|
Mangal AL, Mücke M, Rolke R, Appelmann I. Advance directives in amyotrophic lateral sclerosis - a systematic review and meta-analysis. BMC Palliat Care 2024; 23:191. [PMID: 39075493 PMCID: PMC11285133 DOI: 10.1186/s12904-024-01524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motoneuron. It is associated with a life expectancy of 2-4 years after diagnosis. Individuals experience paralysis, dysphagia, respiratory failure and loss of communicative function, rendering advance care planning (ACP) critically important. This systematic review primarily aimed to internationally compare the application of advance directives (AD) and ACP in ALS. Its secondary aim was to identify ACP preferences, identify fields for future research and to generate recommendations for improving patient care through ACP. METHODS We conducted a systematic literature review and meta-analysis. Five electronic databases (Embase, Medline, Scopus, PsycInfo and CENTRAL) were searched for qualitative and quantitative primary literature from 1999 to 2024. Cross-references were used to identify additional publications. Study selection was performed based on inclusion criteria. Number and content of AD were extracted systematically. After statistical analysis consecutive meta-analysis was performed for international differences and changes over time. Quality assessment of studies was performed using the MMAT (Mixed Methods Appraisal Tool). PROSPERO Registration (June 07, 2021) : CRD42021248040. RESULTS A total of 998 records was screened of which 26 were included in the synthesis. An increase in publication numbers of 88.9% was observed from 1999 to 2024. Results regarding use and content of AD were heterogeneous and international differences were detected. AD were signed in 60.4% of records (1,629 / 2,696 patients). The number of AD decreased over time when separating the review period in two decades (1st 1999-2011: 78% vs. 2nd 2012-2024: 42%). Study quality was superior in qualitative and mixed method designs compared to quantitative studies. CONCLUSION Further prospective studies should include detailed analyses on preferences regarding ventilation and artificial nutrition in ALS and should encompass countries of the global south. Despite the complexity of ACP with regard to individual patient needs, ACP should be part of each individual support plan for ALS patients and should specifically comprise a discussion on the preferred place of death. The available disease-specific AD documents should be preferred.
Collapse
Affiliation(s)
- Anne Lisa Mangal
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Martin Mücke
- Department of Digitalization and General Practice, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Iris Appelmann
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, Aachen, 52074, Germany.
| |
Collapse
|
67
|
Raymond J, Nair T, Gwathmey KG, Larson T, Horton DK, Mehta P. Racial Disparities in the Diagnosis and Prognosis of ALS Patients in the United States. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02099-6. [PMID: 39060854 DOI: 10.1007/s40615-024-02099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with largely unknown etiology. This study compares racial differences in clinical characteristics of ALS patients enrolled in the National ALS Registry (Registry). METHODS Data from ALS patients who completed the Registry's online clinical survey during 2013-2022 were analyzed to determine characteristics such as site of onset, associated symptoms, time of symptom onset to diagnosis, and pharmacological and non-pharmacological interventions for White, Black, and other race patients. RESULTS Surveys were completed by 4242 participants. Findings revealed that Black ALS patients were more likely to be diagnosed at a younger age, to have arm or hand initial site of onset, and to experience pneumonia than were White ALS patients. ALS patients of other races were more likely than White ALS patients to be diagnosed at a younger age and to experience twitching. The mean interval between the first sign of weakness and an ALS diagnosis for Black patients was almost 24 months, statistically greater than that of White (p = 0.0374; 16 months) and other race patients (p = 0.0518; 15.8 months). The mean interval between problems with speech until diagnosis was shorter for White patients (6.3 months) than for Black patients (17.7 months) and other race patients (14.8 months). CONCLUSIONS AND RELEVANCE Registry data shows racial disparities still exist in the diagnosis and clinical characteristics of ALS patients. Increased recruitment of non-White ALS patients and better characterization of symptom onset between races might aid clinicians in diagnosing ALS sooner, leading to earlier therapeutic interventions.
Collapse
Affiliation(s)
- Jaime Raymond
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA.
| | - Theresa Nair
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | | | - Theodore Larson
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | - D Kevin Horton
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| | - Paul Mehta
- Office of Analytics and Innovation, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341, USA
| |
Collapse
|
68
|
de Souza AA, da Silva ST, de Macedo LRD, Aires DN, Pondofe KDM, de Melo LP, Valentim RADM, Ribeiro TS. Physical therapy for muscle strengthening in individuals with amyotrophic lateral sclerosis: A protocol for a systematic review and meta-analysis. PLoS One 2024; 19:e0307470. [PMID: 39037980 PMCID: PMC11262630 DOI: 10.1371/journal.pone.0307470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION People with Amyotrophic Lateral Sclerosis (ALS) can present initially muscle weakness, which is a debilitating symptom that may be improved by engaging in muscle strengthening activities. Currently, the effects of motor interventions for muscle strengthening in people with ALS are unclear. This review intends to analyze the effects of motor interventions for muscle strengthening in individuals with ALS. METHODS AND ANALYSIS Randomized, non-randomized, and quasi-experimental clinical trials assessing individuals with ALS of both sexes, aged 18 years or older, who have received motor interventions for muscle strengthening considering all practices that can lead to increased strength, endurance, power and muscular hypertrophy will be included. No restriction on language, location, or publication date will be applied. MEDLINE, EMBASE, Cochrane Library (CENTRAL), SPORTDiscus, and Physiotherapy Evidence Database (PEDro) databases will be searched. The US National Institutes of Health Ongoing, ClinicalTrials.gov, and the reference lists of included studies will also be searched. Two reviewers will independently screen titles and abstracts and extract data from included studies. The methodological quality of the included studies will be assessed by the PEDro scale and the certainty of the evidence by the GRADE approach. Disagreements will be resolved by a third researcher. Findings will be presented in text and table formats. A meta-analysis will compare the effects of motor interventions for muscle strengthening versus placebo or other interventions.
