51
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
52
|
Amiri E, Strand MK, Tarpy DR, Rueppell O. Honey Bee Queens and Virus Infections. Viruses 2020; 12:E322. [PMID: 32192060 PMCID: PMC7150968 DOI: 10.3390/v12030322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC 27709-2211, USA;
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
| |
Collapse
|
53
|
Yang S, Zhao H, Deng Y, Deng S, Wang X, Diao Q, Hou C. A Reverse Genetics System for the Israeli Acute Paralysis Virus and Chronic Bee Paralysis Virus. Int J Mol Sci 2020; 21:ijms21051742. [PMID: 32143291 PMCID: PMC7084666 DOI: 10.3390/ijms21051742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022] Open
Abstract
Honey bee viruses are associated with honey bee colony decline. Israeli acute paralysis virus (IAPV) is considered to have a strong impact on honey bee survival. Phylogenetic analysis of the viral genomes from several regions of the world showed that various IAPV lineages had substantial differences in virulence. Chronic bee paralysis virus (CBPV), another important honey bee virus, can induce two significantly different symptoms. However, the infection characteristics and pathogenesis of IAPV and CBPV have not been completely elucidated. Here, we constructed infectious clones of IAPV and CBPV using a universal vector to provide a basis for studying their replication and pathogenesis. Infectious IAPV and CBPV were rescued from molecular clones of IAPV and CBPV genomes, respectively, that induced typical paralysis symptoms. The replication levels and expression proteins of IAPV and CBPV in progeny virus production were confirmed by qPCR and Western blot. Our results will allow further dissection of the role of each gene in the context of viral infection while helping to study viral pathogenesis and develop antiviral drugs using reverse genetics systems.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.D.); (S.D.); (X.W.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Correspondence: ; Tel.: +86-10-62597285
| |
Collapse
|
54
|
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 2020; 10:3101. [PMID: 32080242 PMCID: PMC7033282 DOI: 10.1038/s41598-020-59808-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA.
| | - Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Animal Biology, UIUC, Urbana, USA
| | - Jessica Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Adam R Hamilton
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Nicholas L Naeger
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Entomology, UIUC, Urbana, USA
| |
Collapse
|
55
|
Payne AN, Shepherd TF, Rangel J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci Rep 2020; 10:2923. [PMID: 32076028 PMCID: PMC7031503 DOI: 10.1038/s41598-020-59712-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/03/2020] [Indexed: 11/26/2022] Open
Abstract
Interspecies virus transmission involving economically important pollinators, including honey bees (Apis mellifera), has recently sparked research interests regarding pollinator health. Given that ants are common pests within apiaries in the southern U.S., the goals of this study were to (1) survey ants found within or near managed honey bee colonies, (2) document what interactions are occurring between ant pests and managed honey bees, and 3) determine if any of six commonly occurring honey bee-associated viruses were present in ants collected from within or far from apiaries. Ants belonging to 14 genera were observed interacting with managed honey bee colonies in multiple ways, most commonly by robbing sugar resources from within hives. We detected at least one virus in 89% of the ant samples collected from apiary sites (n = 57) and in 15% of ant samples collected at non-apiary sites (n = 20). We found that none of these ant samples tested positive for the replication of Deformed wing virus, Black queen cell virus, or Israeli acute paralysis virus, however. Future studies looking at possible virus transmission between ants and bees could determine whether ants can be considered mechanical vectors of honey bee-associated viruses, making them a potential threat to pollinator health.
