51
|
|
52
|
Pokora W, Aksmann A, Baścik-Remisiewicz A, Dettlaff-Pokora A, Rykaczewski M, Gappa M, Tukaj Z. Changes in nitric oxide/hydrogen peroxide content and cell cycle progression: Study with synchronized cultures of green alga Chlamydomonas reinhardtii. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:84-93. [PMID: 27894022 DOI: 10.1016/j.jplph.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 05/06/2023]
Abstract
The present study aimed to evaluate the possible relationship between the changes in hydrogen peroxide (H2O2) and nitric oxide (NO) content and the course of growth and reproductive processes of the cell cycle of Chlamydomonas reinhardtii. The peak of H2O2 observed at the beginning of the cell cycle was found to originate from Fe-SOD and Mn-SODchl. activity and result from the alternation in the photosynthetic processes caused by the dark-to-light transition of daughter cells. A rapid increase in NO concentration, observed before the light-to-dark cell transition, originated from NR and NIR activity and was followed by a photosynthesis-independent, Mn-SODchl.-mediated increases in H2O2 production. This H2O2 peak overlapped the beginning of Chlamydomonas cell division, which was indicated by a profile of CYCs and CDKs characteristic of cells' passage through the G1/S and S/M checkpoints. Taken together, our results show that there is a clear relationship between the course of the Chlamydomonas cell cycle and typical changes in the H2O2/NO ratio, as well as changes in expression and activity of enzymes involved in generation and scavenging of these signaling molecules.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Max Rykaczewski
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Gappa
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
53
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
54
|
Morse D, Daoust P, Benribague S. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates. Protist 2016; 167:610-621. [PMID: 27816812 DOI: 10.1016/j.protis.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2.
| | - Philip Daoust
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2
| | - Siham Benribague
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H1X 2B2
| |
Collapse
|
55
|
A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Sci Rep 2016; 6:29848. [PMID: 27432466 PMCID: PMC4949464 DOI: 10.1038/srep29848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
A number of phloem-limited viruses induce the development of tumours (enations) in the veins of host plants, but the relevance of tumour induction to the life cycle of those viruses is unclear. In this study, we performed molecular and structural analyses of tumours induced by rice black-streaked dwarf virus (RBSDV, genus Fijivirus) infection in maize plants. The transcript level of the maize cdc2 gene, which regulates the cell cycle, was highly elevated in tumour tissues. Two-dimensional electrophoresis identified 25 cellular proteins with altered accumulation in the tumour tissues. These proteins are involved in various metabolic pathways, including photosynthesis, redox, energy pathways and amino acid synthesis. Histological analysis indicated that the tumours predominantly originated from hyperplastic growth of phloem, but those neoplastic tissues have irregular structures and cell arrangements. Immunodetection assays and electron microscopy observations indicated that in the shoots, RBSDV is confined to phloem and tumour regions and that virus multiplication actively occurs in the tumour tissue, as indicated by the high accumulation of non-structural proteins and formation of viroplasms in the tumour cells. Thus, the induction of tumours by RBSDV infection provides a larger environment that is favourable for virus propagation in the host plant.
Collapse
|
56
|
Garg SG, Martin WF. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. Genome Biol Evol 2016; 8:1950-70. [PMID: 27345956 PMCID: PMC5390555 DOI: 10.1093/gbe/evw136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically evolving lineages viable by rescuing the incipient eukaryotic lineage from Muller's ratchet. The origin of mitochondria was, in this view, the decisive incident that precipitated symbiosis-specific cell biological problems, the solutions to which were the salient features that distinguish eukaryotes from prokaryotes: A nuclear membrane, energetically affordable ATP-dependent protein-protein interactions in the cytosol, and a cell cycle involving reduction division and reciprocal recombination (sex).
Collapse
Affiliation(s)
- Sriram G Garg
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
57
|
Medina EM, Turner JJ, Gordân R, Skotheim JM, Buchler NE. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. eLife 2016; 5. [PMID: 27162172 PMCID: PMC4862756 DOI: 10.7554/elife.09492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast. DOI:http://dx.doi.org/10.7554/eLife.09492.001 Living cells grow and divide with remarkable precision to ensure that their genetic material is faithfully duplicated and distributed equally to the newly formed daughter cells. This precision is achieved through a series of steps known as the cell cycle. The cell cycle is ancient and conserved across all Eukaryotes, including plants, animals and fungi. However, some of the core proteins present in animals and fungi are unrelated. This raises the question as to how a drastic change could have occurred and been tolerated over evolution. In animals and plants, a protein called E2F controls the expression of genes that are needed to begin the cell cycle. In most fungi, an equivalent protein called SBF performs the same role as E2F, but the two proteins are very different and do not appear to share a common ancestor. This is unexpected given that fungi and animals are more closely related to one another than either is to plants. Medina et al. searched the genomes of many animals, fungi, plants, algae, and their closest relatives for genes that encoded proteins like E2F and SBF. SBF-like proteins were only found in fungi, yet some fungal groups had cell cycle regulators like those found in animals. Zoosporic fungi, which diverged early from the fungal ancestor, had both SBF- and E2F-like proteins, while many fungi later lost E2F during evolution. So how did fungi acquire SBF? Medina et al. observed that part of the SBF protein is similar to proteins found in many viruses. The broad distribution of these viral SBF-like proteins suggests that they arose first in viruses, and a fungal ancestor acquired one such protein during a viral infection. As SBF and E2F bind similar DNA sequences, Medina et al. hypothesized that this viral SBF hijacked control of the cell cycle in the fungal ancestor by controlling expression of genes that were originally controlled only by E2F. In support of this idea, experiments showed that many E2F binding sites in modern genes are also SBF binding sites, and that E2F sites can substitute for SBF sites in SBF-controlled genes. Future experiments in zoosporic fungi, which have animal-like and fungal-like features, would provide a glimpse of how a fungal ancestor may have used both SBF and E2F. These experiments may also reveal why most fungi have retained the newer SBF but lost the ancestral and widely conserved E2F protein. DOI:http://dx.doi.org/10.7554/eLife.09492.002
Collapse
Affiliation(s)
- Edgar M Medina
- Department of Biology, Duke University, Durham, United States.,Center for Genomic and Computational Biology, Duke University, Durham, United States
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, United States.,Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, United States.,Center for Genomic and Computational Biology, Duke University, Durham, United States
| |
Collapse
|
58
|
Li Y, Liu D, López-Paz C, Olson BJ, Umen JG. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife 2016; 5:e10767. [PMID: 27015111 PMCID: PMC4841777 DOI: 10.7554/elife.10767] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/24/2016] [Indexed: 01/04/2023] Open
Abstract
Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI:http://dx.doi.org/10.7554/eLife.10767.001 Most cells are programmed to maintain a certain size. This property, known as size control, is achieved by balancing growth and division, such that a cell will only divide after it reaches a certain size. However, and despite years of research, it is largely unknown how cells sense their size (or growth) to be able to divide accordingly. One theory proposes that there is a “sizer” protein inside cells, and that cells measure the abundance of this protein and use it to link cell size to the process of division. However, the existence of such a protein remained unproven. Li, Liu et al. have now used the cells of the green alga Chlamydomonas to identify a candidate sizer protein. Chlamydomonas cells, like many other algae, can grow to become very large mother cells that then divide one or more times in succession to produce many daughter cells. Larger mother cells undergo more divisions than smaller mother cells in order to produce daughter cells of a correct size. Using a range of genetic and biochemical techniques, Li, Liu et al. identified a protein that is produced in Chlamydomonas cells just before they begin to divide. Larger mother cells contain more of this protein than smaller cells and the protein encourages cells to divide. For example, mutant cells that lack this protein divided too few times, while cells that produce too much of it divided too many times. The protein, called CDKG1, belongs to a family of proteins that regulate cell division in many organisms. CDKG1 is a kinase – an enzyme that alters the activity of other proteins by adding a phosphate group on to them. In Chlamydomonas, CDKG1 couples cell size to cell division by altering the activity of an important protein called the retinoblastoma-related protein that controls cell division in numerous organisms. This protein is also frequently disrupted in cancers in humans. These findings shed new light on a molecular pathway for size control. Future work will need to determine how the accumulation of CDKG1 links to the size of a mother cell and how it is inactivated once daughter cells reach the appropriate size. DOI:http://dx.doi.org/10.7554/eLife.10767.002
Collapse
Affiliation(s)
- Yubing Li
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Plant Molecular and Cell Biology Program, the Horticultural and Plant Science Department, University of Florida, Gainesville, United States
| | - Dianyi Liu
- Donald Danforth Plant Science Center, St. Louis, United States
| | - Cristina López-Paz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Donald Danforth Plant Science Center, St. Louis, United States
| | - Bradley Jsc Olson
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - James G Umen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Donald Danforth Plant Science Center, St. Louis, United States
| |
Collapse
|
59
|
Barr AR, Heldt FS, Zhang T, Bakal C, Novák B. A Dynamical Framework for the All-or-None G1/S Transition. Cell Syst 2016; 2:27-37. [PMID: 27136687 PMCID: PMC4802413 DOI: 10.1016/j.cels.2016.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023]
Abstract
The transition from G1 into DNA replication (S phase) is an emergent behavior resulting from dynamic and complex interactions between cyclin-dependent kinases (Cdks), Cdk inhibitors (CKIs), and the anaphase-promoting complex/cyclosome (APC/C). Understanding the cellular decision to commit to S phase requires a quantitative description of these interactions. We apply quantitative imaging of single human cells to track the expression of G1/S regulators and use these data to parametrize a stochastic mathematical model of the G1/S transition. We show that a rapid, proteolytic, double-negative feedback loop between Cdk2:Cyclin and the Cdk inhibitor p27(Kip1) drives a switch-like entry into S phase. Furthermore, our model predicts that increasing Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S transition, which we validate using Emi1 knockdown and live imaging of G1/S reporters. This work provides insight into the general design principles of the signaling networks governing the temporally abrupt transitions between cell-cycle phases.
Collapse
Affiliation(s)
- Alexis R Barr
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Frank S Heldt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tongli Zhang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
60
|
Thurlings I, de Bruin A. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression. Methods Mol Biol 2016; 1342:71-88. [PMID: 26254918 DOI: 10.1007/978-1-4939-2957-3_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.
Collapse
Affiliation(s)
- Ingrid Thurlings
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | | |
Collapse
|
61
|
Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling. Genome Biol Evol 2015; 8:109-25. [PMID: 26615215 PMCID: PMC4758236 DOI: 10.1093/gbe/evv237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| | - Pat Minx
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Narie Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Roger W Anderson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Marianne Bénard
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR-7622, Paris, France
| | - Kyle K Biggar
- Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nicolas E Buchler
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham Department of Physics, Duke University, Durham
| | - Ralf Bundschuh
- Department of Physics and Center for RNA Biology, The Ohio State University, Columbus Department of Chemistry & Biochemistry, The Ohio State University, Columbus Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus
| | - Xiao Chen
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Catrina Fronick
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Georg Golderer
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Niels Jahn
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Laura F Landweber
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Chrystelle Maric
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Dennis Miller
- The University of Texas at Dallas, Biological Sciences, Richardson
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rob Peace
- Carleton University, Ottawa, Ontario, Canada
| | - Gérard Pierron
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Taeko Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | | | - Michael Schleicher
- Institute for Anatomy III / Cell Biology, BioMedCenter, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Reema Singh
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Spaller
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Takamasa Suzuki
- Department of Biological Sciences, Graduate School of Science and JST ERATO Higashiyama Live-holonics Project, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Ernst R Werner
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Thomas Winckler
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Wolfgang Marwan
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
62
|
Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes. PLoS Pathog 2015; 11:e1005273. [PMID: 26565797 PMCID: PMC4643991 DOI: 10.1371/journal.ppat.1005273] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022] Open
Abstract
Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. The malaria parasite is a single-celled organism that multiplies asexually in a non-canonical way in both vertebrate host and mosquito vector. In the mosquito midgut, atypical cell division occurs in oocysts, where repeated nuclear division (endomitosis) precedes cell division, which then gives rise to many sporozoites in a process known as sporogony. The molecular mechanisms controlling this process are poorly understood. In many model organisms including mouse and yeast cells the cell cycle is regulated by members of the cyclin protein family, but the role of this family in the malaria parasite is unknown. Here, we show that there are only three cyclin genes and investigate the function of the single P-type cyclin (CYC3) in the rodent malaria parasite, Plasmodium berghei. We show that CYC3 has a cytoplasmic and nuclear localisation throughout most of the parasite lifecycle and by gene deletion we demonstrate that CYC3 is important for normal oocyst development, maturation and sporozoite formation. Moreover, we show that deletion of cyc3 affects the transcription of genes required for cell signalling and oocyst development. The data suggest that CYC3 modulates asexual multiplication in oocysts and plays a vital role in parasite development in the mosquito.