Collapse
Affiliation(s)
- Aline Alves de Souza
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Stephano Tomaz da Silva
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Diogo Neres Aires
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Karen de Medeiros Pondofe
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Luciana Protásio de Melo
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ricardo Alexsandro de Medeiros Valentim
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Tatiana Souza Ribeiro
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Laboratory of Technological Innovation in Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
69
|
Çelik MH, Gagneur J, Lim RG, Wu J, Thompson LM, Xie X. Identifying dysregulated regions in amyotrophic lateral sclerosis through chromatin accessibility outliers. HGG ADVANCES 2024; 5:100318. [PMID: 38872308 PMCID: PMC11260578 DOI: 10.1016/j.xhgg.2024.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The high heritability of amyotrophic lateral sclerosis (ALS) contrasts with its low molecular diagnosis rate post-genetic testing, pointing to potential undiscovered genetic factors. To aid the exploration of these factors, we introduced EpiOut, an algorithm to identify chromatin accessibility outliers that are regions exhibiting divergent accessibility from the population baseline in a single or few samples. Annotation of accessible regions with histone chromatin immunoprecipitation sequencing and Hi-C indicates that outliers are concentrated in functional loci, especially among promoters interacting with active enhancers. Across different omics levels, outliers are robustly replicated, and chromatin accessibility outliers are reliable predictors of gene expression outliers and aberrant protein levels. When promoter accessibility does not align with gene expression, our results indicate that molecular aberrations are more likely to be linked to post-transcriptional regulation rather than transcriptional regulation. Our findings demonstrate that the outlier detection paradigm can uncover dysregulated regions in rare diseases. EpiOut is available at github.com/uci-cbcl/EpiOut.
Collapse
Affiliation(s)
- Muhammed Hasan Çelik
- Department of Computer Science, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany; Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Leslie M Thompson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA; UCI MIND, University of California Irvine, Irvine, CA, USA; Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
70
|
Han M, Raymond J, Larson TC, Mehta P, Horton DK. Comparison of Demographics: National Amyotrophic Lateral Sclerosis Registry and Clinical Trials Data. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02047-4. [PMID: 38977656 DOI: 10.1007/s40615-024-02047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To characterize the participant demographics in the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database compared with the web-portal National Amyotrophic Lateral Sclerosis (ALS) Registry (the Registry). METHODS Demographics and ALS symptom information were compared between the self-reported registrant data in the Registry web portal (2010-2021) and the latest available PRO-ACT data (updated August 2022), which is a collection of clinical trials data. RESULTS Greater percentages of younger (≤ 59 years old) but smaller percentages of older (60 + years old) participants were represented in PRO-ACT compared to Registry. Enrollment for minority race groups was greater in the Registry portal data, but race information was largely missing/unknown in PRO-ACT database. Median age at the time of diagnosis and age at the time of symptom onset were significantly higher for Registry enrollees compared to the participants of PRO-ACT. Symptom onset sites were similarly reported, but duration between self-noted symptom onset and diagnosis was slight, but significantly longer for the Registry enrollees (11 vs. 9 months). Hispanic were as likely as non-Hispanic to participate in research studies, based on the Registry data. CONCLUSION There was a notable difference in the age distribution and minority representation of enrollees between the PRO-ACT and Registry study populations. Age distribution in the PRO-ACT database skewed to a younger and less diverse cohort. Despite the clinical heterogeneity and complex disease mechanism of ALS, identifying the underrepresented demographic niche in the PRO-ACT and Registry study populations can help improve patient participation and criteria for patient selection to enhance generalizability.
Collapse
Affiliation(s)
- Moon Han
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA.
| | - Jaime Raymond
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - Theodore C Larson
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - D Kevin Horton
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry/Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| |
Collapse
|
71
|
Grassano M, Moglia C, Palumbo F, Koumantakis E, Cugnasco P, Callegaro S, Canosa A, Manera U, Vasta R, De Mattei F, Matteoni E, Fuda G, Salamone P, Marchese G, Casale F, De Marchi F, Mazzini L, Mora G, Calvo A, Chiò A. Sex Differences in Amyotrophic Lateral Sclerosis Survival and Progression: A Multidimensional Analysis. Ann Neurol 2024; 96:159-169. [PMID: 38568048 DOI: 10.1002/ana.26933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE To investigate sex-related differences in amyotrophic lateral sclerosis (ALS) prognosis and their contributing factors. METHODS Our primary cohort was the Piemonte and Aosta Register for ALS (PARALS); the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) and the Answer ALS databases were used for validation. Survival analyses were conducted accounting for age and onset site. The roles of forced vital capacity and weight decline were explored through a causal mediation analysis. Survival and disease progression rates were also evaluated after propensity score matching. RESULTS The PARALS cohort included 1,890 individuals (44.8% women). Men showed shorter survival when stratified by onset site (spinal onset HR 1.20, 95% CI 1.00-1.44, p = 0.0439; bulbar onset HR 1.36, 95% CI 1.09-1.70, p = 0.006917), although women had a steeper functional decline (+0.10 ALSFRS-R points/month, 95% CI 0.07-0.15, p < 0.00001) regardless of onset site. Instead, men showed worse respiratory decline (-4.2 forced vital capacity%/month, 95% CI -6.3 to -2.2, p < 0.0001) and faster weight loss (-0.15 kg/month, 95% CI -0.25 to -0.05, p = 0.0030). Causal mediation analysis showed that respiratory function and weight loss were pivotal in sex-related survival differences. Analysis of patients from PRO-ACT (n = 1,394, 40.9% women) and Answer ALS (n = 849, 37.2% women) confirmed these trends. INTERPRETATION The shorter survival in men is linked to worse respiratory function and weight loss rather than a faster disease progression. These findings emphasize the importance of considering sex-specific factors in understanding ALS pathophysiology and designing tailored therapeutic strategies. ANN NEUROL 2024;96:159-169.