Collapse
Affiliation(s)
- Alexandria N Payne
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Tonya F Shepherd
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
56
|
Robertson AJ, Scruten E, Mostajeran M, Robertson T, Denomy C, Hogan D, Roesler A, Rutherford C, Kusalik A, Griebel P, Napper S. Kinome Analysis of Honeybee (Apis mellifera L.) Dark-Eyed Pupae Identifies Biomarkers and Mechanisms of Tolerance to Varroa Mite Infestation. Sci Rep 2020; 10:2117. [PMID: 32034205 PMCID: PMC7005721 DOI: 10.1038/s41598-020-58927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
The mite Varroa destructor is a serious threat to honeybee populations. Selective breeding for Varroa mite tolerance could be accelerated by biomarkers within individual bees that could be applied to evaluate a colony phenotype. Previously, we demonstrated differences in kinase-mediated signaling between bees from colonies of extreme phenotypes of mite susceptibility. We expand these findings by defining a panel of 19 phosphorylation events that differ significantly between individual pupae from multiple colonies with distinct Varroa mite tolerant phenotypes. The predictive capacity of these biomarkers was evaluated by analyzing uninfested pupae from eight colonies representing a spectrum of mite tolerance. The pool of biomarkers effectively discriminated individual pupae on the basis of colony susceptibility to mite infestation. Kinome analysis of uninfested pupae from mite tolerant colonies highlighted an increased innate immune response capacity. The implication that differences in innate immunity contribute to mite susceptibility is supported by the observation that induction of innate immune signaling responses to infestation is compromised in pupae of the susceptible colonies. Collectively, biomarkers within individual pupae that are predictive of the susceptibility of colonies to mite infestation could provide a molecular tool for selective breeding of tolerant colonies.
Collapse
Affiliation(s)
| | - Erin Scruten
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Tom Robertson
- Meadow Ridge Enterprises Ltd., Saskatoon, SK, Canada
| | - Connor Denomy
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Roesler
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
57
|
Phytoseiid predatory mites can disperse entomopathogenic fungi to prey patches. Sci Rep 2019; 9:19435. [PMID: 31857623 PMCID: PMC6923365 DOI: 10.1038/s41598-019-55499-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 11/28/2019] [Indexed: 11/29/2022] Open
Abstract
Recent studies have shown that predatory mites used as biocontrol agents can be loaded with entomopathogenic fungal conidia to increase infection rates in pest populations. Under laboratory conditions, we determined the capacity of two phytoseiid mites, Amblyseius swirskii and Neoseiulus cucumeris to deliver the entomopathogenic fungus Beauveria bassiana to their prey, Frankliniella occidentalis. Predatory mites were loaded with conidia and released on plants that had been previously infested with first instar prey clustered on a bean leaf. We examined each plant section to characterize the spatial distribution of each interacting organism. Our results showed that A. swirskii delivered high numbers of conidia to thrips infested leaves, thereby increasing the proportion of thrips that came into contact with the fungus. The effect was larger when thrips infestation occurred on young leaves than on old leaves. Neoseiulus cucumeris delivered less conidia to the thrips infested leaves. These patterns result from differences in foraging activity between predatory mite species. Amblyseius swirskii stayed longer on plants, especially within thrips colonies, and had a stronger suppressing effect on thrips than N. cucumeris. Our study suggests that loading certain predatory mite species with fungal conidia can increase their capacity to suppress thrips populations by combining predation and dispersing pathogens.
Collapse
|
58
|
Yang S, Gayral P, Zhao H, Wu Y, Jiang X, Wu Y, Bigot D, Wang X, Yang D, Herniou EA, Deng S, Li F, Diao Q, Darrouzet E, Hou C. Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids. Viruses 2019; 12:v12010006. [PMID: 31861567 PMCID: PMC7019919 DOI: 10.3390/v12010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022] Open
Abstract
Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yaojun Wu
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Xuejian Jiang
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Fei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Eric Darrouzet
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| |
Collapse
|
59
|
Herrero S, Millán-Leiva A, Coll S, González-Martínez RM, Parenti S, González-Cabrera J. Identification of new viral variants specific to the honey bee mite Varroa destructor. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:157-168. [PMID: 31624979 DOI: 10.1007/s10493-019-00425-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Large-scale colony losses among managed Western honey bees have become a serious threat to the beekeeping industry in the last decade. Multiple factors contribute to these losses, but the impact of Varroa destructor parasitism is by far the most important, along with the contribution of some pathogenic viruses vectored by the mite. So far, more than 20 viruses have been identified infecting the honey bee, most of them RNA viruses. They may be maintained either as covert infections or causing severe symptomatic infections, compromising the viability of the colony. In silico analysis of available transcriptomic data obtained from mites collected in the USA and Europe, as well as additional investigation with new samples collected locally, allowed the description of three RNA viruses, two of them variants of the previously described VDV-2 and VDV-3 and the other a new species reported here for the first time. Our results showed that these viruses were widespread among samples and that they were present in the mites as well as in the bees but with differences in the relative abundance and prevalence. However, we have obtained strong evidence showing that these three viruses were able to replicate in the mite, but not in the bee, suggesting that they are selectively infecting the mite. This opens the door to future applications that may help controlling the mite through biological control approaches.