Collapse
|
63
|
de Mendoza A, Suga H, Permanyer J, Irimia M, Ruiz-Trillo I. Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals. eLife 2015; 4:e08904. [PMID: 26465111 PMCID: PMC4739763 DOI: 10.7554/elife.08904] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-type specification through differential genome regulation is a hallmark of complex multicellularity. However, it remains unclear how this process evolved during the transition from unicellular to multicellular organisms. To address this question, we investigated transcriptional dynamics in the ichthyosporean Creolimax fragrantissima, a relative of animals that undergoes coenocytic development. We find that Creolimax utilizes dynamic regulation of alternative splicing, long inter-genic non-coding RNAs and co-regulated gene modules associated with animal multicellularity in a cell-type specific manner. Moreover, our study suggests that the different cell types of the three closest animal relatives (ichthyosporeans, filastereans and choanoflagellates) are the product of lineage-specific innovations. Additionally, a proteomic survey of the secretome reveals adaptations to a fungal-like lifestyle. In summary, the diversity of cell types among protistan relatives of animals and their complex genome regulation demonstrates that the last unicellular ancestor of animals was already capable of elaborate specification of cell types. DOI:http://dx.doi.org/10.7554/eLife.08904.001 All living animals are descended from a single-celled ancestor, and understanding how these ancestors became the first multicellular animals remains a major challenge in the field of evolutionary biology. An early breakthrough towards this goal was the realization that, even though they’re mostly single-celled organisms, the closest living relatives of animals share most of the basic gene toolkit that animals use to support their multicellular lifestyles. This shared toolkit also includes the genes that allow each specialized cell type in an animal (for example, a skin cell or liver cell) to express the subset of genes that it needs to fulfil its specific role. Discovering how the single-celled relatives of animals regulate these and other “multicellularity-related” genes during their life cycles is the next crucial step towards understanding how animals became multicellular. Creolimax fragrantissima is a single-celled relative of animals. One stage in this organism’s life cycle involves its nucleus (which contains its genetic material) replicating multiple times without the cell itself dividing. After this stage of development, new cells are formed, each receiving with a single nucleus, and released to live freely in the environment. Characterizing how C. fragrantissima regulates which genes are expressed during these two very different stages of development could shed new light on how multicellular animals evolved to regulate their genes in specific cell types. However, little is known about these processes in C. fragrantissima. Now, de Mendoza et al. have both sequenced C. fragrantissima’s genome and analysed which genes are expressed during the stages of its life cycle. This analysis reveals that this organism regulates its gene expression in several ways that are more commonly associated with gene regulation in multicellular animals. Furthermore, when compared to two other living relatives of animals that have brief multicellular stages in their life cycles, de Mendoza et al. found that the three organisms expressed similar genes during these similar life cycle stages. Furthermore, like fungi, C. fragrantissima digests its food externally and then absorbs the nutrients. Using a range of techniques, de Mendoza et al. identified the proteins involved in these processes and discovered that many had evolved independently from their counterparts in fungi. Furthermore, in some cases, the genes for these proteins had actually been acquired from bacteria via a process called lateral gene transfer. Together these findings suggest that it was likely that the last single-celled ancestor of multicellular animals already had the biological ability to create different cell types. Understanding if the cell types found in single-celled species resemble cell types from simple animals, such as sponges and comb jellies, at a molecular level is the next step towards determining what the ancestor of living animals looked like. DOI:http://dx.doi.org/10.7554/eLife.08904.002
Collapse
Affiliation(s)
- Alex de Mendoza
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | - Hiroshi Suga
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain.,Prefectural University of Hiroshima, Shobara, Japan
| | - Jon Permanyer
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Irimia
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
64
|
Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez MDLP, Álvarez-Buylla ER. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle. PLoS Comput Biol 2015; 11:e1004486. [PMID: 26340681 PMCID: PMC4560428 DOI: 10.1371/journal.pcbi.1004486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. In multicellular organisms, cells undergo a cyclic behavior of DNA duplication and delivery of a copy to daughter cells during cell division. In each of the main cell-cycle (CC) stages different sets of proteins are active and genes are expressed. Understanding how such cycling cellular behavior emerges and is robustly maintained in the face of changing developmental and environmental conditions, remains a fundamental challenge of biology. The molecular components that cycle through DNA duplication and citokinesis are interconnected in a complex regulatory network. Several models of such network have been proposed, although the regulatory network that robustly recovers a limit-cycle steady state that resembles the behavior of CC molecular components has been recovered only in a few cases, and no comprehensive model exists for plants. In this paper we used the plant Arabidopsis thaliana, as a study system to propose a core regulatory network to recover a cyclic attractor that mimics the oscillatory behavior of the key CC components. Our analyses show that the proposed GRN model is robust to transient alterations, and is validated with the loss- and gain-of-function mutants of the CC components. The interactions proposed for Arabidopsis thaliana CC can inspire predictions for further uncovering regulatory motifs in the CC of other organisms including human.
Collapse
Affiliation(s)
- Elizabeth Ortiz-Gutiérrez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Karla García-Cruz
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Aaron Castillo
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - María de la Paz Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| |
Collapse
|
65
|
Mueller RL. Genome Biology and the Evolution of Cell-Size Diversity. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019125. [PMID: 26254312 DOI: 10.1101/cshperspect.a019125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell size is highly variable among different species across the Tree of Life. For decades, biologists have generated hypotheses to explain this variation, in many cases, drawing on the correlations that exist among cell size, genome size, nucleus size, and various physiological and developmental parameters. In recent years, our understanding of the molecular processes that generate variation in genome size over evolutionary time, as well as the processes that maintain homeostasis in cell size over ontogenetic time, has increased dramatically. The goal of this article is to highlight how information from these fields can be integrated to generate new hypotheses to explain cell-size diversity.
Collapse
|
66
|
Abstract
Commonalities, as well as lineage-specific differences among bacteria, fungi, plants, and animals, are reviewed in the context of (1) the coordination of cell growth, (2) the flow of mass and energy affecting the physiological status of cells, (3) cytoskeletal dynamics during cell division, and (4) the coordination of cell size in multicellular organs and organisms. A comparative approach reveals that similar mechanisms are used to gauge and regulate cell size and proliferation, and shows that these mechanisms share similar modules to measure cell size, cycle status, competence, and number, as well as ploidy levels, nutrient availability, and other variables affecting cell growth. However, this approach also reveals that these modules often use nonhomologous subsystems when viewed at modular or genomic levels; that is, different lineages have evolved functionally analogous, but not genomically homologous, ways of either sensing or regulating cell size and growth, in much the same way that multicellularity has evolved in different lineages using analogous developmental modules.
