51
|
Fiester SE, Arivett BA, Schmidt RE, Beckett AC, Ticak T, Carrier MV, Ghosh R, Ohneck EJ, Metz ML, Sellin Jeffries MK, Actis LA. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii. PLoS One 2016; 11:e0167068. [PMID: 27875572 PMCID: PMC5119829 DOI: 10.1371/journal.pone.0167068] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606Tplc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during growth in the infected host.
Collapse
Affiliation(s)
- Steven E. Fiester
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Robert E. Schmidt
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Amber C. Beckett
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Tomislav Ticak
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Mary V. Carrier
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Rajarshi Ghosh
- Biology Department, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Maeva L. Metz
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | | | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
52
|
Chandravanshi M, Gogoi P, Kanaujia SP. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter. Gene 2016; 592:260-8. [DOI: 10.1016/j.gene.2016.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
|
53
|
Bakholdina SI, Tischenko NM, Sidorin EV, Isaeva MP, Likhatskaya GN, Dmitrenok PS, Kim NY, Chernikov OV, Solov'eva TF. Recombinant Phospholipase A1 of the Outer Membrane of Psychrotrophic Yersinia pseudotuberculosis: Expression, Purification, and Characterization. BIOCHEMISTRY (MOSCOW) 2016; 81:47-57. [PMID: 26885582 DOI: 10.1134/s0006297916010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pldA gene encoding membrane-bound phospholipase A1 of Yersinia pseudotuberculosis was cloned and expressed in Escherichia coli cells. Recombinant phospholipase A1 (rPldA) was isolated from inclusion bodies dissolved in 8 M urea by two-stage chromatography (ion-exchange and gel-filtration chromatography) as an inactive monomer. The molecular mass of the rPldA determined by MALDI-TOF MS was 31.7 ± 0.4 kDa. The highly purified rPldA was refolded by 10-fold dilution with buffer containing 10 mM Triton X-100 and subsequent incubation at room temperature for 16 h. The refolded rPldA hydrolyzed 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine in the presence of calcium ions. The enzyme exhibited maximal activity at 37°C and nearly 40% of maximal activity at 15°C. The phospholipase A1 was active over a wide range of pH from 4 to 11, exhibiting maximal activity at pH 10. Spatial structure models of the monomer and the dimer of Y. pseudotuberculosis phospholipase A1 were constructed, and functionally important amino acid residues of the enzyme were determined. Structural differences between phospholipases A1 from Y. pseudotuberculosis and E. coli, which can affect the functional activity of the enzyme, were revealed.
Collapse
Affiliation(s)
- S I Bakholdina
- Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Far East Branch, Vladivostok, 690022, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wang X, Jiang F, Zheng J, Chen L, Dong J, Sun L, Zhu Y, Liu B, Yang J, Yang G, Jin Q. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri. Open Biol 2016; 6:rsob.160073. [PMID: 27655730 PMCID: PMC5043575 DOI: 10.1098/rsob.160073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.
Collapse
Affiliation(s)
- Xia Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Feng Jiang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Lihong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Lilian Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Yafang Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Guowei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, People's Republic of China
| |
Collapse
|
55
|
Villanueva L, Schouten S, Damsté JSS. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ Microbiol 2016; 19:54-69. [DOI: 10.1111/1462-2920.13361] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
| | - Stefan Schouten
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
- Faculty of GeosciencesUtrecht UniversityP.O. Box 80.021Utrecht3508 TA The Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
- Faculty of GeosciencesUtrecht UniversityP.O. Box 80.021Utrecht3508 TA The Netherlands
| |
Collapse
|
56
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
57
|
Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa. J Mol Biol 2016; 428:1790-803. [DOI: 10.1016/j.jmb.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
58
|
Six Pseudoalteromonas Strains Isolated from Surface Waters of Kabeltonne, Offshore Helgoland, North Sea. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01697-15. [PMID: 26868390 PMCID: PMC4751314 DOI: 10.1128/genomea.01697-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Draft genomes are presented for 6 Pseudoalteromonas sp. strains isolated from surface waters at Kabeltonne, Helgoland, a long-term ecological research station in the North Sea. These strains contribute knowledge of the genomic underpinnings of a developing model system to study phage-host dynamics of a particle-associated ocean copiotroph.
Collapse
|
59
|
Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis. Biochimie 2016; 123:103-9. [PMID: 26853818 DOI: 10.1016/j.biochi.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022]
Abstract
Differences in the distribution of individual phospholipids between the inner (IM) and outer membranes (OM) of gram-negative bacteria have been detected in mesophilic Escherichia, Erwinia and Salmonella species but have never been investigated in the psychrotrophic Yersinia genus. Therefore, the influence of an elevated growth temperature and heat shock on the phospholipid and fatty acid (FA) compositions of the fractionated Yersinia pseudotuberculosis envelope was investigated. The shift of the growth temperature from 8 °C to 37 °C to mimic the switch from saprophytic to parasitic growth of this bacteria and the exposure of the cells to heat shock, which was induced by a sharp increase in the temperature from 8 °C to 45 °C, increased the lysophosphatidylethanolamine content from zero and 1% to 6% and 10% in the IM and OM, respectively. These changes were accompanied by a decrease in the phosphatidylethanolamine (PE) content and a drastic increase (up to 3-fold higher) in the phosphatidylglycerol (PG) level in the OM of the bacteria, which increases the net negative charge of the cell envelope. The levels of the predominant saturated palmitic (16:0) and cyclopropane FAs were approximately 1.5- and 7.5-fold higher, respectively, but the content of the predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was approximately 10-30-fold lower in both membranes that were isolated from the cells grown at elevated temperatures. Due to these changes, reflecting the process of "homeoviscous adaptation", the ratio between the unsaturated and saturated FAs decreased but remained higher in the IM than that in the OM. Simultaneously, no significant changes were observed in the FA composition of cells subjected to heat shock, demonstrating a difference between the responses of the heat-shocked and heat-adapted Y. pseudotuberculosis. The unique ability of Y. pseudotuberculosis to reciprocally regulate the ratio of anionic PG and net neutral PE and therefore adjust the negative charge of the OM may be a common strategy used by pathogenic bacteria to promote the barrier function of the OM.
