51
|
Berngruber TW, Lion S, Gandon S. Evolution of suicide as a defence strategy against pathogens in a spatially structured environment. Ecol Lett 2013; 16:446-53. [PMID: 23331662 DOI: 10.1111/ele.12064] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
Abstract
Suicide upon infection by lytic phages is known in several bacteria species and represents an effective defence strategy to limit phage spread. However, the ecological conditions favouring the evolution of such a radically altruistic behaviour are unclear. Here, we model the feedback of epidemiology on host evolution in a spatially structured environment and we generate several specific predictions on altruistic suicide evolution. We test these predictions experimentally by competing E. coli cells carrying the suicide gene Lit against non-carrier cells in the presence or in the absence of the lytic phage T6. We show that in accord with our theoretical analysis altruistic suicide is only favoured in the presence of the phage in spatially structured environments at intermediate levels of mixing. Our work provides a general explanation for the evolution of altruistic defence strategies against pathogens. We discuss the implications of these results for oncolytic virus therapy.
Collapse
Affiliation(s)
- Thomas W Berngruber
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS, Montpellier, France.
| | | | | |
Collapse
|
52
|
Harrison F. Bacterial cooperation in the wild and in the clinic: are pathogen social behaviours relevant outside the laboratory? Bioessays 2012; 35:108-12. [PMID: 23281188 PMCID: PMC4267416 DOI: 10.1002/bies.201200154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Individual bacterial cells can communicate via quorum sensing, cooperate to harvest nutrients from their environment, form multicellular biofilms, compete over resources and even kill one another. When the environment that bacteria inhabit is an animal host, these social behaviours mediate virulence. Over the last decade, much attention has focussed on the ecology, evolution and pathology of bacterial cooperation, and the possibility that it could be exploited or destabilised to treat infections. But how far can we really extrapolate from theoretical predictions and laboratory experiments to make inferences about ‘cooperative’ behaviours in hosts and reservoirs? To determine the likely importance and evolution of cooperation ‘in the wild’, several questions must be addressed. A recent paper that reports the dynamics of bacterial cooperation and virulence in a field experiment provides an excellent nucleus for bringing together key empirical and theoretical results which help us to frame – if not completely to answer – these questions.
Collapse
Affiliation(s)
- Freya Harrison
- School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
53
|
Abstract
Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.
Collapse
Affiliation(s)
- Teresa Nogueira
- Centro de Biologia Ambiental, Evolutionary Ecology of Microorganisms, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Vila Nova de Gaia, Portugal
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, UMR3525, Paris, France
| | - Eduardo P. C. Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, UMR3525, Paris, France
- * E-mail:
| |
Collapse
|
54
|
Rankin DJ, Turner LA, Heinemann JA, Brown SP. The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict. Proc Biol Sci 2012; 279:3706-15. [PMID: 22787022 PMCID: PMC3415908 DOI: 10.1098/rspb.2012.0942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022] Open
Abstract
Bacterial genomes commonly contain 'addiction' gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin-antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive 'rock-paper-scissors' dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes.
Collapse
Affiliation(s)
- Daniel J. Rankin
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Building Y27, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Leighton A. Turner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jack A. Heinemann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sam P. Brown
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
55
|
Cornforth DM, Sumpter DJT, Brown SP, Brännström Å. Synergy and group size in microbial cooperation. Am Nat 2012; 180:296-305. [PMID: 22854073 PMCID: PMC3635123 DOI: 10.1086/667193] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microbes produce many molecules that are important for their growth and development, and the exploitation of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Although the production of these public-goods molecules has been studied intensely, little is known of how the benefits accrued and the costs incurred depend on the quantity of public-goods molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density, using a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating and then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an "evolutionary trap" that can stymie the establishment and maintenance of cooperation. By allowing density-dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results on experimental design.
Collapse
|
56
|
Platt TG, Fuqua C, Bever JD. Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen. Evolution 2012; 66:1953-65. [PMID: 22671559 PMCID: PMC3707318 DOI: 10.1111/j.1558-5646.2011.01571.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cooperative benefits depend on a variety of ecological factors. Many cooperative bacteria increase the population size of their groups by making a public good available. Increased local population size can alleviate the constraints of kin competition on the evolution of cooperation by enhancing the between-group fitness of cooperators. The cooperative pathogenesis of Agrobacterium tumefaciens causes infected plants to exude opines--resources that provide a nearly exclusive source of nutrient for the pathogen. We experimentally demonstrate that opines provide cooperative A. tumefaciens cells a within-group fitness advantage over saprophytic agrobacteria. Our results are congruent with a resource-consumer competition model, which predicts that cooperative, virulent agrobacteria are at a competitive disadvantage when opines are unavailable, but have an advantage when opines are available at sufficient levels. This model also predicts that freeloading agrobacteria that catabolize opines but cannot infect plants competitively displace the cooperative pathogen from all environments. However, we show that these cooperative public goods also promote increased local population size. A model built from the Price Equation shows that this effect on group size can contribute to the persistence of cooperative pathogenesis despite inherent kin competition for the benefits of pathogenesis.