Collapse
Affiliation(s)
- Maurizio Grassano
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Cristina Moglia
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Neurology Unit 1U, "City of Health and Science" University Hospital, Turin, Italy
| | - Francesca Palumbo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Paolo Cugnasco
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Stefano Callegaro
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Canosa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Neurology Unit 1U, "City of Health and Science" University Hospital, Turin, Italy
| | - Umberto Manera
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Neurology Unit 1U, "City of Health and Science" University Hospital, Turin, Italy
| | - Rosario Vasta
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Filippo De Mattei
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Enrico Matteoni
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Giuseppe Fuda
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Paolina Salamone
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Marchese
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Federico Casale
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Fabiola De Marchi
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Gabriele Mora
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Neurology Unit 1U, "City of Health and Science" University Hospital, Turin, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Neurology Unit 1U, "City of Health and Science" University Hospital, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| |
Collapse
|
72
|
Miah MM, Zinnia MA, Tabassum N, Islam ABMMK. Association between DPP6 gene rs10260404 polymorphism and increased risk of sporadic amyotrophic lateral sclerosis (sALS): a meta-analysis. Neurol Sci 2024; 45:3225-3243. [PMID: 38381392 DOI: 10.1007/s10072-024-07401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Sporadic amyotrophic lateral sclerosis (sALS) is a severe neurodegenerative disease characterized by continuous diminution of motor neurons in the brain and spinal cord. Earlier studies indicated that the DPP6 gene variant has a role in the development of sALS. This meta-analysis was designed to uncover the role of rs10260404 polymorphism of the DPP6 gene and its association with sALS. METHODS All case-control articles published prior to October 2022 on the association between DPP6 (rs10260404) polymorphism and sALS risk were systematically extracted from different databases which include PubMed, PubMed Central, and Google Scholar. Overall odds ratios (ORs) and "95% confidence intervals (CIs)" were summarized for various genetic models. Subgroup and heterogeneity assessments were performed. Egger's and "Begg's tests were applied to evaluate publication bias. Trial sequential analysis (TSA) and false-positive report probability (FPRP) were performed. RESULTS Nine case-control studies containing 4202 sALS cases and 4444 healthy controls were included in the meta-analysis. A significant association of the DPP6 (rs10260404) variant with an increased sALS risk in overall pooled subjects under allelic model [C allele vs. T allele, OR = 1.149, 95% CI (1.010-1.307), p-value = 0.035], dominant model [CC + CT vs. TT, OR = 1.165, 95% CI (1.067-1.273), p-value = 0.001], and homozygote comparison [CC vs. TT, OR = 1.421, 95% CI (1.003-2.011), p-value = 0.048] were observed. Moreover, in subgroup analysis by nationality, remarkable associations were detected in Dutch, Irish, American, and Swedish under allelic, dominant, and homozygote models. Additionally, stratification analysis by ethnicity exhibited an association with sALS risk among Caucasians and Americans under different genetic models. Interestingly, none of the models found any significant association with Asians. CONCLUSION The present meta-analysis indicates that DPP6 (rs10260404) polymorphism could be a candidate risk factor for sALS predisposition.
Collapse
Affiliation(s)
| | | | - Nuzhat Tabassum
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | | |
Collapse
|
73
|
Readman MR, Polden M, Gibbs MC, Donohue A, Chhetri SK, Crawford TJ. Oculomotor atypicalities in motor neurone disease: a systematic review. Front Neurosci 2024; 18:1399923. [PMID: 38988765 PMCID: PMC11233471 DOI: 10.3389/fnins.2024.1399923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Cognitive dysfunction is commonplace in Motor Neurone Disease (MND). However, due to the prominent motor symptoms in MND, assessing patients' cognitive function through traditional cognitive assessments, which oftentimes require motoric responses, may become increasingly challenging as the disease progresses. Oculomotor pathways are apparently resistant to pathological degeneration in MND. As such, abnormalities in oculomotor functions, largely driven by cognitive processes such as saccades and smooth pursuit eye movement, may be reflective of frontotemporal cognitive deficits in MND. Thus, saccadic and smooth pursuit eye movements may prove to be ideal mechanistic markers of cognitive function in MND. Methods To ascertain the utility of saccadic and smooth pursuit eye movements as markers of cognitive function in MND, this review summarizes the literature concerning saccadic and smooth pursuit eye movement task performance in people with MND. Results and discussion Of the 22 studies identified, noticeable patterns suggest that people with MND can be differentiated from controls based on antisaccade and smooth pursuit task performance, and thus the antisaccade task and smooth pursuit task may be potential candidates for markers of cognition in MND. However, further studies which ascertain the concordance between eye tracking measures and traditional measures of cognition are required before this assumption is extrapolated, and clinical recommendations are made. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=376620, identifier CRD42023376620.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool, United Kingdom
- National Institute of Health Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
| | - Megan Polden
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool, United Kingdom
- National Institute of Health Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
- Division of Health Research, Lancaster University, Lancaster, United Kingdom
| | - Melissa C Gibbs
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Aisling Donohue
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Suresh K Chhetri
- Lancashire and South Cumbria Motor Neurone Disease Care and Research Centre, Neurology Department, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Preston, United Kingdom
| | - Trevor J Crawford
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
74
|