Collapse
|
60
|
Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, Grigg ME, Carruthers VB, Coppens I. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem 2015; 291:3725-46. [PMID: 26694607 DOI: 10.1074/jbc.m115.671974] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
The protozoan parasite Toxoplasma gondii develops within a parasitophorous vacuole (PV) in mammalian cells, where it scavenges cholesterol. When cholesterol is present in excess in its environment, the parasite expulses this lipid into the PV or esterifies it for storage in lipid bodies. Here, we characterized a unique T. gondii homologue of mammalian lecithin:cholesterol acyltransferase (LCAT), a key enzyme that produces cholesteryl esters via transfer of acyl groups from phospholipids to the 3-OH of free cholesterol, leading to the removal of excess cholesterol from tissues. TgLCAT contains a motif characteristic of serine lipases "AHSLG" and the catalytic triad consisting of serine, aspartate, and histidine (SDH) from LCAT enzymes. TgLCAT is secreted by the parasite, but unlike other LCAT enzymes it is cleaved into two proteolytic fragments that share the residues of the catalytic triad and need to be reassembled to reconstitute enzymatic activity. TgLCAT uses phosphatidylcholine as substrate to form lysophosphatidylcholine that has the potential to disrupt membranes. The released fatty acid is transferred to cholesterol, but with a lower transesterification activity than mammalian LCAT. TgLCAT is stored in a subpopulation of dense granule secretory organelles, and following secretion, it localizes to the PV and parasite plasma membrane. LCAT-null parasites have impaired growth in vitro, reduced virulence in animals, and exhibit delays in egress from host cells. Parasites overexpressing LCAT show increased virulence and faster egress. These observations demonstrate that TgLCAT influences the outcome of an infection, presumably by facilitating replication and egress depending on the developmental stage of the parasite.
Collapse
Affiliation(s)
- Viviana Pszenny
- From the Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, the Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Karen Ehrenman
- From the Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Julia D Romano
- From the Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Andrea Kennard
- the Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Aric Schultz
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - David S Roos
- the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael E Grigg
- the Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Vern B Carruthers
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Isabelle Coppens
- From the Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205,
| |
Collapse
|
61
|
Lòpez-Fernàndez S, Sonego P, Moretto M, Pancher M, Engelen K, Pertot I, Campisano A. Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 2015; 6:419. [PMID: 26074885 PMCID: PMC4443252 DOI: 10.3389/fmicb.2015.00419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 11/14/2022] Open
Abstract
Plant pathogens and endophytes co-exist and often interact with the host plant and within its microbial community. The outcome of these interactions may lead to healthy plants through beneficial interactions, or to disease through the inducible production of molecules known as virulence factors. Unravelling the role of virulence in endophytes may crucially improve our understanding of host-associated microbial communities and their correlation with host health. Virulence is the outcome of a complex network of interactions, and drawing the line between pathogens and endophytes has proven to be conflictive, as strain-level differences in niche overlapping, ecological interactions, state of the host's immune system and environmental factors are seldom taken into account. Defining genomic differences between endophytes and plant pathogens is decisive for understanding the boundaries between these two groups. Here we describe the major differences at the genomic level between seven grapevine endophytic test bacteria, and 12 reference strains. We describe the virulence factors detected in the genomes of the test group, as compared to endophytic and non-endophytic references, to better understand the distribution of these traits in endophytic genomes. To do this, we adopted a comparative whole-genome approach, encompassing BLAST-based searches through the GUI-based tools Mauve and BRIG as well as calculating the core and accessory genomes of three genera of enterobacteria. We outline divergences in metabolic pathways of these endophytes and reference strains, with the aid of the online platform RAST. We present a summary of the major differences that help in the drawing of the boundaries between harmless and harmful bacteria, in the spirit of contributing to a microbiological definition of endophyte.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Campisano
- Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| |
Collapse
|
62
|
Ardeshir A, Narayan NR, Méndez-Lagares G, Lu D, Rauch M, Huang Y, Van Rompay KKA, Lynch SV, Hartigan-O'Connor DJ. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med 2015; 6:252ra120. [PMID: 25186175 DOI: 10.1126/scitranslmed.3008791] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet has a strong influence on the intestinal microbiota in both humans and animal models. It is well established that microbial colonization is required for normal development of the immune system and that specific microbial constituents prompt the differentiation or expansion of certain immune cell subsets. Nonetheless, it has been unclear how profoundly diet might shape the primate immune system or how durable the influence might be. We show that breast-fed and bottle-fed infant rhesus macaques develop markedly different immune systems, which remain different 6 months after weaning when the animals begin receiving identical diets. In particular, breast-fed infants develop robust populations of memory T cells as well as T helper 17 (TH17) cells within the memory pool, whereas bottle-fed infants do not. These findings may partly explain the variation in human susceptibility to conditions with an immune basis, as well as the variable protection against certain infectious diseases.
Collapse
Affiliation(s)
- Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Nicole R Narayan
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Ding Lu
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Marcus Rauch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA. Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
63
|
Sahonero-Canavesi DX, Sohlenkamp C, Sandoval-Calderón M, Lamsa A, Pogliano K, López-Lara IM, Geiger O. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 2015; 17:3391-406. [PMID: 25711932 DOI: 10.1111/1462-2920.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Mario Sandoval-Calderón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Anne Lamsa
- Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| |
Collapse
|
64
|
Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl Microbiol Biotechnol 2015; 99:5475-85. [PMID: 25575887 PMCID: PMC4464377 DOI: 10.1007/s00253-014-6355-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
Abstract
Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78 % following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.