Collapse
Affiliation(s)
- Thomas G. Platt
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| | - James D. Bever
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
57
|
Rumbaugh KP, Trivedi U, Watters C, Burton-Chellew MN, Diggle SP, West SA. Kin selection, quorum sensing and virulence in pathogenic bacteria. Proc Biol Sci 2012; 279:3584-8. [PMID: 22648154 PMCID: PMC3396913 DOI: 10.1098/rspb.2012.0843] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial growth and virulence often depends upon the cooperative release of extracellular factors excreted in response to quorum sensing (QS). We carried out an in vivo selection experiment in mice to examine how QS evolves in response to variation in relatedness (strain diversity), and the consequences for virulence. We started our experiment with two bacterial strains: a wild-type that both produces and responds to QS signal molecules, and a lasR (signal-blind) mutant that does not release extracellular factors in response to signal. We found that: (i) QS leads to greater growth within hosts; (ii) high relatedness favours the QS wild-type; and (iii) low relatedness favours the lasR mutant. Relatedness matters in our experiment because, at relatively low relatedness, the lasR mutant is able to exploit the extracellular factors produced by the cells that respond to QS, and hence increase in frequency. Furthermore, our results suggest that because a higher relatedness favours cooperative QS, and hence leads to higher growth, this will also lead to a higher virulence, giving a relationship between relatedness and virulence that is in the opposite direction to that usually predicted by virulence theory.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | |
Collapse
|
58
|
Platt TG, Bever JD, Fuqua C. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc Biol Sci 2012; 279:1691-9. [PMID: 22113028 PMCID: PMC3297450 DOI: 10.1098/rspb.2011.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022] Open
Abstract
Harbouring a plasmid often imposes a fitness cost on the bacterial host. Motivated by implications for public health, the majority of studies on plasmid cost are focused on elements that impart antibiotic resistance. Plasmids, however, can provide a wide range of ecologically important phenotypes to their bacterial hosts-such as virulence, specialized catabolism and metal resistance. The Agrobacterium tumefaciens tumour-inducing (Ti) plasmid confers both the ability to infect dicotyledonous plants and to catabolize the metabolites that plants produce as a result of being infected. We demonstrate that this virulence and catabolic plasmid imposes a measurable fitness cost on host cells under resource-limiting, but not resource replete, environmental conditions. Additionally, we show that the expression of Ti-plasmid-borne pathogenesis genes necessary to initiate cooperative pathogenesis is extremely costly to the host cell. The benefits of agrobacterial pathogenesis stem from the catabolism of public goods produced by infected host plants. Thus, the virulence-plasmid-dependent costs we demonstrate constitute costs of cooperation typically associated with the ability to garner the benefits of cooperation. Interestingly, genotypes that harbour derived opine catabolic plasmids minimize this trade-off, and are thus able to freeload upon the pathogenesis initiated by other individuals.
Collapse
Affiliation(s)
- Thomas G Platt
- Department of Biology, Indiana University, 1001 East Third Street, Jordan Hall 142, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
59
|
Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 2012; 20:336-42. [PMID: 22564248 PMCID: PMC3491314 DOI: 10.1016/j.tim.2012.04.005] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/30/2012] [Accepted: 04/12/2012] [Indexed: 01/15/2023]
Abstract
Standard virulence evolution theory assumes that virulence factors are maintained because they aid parasitic exploitation, increasing growth within and/or transmission between hosts. An increasing number of studies now demonstrate that many opportunistic pathogens (OPs) do not conform to these assumptions, with virulence factors maintained instead because of advantages in non-parasitic contexts. Here we review virulence evolution theory in the context of OPs and highlight the importance of incorporating environments outside a focal virulence site. We illustrate that virulence selection is constrained by correlations between these external and focal settings and pinpoint drivers of key environmental correlations, with a focus on generalist strategies and phenotypic plasticity. We end with a summary of key theoretical and empirical challenges to be met for a fuller understanding of OPs.
Collapse
|
60
|
Mc Ginty SÉ, Rankin DJ. The evolution of conflict resolution between plasmids and their bacterial hosts. Evolution 2012; 66:1662-70. [PMID: 22519798 DOI: 10.1111/j.1558-5646.2011.01549.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It has recently been proposed that mobile elements may be a significant driver of cooperation in microorganisms. This may drive a potential conflict, where cooperative genes are transmitted independently of the rest of the genome, resulting in scenarios where horizontally spread cooperative genes are favored, whereas a chromosomal equivalent would not be. This can lead to the whole genome being exploited by surrounding noncooperative individuals. Given that there are costs associated with mobile elements themselves, infection with a plasmid carrying a cooperative trait may lead to a significant conflict within the host genome. Here, we model the mechanisms that allow the host to resolve this conflict, either by exhibiting complete resistance to the mobile element or by controlling its gene expression via a chromosomally based suppressor. We find that the gene suppression mechanism will be more stable than full resistance, implying that suppressing the expression of costly genes within a cell is preferable to preventing the acquisition of the mobile element, for the resolution of conflict within a genome.