Collapse
Affiliation(s)
- Salvador Herrero
- ERI BIOTECMED, Department of Genetics, Universitat de València, Valencia, Spain.
| | - Anabel Millán-Leiva
- ERI BIOTECMED, Department of Genetics, Universitat de València, Valencia, Spain
| | - Sandra Coll
- ERI BIOTECMED, Department of Genetics, Universitat de València, Valencia, Spain
| | | | - Stefano Parenti
- ERI BIOTECMED, Department of Genetics, Universitat de València, Valencia, Spain
| | | |
Collapse
|
60
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
61
|
Wang S, Chen G, Lin Z, Wu Y, Hu F, Zheng H. Occurrence of multiple honeybee viruses in the ectoparasitic mites Varroa spp. in Apis cerana colonies. J Invertebr Pathol 2019; 166:107225. [PMID: 31369733 DOI: 10.1016/j.jip.2019.107225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
In this study, we investigated the prevalence of honeybee viruses in Varroa destructor and Varroa underwoodi infesting Apis cerana colonies in China. Deformed wing virus (DWV) was the most prevalent virus in these two mite species, followed by Israeli acute paralysis virus (IAPV), Black queen cell virus (BQCV), Kashmir bee virus (KBV), Chronic bee paralysis virus (CBPV), Apis mellifera filamentous virus (AmFV) and Sacbrood virus (SBV) in V. destructor, while in V. underwoodi, it was followed by CBPV, AmFV, BQCV, IAPV and KBV. In addition, multiple viruses were commonly detectable in both mite species.
Collapse
Affiliation(s)
- Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
62
|
Yang D, Zhao H, Shi J, Xu X, Wu Y, Guo R, Chen D, Wang X, Deng S, Yang S, Diao Q, Hou C. Discovery of Aphid Lethal Paralysis Virus in Vespa velutina and Apis cerana in China. INSECTS 2019; 10:insects10060157. [PMID: 31163665 PMCID: PMC6628042 DOI: 10.3390/insects10060157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022]
Abstract
Honey bees are essential to the functioning of terrestrial ecosystems. However, despite no single factor being blamed for losses of honey bee colonies in Europe and the USA, viruses have been considered as a major driver. Moreover, a virus vector can enhance the titer and virulence of virus such as Varroa destructor can change the virulence of the deformed wing virus. Here, we report molecular evidence for aphid lethal paralysis virus (ALPV) infecting Vespa velutina, which is an important predator of honey bees, especially of Apis cerana. Viral replication and phylogenetic analysis indicated that ALPV can not only replicate in V. velutina and A. cerana, but ALPV from A. cerana (ALPV-Ac) was also significantly associated with that of V. velutina (ALPV-Vv), though distinct from those of Apis mellifera (ALPV-Am). The host state posterior probability displayed that V. velutina is the main viral reservoir between V. velutina and A. cerana. Our results show ALPV had expanded host diversity resulting in potential impacts on the health of pollinators, even on the pollination ecosystem. We suggest further studies should investigate potential risks and impacts on pollinator populations of hornets. These results should have an impact conservation efforts focused on sustaining native pollinator abundance and diversity, and therefore, the crucial ecosystem services that they provide.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China.