Collapse
|
65
|
Fu LL, Wang R, Wang Y, Lin J. Proteomic identification of responsive proteins of Vibrio parahaemolyticus under high hydrostatic pressure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2630-2638. [PMID: 24473993 DOI: 10.1002/jsfa.6595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) processing is currently being used as a treatment for certain foods to inhibit spoilage organisms and control the presence of foodborne pathogens. In this study proteome profiles were performed by two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification to determine the effects of HHP (50, 100, 150 and 200 MPa, each for 10 min) on Vibrio parahaemolyticus ATCC 17802 (∼8 log CFU mL⁻¹) in order to understand how it responds to mechanical stress injury. RESULTS Multiple comparisons of 2-DE revealed that the majority of changes in protein abundance occurred in a pressure-dependent fashion. A total of 18 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF analysis. Moreover, quantitative RT-PCR and immunoblotting also substantiated the changes of transcriptional and translational levels of representative proteins. CONCLUSIONS Our results suggested that V. parahaemolyticus may respond to HHP treatment through suppression of membrane stability and functionality (PfaC, Alr2, MltA, PLA2 and PatH), depression of biosynthesis and cellular processes (NadB, PyrB and ArgB), decreased levels of transcription (RpoD) and translation (RpsA, RplJ and PheS), and effective activation of protein folding and stress-related elements (GroES, DnaK and GroEL). This study may provide insight into the nature of the cellular targets of high pressure and in high-pressure resistance mechanisms in V. parahaemolyticus.
Collapse
Affiliation(s)
- Ling-Lin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, P.R. China
| | | | | | | |
Collapse
|
66
|
Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 2014; 80:1864-73. [PMID: 24413597 PMCID: PMC3957631 DOI: 10.1128/aem.03375-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023] Open
Abstract
Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners.
Collapse
Affiliation(s)
- M Belén Rubio
- Spanish-Portuguese Centre for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
67
|
Buerth C, Kovacic F, Stock J, Terfrüchte M, Wilhelm S, Jaeger KE, Feldbrügge M, Schipper K, Ernst JF, Tielker D. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl Microbiol Biotechnol 2014; 98:4963-73. [DOI: 10.1007/s00253-013-5493-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/06/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
68
|
Abstract
The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependent cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.
Collapse
|
69
|
Abstract
Pseudomonas aeruginosa is a versatile human opportunistic pathogen that produces and secretes an arsenal of enzymes, proteins and small molecules many of which serve as virulence factors. Notably, about 40 % of P. aeruginosa genes code for proteins of unknown function, among them more than 80 encoding putative, but still unknown lipolytic enzymes. This group of hydrolases (EC 3.1.1) is known already for decades, but only recently, several of these enzymes have attracted attention as potential virulence factors. Reliable and reproducible enzymatic activity assays are crucial to determine their physiological function and particularly assess their contribution to pathogenicity. As a consequence of the unique biochemical properties of lipids resulting in the formation of micellar structures in water, the reproducible preparation of substrate emulsions is strongly dependent on the method used. Furthermore, the physicochemical properties of the respective substrate emulsion may drastically affect the activities of the tested lipolytic enzymes. Here, we describe common methods for the activity determination of lipase, esterase, phospholipase, and lysophospholipase. These methods cover lipolytic activity assays carried out in vitro, with cell extracts or separated subcellular compartments and with purified enzymes. We have attempted to describe standardized protocols, allowing the determination and comparison of enzymatic activities of lipolytic enzymes from different sources. These methods should also encourage the Pseudomonas community to address the wealth of still unexplored lipolytic enzymes encoded and produced by P. aeruginosa.
Collapse
Affiliation(s)
- Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Research Centre Juelich Heinrich-Heine-University of Duesseldorf, D-52426, Juelich, Germany,
| | | |
Collapse
|
70
|
Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J, Meng G. Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS One 2013; 8:e77955. [PMID: 24223129 PMCID: PMC3819327 DOI: 10.1371/journal.pone.0077955] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers. METHODOLOGY/PRINCIPAL FINDINGS To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K(+) efflux, Ca(2+) influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion. CONCLUSIONS Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress.
Collapse
Affiliation(s)
- Yongfen Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Yao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Xing
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
71
|
Tabatabaei M, Shirzad Aski H, Shayegh H, Khoshbakht R. Occurrence of six virulence-associated genes in Arcobacter species isolated from various sources in Shiraz, Southern Iran. Microb Pathog 2013; 66:1-4. [PMID: 24201143 DOI: 10.1016/j.micpath.2013.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022]
Abstract
In humans, arcobacters are associated with watery diarrhea and septicemia. Although, recently, more cases of diarrhea have been caused by Arcobacter species, very little is known about its pathogenesis. Therefore, the aim of this study was to evaluate the presence of six putative Arcobacter virulence genes (cadF, ciaB, cj1349, mviN, pldA, and tlyA), in a set of 113 Arcobacter butzleri, 40 Arcobacter cryaerophilus, and 15 Arcobacter skirrowii isolates that were recovered from various origins. The isolates were confirmed on the basis of polymerase chain reaction (PCR) amplification of genus and species specific PCR for determining three species. For confirmed isolates, PCR was carried out for the presence of virulence genes using specific primers. All A. butzleri isolates carried all six genes. For A. cryaerophilus and A. skirrowii, the cadF gene was detected just in 55 and 53.3%, ciaB in 97.5 and 86.6%, cj1349 in 45 and 60%, mviN in 90 and 80%, pldA in 32.5 and 13.3%, and tlyA in 37.5 and 40%, respectively. For A. cryaerophilus and A. skirrowii, the genes ciaB and mviN were significantly more prevalent than other virulence markers (P ≤ 0.05). The findings revealed that many of the important Arcobacter strains (86%) have these putative virulence genes which can be potential pathogenic properties for humans.
Collapse
Affiliation(s)
- Mohammad Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, 71345-1731 Shiraz, Iran.
| | - Hesamaddin Shirzad Aski
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, 71345-1731 Shiraz, Iran.
| | - Hossein Shayegh
- School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Rahem Khoshbakht
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
72
|
Evolutionary analysis of Burkholderia pseudomallei identifies putative novel virulence genes, including a microbial regulator of host cell autophagy. J Bacteriol 2013; 195:5487-98. [PMID: 24097950 DOI: 10.1128/jb.00718-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ∼2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes.