Collapse
Affiliation(s)
- Sorcha É Mc Ginty
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
61
|
Abstract
As social interactions are increasingly recognized as important determinants of microbial fitness, sociobiology is being enlisted to better understand the evolution of clinically relevant microbes and, potentially, to influence their evolution to aid human health. Of special interest are situations in which there exists a "tragedy of the commons," where natural selection leads to a net reduction in fitness for all members of a population. Here, I demonstrate the existence of a tragedy of the commons among antibiotic resistance plasmids of bacteria. In serial transfer culture, plasmids evolved a greater ability to superinfect already-infected bacteria, increasing plasmid fitness when evolved genotypes were rare. Evolved plasmids, however, fell victim to their own success, reducing the density of their bacterial hosts when they became common and suffering reduced fitness through vertical transmission. Social interactions can thus be an important determinant of evolution for the molecular endosymbionts of bacteria. These results also identify an avenue of evolution that reduces proliferation of both antibiotic resistance genes and their bacterial hosts.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
62
|
Bacterial cooperation controlled by mobile elements: kin selection and infectivity are part of the same process. Heredity (Edinb) 2011. [DOI: 10.1038/hdy.2011.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
63
|
Giraud T, Shykoff JA. Bacterial cooperation controlled by mobile elements: kin selection versus infectivity. Heredity (Edinb) 2011; 107:277-8; author reply 279-81. [PMID: 21792223 DOI: 10.1038/hdy.2011.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
64
|
West SA, El Mouden C, Gardner A. Sixteen common misconceptions about the evolution of cooperation in humans. EVOL HUM BEHAV 2011. [DOI: 10.1016/j.evolhumbehav.2010.08.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Garbutt J, Bonsall MB, Wright DJ, Raymond B. Antagonistic competition moderates virulence in Bacillus thuringiensis. Ecol Lett 2011; 14:765-72. [DOI: 10.1111/j.1461-0248.2011.01638.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Svara F, Rankin DJ. The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 2011; 11:130. [PMID: 21595903 PMCID: PMC3118148 DOI: 10.1186/1471-2148-11-130] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 05/19/2011] [Indexed: 01/17/2023] Open
Abstract
Background Antibiotic resistance represents a significant public health problem. When resistance genes are mobile, being carried on plasmids or phages, their spread can be greatly accelerated. Plasmids in particular have been implicated in the spread of antibiotic resistance genes. However, the selective pressures which favour plasmid-carried resistance genes have not been fully established. Here we address this issue with mathematical models of plasmid dynamics in response to different antibiotic treatment regimes. Results We show that transmission of plasmids is a key factor influencing plasmid-borne antibiotic resistance, but the dosage and interval between treatments is also important. Our results also hold when plasmids carrying the resistance gene are in competition with other plasmids that do not carry the resistance gene. By altering the interval between antibiotic treatments, and the dosage of antibiotic, we show that different treatment regimes can select for either plasmid-carried, or chromosome-carried, resistance. Conclusions Our research addresses the effect of environmental variation on the evolution of plasmid-carried antibiotic resistance.
Collapse
Affiliation(s)
- Fabian Svara
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Building Y27, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
67
|
Abstract
A prominent hypothesis proposes that pathogen virulence evolves in large part due to a trade-off between infectiousness and damage to hosts. Other explanations emphasize how virulence evolves in response to competition among pathogens within hosts. Given the proliferation of theoretical possibilities, what best predicts how virulence evolves in real biological systems? Here, I show that virulence evolution in experimental populations of bacteria and self-transmissible plasmids is best explained by within-host competition. Plasmids evolved to severely reduce the fitness of their hosts even in the absence of uninfected cells. This result is inconsistent with the trade-off hypothesis, which predicts that under these conditions vertically transmitted pathogens would evolve to be less virulent. Plasmid virulence was strongly correlated with the ability to superinfect cells containing competing plasmid genotypes, suggesting a key role for within-host competition. When virulent genotypes became common, hosts evolved resistance to plasmid infection. These results show that the trade-off hypothesis can incorrectly predict virulence evolution when within-host interactions are neglected. They also show that symbioses between bacteria and plasmids can evolve to be surprisingly antagonistic.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
68
|
Abstract
It is often assumed that molecular systems are designed to maximize the competitive ability of the organism that carries them. In reality, natural selection acts on both cooperative and competitive phenotypes, across multiple scales of biological organization. Here I ask how the potential for social effects in evolution has influenced molecular systems. I discuss a range of phenotypes, from the selfish genetic elements that disrupt genomes, through metabolism, multicellularity and cancer, to behaviour and the organization of animal societies. I argue that the balance between cooperative and competitive evolution has shaped both form and function at the molecular scale.
Collapse
Affiliation(s)
- Kevin R Foster
- Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
69
|
Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) 2011; 106:1-10. [PMID: 20332804 PMCID: PMC3183850 DOI: 10.1038/hdy.2010.24] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 01/22/2023] Open
Abstract
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
70
|
Mc Ginty SE, Rankin DJ, Brown SP. Horizontal gene transfer and the evolution of bacterial cooperation. Evolution 2011; 65:21-32. [PMID: 20825481 PMCID: PMC3038327 DOI: 10.1111/j.1558-5646.2010.01121.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 08/10/2010] [Indexed: 12/21/2022]
Abstract
Bacteria frequently exhibit cooperative behaviors but cooperative strains are vulnerable to invasion by cheater strains that reap the benefits of cooperation but do not perform the cooperative behavior themselves. Bacterial genomes often contain mobile genetic elements such as plasmids. When a gene for cooperative behavior exists on a plasmid, cheaters can be forced to cooperate by infection with this plasmid, rescuing cooperation in a population in which mutation or migration has allowed cheaters to arise. Here we introduce a second plasmid that does not code for cooperation and show that the social dilemma repeats itself at the plasmid level in both within-patch and metapopulation scenarios, and under various scenarios of plasmid incompatibility. Our results suggest that although plasmid carriage of cooperative genes can provide a transient defense against defection in structured environments, plasmid and chromosomal defection remain the only stable strategies in an unstructured environment. We discuss our results in the light of recent bioinformatic evidence that cooperative genes are overrepresented on mobile elements.