| | - Junming Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| |
Collapse
|
63
|
Huang ZY, Bian G, Xi Z, Xie X. Genes important for survival or reproduction in Varroa destructor identified by RNAi. INSECT SCIENCE 2019; 26:68-75. [PMID: 28748595 DOI: 10.1111/1744-7917.12513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Varroa mite, (Varroa destructor), is the worst threat to honey bee health worldwide. To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction. Double-stranded RNA (dsRNA) of six candidate genes (Da, Pros26S, RpL8, RpL11, RpP0 and RpS13) were synthesized and each injected into Varroa mites, then mite survival and reproduction were assessed. Injection of dsRNA for Da (Daughterless) and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase) caused a significant reduction in mite survival, with 3.57% ± 1.94% and 30.03% ± 11.43% mites surviving at 72 h post-injection (hpi), respectively. Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95% ± 5.03% and 82.36 ± 2.81%, respectively. Injections of dsRNA for four other genes (RpL8, RpL11, RpP0 and RpS13) did not affect survival significantly, enabling us to assess their effect on Varroa mite reproduction. The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls. Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8, RpL11) and one gene important for survival (Pros26S). In conclusion, through RNA interference, we have discovered two genes important for mite survival and four genes important for mite reproduction. These genes could be explored as possible targets for the control of Varroa destructor in the future.
Collapse
Affiliation(s)
- Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Guowu Bian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
64
|
New Viruses from the Ectoparasite Mite Varroa destructor Infesting Apis mellifera and Apis cerana. Viruses 2019; 11:v11020094. [PMID: 30678330 PMCID: PMC6409542 DOI: 10.3390/v11020094] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
Varroa destructor is an ectoparasitic mite of Asian or Eastern honeybees Apis cerana(A. cerana) which has become a serious threat to European subspecies of Western honeybees Apis mellifera (A. mellifera) within the last century. V.destructor and its vectored honeybee viruses became serious threats for colony survival. This is a short period for pathogen- and host-populations to adapt. To look for possible variation in the composition of viral populations we performed RNA metagenomic analysis of the Western honeybee subspecies A. m. ligustica, A. m.syriaca, A. m. intermissa, and A. cerana and their respective V. destructor mites. The analysis revealed two novel viruses: Varroa orthomyxovirus-1 (VOV-1) in A. mellifera and V. destructor and a Hubei like-virga virus-14 homolog in V. destructor. VOV-1 was more prevalent in V. destructor than in A. mellifera and we found evidence for viral replication in both hosts. Interestingly, we found differences in viral loads of A. cerana and their V. destructor, A. m. intermissa, and its V. destructor showed partial similarity, while A. m.ligustica and A. m.syriaca and their varroa where very similar. Deformed wing virus exhibited 82.20%, 99.20%, 97.90%, and 0.76% of total viral reads in A. m. ligustica, A. m. syriaca, A. m. intermissa, and A. cerana, respectively. This is the first report of a complete segmented-single-stranded negative-sense RNA virus genome in honeybees and V. destructor mites.
Collapse
|
65
|
The Dynamics of Deformed Wing Virus Concentration and Host Defensive Gene Expression after Varroa Mite Parasitism in Honey Bees, Apis mellifera. INSECTS 2019; 10:insects10010016. [PMID: 30626033 PMCID: PMC6358901 DOI: 10.3390/insects10010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
The synergistic interactions between the ectoparasitic mite Varroa destructor and Deformed wing virus (DWV) lead to the reduction in lifespan of the European honey bee Apis mellifera and often have been implicated in colony losses worldwide. However, to date, the underlying processes and mechanisms that form the multipartite interaction between the bee, mite, and virus have not been fully explained. To gain a better understanding of honey bees’ defense response to Varroa mite infestation and DWV infection, the DWV titers and transcription profiles of genes originating from RNAi, immunity, wound response, and homeostatic signaling pathways were monitored over a period of eight days. With respect to DWV, we observed low viral titers at early timepoints that coincided with high levels of Toll pathway transcription factor Dorsal, and its downstream immune effector molecules Hymenoptaecin, Apidaecin, Abaecin, and Defensin 1. However, we observed a striking increase in viral titers beginning after two days that coincided with a decrease in Dorsal levels and its corresponding immune effector molecules, and the small ubiquitin-like modifier (SUMO) ligase repressor of Dorsal, PIAS3. We observed a similar expression pattern for genes expressing transcripts for the RNA interference (Dicer/Argonaute), wound/homeostatic (Janus Kinase), and tissue growth (Map kinase/Wnt) pathways. Our results demonstrate that on a whole, honey bees are able to mount an immediate, albeit, temporally limited, immune and homeostatic response to Varroa and DWV infections, after which downregulation of these pathways leaves the bee vulnerable to expansive viral replication. The critical insights into the defense response upon Varroa and DWV challenges generated in this study may serve as a solid base for future research on the development of effective and efficient disease management strategies in honey bees.