Collapse
|
73
|
Gedvilaite A, Jomantiene R, Dabrisius J, Norkiene M, Davis RE. Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island. Microbiol Res 2013; 169:388-94. [PMID: 24168924 DOI: 10.1016/j.micres.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/09/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Wall-less bacteria known as phytoplasmas are obligate transkingdom parasites and pathogens of plants and insect vectors. These unusual bacteria possess some of the smallest genomes known among pathogenic bacteria, and have never been successfully isolated in artificial culture. Disease symptoms induced by phytoplasmas in infected plants include abnormal growth and often severe yellowing of leaves, but mechanisms involved in phytoplasma parasitism and pathogenicity are little understood. A phage based genomic island (sequence variable mosaic, SVM) in the genome of Malaysian periwinkle yellows (MPY) phytoplasma harbors a gene encoding membrane-targeted proteins, including a putative phospholipase (PL), potentially important in pathogen-host interactions. Since some phytoplasmal disease symptoms could possibly be accounted for, at least in part, by damage and/or degradation of host cell membranes, we hypothesize that the MPY phytoplasma putative PL is an active enzyme. To test this hypothesis, functional analysis of the MPY putative pl gene-encoded protein was carried out in vitro after its expression in bacterial and yeast hosts. The results demonstrated that the heterologously expressed phytoplasmal putative PL is an active lipolytic enzyme and could possibly act as a pathogenicity factor in the plant, and/or insect, host.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | - Jonas Dabrisius
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Milda Norkiene
- Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania; Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
74
|
Dedieu L, Serveau-Avesque C, Canaan S. Identification of residues involved in substrate specificity and cytotoxicity of two closely related cutinases from Mycobacterium tuberculosis. PLoS One 2013; 8:e66913. [PMID: 23843969 PMCID: PMC3699616 DOI: 10.1371/journal.pone.0066913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/11/2013] [Indexed: 11/20/2022] Open
Abstract
The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.
Collapse
Affiliation(s)
- Luc Dedieu
- CNRS - Aix-Marseille Université - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France
| | - Carole Serveau-Avesque
- CNRS - Aix-Marseille Université - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France
| | - Stéphane Canaan
- CNRS - Aix-Marseille Université - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France
| |
Collapse
|
75
|
Tripathi T, Abdi M, Alizadeh H. Role of phospholipase A₂ (PLA₂) inhibitors in attenuating apoptosis of the corneal epithelial cells and mitigation of Acanthamoeba keratitis. Exp Eye Res 2013; 113:182-91. [PMID: 23792108 DOI: 10.1016/j.exer.2013.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/05/2013] [Accepted: 05/21/2013] [Indexed: 11/16/2022]
Abstract
The aim of this study is to determine if the mannose-induced protein (MIP-133) from Acanthamoeba castellanii trophozoites induces apoptosis of corneal epithelial cells through a cytosolic phospholipase A2α (cPLA2α)-mediated pathway. The efficacy of cPLA2α inhibitors to provide protection against Acanthamoeba keratitis was examined in vivo. Chinese hamster corneal epithelial (HCORN) cells were incubated with or without MIP-133. MIP-133 induces significant increase in cPLA2α and macrophage inflammatory protein-2 (MIP-2/CXCL2) levels from corneal cells. Moreover, cPLA2α inhibitors, MAFP (Methyl-arachidonyl fluorophosphonate) and AACOCF3 (Arachidonyl trifluoromethyl ketone), significantly reduce cPLA2α and CXCL2 from these cells (P < 0.05). Additionally, cPLA2α inhibitors significantly inhibit MIP-133-induced apoptosis in HCORN cells (P < 0.05). Subconjunctival injection of purified MIP-133 in Chinese hamster eyes induced cytopathic effects resulting in corneal ulceration. Animals infected with A. castellanii-laden contact lenses and treated with AACOCF3 and CAY10650, showed significantly less severe keratitis as compared with control animals. Collectively, the results indicate that cPLA2α is involved in MIP-133 induced apoptosis of corneal epithelial cells, polymorphonuclear neutrophil infiltration, and production of CXCL2. Moreover, cPLA2α inhibitors can be used as a therapeutic target in Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
76
|
Nina S, Ludmila D, Svetlana B, Olga N, Olga P, Tamara S, Valery S, Mikhail B. Effect of phenol-induced changes in lipid composition on conformation of OmpF-like porin of Yersinia pseudotuberculosis. FEBS Lett 2013; 587:2260-5. [DOI: 10.1016/j.febslet.2013.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
|
77
|
Genard B, Miner P, Nicolas JL, Moraga D, Boudry P, Pernet F, Tremblay R. Integrative study of physiological changes associated with bacterial infection in Pacific oyster larvae. PLoS One 2013; 8:e64534. [PMID: 23704993 PMCID: PMC3660371 DOI: 10.1371/journal.pone.0064534] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/16/2013] [Indexed: 12/30/2022] Open
Abstract
Background Bacterial infections are common in bivalve larvae and can lead to significant mortality, notably in hatcheries. Numerous studies have identified the pathogenic bacteria involved in such mortalities, but physiological changes associated with pathogen exposure at larval stage are still poorly understood. In the present study, we used an integrative approach including physiological, enzymatic, biochemical, and molecular analyses to investigate changes in energy metabolism, lipid remodelling, cellular stress, and immune status of Crassostrea gigas larvae subjected to experimental infection with the pathogenic bacteria Vibrio coralliilyticus. Findings Our results showed that V. coralliilyticus exposure induced (1) limited but significant increase of larvae mortality compared with controls, (2) declined feeding activity, which resulted in energy status changes (i.e. reserve consumption, β-oxidation, decline of metabolic rate), (3) fatty acid remodeling of polar lipids (changes in phosphatidylinositol and lysophosphatidylcholine composition`, non-methylene–interrupted fatty acids accumulation, lower content of major C20 polyunsaturated fatty acids as well as activation of desaturases, phospholipase and lipoxygenase), (4) activation of antioxidant defenses (catalase, superoxide dismutase, peroxiredoxin) and cytoprotective processes (heat shock protein 70, pernin), and (5) activation of the immune response (non-self recognition, NF-κκ signaling pathway, haematopoiesis, eiconosoids and lysophosphatidyl acid synthesis, inhibitor of metalloproteinase and antimicrobial peptides). Conclusion Overall, our results allowed us to propose an integrative view of changes induced by a bacterial infection in Pacific oyster larvae, opening new perspectives on the response of marine bivalve larvae to infections.