Collapse
Affiliation(s)
- Sorcha E Mc Ginty
- Department of Biochemistry, University of Zurich, Building Y27, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
71
|
Rankin DJ, Bichsel M, Wagner A. Mobile DNA can drive lineage extinction in prokaryotic populations. J Evol Biol 2010; 23:2422-31. [PMID: 20860700 DOI: 10.1111/j.1420-9101.2010.02106.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Natural selection ultimately acts on genes and other DNA sequences. Adaptations that are good for the gene can have adverse effects at higher levels of organization, including the individual or the population. Mobile genetic elements illustrate this principle well, because they can self-replicate within a genome at a cost to their host. As they are costly and can be transmitted horizontally, mobile elements can be seen as genomic parasites. It has been suggested that mobile elements may cause the extinction of their host populations. In organisms with very large populations, such as most bacteria, individual selection is highly effective in purging genomes of deleterious elements, suggesting that extinction is unlikely. Here we investigate the conditions under which mobile DNA can drive bacterial lineages to extinction. We use a range of epidemiological and ecological models to show that harmful mobile DNA can invade, and drive populations to extinction, provided their transmission rate is high and that mobile element-induced mortality is not too high. Population extinction becomes more likely when there are more elements in the population. Even if elements are costly, extinction can still occur because of the combined effect of horizontal gene transfer, a mortality induced by mobile elements. Our study highlights the potential of mobile DNA to be selected at the population level, as well as at the individual level.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
72
|
Abstract
Hamilton's rule states that cooperation will evolve if the fitness cost to actors is less than the benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying assumptions, however, and does not accurately describe social evolution in organisms such as microbes where selection is both strong and nonadditive. We derived a generalization of Hamilton's rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection was driven by higher-order moments of population structure, not relatedness. These results provide an empirically testable cooperation principle applicable to both microbes and multicellular organisms and show how nonlinear interactions among cells insulate bacteria against cheaters.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
73
|
Watve MM, Dahanukar N, Watve MG. Sociobiological control of plasmid copy number in bacteria. PLoS One 2010; 5:e9328. [PMID: 20195362 PMCID: PMC2827543 DOI: 10.1371/journal.pone.0009328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/02/2010] [Indexed: 11/18/2022] Open
Abstract
All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers.
Collapse
Affiliation(s)
- Mukta M. Watve
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Neelesh Dahanukar
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Milind G. Watve
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
74
|
Queller DC, Strassmann JE. Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci 2010; 364:3143-55. [PMID: 19805423 DOI: 10.1098/rstb.2009.0095] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of organismality is a social process. All organisms originated from groups of simpler units that now show high cooperation among the parts and are nearly free of conflicts. We suggest that this near-unanimous cooperation be taken as the defining trait of organisms. Consistency then requires that we accept some unconventional organisms, including some social insect colonies, some microbial groups and viruses, a few sexual partnerships and a number of mutualistic associations. Whether we call these organisms or not, a major task is to explain such cooperative entities, and our survey suggests that many of the traits commonly used to define organisms are not essential. These non-essential traits include physical contiguity, indivisibility, clonality or high relatedness, development from a single cell, short-term and long-term genetic cotransmission, germ-soma separation and membership in the same species.
Collapse
Affiliation(s)
- David C Queller
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 777005, USA.
| | | |
Collapse
|
75
|
Ho Sui SJ, Fedynak A, Hsiao WWL, Langille MGI, Brinkman FSL. The association of virulence factors with genomic islands. PLoS One 2009; 4:e8094. [PMID: 19956607 PMCID: PMC2779486 DOI: 10.1371/journal.pone.0008094] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/07/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage. METHODOLOGY/PRINCIPAL FINDINGS We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p<1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more "offensive" functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study. CONCLUSIONS/SIGNIFICANCE This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. "Offensive" virulence factors, as opposed to host-interaction factors, may more often be a recently acquired trait (on an evolutionary time scale detected by GI analysis). Newly identified pathogen-associated genes warrant further study. We discuss the implications of these results, which cement the significant role of GIs in the evolution of many pathogens.
Collapse
Affiliation(s)
- Shannan J. Ho Sui
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amber Fedynak
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William W. L. Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Morgan G. I. Langille
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
76
|
Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc Lond B Biol Sci 2009; 364:3157-68. [PMID: 19805424 PMCID: PMC2781867 DOI: 10.1098/rstb.2009.0055] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.