Collapse
|
67
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
68
|
Ishikawa M, Hasebe M. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2015; 128:399-405. [PMID: 25801272 DOI: 10.1007/s10265-015-0713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Differentiated cells are in a non-dividing, quiescent state, but some differentiated cells can reenter the cell cycle in response to appropriate stimuli. Quiescent cells are generally arrested at the G0/G1 phase, reenter the cell cycle, and progress to the S phase to replicate their genomic DNA. On the other hand, some types of cells are arrested at the different phase and reenter the cell cycle from there. In the moss Physcomitrella patens, the differentiated leaf cells of gametophores formed in the haploid generation contain approximately 2C DNA content, and DNA synthesis is necessary for reentry into the cell cycle, which is suggested to be arrested at late S phase. Here we review various cell-division reactivation processes in which cells reenter the cell cycle from the late S phase, and discuss possible mechanisms of such unusual cell cycle reentries with special emphasis on Physcomitrella.
Collapse
Affiliation(s)
- Masaki Ishikawa
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan,
| | | |
Collapse
|
69
|
Weinstein N, Ortiz-Gutiérrez E, Muñoz S, Rosenblueth DA, Álvarez-Buylla ER, Mendoza L. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva. BMC Bioinformatics 2015; 16:81. [PMID: 25884811 PMCID: PMC4367908 DOI: 10.1186/s12859-015-0498-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. RESULTS Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. CONCLUSIONS Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.
Collapse
Affiliation(s)
- Nathan Weinstein
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elizabeth Ortiz-Gutiérrez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Stalin Muñoz
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
| | - David A Rosenblueth
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| |
Collapse
|
70
|
Tolerance of deregulated G1/S transcription depends on critical G1/S regulon genes to prevent catastrophic genome instability. Cell Rep 2014; 9:2279-89. [PMID: 25533348 DOI: 10.1016/j.celrep.2014.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 09/21/2014] [Accepted: 11/24/2014] [Indexed: 01/06/2023] Open
Abstract
Expression of a G1/S regulon of genes that are required for DNA replication is a ubiquitous mechanism for controlling cell proliferation; moreover, the pathological deregulated expression of E2F-regulated G1/S genes is found in every type of cancer. Cellular tolerance of deregulated G1/S transcription is surprising because this regulon includes many dosage-sensitive proteins. Here, we used the fission yeast Schizosaccharomyces pombe to investigate this issue. We report that deregulating the MBF G1/S regulon by eliminating the Nrm1 corepressor increases replication errors. Homology-directed repair proteins, including MBF-regulated Ctp1(CtIP), are essential to prevent catastrophic genome instability. Surprisingly, the normally inconsequential MBF-regulated S-phase cyclin Cig2 also becomes essential in the absence of Nrm1. This requirement was traced to cyclin-dependent kinase inhibition of the MBF-regulated Cdc18(Cdc6) replication origin-licensing factor. Collectively, these results establish that, although deregulation of G1/S transcription is well tolerated by cells, nonessential G1/S target genes become crucial for preventing catastrophic genome instability.
Collapse
|
71
|
Abstract
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.
Collapse
|
72
|
Howard CJ, Hanson-Smith V, Kennedy KJ, Miller CJ, Lou HJ, Johnson AD, Turk BE, Holt LJ. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife 2014; 3:e04126. [PMID: 25310241 PMCID: PMC4228266 DOI: 10.7554/elife.04126] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/09/2014] [Indexed: 01/02/2023] Open
Abstract
Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Kristopher J Kennedy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chad J Miller
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Liam J Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
73
|
Tulin F, Cross FR. A microbial avenue to cell cycle control in the plant superkingdom. THE PLANT CELL 2014; 26:4019-38. [PMID: 25336509 PMCID: PMC4247570 DOI: 10.1105/tpc.114.129312] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/25/2014] [Indexed: 05/22/2023]
Abstract
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.
Collapse
Affiliation(s)
- Frej Tulin
- The Rockefeller University, New York, New York 10065
| | | |
Collapse
|
74
|
Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock. Fungal Genet Biol 2014; 71:52-7. [PMID: 25239547 DOI: 10.1016/j.fgb.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022]
Abstract
Budding and fission yeast pioneered uncovering molecular mechanisms of eukaryotic cell division cycles. However, they do not possess canonical circadian clock machinery that regulates physiological processes with a period of about 24h. On the other hand, Neurospora crassa played a critical role in elucidating molecular mechanisms of circadian rhythms, but have not been utilized frequently for cell cycle studies. Recent findings demonstrate that there exists a conserved coupling between the cell cycle and the circadian clock from N.crassa to Mus musculus, which poses Neurospora as an ideal model organism to investigate molecular mechanisms and emerging behavior of the coupled network of the cell cycle and circadian rhythms. In this review, we briefly describe generic eukaryotic cell cycle regulation focusing on G1/S and G2/M transitions, and highlight that these transitions may be targeted for the circadian clock to influence timing of cell division cycles.
Collapse
|
75
|
Imamura Y, Yukawa M, Ueno M, Kimura KI, Tsuchiya E. 3,6-Epidioxy-1,10-bisaboladiene inhibits G1 -specific transcription through Swi4/Swi6 and Mbp1/Swi6 via the Hog1 stress pathway in yeast. FEBS J 2014; 281:4612-21. [PMID: 25112483 DOI: 10.1111/febs.12965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED 3,6-Epidioxy-1,10-bisaboladiene (EDBD), a bisabolane sesquiterpene endoperoxide compound, was previously isolated from Cacalia delphiniifolia and C. hastata in northern Japan. EDBD has cytotoxic effects and induces apoptosis via phosphorylation of p38 mitogen-activated protein kinase in human promyelocytic leukemia HL60 cells. However, the mechanism of action of EDBD has not yet been fully elucidated. In this study, we examined the molecular mechanisms of EDBD in the budding yeast Saccharomyces cerevisiae. EDBD arrested the growth of S. cerevisiae cells by suppressing progression from the G1 phase to the S phase and from the G2 phase to the M phase. Moreover, biochemical and genetic analyses revealed that EDBD activated environmental stress-response pathways involving Hog1 and affected Cln3/G1 cyclin activity, thereby inhibiting the expression of SCB-binding factor and MCB-binding factor target genes. Our results provided important insights into the functions of EDBD in tumor cells and may facilitate the development of EDBD-based antitumor therapies. STRUCTURED DIGITAL ABSTRACT •Swi4 physically interacts with Swi6 by anti tag coimmunoprecipitation (View interaction).