Collapse
Affiliation(s)
- Bertrand Genard
- Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
78
|
Seipel K, Flieger A. Legionella phospholipases implicated in infection: determination of enzymatic activities. Methods Mol Biol 2013; 954:355-65. [PMID: 23150408 DOI: 10.1007/978-1-62703-161-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila expresses a multitude of different phospholipases which are important virulence tools during host cell infection. To study the lipolytic properties including substrate specificities of potential L. pneumophila phospholipases A (PLA), we used different assays to monitor lipid hydrolysis. Here we describe methods for quantitative analysis of liberated fatty acids via a photometric assay and for identification of specific lipids which are generated by PLA action by means of lipid extraction and thin-layer chromatography. The latter approach also identifies glycerophospholipid:cholesterol acyltransferase activity which may be associated with PLA activity and is responsible for the transfer of fatty acids derived from a phospholipid to an acceptor molecule, such as cholesterol. These methods applied for specific L. pneumophila enzyme knockout mutants compared to the wild type or for recombinantly expressed protein allow to conclude on substrate specificity and/or contribution of a specific enzyme to the total lipolytic activity. Further, via analysis of separated cellular fractions, such as culture supernatants and cell lysates, information on the localization of the enzymes will be obtained.
Collapse
Affiliation(s)
- Kathleen Seipel
- Division of Bacterial Infections (FG11), Robert Koch-Institut, Wernigerode, Germany
| | | |
Collapse
|
79
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
80
|
Belaunzarán ML, Wilkowsky SE, Lammel EM, Giménez G, Bott E, Barbieri MA, de Isola ELD. Phospholipase A1: a novel virulence factor in Trypanosoma cruzi. Mol Biochem Parasitol 2012; 187:77-86. [PMID: 23275096 DOI: 10.1016/j.molbiopara.2012.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Phospholipase A1 (PLA1) has been described in the infective stages of Trypanosoma cruzi as a membrane-bound/secreted enzyme that significantly modified host cell lipid profile with generation of second lipid messengers and concomitant activation of protein kinase C. In the present work we determined higher levels of PLA1 expression in the infective amastigotes and trypomastigotes than in the non-infective epimastigotes of lethal RA strain. In addition, we found similar expression patterns but distinct PLA1 activity levels in bloodstream trypomastigotes from Cvd and RA (lethal) and K98 (non-lethal) T. cruzi strains, obtained at their corresponding parasitemia peaks. This fact was likely due to the presence of different levels of anti-T. cruzi PLA1 antibodies in sera of infected mice, that modulated the enzyme activity. Moreover, these antibodies significantly reduced in vitro parasite invasion indicating the participation of T. cruzi PLA1 in the early events of parasite-host cell interaction. We also demonstrated the presence of lysophospholipase activity in live infective stages that could account for self-protection against the toxic lysophospholipids generated by T. cruzi PLA1 action. At the genome level, we identified at least eight putative genes that codify for T. cruzi PLA1 with high amino acid sequence variability in their amino and carboxy-terminal regions; a putative PLA1 selected gene was cloned and expressed as a recombinant protein that possessed PLA1 activity. Collectively, the results presented here point out at T. cruzi PLA1 as a novel virulence factor implicated in parasite invasion.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
81
|
Kornspan JD, Rottem S. Phospholipase A and glycerophosphodiesterase activities in the cell membrane of Mycoplasma hyorhinis. FEMS Microbiol Lett 2012; 332:34-9. [PMID: 22507126 DOI: 10.1111/j.1574-6968.2012.02571.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis, the major contaminant of tissue cultures, has been implicated in a variety of diseases in swine. Most human and animal mycoplasmas remain attached to the surface of epithelial cells. Nonetheless, we have recently shown that M. hyorhinis is able to invade and survive within nonphagocytic melanoma cells. The invasion process may require the damaging of the host cell membrane by either chemical, physical or enzymatic means. In this study, we show that M. hyorhinis membranes possess a nonspecific phospholipase A (PLA) activity capable of hydrolyzing both position 1 and position 2 of 1-acyl-2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)] aminododecanoyl) phosphatidylcholine. In silico analysis of the M. hyorhinis genome shows that the PLA of M. hyorhinis shares no homology to described phospholipases. The PLA activity of M. hyorhinis was neither stimulated by Ca (2+) nor inhibited by EGTA and had a broad pH spectrum. Mycoplasma hyorhinis also possess a potent glycerophosphodiesterase (GPD), which apparently cleaves the glycerophosphodiester formed by PLA to yield glycerol-3-phosphate. Possible roles of PLA and GPD in invading host eukaryotic cells and in forming mediators upon the interaction of M. hyorhinis with eukaryotic cells are suggested.
Collapse
Affiliation(s)
- Jonathan D Kornspan
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
82
|
Page MGP. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel? Handb Exp Pharmacol 2012:67-86. [PMID: 23090596 DOI: 10.1007/978-3-642-28951-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist.
Collapse
|
83
|
Occurrence of putative virulence genes in arcobacter species isolated from humans and animals. J Clin Microbiol 2011; 50:735-41. [PMID: 22170914 DOI: 10.1128/jcm.05872-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest in arcobacters in veterinary and human public health has increased since the first report of the isolation of arcobacters from food of animal origin. Since then, studies worldwide have reported the occurrence of arcobacters on food and in food production animals and have highlighted possible transmission, especially of Arcobacter butzleri, to the human population. In humans, arcobacters are associated with enteritis and septicemia. To assess their clinical relevance for humans and animals, evaluation of potential virulence factors is required. However, up to now, little has been known about the mechanisms of pathogenicity. Because of their close phylogenetic affiliation to the food-borne pathogen Campylobacter and their similar clinical manifestations, the presence of nine putative Campylobacter virulence genes (cadF, ciaB, cj1349, hecA, hecB, irgA, mviN, pldA, and tlyA) previously identified in the recent Arcobacter butzleri ATCC 49616 genome sequence was determined in a large set of human and animal Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii strains after the development of rapid and accurate PCR assays and confirmed by sequencing and dot blot hybridization.