Collapse
Affiliation(s)
- Sam P. Brown
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stuart A. West
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Stephen P. Diggle
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ashleigh S. Griffin
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
77
|
Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP, Rocha EPC. Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 2009; 19:1683-91. [PMID: 19800234 PMCID: PMC2773837 DOI: 10.1016/j.cub.2009.08.056] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/10/2009] [Accepted: 08/20/2009] [Indexed: 01/09/2023]
Abstract
Background Microbes engage in a remarkable array of cooperative behaviors, secreting shared proteins that are essential for foraging, shelter, microbial warfare, and virulence. These proteins are costly, rendering populations of cooperators vulnerable to exploitation by nonproducing cheaters arising by gene loss or migration. In such conditions, how can cooperation persist? Results Our model predicts that differential gene mobility drives intragenomic variation in investment in cooperative traits. More mobile loci generate stronger among-individual genetic correlations at these loci (higher relatedness) and thereby allow the maintenance of more cooperative traits via kin selection. By analyzing 21 Escherichia genomes, we confirm that genes coding for secreted proteins—the secretome—are very frequently lost and gained and are associated with mobile elements. We show that homologs of the secretome are overrepresented among human gut metagenomics samples, consistent with increased relatedness at secretome loci across multiple species. The biosynthetic cost of secreted proteins is shown to be under intense selective pressure, even more than for highly expressed proteins, consistent with a cost of cooperation driving social dilemmas. Finally, we demonstrate that mobile elements are in conflict with their chromosomal hosts over the chimeric ensemble's social strategy, with mobile elements enforcing cooperation on their otherwise selfish hosts via the cotransfer of secretome genes with “mafia strategy” addictive systems (toxin-antitoxin and restriction-modification). Conclusion Our analysis matches the predictions of our model suggesting that horizontal transfer promotes cooperation, as transmission increases local genetic relatedness at mobile loci and enforces cooperation on the resident genes. As a consequence, horizontal transfer promoted by agents such as plasmids, phages, or integrons drives microbial cooperation.
Collapse
|
78
|
Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, Powell C, Bajorek A, Myers DA, Dugatkin LA, Atlas RM. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc Biol Sci 2009; 276:3759-68. [PMID: 19656787 DOI: 10.1098/rspb.2009.0997] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbial systems have become the preferred testing grounds for experimental work on the evolution of traits that benefit other group members. This work, based on conceptual and theoretical models of frequency-dependent selection within populations, has proven fruitful in terms of understanding the dynamics of group beneficial or 'public goods' traits within species. Here, we expand the scope of microbial work on the evolution of group-beneficial traits to the case of multi-species communities, particularly those that affect human health. We examined whether beta-lactamase-producing Escherichia coli could protect ampicillin-sensitive cohorts of other species, particularly species that could cause human disease. Both beta-lactamase-secreting E. coli and, surprisingly, those engineered to retain it, allowed for survival of a large number of ampicillin-sensitive cohorts of Salmonella enterica serovar Typhimurium, including both laboratory and clinical isolates. The Salmonella survivors, however, remained sensitive to ampicillin when re-plated onto solid medium and there was no evidence of gene transfer. Salmonella survival did not even require direct physical contact with the resistant E. coli. The observed phenomenon appears to involve increased release of beta-lactamase from the E. coli when present with S. enterica. Significantly, these findings imply that resistant E. coli, that are not themselves pathogenic, may be exploited, even when they are normally selfish with respect to other E. coli. Thus, Salmonella can gain protection against antibiotics from E. coli without gene transfer, a phenomenon not previously known. As a consequence, antibiotic-resistant E. coli can play a decisive role in the survival of a species that causes disease and may thereby interfere with successful treatment.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Marco DE, Carbajal JP, Cannas S, Pérez-Arnedo R, Hidalgo-Perea Á, Olivares J, Ruiz-Sainz JE, Sanjuán J. An experimental and modelling exploration of the host-sanction hypothesis in legume–rhizobia mutualism. J Theor Biol 2009; 259:423-33. [DOI: 10.1016/j.jtbi.2009.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
|
80
|
Abstract
Cooperation is integral to much of biological life but can be threatened by selfish evolutionary strategies. Diverse cooperative traits have evolved among microbes, but particularly sophisticated forms of sociality have arisen in the myxobacteria, including group motility and multicellular fruiting body development. Myxobacterial cooperation has succeeded against socially destructive cheaters and can readily re-evolve from some socially defective genotypes. However, social harmony does not extend far. Spatially structured natural populations of the model species Myxococcus xanthus have fragmented into a large number of socially incompatible genotypes that exclude, exploit, and/or antagonize one another, including genetically similar neighbors. Here, we briefly review basic social evolution concepts as they pertain to microbes, discuss potential benefits of myxobacterial social traits, highlight recent empirical studies of social evolution in M. xanthus, and consider their implications for how myxobacterial cooperation and conflict evolve in the wild.
Collapse
Affiliation(s)
- Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
81
|
Abstract
Biofilms are densely packed communities of microbial cells that grow on surfaces and surround themselves with secreted polymers. Many bacterial species form biofilms, and their study has revealed them to be complex and diverse. The structural and physiological complexity of biofilms has led to the idea that they are coordinated and cooperative groups, analogous to multicellular organisms. We evaluate this idea by addressing the findings of microbiologists from the perspective of sociobiology, including theories of collective behavior (self-organization) and social evolution. This yields two main conclusions. First, the appearance of organization in biofilms can emerge without active coordination. That is, biofilm properties such as phenotypic differentiation, species stratification and channel formation do not necessarily require that cells communicate with one another using specialized signaling molecules. Second, while local cooperation among bacteria may often occur, the evolution of cooperation among all cells is unlikely for most biofilms. Strong conflict can arise among multiple species and strains in a biofilm, and spontaneous mutation can generate conflict even within biofilms initiated by genetically identical cells. Biofilms will typically result from a balance between competition and cooperation, and we argue that understanding this balance is central to building a complete and predictive model of biofilm formation.