Collapse
Affiliation(s)
- Yuko Imamura
- Department of Molecular Biotechnology, Hiroshima University, Japan; Department of Biochemistry, University of Occupational and Environmental Health, Kitakyushu City, Japan
| | | | | | | | | |
Collapse
|
76
|
Albergante L, Blow JJ, Newman TJ. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks. eLife 2014; 3:e02863. [PMID: 25182846 PMCID: PMC4151086 DOI: 10.7554/elife.02863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/08/2014] [Indexed: 01/30/2023] Open
Abstract
The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation.
Collapse
Affiliation(s)
- Luca Albergante
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Julian Blow
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Timothy J Newman
- College of Life Sciences, University of Dundee, Dundee, United Kingdom School of Engineering, Physics and Mathematics, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
77
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
78
|
Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2657-66. [PMID: 24323507 PMCID: PMC4557542 DOI: 10.1093/jxb/ert411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The retinoblastoma (Rb) protein was identified as a human tumour suppressor protein that controls various stages of cell proliferation through the interaction with members of the E2F family of transcription factors. It was originally thought to be specific to animals but plants contain homologues of Rb, called RETINOBLASTOMA-RELATED (RBR). In fact, the Rb-E2F module seems to be a very early acquisition of eukaryotes. The activity of RBR depends on phosphorylation of certain amino acid residues, which in most cases are well conserved between plant and animal proteins. In addition to its role in cell-cycle progression, RBR has been shown to participate in various cellular processes such as endoreplication, transcriptional regulation, chromatin remodelling, cell growth, stem cell biology, and differentiation. Here, we discuss the most recent advances to define the role of RBR in cell proliferation and asymmetric cell division. These and other reports clearly support the idea that RBR is used as a landing platform of a plethora of cellular proteins and complexes to control various aspects of cell physiology and plant development.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Alex de Mendoza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
79
|
Gene expression profiling reveals large regulatory switches between succeeding stipe stages in Volvariella volvacea. PLoS One 2014; 9:e97789. [PMID: 24867220 PMCID: PMC4035324 DOI: 10.1371/journal.pone.0097789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
The edible mushroom Volvariella volvacea is an important crop in Southeast Asia and is predominantly harvested in the egg stage. One of the main factors that negatively affect its yield and value is the rapid transition from the egg to the elongation stage, which has a decreased commodity value and shelf life. To improve our understanding of the changes during stipe development and the transition from egg to elongation stage in particular, we analyzed gene transcription in stipe tissue of V. volvacea using 3′-tag based digital expression profiling. Stipe development turned out to be fairly complex with high numbers of expressed genes, and regulation of stage differences is mediated mainly by changes in expression levels of genes, rather than on/off modulation. Most explicit is the strong up-regulation of cell division from button to egg, and the very strong down-regulation hereof from egg to elongation, that continues in the maturation stage. Button and egg share cell division as means of growth, followed by a major developmental shift towards rapid stipe elongation based on cell extension as demonstrated by inactivation of cell division throughout elongation and maturation. Examination of regulatory genes up-regulated from egg to elongation identified three potential high upstream regulators for this switch. The new insights in stipe dynamics, together with a series of new target genes, will provide a sound base for further studies on the developmental mechanisms of mushroom stipes and the switch from egg to elongation in V. volvacea in particular.
Collapse
|
80
|
Butler CL, Lucas O, Wuchty S, Xue B, Uversky VN, White M. Identifying novel cell cycle proteins in Apicomplexa parasites through co-expression decision analysis. PLoS One 2014; 9:e97625. [PMID: 24841368 PMCID: PMC4026381 DOI: 10.1371/journal.pone.0097625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
Hypothetical proteins comprise roughly half of the predicted gene complement of Toxoplasma gondii and Plasmodium falciparum and represent the largest class of uniquely functioning proteins in these parasites. Following the idea that functional relationships can be informed by the timing of gene expression, we devised a strategy to identify the core set of apicomplexan cell division cycling genes with important roles in parasite division, which includes many uncharacterized proteins. We assembled an expanded list of orthologs from the T. gondii and P. falciparum genome sequences (2781 putative orthologs), compared their mRNA profiles during synchronous replication, and sorted the resulting set of dual cell cycle regulated orthologs (744 total) into protein pairs conserved across many eukaryotic families versus those unique to the Apicomplexa. The analysis identified more than 100 ortholog gene pairs with unknown function in T. gondii and P. falciparum that displayed co-conserved mRNA abundance, dynamics of cyclical expression and similar peak timing that spanned the complete division cycle in each parasite. The unknown cyclical mRNAs encoded a diverse set of proteins with a wide range of mass and showed a remarkable conservation in the internal organization of ordered versus disordered structural domains. A representative sample of cyclical unknown genes (16 total) was epitope tagged in T. gondii tachyzoites yielding the discovery of new protein constituents of the parasite inner membrane complex, key mitotic structures and invasion organelles. These results demonstrate the utility of using gene expression timing and dynamic profile to identify proteins with unique roles in Apicomplexa biology.
Collapse
Affiliation(s)
- Carrie L. Butler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Olivier Lucas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Stefan Wuchty
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bin Xue
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael White
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Florida Center for Drug Discovery and Innovation, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
81
|
Landry BD, Mapa CE, Arsenault HE, Poti KE, Benanti JA. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression. EMBO J 2014; 33:1044-60. [PMID: 24714560 DOI: 10.1002/embj.201386877] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.