Parvanovova P, Hnilicova P, Kolisek M, Tatarkova Z, Halasova E, Kurca E, Holubcikova S, Koprusakova MT, Baranovicova E. Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2024; 14:356. [PMID: 39057679 PMCID: PMC11278632 DOI: 10.3390/metabo14070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease type of motor neuron disorder characterized by degeneration of the upper and lower motor neurons resulting in dysfunction of the somatic muscles of the body. The ALS condition is manifested in progressive skeletal muscle atrophy and spasticity. It leads to death, mostly due to respiratory failure. Within the pathophysiology of the disease, muscle energy metabolism seems to be an important part. In our study, we used blood plasma from 25 patients with ALS diagnosed by definitive El Escorial criteria according to ALSFR-R (Revised Amyotrophic Lateral Sclerosis Functional Rating Scale) criteria and 25 age and sex-matched subjects. Aside from standard clinical biochemical parameters, we used the NMR (nuclear magnetic resonance) metabolomics approach to determine relative plasma levels of metabolites. We observed a decrease in total protein level in blood; however, despite accelerated skeletal muscle catabolism characteristic for ALS patients, we did not detect changes in plasma levels of essential amino acids. When focused on alterations in energy metabolism within muscle, compromised creatine uptake was accompanied by decreased plasma creatinine. We did not observe changes in plasma levels of BCAAs (branched chain amino acids; leucine, isoleucine, valine); however, the observed decrease in plasma levels of all three BCKAs (branched chain alpha-keto acids derived from BCAAs) suggests enhanced utilization of BCKAs as energy substrate. Glutamine, found to be increased in blood plasma in ALS patients, besides serving for ammonia detoxification, could also be considered a potential TCA (tricarboxylic acid) cycle contributor in times of decreased pyruvate utilization. When analyzing the data by using a cross-validated Random Forest algorithm, it finished with an AUC of 0.92, oob error of 8%, and an MCC (Matthew's correlation coefficient) of 0.84 when relative plasma levels of metabolites were used as input variables. Although the discriminatory power of the system used was promising, additional features are needed to create a robust discriminatory model.
Collapse
Affiliation(s)
- Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Petra Hnilicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Egon Kurca
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Simona Holubcikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Monika Turcanova Koprusakova
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| |
Collapse
|
75
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
76
|
Carata E, Muci M, Di Giulio S, Di Giulio T, Mariano S, Panzarini E. The Neuromuscular Disorder Mediated by Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:5999-6017. [PMID: 38921029 PMCID: PMC11202069 DOI: 10.3390/cimb46060358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a neurodegenerative disorder characterized by the progressive loss of both upper and lower motor neurons, resulting in muscular atrophy and eventual paralysis. While much research has concentrated on investigating the impact of major mutations associated with ALS on motor neurons and central nervous system (CNS) cells, recent studies have unveiled that ALS pathogenesis extends beyond CNS imbalances, encompassing dysregulation in other tissues such as skeletal muscle. Evidence from animal models and patients supports this broader perspective. Skeletal muscle, once considered solely as an effector organ, is now recognized as possessing significant secretory activity capable of influencing motor neuron survival. However, the precise cellular and molecular mechanisms underlying the detrimental effects observed in muscle and its associated structures in ALS remain poorly understood. Additionally, emerging data suggest that extracellular vesicles (EVs) may play a role in the establishment and function of the neuromuscular junction (NMJ) under both physiological and pathological conditions and in wasting and regeneration of skeletal muscles, particularly in neurodegenerative diseases like ALS. This review aims to explore the key findings about skeletal muscle involvement in ALS, shedding light on the potential underlying mechanisms and contributions of EVs and their possible application for the design of biosensors.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Simona Di Giulio
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
| | - Tiziano Di Giulio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| |
Collapse
|
77
|
Zhang N, Liao H, Lin Z, Tang Q. Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases. Biomolecules 2024; 14:689. [PMID: 38927092 PMCID: PMC11202029 DOI: 10.3390/biom14060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body's antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body's antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (N.Z.); (H.L.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
78
|
Levison LS, Jepsen P, Andersen H. Registration of Amyotrophic Lateral Sclerosis: Validity in the Danish National Patient Registry. Clin Epidemiol 2024; 16:409-415. [PMID: 38860134 PMCID: PMC11164206 DOI: 10.2147/clep.s458661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Health care databases are a valuable source for epidemiological research on amyotrophic lateral sclerosis (ALS) if diagnosis codes are valid. We evaluated the validity of the diagnostic codes for ALS in the Danish National Patient Registry (DNPR). Patients and Methods We obtained data from the DNPR for all adult (>17 years) patients registered with ALS in Denmark between 1987 and 2022 (median population of 4.2 million during the study period). We randomly selected adult patients living in the North Denmark Region and Central Denmark Region (median population 1.4 million), with a primary discharge diagnosis code of ALS, diagnosed at three departments of neurology. We retrieved and reviewed medical records and estimated the positive predictive value (PPV) of the ALS diagnosis. Results Over 36 years, we identified 5679 patients. From the validation cohort of 300 patients, we were able to retrieve 240 (80%) medical records, and 215 ALS diagnoses were confirmed. The overall positive predictive value was 89.6% (95% confidence interval (CI): 85.1-92.8). The highest PPV was achieved for diagnoses registered for patients aged ≥70 years (93.8; 95% CI: 86.2-97.3) compared to patients <60 years (83.4; 95% CI: 73.3-90.7). Conclusion We found a high PPV of primary diagnostic codes for ALS from Danish departments of neurology, demonstrating high validity. Thus, the DNPR is a well-suited data source for large-scale epidemiological research on ALS.