Collapse
Affiliation(s)
- Carey D Nadell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
82
|
Abstract
Understanding how microbes gather into biofilm communities and maintain diversity remains one of the central questions of microbiology, requiring an understanding of microbes as communal rather then individual organisms. Phase variation plays an integral role in the formation of diverse phenotypes within biofilms. We propose a collective mechanism for phase variation based on gene transfer agents, and apply the theory to predict the population structure and growth dynamics of a biofilm. Our results describe quantitatively recent experiments, with the only adjustable parameter being the rate of intercellular horizontal gene transfer. Our approach derives from a more general picture for the emergence of cooperation between microbes.
Collapse
|
83
|
Slater FR, Bailey MJ, Tett AJ, Turner SL. Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol 2008; 66:3-13. [PMID: 18507680 DOI: 10.1111/j.1574-6941.2008.00505.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Plasmid-mediated horizontal gene transfer influences bacterial community structure and evolution. However, an understanding of the forces which dictate the fate of plasmids in bacterial populations remains elusive. This is in part due to the enormous diversity of plasmids, in terms of size, structure, transmission, evolutionary history and accessory phenotypes, coupled with the lack of a standard theoretical framework within which to investigate them. This review discusses how ecological factors, such as spatial structure and temporal fluctuations, shape both the population dynamics and the physical features of plasmids. Novel data indicate that larger plasmids are more likely to be harboured by hosts in complex environments. Plasmid size may therefore be determined by environmentally mediated fitness trade-offs. As the correlation between replicon size and complexity of environment is similar for plasmids and chromosomes, plasmids could be used as tractable tools to investigate the influence of ecological factors on chromosomes. Parallels are drawn between plasmids and bacterial facultative symbionts, including the evolution of some members of both groups to a more obligate relationship with their host. The similarity between the influences of ecological factors on plasmids and bacterial symbionts suggests that it may be appropriate to study plasmids within a classical ecological framework.
Collapse
|
84
|
Frequency-dependent advantages of plasmid carriage by Pseudomonas in homogeneous and spatially structured environments. ISME JOURNAL 2008; 1:92-5. [PMID: 18043617 DOI: 10.1038/ismej.2007.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conditions promoting the persistence of a plasmid carrying a trait that may be mutually beneficial to other cells in its vicinity were studied in structured and unstructured environments. A large plasmid encoding mercury resistance in Pseudomonas fluorescens was used, and the mercury concentration allowing invasion from rare for both plasmid-bearing and plasmid-free cells was determined for different initial inoculum densities in batch-culture structured (filter surface) and unstructured (mixed broth) environments. A range of mercury concentrations were found where both cell types could coexist, the regions being relatively similar in the two types of environment although density-dependent in the unstructured environment. The coexistence is explained in terms of frequency-dependent selection of the mutually beneficial mercury resistance trait, and the dynamics of bacterial growth under batch culture conditions. However, the region of coexistence was complicated by conjugation which increased plasmid spread in the mixed broth culture but not the structured environment.
Collapse
|
85
|
West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The Social Lives of Microbes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095740] [Citation(s) in RCA: 529] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stuart A. West
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| | - Stephen P. Diggle
- Institute of Infection, Immunity & Inflammation, Center for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| | - Angus Buckling
- Department of Zoology, Oxford University, Oxford OX1 3PS, United Kingdom;
| | - Andy Gardner
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
- St. John's College, Oxford University, Oxford OX1 3JP, United Kingdom;
| | - Ashleigh S. Griffin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| |
Collapse
|
86
|
Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS One 2007; 2:e1193. [PMID: 18030328 PMCID: PMC2075365 DOI: 10.1371/journal.pone.0001193] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 10/27/2007] [Indexed: 12/23/2022] Open
Abstract
Background Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. Methodology Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. Conclusions The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences.
Collapse
|
87
|
Abstract
We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.
Collapse
|
88
|
Smith J. A Gene’s‐Eye View of Symbiont Transmission. Am Nat 2007; 170:542-50. [PMID: 17891733 DOI: 10.1086/521236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 05/01/2007] [Indexed: 11/03/2022]
Abstract
Symbiotic associations between species are ubiquitous, but we only poorly understand why some symbioses evolve to be mutualistic and others to be parasitic. One prominent hypothesis holds that vertical transmission of symbionts from host parents to their offspring selects for symbionts that are benign or beneficial, while horizontal transmission of symbionts among unrelated hosts selects for symbionts that are less beneficial or outright harmful. A long-standing challenge to this hypothesis, however, is the existence of selfish genetic elements (SGEs). SGEs are passed exclusively from parent to offspring and are able to spread and persist in populations despite reducing the fitness of their hosts. Here I show that SGEs are in fact consistent with the transmission mode hypothesis if one measures transmission from the perspective of host genes instead of host organisms. Both meiotic drive genes and cytoplasmic sex ratio distorters require horizontal transmission, in the form of outbred sex, to spread as parasites. Transmission from parent to offpsring does not constrain SGEs to evolve toward mutualism. The gene-centered perspective I present here is applicable to symbioses at all levels of selection and brings closer together our understandings of cooperation within and between species.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
89
|
Ross-Gillespie A, Gardner A, West SA, Griffin AS. Frequency dependence and cooperation: theory and a test with bacteria. Am Nat 2007; 170:331-42. [PMID: 17879185 DOI: 10.1086/519860] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 04/23/2007] [Indexed: 11/03/2022]
Abstract
Hamilton's inclusive fitness theory provides a leading explanation for the problem of cooperation. A general result from inclusive fitness theory is that, except under restrictive conditions, cooperation should not be subject to frequency-dependent selection. However, several recent studies in microbial systems have demonstrated that the relative fitness of cheaters, which do not cooperate, is greater when cheaters are rarer. Here we demonstrate theoretically that such frequency-dependent selection can occur in microbes when there is (1) sufficient population structuring or (2) an association between the level of cooperation and total population growth. We test prediction (2) and its underlying assumption, using the pathogenic bacterium Pseudomonas aeruginosa, by competing strains that produce iron-scavenging siderophore molecules (cooperators) with nonproducers (cheaters) at various ratios, under conditions that minimize population structuring. We found that both the relative fitness of cheaters and the productivity of the mixed culture were significantly negatively related to initial cheater frequency. Furthermore, when the period of population growth was experimentally shortened, the strength of frequency dependence was reduced. More generally, we argue that frequency-dependent selection on cooperative traits may be more common in microbes than in metazoans because strong selection, structuring, and cooperation-dependent growth will be more common in microbial populations.