Collapse
Affiliation(s)
- Benjamin D Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | |
Collapse
|
82
|
Nelissen H, Moloney M, Inzé D. Translational research: from pot to plot. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:277-85. [PMID: 24646295 DOI: 10.1111/pbi.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/02/2014] [Accepted: 01/27/2014] [Indexed: 05/08/2023]
Abstract
Plant molecular biology has been the key driver to elucidate molecular pathways underlying plant growth, development and stress responses during the past decades. Although this has led to a plethora of available data, the translation to crop improvement is lagging behind. Here, we argue that plant scientists should become more involved in converting basic knowledge into applications in crops to sustainably support food security and agriculture. As the translatability from model species to crops is rather poor, this kind of translational research requires diligence and a thorough knowledge of the investigated trait in the crop. In addition, the robustness of a trait depends on the genotype and environmental conditions, demanding a holistic approach, which cannot always be evaluated under growth chamber and greenhouse conditions. To date, the improved resolution of many genome-wide technologies and the emerging expertise in canopy imaging, plant phenotyping and field monitoring make it very timely to move from the pathway specifics to important agronomical realizations, thus from pot to plot. Despite the availability of scientific know-how and expertise, the translation of new traits to applications using a transgene approach is in some regions of the world, such as Europe, seriously hampered by heavy and nontranslucent legislation for biotech crops. Nevertheless, progress in crop improvement will remain highly dependent on our ability to evaluate improved varieties in field conditions. Here, we plead for a network of protected sites for field trials across the different European climates to test improved biotech traits directly in crops.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
83
|
White MW, Radke JR, Radke JB. Toxoplasmadevelopment - turn the switch on or off? Cell Microbiol 2014; 16:466-72. [DOI: 10.1111/cmi.12267] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael W. White
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| | - Jay R. Radke
- Department of Veterinary Molecular Biology; Montana State University; Bozeman MT USA
| | - Joshua B. Radke
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| |
Collapse
|
84
|
Hasan MM, Brocca S, Sacco E, Spinelli M, Papaleo E, Lambrughi M, Alberghina L, Vanoni M. A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Front Physiol 2014; 4:315. [PMID: 24478706 PMCID: PMC3897220 DOI: 10.3389/fphys.2013.00315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/13/2013] [Indexed: 11/18/2022] Open
Abstract
Cell growth and proliferation require a complex series of tight-regulated and well-orchestrated events. Accordingly, proteins governing such events are evolutionary conserved, even among distant organisms. By contrast, it is more singular the case of “core functions” exerted by functional analogous proteins that are not homologous and do not share any kind of structural similarity. This is the case of proteins regulating the G1/S transition in higher eukaryotes–i.e., the retinoblastoma (Rb) tumor suppressor Rb—and budding yeast, i.e., Whi5. The interaction landscape of Rb and Whi5 is quite large, with more than one hundred proteins interacting either genetically or physically with each protein. The Whi5 interactome has been used to construct a concept map of Whi5 function and regulation. Comparison of physical and genetic interactors of Rb and Whi5 allows highlighting a significant core of conserved, common functionalities associated with the interactors indicating that structure and function of the network—rather than individual proteins—are conserved during evolution. A combined bioinformatics and biochemical approach has shown that the whole Whi5 protein is highly disordered, except for a small region containing the protein family signature. The comparison with Whi5 homologs from Saccharomycetales has prompted the hypothesis of a modular organization of structural disorder, with most evolutionary conserved regions alternating with highly variable ones. The finding of a consensus sequence points to the conservation of a specific phosphorylation rhythm along with two disordered sequence motifs, probably acting as phosphorylation-dependent seeds in Whi5 folding/unfolding. Thus, the widely disordered Whi5 appears to act as a hierarchical, “date hub” that has evolutionary assayed an original way of modular organization before being supplanted by the globular, multi-domain structured Rb, more suitable to cover the role of a “party hub”.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Stefania Brocca
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Elena Sacco
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Michela Spinelli
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Lilia Alberghina
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Marco Vanoni
- SYSBIO Centre for Systems Biology Milano, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
85
|
Cao L, Chen F, Yang X, Xu W, Xie J, Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol Biol 2014; 14:10. [PMID: 24433236 PMCID: PMC3923393 DOI: 10.1186/1471-2148-14-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1-S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.
Collapse
|
87
|
Pope PA, Pryciak PM. Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones. Mol Biol Cell 2013; 24:3675-88. [PMID: 24088572 PMCID: PMC3842994 DOI: 10.1091/mbc.e13-07-0373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple, functionally overlapping regulatory circuits control the sensitivity of the G1/S transition to yeast pheromones. In the absence of the Cdk inhibitor Far1, pheromone-induced G1 arrest depends on the p27 analogue Sic1, transcriptional repression by the Rb analogues Whi5 and Stb1, and induced degradation of the CLN1 transcription factor Tec1. In budding yeast, mating pheromones arrest the cell cycle in G1 phase via a pheromone-activated Cdk-inhibitor (CKI) protein, Far1. Alternate pathways must also exist, however, because deleting the cyclin CLN2 restores pheromone arrest to far1∆ cells. Here we probe whether these alternate pathways require the G1/S transcriptional repressors Whi5 and Stb1 or the CKI protein Sic1, whose metazoan analogues (Rb or p27) antagonize cell cycle entry. Removing Whi5 and Stb1 allows partial escape from G1 arrest in far1∆ cln2∆ cells, along with partial derepression of G1/S genes, which implies a repressor-independent route for inhibiting G1/S transcription. This route likely involves pheromone-induced degradation of Tec1, a transcriptional activator of the cyclin CLN1, because Tec1 stabilization also causes partial G1 escape in far1∆ cln2∆ cells, and this is additive with Whi5/Stb1 removal. Deleting SIC1 alone strongly disrupts Far1-independent G1 arrest, revealing that inhibition of B-type cyclin-Cdk activity can empower weak arrest pathways. Of interest, although far1∆ cln2∆ sic1∆ cells escaped G1 arrest, they lost viability during pheromone exposure, indicating that G1 exit is deleterious if the arrest signal remains active. Overall our findings illustrate how multiple distinct G1/S-braking mechanisms help to prevent premature cell cycle commitment and ensure a robust signal-induced G1 arrest.
Collapse
Affiliation(s)
- Patricia A Pope
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | | |
Collapse
|
88
|
Emerging roles of Cdk8 in cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:916-20. [DOI: 10.1016/j.bbagrm.2013.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
|
89
|
Saqcena M, Menon D, Patel D, Mukhopadhyay S, Chow V, Foster DA. Amino acids and mTOR mediate distinct metabolic checkpoints in mammalian G1 cell cycle. PLoS One 2013; 8:e74157. [PMID: 23977397 PMCID: PMC3747087 DOI: 10.1371/journal.pone.0074157] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Objective In multicellular organisms, cell division is regulated by growth factors (GFs). In the absence of GFs, cells exit the cell cycle at a site in G1 referred to as the restriction point (R) and enter a state of quiescence known as G0. Additionally, nutrient availability impacts on G1 cell cycle progression. While there is a vast literature on G1 cell cycle progression, confusion remains – especially with regard to the temporal location of R relative to nutrient-mediated checkpoints. In this report, we have investigated the relationship between R and a series of metabolic cell cycle checkpoints that regulate passage into S-phase. Methods We used double-block experiments to order G1 checkpoints that monitor the presence of GFs, essential amino acids (EEAs), the conditionally essential amino acid glutamine, and inhibition of mTOR. Cell cycle progression was monitored by uptake of [3H]-thymidine and flow cytometry, and analysis of cell cycle regulatory proteins was by Western-blot. Results We report here that the GF-mediated R can be temporally distinguished from a series of late G1 metabolic checkpoints mediated by EAAs, glutamine, and mTOR – the mammalian/mechanistic target of rapamycin. R is clearly upstream from an EAA checkpoint, which is upstream from a glutamine checkpoint. mTOR is downstream from both the amino acid checkpoints, close to S-phase. Significantly, in addition to GF autonomy, we find human cancer cells also have dysregulated metabolic checkpoints. Conclusion The data provided here are consistent with a GF-dependent mid-G1 R where cells determine whether it is appropriate to divide, followed by a series of late-G1 metabolic checkpoints mediated by amino acids and mTOR where cells determine whether they have sufficient nutrients to accomplish the task. Since mTOR inhibition arrests cells the latest in G1, it is likely the final arbiter for nutrient sufficiency prior to committing to replicating the genome.