Collapse
Affiliation(s)
| | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
79
|
Li J, Li S, Fei G. Potential Correlation between Tea Intake and the Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. NEURODEGENER DIS 2024; 24:45-53. [PMID: 38830342 DOI: 10.1159/000539590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION There were limited observation studies on the association between tea intake and amyotrophic lateral sclerosis (ALS) with inconsistent results. This study aimed to determine the potential relationship between tea intake and ALS by a two-sample Mendelian randomization (MR) analysis. METHODS We identified 41 independent SNPs strongly associated with tea intake from 448,060 participants of European ancestry in the UK Biobank. Summary statistics associated with ALS were also obtained from the UK Biobank including 20,806 cases and 59,804 controls. The study used MR analysis to assess the potential effect of tea consumption on ALS, and several methods such as sensitivity analyses and MR-pleiotropy residual sum and outlier method were performed to further test the robustness of our findings. RESULTS The F statistic was more than 10 in each SNP, which meets the first assumption for the MR study. Using the inverse variance weighted MR analysis as the primary method, we found that a one standard deviation increase in tea consumption was associated with a 14% lower risk of ALS (OR = 0.86, 95% CI = 0.74-0.99, p < 0.05). Sensitivity analyses detected no potential pleiotropy and directional heterogeneity. CONCLUSION Our MR study supported the potential relationship between tea intake and ALS risk, suggesting the potential advantages of tea intake for preventing ALS. Future clinical trials and research are needed to further validate the results and elucidate possible mechanisms.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China,
| | - Songyu Li
- School of Transportation Engineering, Tongji University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| |
Collapse
|
80
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
81
|
Khanna RK, Catanese S, Blasco H, Pisella PJ, Corcia P. Corneal nerves and amyotrophic lateral sclerosis: an in vivo corneal confocal imaging study. J Neurol 2024; 271:3370-3377. [PMID: 38498118 DOI: 10.1007/s00415-024-12282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disorder. Diagnosis is challenging due to its clinical heterogeneity and the absence of definitive diagnostic tools, leading to delays averaging between 9.1 and 27 months. In vivo corneal confocal microscopy, assessing the sub-basal nerve plexus of the cornea, has been proposed as a potential biomarker for ALS. We aimed to determine whether the assessment of corneal nerves using in vivo confocal microscopy can serve as an imaging biomarker for ALS. METHODS A single-centre prospective case-control study was conducted in France from September 2021 to March 2023 including patients with ALS according to the revised EI Escorial criteria. The corneal sub-basal nerve plexus was analysed using in vivo confocal microscopy. An automated algorithm (ACCMetrics) was used to evaluate corneal parameters: nerve fibre density, nerve branch density, nerve fibre length, nerve fibre area, nerve total branch density, nerve fibre width, and nerve fractal dimension. RESULTS Twenty-two patients with ALS and 30 controls were included. No significant differences were found between ALS and control groups for all corneal parameters (p > 0.05). Corneal sensitivity did not differ between groups, and no correlation was identified between corneal nerve parameters and ALS disease duration, severity and rate of progression (p > 0.05). CONCLUSIONS The present study does not support the use of in vivo corneal confocal microscopy as an early diagnostic or prognostic tool for ALS. Further research, especially longitudinal investigations, is needed to understand any potential corneal innervation changes as ALS progresses.
Collapse
Affiliation(s)
- Raoul K Khanna
- Department of Ophthalmology, Bretonneau University Hospital of Tours, 2 Boulevard Tonnellé, 37000, Tours, France.
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France.
| | - Sophie Catanese
- Department of Ophthalmology, Bretonneau University Hospital of Tours, 2 Boulevard Tonnellé, 37000, Tours, France
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Hélène Blasco
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- Biochemistry and Molecular Biology Department, Bretonneau University Hospital of Tours, Tours, France
| | - Pierre-Jean Pisella
- Department of Ophthalmology, Bretonneau University Hospital of Tours, 2 Boulevard Tonnellé, 37000, Tours, France
| | - Philippe Corcia
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- Amyotrophic Lateral Sclerosis Centre, Department of Neurology, Bretonneau University Hospital of Tours, Tours, France
| |
Collapse
|
82
|
Li X, Bedlack R. Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis. Expert Opin Emerg Drugs 2024; 29:93-102. [PMID: 38516735 DOI: 10.1080/14728214.2024.2333420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis is a rapidly progressive motor neuron disorder causing severe disability and premature death. Owing to the advances in uncovering ALS pathophysiology, efficient clinical trial design and research advocacy program, several disease-modifying drugs have been approved for treating ALS. Despite this progress, ALS remains a rapidly disabling and life shortening condition. There is a critical need for more effective therapies. AREAS COVERED Here, we reviewed the emerging ALS therapeutics undergoing phase II & III clinical trials. To identify the investigational drugs, we searched ALS and phase II/III trials that are active and recruiting or not yet recruiting on clinicaltrials.gov and Pharmaprojects database. EXPERT OPINION The current pipeline is larger and more diverse than ever, with drugs targeting potential genetic and retroviral causes of ALS and drugs targeting a wide array of downstream pathways, including RNA metabolism, protein aggregation, integrated stress response and neuroinflammation.We remain most excited about those that target direct causes of ALS, e.g. antisense oligonucleotides targeting causative genes. Drugs that eliminate abnormal protein aggregates are also up-and-coming. Eventually, because of the heterogeneity of ALS pathophysiology, biomarkers that determine which biological events are most important for an individual ALS patient are needed.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | |
Collapse
|
83
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
84
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
85
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
86
|
Evans LJ, O'Brien D, Shaw PJ. Current neuroprotective therapies and future prospects for motor neuron disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:327-384. [PMID: 38802178 DOI: 10.1016/bs.irn.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.