Collapse
Affiliation(s)
- Adin Ross-Gillespie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|
90
|
Yahara K, Horie R, Kobayashi I, Sasaki A. Evolution of DNA double-strand break repair by gene conversion: coevolution between a phage and a restriction-modification system. Genetics 2007; 176:513-26. [PMID: 17409094 PMCID: PMC1893019 DOI: 10.1534/genetics.106.056150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on b(1)/b(0), the ratio of the burst size b(1) under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size b(0). It was not until this effect was taken into account that the evolutionary advantage of DNA repair became apparent.
Collapse
Affiliation(s)
- Koji Yahara
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
91
|
Abedon ST, LeJeune JT. Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online 2007; 1:97-110. [PMID: 19325857 PMCID: PMC2658872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study considers gene location within bacteria as a function of genetic element mobility. Our emphasis is on prophage encoding of bacterial virulence factors (VFs). At least four mechanisms potentially contribute to phage encoding of bacterial VFs: (i) Enhanced gene mobility could result in greater VF gene representation within bacterial populations. We question, though, why certain genes but not others might benefit from this mobility. (ii) Epistatic interactions-between VF genes and phage genes that enhance VF utility to bacteria-could maintain phage genes via selection acting on individual, VF-expressing bacteria. However, is this mechanism sufficient to maintain the rest of phage genomes or, without gene co-regulation, even genetic linkage between phage and VF genes? (iii) Phage could amplify VFs during disease progression by carrying them to otherwise commensal bacteria colocated within the same environment. However, lytic phage kill bacteria, thus requiring assumptions of inclusive fitness within bacterial populations to explain retention of phage-mediated VF amplification for the sake of bacterial utility. Finally, (iv) phage-encoded VFs could enhance phage Darwinian fitness, particularly by acting as ecosystem-modifying agents. That is, VF-supplied nutrients could enhance phage growth by increasing the density or by improving the physiology of phage-susceptible bacteria. Alternatively, VF-mediated break down of diffusion-inhibiting spatial structure found within the multicellular bodies of host organisms could augment phage dissemination to new bacteria or to environments. Such phage-fitness enhancing mechanisms could apply particularly given VF expression within microbiologically heterogeneous environments, ie, ones where phage have some reasonable potential to acquire phage-susceptible bacteria.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, Ohio State University, Mansfield, Ohio,Correspondence: Stephen T Abedon,
| | - Jeffrey T. LeJeune
- Food Animal Health Research Program, Ohio State University, Wooster, Ohio
| |
Collapse
|
92
|
Willms AR, Roughan PD, Heinemann JA. Static recipient cells as reservoirs of antibiotic resistance during antibiotic therapy. Theor Popul Biol 2006; 70:436-51. [PMID: 16723146 DOI: 10.1016/j.tpb.2006.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/28/2006] [Accepted: 04/11/2006] [Indexed: 11/25/2022]
Abstract
How does taking the full course of antibiotics prevent antibiotic resistant bacteria establishing in patients? We address this question by testing the possibility that horizontal/lateral gene transfer (HGT) is critical for the accumulation of the antibiotic-resistance phenotype while bacteria are under antibiotic stress. Most antibiotics prevent bacterial reproduction, some by preventing de novo gene expression. Nevertheless, in some cases and at some concentrations, the effects of most antibiotics on gene expression may not be irreversible. If the stress is removed before the bacteria are cleared from the patients by normal turnover, gene expression restarts, converting the residual population to phenotypic resistance. Using mathematical models we investigate how static recipients of resistance genes carried by plasmids accumulate resistance genes, and how specifically an environment cycling between presence and absence of the antibiotic uniquely favors the evolution of horizontally mobile resistance genes. We found that the presence of static recipients can substantially increase the persistence of the plasmid and that this effect is most pronounced when the cost of carriage of the plasmid decreases the cell's growth rate by as much as a half or more. In addition, plasmid persistence can be enhanced even when conjugation rates are as low as half the rate required for the plasmid to persist as a parasite on its own.
Collapse
Affiliation(s)
- Allan R Willms
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada.
| | | | | |
Collapse
|
93
|
Abstract
Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.