Collapse
|
66
|
Amiri E, Seddon G, Zuluaga Smith W, Strand MK, Tarpy DR, Rueppell O. Israeli Acute Paralysis Virus: Honey Bee Queen⁻Worker Interaction and Potential Virus Transmission Pathways. INSECTS 2019; 10:E9. [PMID: 30626038 PMCID: PMC6359674 DOI: 10.3390/insects10010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Queen loss or failure is an important cause of honey bee colony loss. A functional queen is essential to a colony, and the queen is predicted to be well protected by worker bees and other mechanisms of social immunity. Nevertheless, several honey bee pathogens (including viruses) can infect queens. Here, we report a series of experiments to test how virus infection influences queen⁻worker interactions and the consequences for virus transmission. We used Israeli acute paralysis virus (IAPV) as an experimental pathogen because it is relevant to bee health but is not omnipresent. Queens were observed spending 50% of their time with healthy workers, 32% with infected workers, and 18% without interaction. However, the overall bias toward healthy workers was not statistically significant, and there was considerable individual to individual variability. We found that physical contact between infected workers and queens leads to high queen infection in some cases, suggesting that IAPV infections also spread through close bodily contact. Across experiments, queens exhibited lower IAPV titers than surrounding workers. Thus, our results indicate that honey bee queens are better protected by individual and social immunity, but this protection is insufficient to prevent IAPV infections completely.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Gregory Seddon
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wendy Zuluaga Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709-2211, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| |
Collapse
|
67
|
Abstract
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Collapse
Affiliation(s)
- Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Infectious Disease Dynamics, and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology and Pollinator Health Center, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
68
|
Yang D, Xu X, Zhao H, Yang S, Wang X, Zhao D, Diao Q, Hou C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front Genet 2018; 9:384. [PMID: 30254665 PMCID: PMC6141667 DOI: 10.3389/fgene.2018.00384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Infection and transmission of honey bee viruses pose a serious threat to the pollination services of crops and wild plants, which plays a vital role in agricultural economy and ecology. RNA interference (RNAi) is an effective defense mechanism against commonly occurring viral infections of animals and plants. However, recent studies indicate that the effects of RNAi on the honey bee can induce additional impacts and might not always be effective in suppressing the virus. Moreover, the RNAi responses differed in relation to the developmental stage of the insect and the target tissue used, even though the same method of delivery was used. These results indicate that further analysis and field experiments should be performed to characterize the varying effectiveness of RNAi-based methods for treating honey bee viral infections. In this review, we provide an overview of the current knowledge and the recent progress in RNAi-based anti-viral treatments for honey bees, focusing in particular highlight the role of the dsRNA-delivery method used and its effect on RNAi efficiency and demonstrate the potential practical value of this tool for controlling the virus. We conclude studying the gene function and disease control of honey bee by RNAi technology requires a complex consideration from physiology, genetics to environment.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Di Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| |
Collapse
|
69
|
Next-generation sequence data demonstrate several pathogenic bee viruses in Middle East and African honey bee subspecies (Apis mellifera syriaca, Apis mellifera intermissa) as well as their cohabiting pathogenic mites (Varroa destructor). Virus Genes 2018; 54:694-705. [PMID: 30116966 DOI: 10.1007/s11262-018-1593-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
RNA viruses are associated with honey bee (Apis mellifera) colony losses in many parts of the world. Their consequences may be exacerbated when the ectoparasite mite Varroa destructor is present in hives. While evidence of pathogenic, viral-induced disease is abundant in western honey bees (Apis mellifera mellifera) from many parts of the world, less information exists regarding the pathogen load of Apis mellifera syriaca and Apis mellifera intermissa, honey bees from the Middle East and North Africa (MENA) that play substantial roles in regional beekeeping. Here, we used next-generation sequencing to evaluate the viral populations of these subspecies and their associated mites. We found that both A. m. syriaca and A. m. intermissa, as well as the Varroa mites infecting their colonies, bear a suite of RNA viruses including major pathogenic viruses like Deformed wing virus, Acute bee paralysis virus, Black queen cell virus and Sacbrood virus, and less common viruses (e.g., bee Macula-like virus and Apis mellifera filamentous virus). The two native honey bee MENA subspecies have acquired different but overlapping suites of pathogens, which also differ, but overlap, with the suites detected in the mites. The presence of plant viruses suggests that they were acquired from foraging for pollen and nectar. Phylogenetic analysis of the above common pathogenic RNA viruses showed unexpected genetic relationships with other known strains, indicative of import to MENA from outside of the region. Our findings indicate that it is important to carefully consider the impact of the movement of queens and mobile colonies, and the effects such movement have, on the transmission of disease.