Collapse
Affiliation(s)
- Laura J Evans
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
87
|
Colognesi M, Shkodra A, Gabbia D, Kawamata H, Manfredi PL, Manfredi G, De Martin S. Sex-dependent effects of the uncompetitive N-methyl-D-aspartate receptor antagonist REL-1017 in G93A-SOD1 amyotrophic lateral sclerosis mice. Front Neurol 2024; 15:1384829. [PMID: 38765264 PMCID: PMC11100767 DOI: 10.3389/fneur.2024.1384829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction The pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the demise of motor neurons has been linked to excitotoxicity caused by excessive calcium influx via N-methyl-D-aspartate receptors (NMDARs), suggesting that uncompetitive NMDAR antagonism could be a strategy to attenuate motor neuron degeneration. REL-1017, the dextro-isomer of racemic methadone, is a low-affinity uncompetitive NMDAR antagonist. Importantly, in humans REL-1017 has shown excellent tolerability in clinical trials for major depression. Methods Here, we tested if REL-1017 improves the disease phenotypes in the G93A SOD1 mouse, a well-established model of familial ALS, by examining survival and motor functions, as well as the expression of genes and proteins involved in neuroplasticity. Results We found a sex-dependent effect of REL-1017 in G93A SOD1 mice. A delay of ALS symptom onset, assessed as 10%-decrease of body weight (p < 0.01 vs. control untreated mice) and an extension of lifespan (p < 0.001 vs. control untreated mice) was observed in male G93A SOD1 mice. Female G93A SOD1 mice treated with REL-1017 showed an improvement of muscle strength (p < 0.01 vs. control untreated mice). Both males and females treated with REL-1017 showed a decrease in hind limb clasping. Sex-dependent effects of REL-1017 were also detected in molecular markers of neuronal plasticity (PSD95 and SYN1) in the spinal cord and in the GluN1 NMDAR subunit in quadricep muscles. Conclusion In conclusion, this study provides preclinical in vivo evidence supporting the clinical evaluation of REL-1017 in ALS.
Collapse
Affiliation(s)
- Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Atea Shkodra
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Hibiki Kawamata
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
88
|
Imrell S, Fang F, Ingre C, Sennfält S. Increased incidence of motor neuron disease in Sweden: a population-based study during 2002-2021. J Neurol 2024; 271:2730-2735. [PMID: 38386047 PMCID: PMC11055737 DOI: 10.1007/s00415-024-12219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Motor neuron diseases (MND), with amyotrophic lateral sclerosis constituting most cases, are rare conditions of unknown etiology. There have been reports of an increase in incidence during the latter half of the twentieth century in various Western countries, including Sweden. This study provides updated data on the incidence of MND in Sweden during the last 20 years. METHODS Data was obtained from the Swedish National Patient Register on individuals diagnosed with MND from 2002 to 2021 and analysed in relation to group level data for the entire Swedish population. Incidence rates were calculated and presented in relation to year, age, sex, and region. RESULTS In the early 2000s, there was a crude incidence rate of 3.5-3.7 per 100,000 person-years, which then increased to 4.0-4.6 from 2008 onward. Age standardization to the starting year (2002) partially mitigated this increase. The incidence rate was greater among men compared to women and was highest within the age range of 70 to 84 years. There were indications of a higher incidence rate in the northernmost parts of the country, although the difference was not statistically significant. CONCLUSIONS The incidence rate of MND in Sweden now seems to have surpassed 4 cases per 100,000 person-years. This is higher when compared to both other European countries and previous Swedish studies. It remains to be determined if this increase reflects an actual increasing incidence of MND in Sweden or is due to other factors such as better registry coverage.
Collapse
Affiliation(s)
- Sofia Imrell
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Sennfält
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
89
|
Tarot P, Lasbleiz C, Liévens JC. NRF2 signaling cascade in amyotrophic lateral sclerosis: bridging the gap between promise and reality. Neural Regen Res 2024; 19:1006-1012. [PMID: 37862202 PMCID: PMC10749620 DOI: 10.4103/1673-5374.385283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis is a very disabling disease due to the degeneration of motor neurons. Symptoms include muscle weakness and atrophy, spasticity, and progressive paralysis. Currently, there is no treatment to reverse damage to motor neurons and cure amyotrophic lateral sclerosis. The only two treatments actually approved, riluzole and edaravone, have shown mitigated beneficial effects. The difficulty to find a cure lies in the complexity and multifaceted pattern of amyotrophic lateral sclerosis pathogenesis. Among mechanisms, abnormal RNA metabolism, nucleocytoplasmic transport defects, accumulation of unfolded protein, and mitochondrial dysfunction would in fine induce oxidative damage and vice versa. A potent therapeutic strategy will be to find molecules that break this vicious circle. Sharpening the nuclear factor erythroid-2 related factor 2 signaling may fulfill this objective since nuclear factor erythroid-2 related factor 2 has a multitarget profile controlling antioxidant defense, mitochondrial functioning, and inflammation. We here discuss the interest of developing nuclear factor erythroid-2 related factor 2-based therapy in regard to the pathophysiological mechanisms and we provide a general overview of the attempted clinical assays in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Pauline Tarot
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | |
Collapse
|
90
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
91
|
Caulier-Cisterna R, Appelgren-Gonzáles JP, Oyarzún JE, Valenzuela F, Sitaram R, Eblen-Zajjur A, Uribe S. Comparison of LED- and LASER-based fNIRS technologies to record the human peri‑spinal cord neurovascular response. Med Eng Phys 2024; 127:104170. [PMID: 38692767 DOI: 10.1016/j.medengphy.2024.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Recently, functional Near-Infrared Spectroscopy (fNIRS) was applied to obtain, non-invasively, the human peri‑spinal Neuro-Vascular Response (NVR) under a non-noxious electrical stimulation of a peripheral nerve. This method allowed the measurements of changes in the concentration of oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) from the peri‑spinal vascular network. However, there is a lack of clarity about the potential differences in perispinal NVR recorded by the different fNIRS technologies currently available. In this work, the two main noninvasive fNIRS technologies were compared, i.e., LED and LASER-based. The recording of the human peri‑spinal NVR induced by non-noxious electrical stimulation of a peripheral nerve was recorded simultaneously at C7 and T10 vertebral levels. The amplitude, rise time, and full width at half maximum duration of the perispinal NVRs were characterized in healthy volunteers and compared between both systems. The main difference was that the LED-based system shows about one order of magnitude higher values of amplitude than the LASER-based system. No statistical differences were found for rise time and for duration parameters (at thoracic level). The comparison of point-to-point wave patterns did not show significant differences between both systems. In conclusion, the peri‑spinal NRV response obtained by different fNIRS technologies was reproducible, and only the amplitude showed differences, probably due to the power of the system which should be considered when assessing the human peri‑spinal vascular network.