Collapse
Affiliation(s)
- Stuart A West
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JT, UK.
| | | | | | | |
Collapse
|
94
|
Siddaramappa S, Duncan AJ, Brettin T, Inzana TJ. Comparative analyses of two cryptic plasmids from Haemophilus somnus (Histophilus somni). Plasmid 2006; 55:227-34. [PMID: 16443273 DOI: 10.1016/j.plasmid.2005.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 11/02/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Haemophilus somnus is an opportunistic bacterial pathogen capable of causing pneumonia, septicemia, and other systemic infections in bovines. An H. somnus isolate from bovine abortion (strain 649) was found to carry a approximately 1.3 kb plasmid (pHS649) that contained partial homology to two previously sequenced Haemophilus/Histophilus plasmids by BLAST analyses. Sequence analysis of pHS649 identified a putative RepA protein with 48% similarity to the RepA protein of Escherichia coli plasmid pKL1. A approximately 5 kb plasmid (pHS129) from H. somnus preputial isolate 129Pt was also sequenced and found to encode two copies of a putative RepB protein. Whereas pHS649 stably replicated in E. coli DH5alpha, pHS129 did not. Genetic relatedness and possible replication mechanisms of these plasmids are described.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
95
|
Dugatkin LA, Perlin M, Lucas JS, Atlas R. Group-beneficial traits, frequency-dependent selection and genotypic diversity: an antibiotic resistance paradigm. Proc Biol Sci 2005; 272:79-83. [PMID: 15875573 PMCID: PMC1634946 DOI: 10.1098/rspb.2004.2916] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of group-beneficial traits potentially allows the survival of 'cheaters' that would otherwise be unfit. Here we describe experimental work on group-beneficial traits and the consequences of frequency-dependent selection in the context of bacterial antibiotic resistance. We constructed a 'self-limited antibiotic resistant' (SLAR) strain of Escherichia coli in which a TEM-1 beta-lactamase was anchored to the inner membrane. In pairwise competition experiments between the SLAR strain and ampicillin-sensitive strains, only the SLAR strain survived in the presence of ampicillin. We also constructed a 'shared antibiotic resistant' (SAR) strain in which TEM-1 beta-lactamase protected both the SAR strain and nearby sensitive cells, thus acting as a model for a genetically defined group-beneficial trait. In pairwise competition experiments of the SAR strain against two different sensitive strains of E. coli, we found that the sensitive strains maintained themselves at frequencies of 5-12% in the presence of ampicillin. When the relative cost of the SAR strain was lowered, its equilibrial frequency rose. Sensitive strains also arose from pure cultures of the SAR strain. In these cases, too, the sensitive 'cheaters' were maintained in ampicillin at frequencies comparable to those observed in the previous competitions. These results suggest that traits which benefit other group members can permit survival of genotypes that otherwise would be eliminated by natural selection, and allow the maintenance of greater genetic variation upon which evolution can operate.
Collapse
Affiliation(s)
- Lee Alan Dugatkin
- Department of Biology, University of Louisville, Louisville, KY 40208, USA.
| | | | | | | |
Collapse
|
96
|
Schuiling GA. Cancer: a reproductive strategy of "ultra-selfish" genes? J Psychosom Obstet Gynaecol 2004; 25:313-7. [PMID: 15715030 DOI: 10.1080/01674820400024448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A hypothesis is presented in which the process of "malignant transformation" which ultimately results in the rapidly dividing tumor(s)(cells) causing "cancer", is regarded as an evolved reproductive strategy of "ultra-selfish" (proto-)(onco-) genes, already present in the genome, or introduced by a virus.
Collapse
Affiliation(s)
- G A Schuiling
- Faculty of Medical Sciences, A Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
97
|
Abstract
In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
98
|
Rainey PB, Rainey K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 2003; 425:72-4. [PMID: 12955142 DOI: 10.1038/nature01906] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Accepted: 07/11/2003] [Indexed: 11/09/2022]
Abstract
A fundamental problem in biology is the evolutionary transition from single cells to multicellular life forms. During this transition the unit of selection shifts from individual cells to groups of cooperating cells. Although there is much theory, there are few empirical studies. Here we describe an evolutionary transition that occurs in experimental populations of Pseudomonas fluorescens propagated in a spatially heterogeneous environment. Cooperating groups are formed by over-production of an adhesive polymer, which causes the interests of individuals to align with those of the group. The costs and benefits of cooperation, plus evolutionary susceptibility to defecting genotypes, were analysed to determine conformation to theory. Cooperation was costly to individuals, but beneficial to the group. Defecting genotypes evolved in populations founded by the cooperating type and were fitter in the presence of this type than in its absence. In the short term, defectors sabotaged the viability of the group; but these findings nevertheless show that transitions to higher orders of complexity are readily achievable, provide insights into the selective conditions, and facilitate experimental analysis of the evolution of individuality.
Collapse
Affiliation(s)
- Paul B Rainey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | |
Collapse
|
99
|
|
100
|
Abstract
Classical models of virulence evolution conclude that the increased competition favoured by multiple infection will select for increasing consumption and deterioration of the host resource, or 'virulence'. However, recent empirical and theoretical studies suggest that this view of virulence has some shortcomings. Here, we argue that the evolutionary consequences of multiple infection depend critically on whether the exploitation rate of an individual parasite is governed directly by the behaviour of the individual, or whether it is limited by the collective behaviour of the coinfecting group. We illustrate that, depending on the mechanistic details of exploitation, multiple infection can select for reduced virulence.
Collapse
Affiliation(s)
- Sam P Brown
- Génétique et Environnement, ISEM, University of Montpellier II, Place Eugene Bataillon, 34095, Montpellier, France.
| | | | | |
Collapse
|