Collapse
Affiliation(s)
- Mahesh Saqcena
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, United States of America
| | | | | | | | | | | |
Collapse
|
90
|
Johnson A, Skotheim JM. Start and the restriction point. Curr Opin Cell Biol 2013; 25:717-23. [PMID: 23916770 DOI: 10.1016/j.ceb.2013.07.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/29/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023]
Abstract
Commitment to division requires that cells sense, interpret, and respond appropriately to multiple signals. In most eukaryotes, cells commit to division in G1 before DNA replication. Beyond a point, known as Start in yeast and the restriction point in mammals, cells will proceed through the cell cycle despite changes in upstream signals. In metazoans, misregulated G1 control can lead to developmental problems or disease, so it is important to understand how cells decipher the myriad external and internal signals that contribute to the fundamental all-or-none decision to divide. Extensive study of G1 control in the budding yeast Saccharomyces cerevisiae and mammalian culture systems has revealed highly similar networks regulating commitment. However, protein sequences of functional orthologs often indicate a total lack of conservation suggesting significant evolution of G1 control. Here, we review recent studies defining the conserved and diverged features of G1 control and highlight systems-level aspects that may be common to other biological regulatory networks.
Collapse
Affiliation(s)
- Amy Johnson
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | | |
Collapse
|
91
|
Bulankova P, Akimcheva S, Fellner N, Riha K. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes. PLoS Genet 2013; 9:e1003508. [PMID: 23671425 PMCID: PMC3649987 DOI: 10.1371/journal.pgen.1003508] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a modified cell division in which a single S-phase is followed by two rounds of chromosome segregation resulting in the production of haploid gametes. The meiotic mode of chromosome segregation requires extensive remodeling of the basic cell cycle machinery and employment of unique regulatory mechanisms. Cyclin-dependent kinases (CDKs) and cyclins represent an ancient molecular module that drives and regulates cell cycle progression. The cyclin gene family has undergone a massive expansion in angiosperm plants, but only a few cyclins were thoroughly characterized. In this study we performed a systematic immunolocalization screen to identify Arabidopsis thaliana A- and B-type cyclins expressed in meiosis. Many of these cyclins exhibit cell-type-specific expression in vegetative tissues and distinct subcellular localization. We found six A-type cyclins and a single B-type cyclin (CYCB3;1) to be expressed in male meiosis. Mutant analysis revealed that these cyclins contribute to distinct meiosis-related processes. While A2 cyclins are important for chromosome segregation, CYCB3;1 prevents ectopic cell wall formation. We further show that cyclin SDS does not contain a D-box and is constitutively expressed throughout meiosis. Analysis of plants carrying cyclin SDS with an introduced D-box motif determined that, in addition to its function in recombination, SDS acts together with CYCB3;1 in suppressing unscheduled cell wall synthesis. Our phenotypic and expression data provide extensive evidence that multiplication of cyclins is in plants accompanied by functional diversification. The alteration of haploid and diploid cell generations during the sexual life cycle requires meiosis, a specialized cell division that enables the formation of haploid gametes from diploid cells. Meiosis occurs only once during the life cycle, and the transition from the mitotic to meiotic mode of chromosome partitioning requires extensive remodeling of the cell cycle machinery. The cell cycle progression is driven by cyclin-dependent kinases and associated cyclins that regulate CDK activity and confer substrate specificity. Cyclin gene families have undergone a massive expansion in plants, which has raised the question of whether some of these cyclins evolved specific meiotic functions. We systematically analyzed two cyclin gene families in Arabidopsis to identify plant cyclins that are meiotically expressed. We found in total eight cyclins to be expressed in male meiotic cells, and functional characterization revealed their involvement in diverse meiotic processes. Interestingly, none of the cyclins appear to be essential for meiotic progression, indicating that plant meiosis is governed by unorthodox cell cycle regulators.
Collapse
Affiliation(s)
- Petra Bulankova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
| | | | - Nicole Fellner
- Campus Science Support Facilities, Electron Microscopy Facility, Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
92
|
Chemes LB, Noval MG, Sánchez IE, de Prat-Gay G. Folding of a cyclin box: linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor AB pocket domain. J Biol Chem 2013; 288:18923-38. [PMID: 23632018 DOI: 10.1074/jbc.m113.467316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
93
|
Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 2013; 23:345-56. [PMID: 23566594 DOI: 10.1016/j.tcb.2013.03.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022]
Abstract
Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases.
Collapse
Affiliation(s)
- Hirofumi Harashima
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | | | | |
Collapse
|
94
|
Harris MR, Lee D, Farmer S, Lowndes NF, de Bruin RAM. Binding specificity of the G1/S transcriptional regulators in budding yeast. PLoS One 2013; 8:e61059. [PMID: 23593391 PMCID: PMC3617184 DOI: 10.1371/journal.pone.0061059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND G1/S transcriptional regulation in the budding yeast Saccharomyces cerevisiae depends on three main transcriptional components, Swi4, Swi6 and Mbp1. These proteins constitute two transcription factor complexes that regulate over 300 G1/S transcripts, namely SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). SBF and MBF are involved in regulating largely non-overlapping sets of G1/S genes via clearly distinct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS Here we establish and confirm protein-protein and protein-DNA interactions using specific polyclonal antisera to whole Swi6 and to the C-terminal domains of related proteins Swi4 and Mbp1. Our data confirm the protein-protein binding specificity of Swi4 and Mbp1 to Swi6 but not to each other, and support the binding specificity of the transcriptional inhibitor Whi5 to SBF and of the corepressor Nrm1 to MBF. We also show the DNA binding preference of Swi4 to the CLN2 promoter and Mbp1 to the RNR1 promoter, while Swi6 binds both promoters. Finally, we establish the binding dynamics of Swi4 and Whi5 to the CLN2 promoter during the cell cycle. CONCLUSIONS/SIGNIFICANCE These data confirm the binding specificity of the G1/S transcriptional regulators. Whereas previous observations were made using tagged Swi4, Swi6 and Mbp1, here we use specific polyclonal antisera to reestablish the protein-protein and protein-DNA interactions of these G1/S transcriptional components. Our data also reveal the dynamic changes in promoter binding of Swi4 during the cell cycle, which suggests a possible positive feedback loop involving Swi4.