Collapse
Affiliation(s)
- Raúl Caulier-Cisterna
- Department of Informatics and Computing, Faculty of Engineering, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | - Juan-Pablo Appelgren-Gonzáles
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan-Esteban Oyarzún
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Santiago, Chile
| | - Felipe Valenzuela
- Center for Biomedical Imaging, the Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Diagnostic Imaging Department, Multimodal Functional Brain Imaging and Neurorehabilitation Hub, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Antonio Eblen-Zajjur
- Translational Neuroscience Laboratory, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia.
| |
Collapse
|
92
|
García-Parra B, Guiu JM, Povedano M, Mariño EL, Modamio P. Geographical distribution of clinical trials in amyotrophic lateral sclerosis: a scoping review. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:376-381. [PMID: 38393299 DOI: 10.1080/21678421.2024.2320881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Introduction: Clinical trials location is determined by many factors, including the availability of patient populations, regulatory environment, scientific expertise, and cost considerations. In clinical drug development of amyotrophic lateral sclerosis (ALS), where genetic differences have been described and may be related to geographic setting, this could have implications for the clinical interpretation of results in underrepresented geographic settings. Objective: The aim of this study was to review country participation in ALS clinical research based on available data from clinical trial registries and databases. Methods: We performed a scoping review with available information about clinical trials on ALS in ClinicalTrials.gov (CT), EU clinical trials register (EudraCT), WHO International Clinical Trials Registry Platform (ICTRP) and Web of Science (WOS). Inclusion criteria were clinical trials in phase 2 and 3 to treat ALS, recruiting or active not recruiting, from 23/06/2018 to 23/06/2023. Results: The total number of clinical trials identified were 188; 54 studies in CT, 38 in EudraCT, 47 in ICTRP and 49 in WOS. We identified 77 clinical trials after deleting duplicates and applying exclusion criteria. The countries with most studies conducted were the US with 35 studies (10.9%), followed by the United Kingdom, Belgium, France and Germany with 21 studies each one of them (6.5%). Conclusion: The data obtained in our review showed a non-homogeneous distribution in clinical trials at the international level, which may influence the interpretation of the results obtained.
Collapse
Affiliation(s)
- Beliu García-Parra
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Guiu
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| | - Mónica Povedano
- Clinical Neurophysiology Section - Neurology Service, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
- Motor Neuron Diseases Unit, Bellvitge University Hospital. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| | - Pilar Modamio
- Clinical Pharmacy and Pharmaceutical Care Unit, Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain, and
| |
Collapse
|
93
|
Ko S, Yamasaki R, Okui T, Shiraishi W, Watanabe M, Hashimoto Y, Kobayakawa Y, Kusunoki S, Kira JI, Isobe N. A nationwide survey of facial onset sensory and motor neuronopathy in Japan. J Neurol Sci 2024; 459:122957. [PMID: 38520939 DOI: 10.1016/j.jns.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
The epidemiology and etiology of facial onset sensory and motor neuronopathy (FOSMN), a rare syndrome that initiates with facial sensory disturbances followed by bulbar symptoms, remain unknown. To estimate the prevalence of FOSMN in Japan and establish the characteristics of this disease, we conducted a nationwide epidemiological survey. In the primary survey, we received answers from 604 facilities (49.8%), leading to an estimated number of 35.8 (95% confidential interval: 21.5-50.2) FOSMN cases in Japan. The secondary survey collected detailed clinical and laboratory data from 21 cases. Decreased or absent corneal and pharyngeal reflexes were present in over 85% of the cases. Electrophysiological analyses detected blink reflex test abnormalities in 94.1% of the examined cases. Immunotherapy was administered in 81% of cases and all patients received intravenous immunoglobulin. Among them, 35.3% were judged to have temporary beneficial effects evaluated by the physicians in charge. Immunotherapy tended to be effective in the early stage of disease. The spreading pattern of motor and sensory symptoms differed between cases and the characteristics of the motor-dominant and sensory-dominant cases were distinct. Cases with motor-dominant progression appeared to mimic amyotrophic lateral sclerosis. This is the first nationwide epidemiological survey of FOSMN in Japan. The clinical course of FOSMN is highly variable and motor-dominant cases developed a more severe condition than other types of cases. Because clinical interventions tend to be effective in the early phase of the disease, an early diagnosis is desirable.