Collapse
|
70
|
Roberts JMK, Anderson DL, Durr PA. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J Gen Virol 2018; 99:818-826. [PMID: 29749926 DOI: 10.1099/jgv.0.001073] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The viral landscape of the honey bee (Apismellifera) has changed as a consequence of the global spread of the parasitic mite Varroa destructor and accompanying virulent strains of the iflavirus deformed wing virus (DWV), which the mite vectors. The presence of DWV in honey bee populations is known to influence the occurrence of other viruses, suggesting that the current known virome of A. mellifera may be undercharacterized. Here we tested this hypothesis by examining the honey bee virome in Australia, which is uniquely free of parasitic mites or DWV. Using a high-throughput sequencing (HTS) approach, we examined the RNA virome from nine pools of A. mellifera across Australia. In addition to previously reported honey bee viruses, several other insect viruses were detected, including strains related to aphid lethal paralysis virus (ALPV) and Rhopalosiphum padi virus (RhPV), which have recently been identified as infecting honey bees in the USA, as well as several other viruses recently found in Drosophila spp. A further 42 putative novel insect virus genomes spanning the order Picornavirales were assembled, which significantly increases the known viral diversity in A. mellifera. Among these novel genomes, we identified several that were similar (but different) to key A. mellifera viruses, such as DWV, that warrant further investigation. We propose that A. mellifera may be preferentially infected with viruses of the order Picornavirales and that a diverse population of these viruses may be representative of a Varroa-free landscape.
Collapse
Affiliation(s)
- John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Denis L Anderson
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
- ADFCA, Research and Development Division, Al Ain, UAE
| | - Peter A Durr
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, 3219, Australia
| |
Collapse
|
71
|
McMahon DP, Wilfert L, Paxton RJ, Brown MJF. Emerging Viruses in Bees: From Molecules to Ecology. Adv Virus Res 2018; 101:251-291. [PMID: 29908591 DOI: 10.1016/bs.aivir.2018.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Emerging infectious diseases arise as a result of novel interactions between populations of hosts and pathogens, and can threaten the health and wellbeing of the entire spectrum of biodiversity. Bees and their viruses are a case in point. However, detailed knowledge of the ecological factors and evolutionary forces that drive disease emergence in bees and other host-pathogen communities is surprisingly lacking. In this review, we build on the fundamental insight that viruses evolve and adapt over timescales that overlap with host ecology. At the same time, we integrate the role of host community ecology, including community structure and composition, biodiversity loss, and human-driven disturbance, all of which represent significant factors in bee virus ecology. Both of these evolutionary and ecological perspectives represent major advances but, in most cases, it remains unclear how evolutionary forces actually operate across different biological scales (e.g., from cell to ecosystem). We present a molecule-to-ecology framework to help address these issues, emphasizing the role of molecular mechanisms as key bottom-up drivers of change at higher ecological scales. We consider the bee-virus system to be an ideal one in which to apply this framework. Unlike many other animal models, bees constitute a well characterized and accessible multispecies assemblage, whose populations and interspecific interactions can be experimentally manipulated and monitored in high resolution across space and time to provide robust tests of prevailing theory.