Collapse
Affiliation(s)
- Michael R. Harris
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Dave Lee
- Centre for Chromosome Biology, Genome Stability Laboratory, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Sarah Farmer
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Noel F. Lowndes
- Centre for Chromosome Biology, Genome Stability Laboratory, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
95
|
Müller R, Fischer C, Wilmes T, Heimrich B, Distel V, Klugbauer N, Meyer DK. Phosphoinositide-3-kinases p110α and p110β mediate S phase entry in astroglial cells in the marginal zone of rat neocortex. Front Cell Neurosci 2013; 7:24. [PMID: 23504389 PMCID: PMC3596864 DOI: 10.3389/fncel.2013.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 11/13/2022] Open
Abstract
In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative (dn) isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine (BrdU). Only in astroglial cells harvested from the marginal zone (MZ) of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with BrdU, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110α and p110β were essential for S phase entry. p110α diminished the level of the p27Kip1 which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110β phosphorylated and inhibited glycogen synthase kinase-3β which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.
Collapse
Affiliation(s)
- Rabea Müller
- Institute of Experimental and Clinical Pharmacology und Toxicology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Discovery of a splicing regulator required for cell cycle progression. PLoS Genet 2013; 9:e1003305. [PMID: 23437009 PMCID: PMC3578776 DOI: 10.1371/journal.pgen.1003305] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/19/2012] [Indexed: 01/30/2023] Open
Abstract
In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms. The study of eukaryotic cell division has overwhelmingly focused on cells from two branches of evolution, fungal and metazoan, with more distant eukaryotes rarely studied. One exception is apicomplexan pathogens where in the last two decades development of genetic models has been rapid. While not a perfect solution to fill the missing evolutionary diversity, Apicomplexans represent one of the oldest eukaryotic lineages possibly pre-dating the divergence of plant and animal kingdoms. A key to uncovering novel and conserved cell cycle mechanisms in these protists was the development of forward genetic approaches that permit unbiased discovery of essential growth factors. The apicomplexan, Toxoplasma has provided the best resource so far with ∼60,000 chemical mutants yielding a collection of 165 temperature-sensitive isolates that arrest in all phases of the parasite cell cycle. Efforts to identify the defective genes in this model are providing insights into the regulatory factors possibly active in the original eukaryote cell cycle, like the mRNA splicing factor discovered in this study.
Collapse
|
97
|
Roeder AHK. When and where plant cells divide: a perspective from computational modeling. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:638-644. [PMID: 22939706 DOI: 10.1016/j.pbi.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 06/01/2023]
Abstract
Computational modeling of growing plant tissues raises two basic questions about plant cell division: when does a cell decide to divide and where is the new wall placed? Although biologists and modelers commonly assume that a cell divides after it reaches a threshold size, two recent experiments show that models with variable division sizes better replicate the tissue. Similarly, comparing model predictions with living plant cells reveals that the choice of division plane is variable, although the shortest path dividing a cell in half (i.e. the minimal surface area) is the most probable division plane.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Plant Biology Department, Cornell University, 239 Weill Hall, Ithaca, NY 14853 USA.
| |
Collapse
|
98
|
Abstract
Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs.
Collapse
|
99
|
Linkers of cell polarity and cell cycle regulation in the fission yeast protein interaction network. PLoS Comput Biol 2012; 8:e1002732. [PMID: 23093924 PMCID: PMC3475659 DOI: 10.1371/journal.pcbi.1002732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022] Open
Abstract
The study of gene and protein interaction networks has improved our understanding of the multiple, systemic levels of regulation found in eukaryotic and prokaryotic organisms. Here we carry out a large-scale analysis of the protein-protein interaction (PPI) network of fission yeast (Schizosaccharomyces pombe) and establish a method to identify ‘linker’ proteins that bridge diverse cellular processes - integrating Gene Ontology and PPI data with network theory measures. We test the method on a highly characterized subset of the genome consisting of proteins controlling the cell cycle, cell polarity and cytokinesis and identify proteins likely to play a key role in controlling the temporal changes in the localization of the polarity machinery. Experimental inspection of one such factor, the polarity-regulating RNB protein Sts5, confirms the prediction that it has a cell cycle dependent regulation. Detailed bibliographic inspection of other predicted ‘linkers’ also confirms the predictive power of the method. As the method is robust to network perturbations and can successfully predict linker proteins, it provides a powerful tool to study the interplay between different cellular processes. Analysis of protein interaction networks has been of use as a means to grapple with the complexity of the interactome of biological organisms. So far, network based approaches have only been used in a limited number of organisms due to the lack of high-throughput experiments. In this study, we investigate by graph theoretical network analysis approaches the protein-protein interaction network of fission yeast, and present a new network measure, linkerity, that predicts the ability of certain proteins to function as bridges between diverse cellular processes. We apply this linkerity measure to a highly conserved and coupled subset of the fission yeast network, consisting of the proteins that regulate cell cycle, polarized cell growth, and cell division. In depth literature analysis confirms that several proteins identified as linkers of cell polarity regulation are indeed also associated with cell cycle and/or cell division control. Similarly, experimental testing confirms that a mostly uncharacterized polarity regulator identified by the method as an important linker is regulated by the cell cycle, as predicted.
Collapse
|
100
|
Bøe CA, Knutsen JHJ, Boye E, Grallert B. Hpz1 modulates the G1-S transition in fission yeast. PLoS One 2012; 7:e44539. [PMID: 22970243 PMCID: PMC3435320 DOI: 10.1371/journal.pone.0044539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
Collapse
Affiliation(s)
- Cathrine A. Bøe
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Jon Halvor J. Knutsen
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
- * E-mail:
| |
Collapse
|