Collapse
Affiliation(s)
- Senri Ko
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Tasuku Okui
- Medical Information Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Wataru Shiraishi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Neurology, Kokura Memorial Hospital, Kitakyushu 802-8555, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yu Hashimoto
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Neurology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Yuko Kobayakawa
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; Japan Community Health care Organization Headquarters, Tokyo 108-8593, Japan
| | - Jun-Ichi Kira
- Translational Neuroscience Research Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, 831-8501, Japan; Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
94
|
Hasan M, Alam SM, Rahman HZ, Khan MAS, Huq MR. Autonomic Dysfunction in Amyotrophic Lateral Sclerosis - A Case-Control Study. Acta Med Acad 2024; 53:24-34. [PMID: 38984697 PMCID: PMC11237907 DOI: 10.5644/ama2006-124.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION This study aimed to explore autonomic nervous system involvement in amyotrophic lateral sclerosis (ALS) patients by evaluating sympathetic skin response (SSR). MATERIALS AND METHODS The study included 35 sporadic (ALS) patients (cases), and 35 healthy age and sex-matched participants (controls) aged <60 years. SSR was recorded in the electrophysiology lab of the Neurology Department of Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Patients with diseases associated with peripheral or autonomic neuropathy were excluded. Prolonged latency (delayed SSR) or an absent response was considered abnormal SSR. RESULTS SSR was found to be abnormal in 17 (48.6 %) ALS cases, with an absent response in the upper limbs of six cases (17.1%). Abnormal SSR was more prevalent in the lower limbs, with 33 (94.3%) and 20 (57.1%) cases having a delayed or absent response, respectively. In comparison, SSR was normal in all control participants (P-value <0.05). Abnormal SSR was significantly more common in the lower limbs of ALS cases with bulbar palsy than those without bulbar palsy (P-value=0.04). There was no association of SSR with disease severity and duration. CONCLUSION ALS is significantly associated with abnormal SSR, indicating autonomic nervous system involvement. There could also be an association between bulbar palsy and abnormal SSR among ALS patients. Further studies should be carried out to determine the association of abnormal SSR with disease severity, duration, and type.
Collapse
Affiliation(s)
- Mehedi Hasan
- Department of Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sk Mahbub Alam
- Department of Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Hasan Zahidur Rahman
- Department of Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Muhammad Rezeul Huq
- Department of Neurology, Combined Military Hospital, Dhaka, Bangladesh. ; https://orcid.org/0000-0003-4162-9545
| |
Collapse
|
95
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
96
|
Jin W, Boss J, Bakulski KM, Goutman SA, Feldman EL, Fritsche LG, Mukherjee B. Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.28.24305037. [PMID: 38585910 PMCID: PMC10996827 DOI: 10.1101/2024.03.28.24305037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function and a cure for this devastating disease remains elusive. Early detection and risk stratification are crucial for timely intervention and improving patient outcomes. This study aimed to identify predisposing genetic, phenotypic, and exposure-related factors for Amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential. Methods Utilizing data from the UK Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates. Results Both PRSs modestly predicted ALS diagnosis, but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a 4-fold higher ALS risk (95% CI: [2.04, 7.73]) versus those in the 40%-60% range. Discussions By leveraging UK Biobank data, our study uncovers predisposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
Collapse
Affiliation(s)
- Weijia Jin
- Department of Biostatistics, University of Florida, Gainesville, Florida 32603, United States of America
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Kelly M. Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Lars G. Fritsche
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Center for Precision Health Data Science, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
97
|
Gao C, Shi Q, Pan X, Chen J, Zhang Y, Lang J, Wen S, Liu X, Cheng TL, Lei K. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell Rep 2024; 43:113892. [PMID: 38431841 DOI: 10.1016/j.celrep.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.
Collapse
Affiliation(s)
- Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinghua Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Fudan University, Shanghai, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiali Lang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Wen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
98
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
99
|
Zamani A, Thomas E, Wright DK. Sex biology in amyotrophic lateral sclerosis. Ageing Res Rev 2024; 95:102228. [PMID: 38354985 DOI: 10.1016/j.arr.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Although sex differences in amyotrophic lateral sclerosis (ALS) have not been studied systematically, numerous clinical and preclinical studies have shown sex to be influential in disease prognosis. Moreover, with the development of advanced imaging tools, the difference between male and female brain in structure and function and their response to neurodegeneration are more definitive. As discussed in this review, ALS patients exhibit a sex bias pertaining to the features of the disease, and their clinical, pathological, (and pathophysiological) phenotypes. Several epidemiological studies have indicated that this sex disparity stems from various aetiologies, including sex-specific brain structure and neural functioning, genetic predisposition, age, gonadal hormones, susceptibility to traumatic brain injury (TBI)/head trauma and lifestyle factors.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Emma Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
100
|
Arsuffi-Marcon R, Souza LG, Santos-Miranda A, Joviano-Santos JV. Neurotoxicity of Pyrethroids in neurodegenerative diseases: From animals' models to humans' studies. Chem Biol Interact 2024; 391:110911. [PMID: 38367681 DOI: 10.1016/j.cbi.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Neurodegenerative diseases are associated with diverse symptoms, both motor and mental. Genetic and environmental factors can trigger neurodegenerative diseases. Chemicals as pesticides are constantly used in agriculture and also domestically. In this regard, pyrethroids (PY), are a class of insecticides in which its main mechanism of action is through disruption of voltage-dependent sodium channels function in insects. However, in mammals, they can also induce oxidative stress and enzyme dysfunction. This review investigates the association between PY and neurodegenerative diseases as Alzheimer's, Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis, and Autism in animal models and humans. Published works using specific and non-specific models for these diseases were selected. We showed a tendency toward the development and/or aggravating of these neurodegenerative diseases following exposure to PYs. In animal models, the biochemical mechanisms of the diseases and their interaction with the insecticides are more deeply investigated. Nonetheless, only a few studies considered the specific model for each type of disease to analyze the impacts of the exposure. The choice of a specific model during the research is an important step and our review highlights the knowledge gaps of PYs effects using these models reinforcing the importance of them during the design of the experiments.
Collapse
Affiliation(s)
- Rafael Arsuffi-Marcon
- Center for Mathematics, Computing, and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Lizandra Gomes Souza
- Center for Mathematics, Computing, and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|