Collapse
Affiliation(s)
- Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Robert J Paxton
- Institute for Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany; German Centre for integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
72
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
73
|
Jones RAC. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways. Adv Virus Res 2018; 101:149-187. [PMID: 29908589 DOI: 10.1016/bs.aivir.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease management, it is important to examine all transmission pathways potentially involved, regardless of whether the virus' ecology is already presumed to be well understood or otherwise.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley, WA, Australia; Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
74
|
McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee pollinators. CURRENT OPINION IN INSECT SCIENCE 2018; 26:120-129. [PMID: 29764651 DOI: 10.1016/j.cois.2018.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Bees are agriculturally and ecologically important plant pollinators. Recent high annual losses of honey bee colonies, and reduced populations of native and wild bees in some geographic locations, may impact the availability of affordable food crops and the diversity and abundance of native and wild plant species. Multiple factors including viral infections affect pollinator health. The majority of well-characterized bee viruses are picorna-like RNA viruses, which may be maintained as covert infections or cause symptomatic infections or death. Next generation sequencing technologies have been utilized to identify additional bee-infecting viruses including the Lake Sinai viruses and Rhabdoviruses. In addition, sequence data is instrumental for defining specific viral strains and characterizing associated pathogenicity, such as the recent characterization of Deformed wing virus master variants (DWV-A, DWV-B, and DWV-C) and their impact on bee health.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Pollinator Health Center, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
75
|
Egekwu NI, Posada F, Sonenshine DE, Cook S. Using an in vitro system for maintaining Varroa destructor mites on Apis mellifera pupae as hosts: studies of mite longevity and feeding behavior. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:301-315. [PMID: 29511937 DOI: 10.1007/s10493-018-0236-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Varroa destructor mites (varroa) are ectoparasites of Apis mellifera honey bees, and the damage they inflict on hosts is likely a causative factor of recent poor honey bee colony performance. Research has produced an arsenal of control agents against varroa mites, which have become resistant to many chemical means of their control, and other means have uncertain efficacy. Novel means of control will result from a thorough understanding of varroa physiology and behavior. However, robust knowledge of varroa biology is lacking; mites have very low survivability and reproduction away from their natural environment and host, and few tested protocols of maintaining mites in vitro are available as standardized methods for varroa research. Here, we describe the 'varroa maintenance system' (VMS), a tool for maintaining in vitro populations of varroa on its natural host, and present best practices for its use in varroa and host research. Additionally, we present results using the VMS from research of varroa and host longevity and varroa feeding behavior. Under these conditions, from two trials, mites lived an average of 12 and 14 days, respectively. For studies of feeding behavior, female mites inflicted wounds located on a wide range of sites on the host's integument, but preferred to feed from the host's abdomen and thorax. Originally in the phoretic-phase, female mites in VMS had limited reproduction, but positive instances give insights into the cues necessary for initiating reproduction. The VMS is a useful tool for laboratory studies requiring long-term survival of mites, or host-parasite interactions.
Collapse
Affiliation(s)
- Noble I Egekwu
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
| | - Francisco Posada
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Daniel E Sonenshine
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Steven Cook
- Bee Research Lab, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| |
Collapse
|
76
|
Lin Z, Qin Y, Page P, Wang S, Li L, Wen Z, Hu F, Neumann P, Zheng H, Dietemann V. Reproduction of parasitic mites Varroa destructor in original and new honeybee hosts. Ecol Evol 2018; 8:2135-2145. [PMID: 29468031 PMCID: PMC5817142 DOI: 10.1002/ece3.3802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, shifted host from the eastern honeybee, Apis cerana, to the western honeybee, Apis mellifera. Whereas the original host survives infestations by this parasite, they are lethal to colonies of its new host. Here, we investigated a population of A. cerana naturally infested by the V. destructor Korea haplotype that gave rise to the globally invasive mite lineage. Our aim was to better characterize traits that allow for the survival of the original host to infestations by this particular mite haplotype. A known major trait of resistance is the lack of mite reproduction on worker brood in A. cerana. We show that this trait is neither due to a lack of host attractiveness nor of reproduction initiation by the parasite. However, successful mite reproduction was prevented by abnormal host development. Adult A. cerana workers recognized this state and removed hosts and parasites, which greatly affected the fitness of the parasite. These results confirm and complete previous observations of brood susceptibility to infestation in other honeybee host populations, provide new insights into the coevolution between hosts and parasites in this system, and may contribute to mitigating the large-scale colony losses of A. mellifera due to V. destructor.