Collapse
|
84
|
Shaw DK, Hyde JA, Skare JT. The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol 2011; 83:319-34. [PMID: 22151008 DOI: 10.1111/j.1365-2958.2011.07932.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The etiological agent of Lyme disease, Borrelia burgdorferi, is transmitted by ticks of the Ixodes genus and, if untreated, can cause significant morbidity in affected individuals. Recent reports have shown that polyunsaturated fatty acids in the B. burgdorferi cell envelope are potential targets for oxidative damage, which can be lethal. How B. burgdorferi responds to this assault is not known. Herein we report evidence that bb0646 codes for a lipase that is located within the bosR operon and that has specificity for both saturated and polyunsaturated fatty acids. Specifically, strains harbouring mutated copies of the lipase, either in the form of an insertionally inactivated construct or site-directed mutations within the active site, demonstrated attenuated lipolytic and haemolytic phenotypes when compared with the isogenic parent and trans-complements. In vivo analysis showed that while the bb0646 mutant remains infectious, the spirochaetal load is significantly lower than both the isogenic parent and the complemented mutant strains. Taken together, these data demonstrate that BB0646 is a broad substrate specific lipase that contributes to lipolytic and haemolytic activity in vitro and is required for optimal B. burgdorferi infection.
Collapse
Affiliation(s)
- Dana K Shaw
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | | | | |
Collapse
|
85
|
Lang C, Flieger A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 2011; 90:903-12. [DOI: 10.1016/j.ejcb.2010.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023] Open
|
86
|
Wilhelm S, Rosenau F, Kolmar H, Jaeger KE. Autotransporters with GDSL Passenger Domains: Molecular Physiology and Biotechnological Applications. Chembiochem 2011; 12:1476-85. [DOI: 10.1002/cbic.201100013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Indexed: 12/12/2022]
|
87
|
Belaunzarán ML, Lammel EM, de Isola ELD. Phospholipases a in trypanosomatids. Enzyme Res 2011; 2011:392082. [PMID: 21603263 PMCID: PMC3092542 DOI: 10.4061/2011/392082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022] Open
Abstract
Phospholipases are a complex and important group of enzymes widespread in nature, that play crucial roles in diverse biochemical processes and are classified as A1, A2, C, and D. Phospholipases A1 and A2 activities have been linked to pathogenesis in various microorganisms, and particularly in pathogenic protozoa they have been implicated in cell invasion. Kinetoplastids are a group of flagellated protozoa, including extra- and intracellular parasites that cause severe disease in humans and animals. In the present paper, we will mainly focus on the three most important kinetoplastid human pathogens, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., giving a perspective of the research done up to now regarding biochemical, biological, and molecular characteristics of Phospholipases A1 and A2 and their contribution to pathogenesis.
Collapse
Affiliation(s)
- María Laura Belaunzarán
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 13, C1121ABG Buenos Aires, Argentina
| | | | | |
Collapse
|
88
|
Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 2011; 164:991-1022. [PMID: 21302142 DOI: 10.1007/s12010-011-9190-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
Abstract
Significant studies on phospholipases optimization, characterization, physiological role and industrial potential have been conducted worldwide. Some of them have been directed for biotechnological advances such as gene discovery and functional enhancement by protein engineering. Others reported phospholipases as virulence factor and major cause of pathophysiological effects. A general overview on phospholipase is needed for the identification of new reliable and efficient phospholipase, which would be potentially used in number of industrial and medical applications. Phospholipases catalyse the hydrolysis of one or more ester and phosphodiester bonds of glycerophospholipids. They vary in site of action on phospholipid which can be used industrially for modification/production of new phospholipids. Catalytically active phospholipase mainly use phosphatidylcholine as major substrate, but they can also show specificity with other phospholipids. Several accurate phospholipase assay methods are known, but a rapid and reliable method for high-throughput screening is still a challenge for efficient supply of superior phospholipases and their practical applications. Major application of phospholipase is in industries like oil refinery, health food manufacturing, dairy, cosmetics etc. All types of phospholipases can be involved as virulence factor. They can also be used as diagnostic markers for microbial infection. The importance of phospholipase in virulence is proven and inhibitors of the enzyme can be used as candidate for preventing the associated disease.
Collapse
|
89
|
Linkous A, Yazlovitskaya E. Cytosolic phospholipase A2 as a mediator of disease pathogenesis. Cell Microbiol 2010; 12:1369-77. [DOI: 10.1111/j.1462-5822.2010.01505.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Schunder E, Adam P, Higa F, Remer KA, Lorenz U, Bender J, Schulz T, Flieger A, Steinert M, Heuner K. Phospholipase PlaB is a new virulence factor of Legionella pneumophila. Int J Med Microbiol 2010; 300:313-23. [DOI: 10.1016/j.ijmm.2010.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 12/01/2022] Open
|
91
|
Functional characterization of a phospholipase A(2) homolog from Rickettsia typhi. J Bacteriol 2010; 192:3294-303. [PMID: 20435729 DOI: 10.1128/jb.00155-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) has long been proposed to be involved in rickettsial entry into host cells, escape from the phagosome to evade destruction by lysosomal exposure, and lysis of the host cells. However, the corresponding rickettsial gene(s) encoding a protein with PLA(2) activity has not been identified or functionally characterized. Here, we report that the Rickettsia typhi genome possesses two genes encoding patatin-like PLA(2) proteins, RT0590 and RT0522. Sequence analysis of RT0522 and RT0590 reveals the presence of the conserved motifs essential for PLA(2) activity. Transcriptional analysis indicates that RT0522, but not RT0590, is transcribed at all stages of intracellular growth of R. typhi in Vero cells. The differential gene expression pattern of RT0522 at various stages of growth suggests its potential role during R. typhi infection of host cells. In silico, RT0522 is predicted to be noncytoplasmic and its gene does not encode a recognizable signal peptide sequence. However, our data indicate that RT0522 is secreted into the host cytoplasm. In addition, we observe that RT0522 protein expression is cytotoxic to both yeast and Vero cells. Importantly, we demonstrate that recombinant RT0522 possesses phospholipase A activity that requires a eukaryotic host cofactor for activation. Both cytotoxicity and phospholipase A activity associated with RT0522 were reduced by PLA(2) inhibitors. Site-directed mutagenesis of predicted catalytic Ser/Asp residues of RT0522 also eliminates cytotoxicity and phospholipase A activity. To our knowledge, RT0522 is the first protein identified from Rickettsia typhi with functional phospholipase A activity.
Collapse
|
92
|
Cagnasso M, Boero V, Franchini MA, Chorover J. ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces. Colloids Surf B Biointerfaces 2009; 76:456-67. [PMID: 20074916 DOI: 10.1016/j.colsurfb.2009.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
Prior infrared spectroscopic studies of extracellular polymeric substances (EPS) and live bacterial cells have indicated that organic phosphate groups mediate cell adhesion to iron oxides via inner-sphere P-OFe surface complexation. Since cell membrane phospholipids are a potential source of organic phosphate groups, we investigated the adhesion of phospholipidic vesicles to the surfaces of the iron (oxyhydr)oxides goethite (alpha-FeOOH) and hematite (alpha-Fe2O3) using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. l-alpha-phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) were used because they are vesicle forming phospholipids representative of prokaryotic and eukaryotic cell surface membranes. Phospholipid vesicles, formed in aqueous suspension, were characterized by transmission electron microscopy (TEM), multi-angle laser light scattering (MALS) and quasi-elastic light scattering (QELS). Their adhesion to goethite and hematite surfaces was studied with ATR-FTIR at pH 5. Results indicate that PC and PE adsorption is affected by electrostatic interaction and H-bonding (PE). Conversely, adsorption of PA involves phosphate inner-sphere complexes, for both goethite and hematite, via P-OFe bond formation. Biomolecule adsorption at the interface was observed to occur on the scale of minutes to hours. Exponential and linear increases in peak intensity were observed for goethite and hematite, respectively. Our ATR-FTIR results on the PA terminal phosphate are in good agreement with those on EPS reacted with goethite and on bacterial cell adhesion to hematite. These findings suggest that the plasma membrane, and the PA terminal phosphate in particular, may play a role in mediating the interaction between bacteria and iron oxide surfaces during initial stages of biofilm formation.
Collapse
Affiliation(s)
- Matteo Cagnasso
- Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali (Di.Va.P.R.A.), Università degli Studi di Torino, 44 via Leonardo da Vinci, Grugliasco (Torino), Italy I-10095
| | | | | | | |
Collapse
|
93
|
Shimuta K, Ohnishi M, Iyoda S, Gotoh N, Koizumi N, Watanabe H. The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol 2009; 9:261. [PMID: 20003541 PMCID: PMC2800117 DOI: 10.1186/1471-2180-9-261] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serratia marcescens is a gram-negative bacterium and often causes nosocomial infections. There have been few studies of the virulence factors of this bacterium. The only S. marcescens hemolytic and cytotoxic factor reported, thus far, is the hemolysin ShlA. RESULTS An S. marcescens shlAB deletion mutant was constructed and shown to have no contact hemolytic activity. However, the deletion mutant retained hemolytic activity on human blood agar plates, indicating the presence of another S. marcescens hemolytic factor. Functional cloning of S. marcescens identified a phospholipase A (PhlA) with hemolytic activity on human blood agar plates. A phlAB deletion mutant lost hemolytic activity on human blood agar plates. Purified recombinant PhlA hydrolyzed several types of phospholipids and exhibited phospholipase A1 (PLA1), but not phospholipase A2 (PLA2), activity. The cytotoxic and hemolytic activities of PhlA both required phospholipids as substrates. CONCLUSION We have shown that the S. marcescens phlA gene produces hemolysis on human blood agar plates. PhlA induces destabilization of target cell membranes in the presence of phospholipids. Our results indicated that the lysophospholipids produced by PhlA affected cell membranes resulting in hemolysis and cell death.
Collapse
Affiliation(s)
- Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|
94
|
An R, Sreevatsan S, Grewal PS. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. BMC Genomics 2009; 10:433. [PMID: 19754939 PMCID: PMC2760582 DOI: 10.1186/1471-2164-10-433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the white grub Rhizotrogus majalis using selective capture of transcribed sequences technique. RESULTS A total of 40 genes in P. temperata and 39 in X. koppenhoeferi were found to be upregulated in R. majalis hemolymph at 24 h post infection. Genomic presence or upregulation of these genes specific in either one of the bacterium was confirmed by the assay of comparative hybridization, and the changes of randomly selected genes were further validated by quantitative real-time PCR. The identified genes could be broadly divided into seven functional groups including cell surface structure, regulation, virulence and secretion, stress response, intracellular metabolism, nutrient scavenging, and unknown. The two bacteria shared more genes in stress response category than any other functional group. More than 60% of the identified genes were uniquely induced in either bacterium suggesting vastly different molecular mechanisms of pathogenicity to the same insect host. In P. temperata lysR gene encoding transcriptional activator was induced, while genes yijC and rseA encoding transcriptional repressors were induced in X. koppenhoeferi. Lipopolysaccharide synthesis gene lpsE was induced in X. koppenhoeferi but not in P. temperata. Except tcaC and hemolysin related genes, other virulence genes were different between the two bacteria. Genes involved in TCA cycle were induced in P. temperata whereas those involved in glyoxylate pathway were induced in X. koppenhoeferi, suggesting differences in metabolism between the two bacteria in the same insect host. Upregulation of genes encoding different types of nutrient uptake systems further emphasized the differences in nutritional requirements of the two bacteria in the same insect host. Photorhabdus temperata displayed upregulation of genes encoding siderophore-dependent iron uptake system, but X. koppenhoeferi upregulated genes encoding siderophore-independent ion uptake system. Photorhabdus temperata induced genes for amino acid acquisition but X. koppenhoeferi upregulated malF gene, encoding a maltose uptake system. Further analyses identified possible mechanistic associations between the identified gene products in metabolic pathways, providing an interactive model of pathogenesis for each bacterium species. CONCLUSION This study identifies set of genes induced in P. temperata and X. koppenhoeferi upon infection of R. majalis, and highlights differences in molecular features used by these two closely related bacteria to promote their pathogenicity in the same insect host.
Collapse
Affiliation(s)
- Ruisheng An
- Department of Entomology, The Ohio State University, Wooster, OH 44691, USA.
| | | | | |
Collapse
|
95
|
Bender J, Rydzewski K, Broich M, Schunder E, Heuner K, Flieger A. Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis. J Biol Chem 2009; 284:27185-94. [PMID: 19640837 DOI: 10.1074/jbc.m109.026021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila possesses several phospholipases capable of host cell manipulation and lung damage. Recently, we discovered that the major cell-associated hemolytic phospholipase A (PlaB) shares no homology to described phospholipases and is dispensable for intracellular replication in vitro. Nevertheless, here we show that PlaB is the major lipolytic activity in L. pneumophila cell infections and that PlaB utilizes a typical catalytic triad of Ser-Asp-His for effective hydrolysis of phospholipid substrates. Crucial residues were found to be located within the N-terminal half of the protein, and amino acids embedding these active sites were unique for PlaB and homologs. We further showed that catalytic activity toward phosphatidylcholine but not phosphatidylglycerol is directly linked to hemolytic potential of PlaB. Although the function of the prolonged PlaB C terminus remains to be elucidated, it is essential for lipolysis, since the removal of 15 amino acids already abolishes enzyme activity. Additionally, we determined that PlaB preferentially hydrolyzes long-chain fatty acid substrates containing 12 or more carbon atoms. Since phospholipases play an important role as bacterial virulence factors, we examined cell-associated enzymatic activities among L. pneumophila clinical isolates and non-pneumophila species. All tested clinical isolates showed comparable activities, whereas of the non-pneumophila species, only Legionella gormanii and Legionella spiritensis possessed lipolytic activities similar to those of L. pneumophila and comprised plaB-like genes. Interestingly, phosphatidylcholine-specific phospholipase A activity and hemolytic potential were more pronounced in L. pneumophila. Therefore, hydrolysis of the eukaryotic membrane constituent phosphatidylcholine triggered by PlaB could be an important virulence tool for Legionella pathogenicity.
Collapse
Affiliation(s)
- Jennifer Bender
- Division of Bacterial Infections, FG11, Robert Koch-Institut, Burgstrasse 37, Wernigerode 38855, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Angelini A, Cendron L, Goncalves S, Zanotti G, Terradot L. Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori. Proteins 2009; 72:1212-21. [PMID: 18338382 DOI: 10.1002/prot.22014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
YbgC proteins are bacterial acyl-CoA thioesterases associated with the Tol-Pal system. This system is important for cell envelope integrity and is part of the cell division machinery. In E. coli, YbgC associates with the cell membrane and is part of a protein network involved in lipid biogenesis. In the human pathogen Helicobacter pylori, a putative homologue of YbgC, named HP0496, was found to interact with the cytotoxin CagA by two different studies. We have determined its crystal structure and characterized its enzymatic activity. The structure of HP0496 shows that it is a member of the hot-dog family of proteins, with a epsilongamma tetrameric arrangement. Finally, enzymatic assays performed with the purified protein showed that HP0496 is an acyl-CoA thioesterase that favors long-chain substrates.
Collapse
Affiliation(s)
- Alessandro Angelini
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
97
|
Istivan TS, Smith SC, Fry BN, Coloe PJ. Characterization of Campylobacter concisus hemolysins. ACTA ACUST UNITED AC 2008; 54:224-35. [PMID: 18754784 DOI: 10.1111/j.1574-695x.2008.00467.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Campylobacter concisus is an opportunistic pathogen commonly found in the human oral cavity. It has also been isolated from clinical sources including gastroenteritis cases. Both secreted and cell-associated hemolytic activities were detected in C. concisus strains isolated from children with gastroenteritis. The secreted hemolytic activity of C. concisus strains was labile and was detected in variable levels from fresh-culture filtrates only. In addition, another secreted hemolysin/cytotoxin with a molecular weight < 10 kDa was detected in a single C. concisus strain (RCH 12). A C. concisus genomic library, constructed from strain RCH 3 in Escherichia coli XL1-Blue, was screened for hemolytic clones. Subcloning and sequence analysis of selected hemolytic clones identified ORFs for genes that enhance hemolytic activity but do not appear to be related to any known hemolysin genes found in Gram-negative bacteria. In a previous study, a stable cell-associated hemolysin was identified as an outer-membrane phospholipase A (OMPLA) encoded by the pldA gene. In this study, we report cloning of the pldA gene of the clinical strain C. concisus RCH 3 and the complementation of phospholipase A activity in an E. coli pldA mutant.
Collapse
|
98
|
Munsch-Alatossava P, Gursoy O, Alatossava T. Exclusion of phospholipases (PLs)-producing bacteria in raw milk flushed with nitrogen gas (N(2)). Microbiol Res 2008; 165:61-5. [PMID: 18693000 DOI: 10.1016/j.micres.2008.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
Abstract
Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.
Collapse
Affiliation(s)
- Patricia Munsch-Alatossava
- Department of Food Technology, University of Helsinki, Viikki Campus, P.O. Box 66, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|
99
|
Han J, Sahin O, Barton YW, Zhang Q. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog 2008; 4:e1000083. [PMID: 18535657 PMCID: PMC2390758 DOI: 10.1371/journal.ppat.1000083] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/07/2008] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.
Collapse
Affiliation(s)
- Jing Han
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Orhan Sahin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yi-Wen Barton
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
100
|
Karched M, Ihalin R, Eneslätt K, Zhong D, Oscarsson J, Wai SN, Chen C, Asikainen SE. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form. BMC Microbiol 2008; 8:18. [PMID: 18226201 PMCID: PMC2257964 DOI: 10.1186/1471-2180-8-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL) among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S) and in its spontaneous laboratory variant (D7SS) resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm), AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm) were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP) receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|