Collapse
Affiliation(s)
- Zheguang Lin
- College of Animal SciencesZhejiang UniversityHangzhouChina
- AgroscopeSwiss Bee Research CenterBernSwitzerland
| | - Yao Qin
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Paul Page
- AgroscopeSwiss Bee Research CenterBernSwitzerland
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
- Plant Bioactive Compound LaboratoryFaculty of AgricultureChiang Mai UniversityChiang MaiThailand
| | - Shuai Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Li Li
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Zhengsheng Wen
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Fuliang Hu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Peter Neumann
- Vetsuisse FacultyInstitute of Bee HealthUniversity of BernBernSwitzerland
| | - Huoqing Zheng
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | |
Collapse
|
77
|
Levin S, Galbraith D, Sela N, Erez T, Grozinger CM, Chejanovsky N. Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents. Front Microbiol 2017; 8:2482. [PMID: 29312191 PMCID: PMC5732965 DOI: 10.3389/fmicb.2017.02482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023] Open
Abstract
The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees (Apis mellifera), many viruses are transmitted - and their impacts exacerbated - by the parasitic Varroa destructor mite. Thus far, the viruses found to be shared across bee species and transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, we describe the identification - using a metagenomics approach - of ARV-1 in two bee species (A. mellifera and Bombus impatiens) and in V. destructor mites from populations collected in the United States and Israel. We confirmed the presence of ARV-1 in pools of A. mellifera, B. impatiens, and V. destructor from Israeli and U.S. populations by RT-PCR and found that it can reach high titers in individual honey bees and mites (107-108 viral genomic copies per individual). To estimate the prevalence of ARV-1 in honey bee populations, we screened 104 honey bee colonies across Israel, with 21 testing ARV-1-positive. Tagged-primer-mediated RT-PCR analysis detected the presence of the positive-sense ARV-1 RNA in A. mellifera and V. destructor, indicating that ARV-1 replicates in both hosts. This is the first report of the presence of ARV-1 in B. impatiens and of the replication of a rhabdovirus in A. mellifera and V. destructor. Our data suggest that Varroa mites could act as an ARV-1 vector; however, the presence of ARV-1 in B. impatiens (which are not parasitized by Varroa) suggests that it may not require the mite for transmission and ARV-1 may be shared among co-foraging bee species. Given that ARV-1 is found in non-Apis bee species, and because "ARV" is used for the Adelaide River virus, we propose that this virus should be called bee rhabdovirus 1 and abbreviated BRV-1. These results greatly expand our understanding of the diversity of viruses that can infect bee communities, though further analysis is required to determine how infection with this virus impacts these different hosts.
Collapse
Affiliation(s)
- Sofia Levin
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
- Faculty of Agricultural, Food and the Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Galbraith
- Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tal Erez
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
| | - Christina M. Grozinger
- Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Nor Chejanovsky
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
78
|
Wang H, Meeus I, Piot N, Smagghe G. Systemic Israeli acute paralysis virus (IAPV) infection in bumblebees (Bombus terrestris) through feeding and injection. J Invertebr Pathol 2017; 151:158-164. [PMID: 29203138 DOI: 10.1016/j.jip.2017.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Israeli acute paralysis virus (IAPV) can cause a systemic infection, resulting in mortality in both Apis and Bombus spp. bees. However, little is known about the virus infection dynamics within bee tissues. Here, we established systemic IAPV infections in reared bumblebee Bombus terrestris workers through feeding and injection and investigated the mortality, tissue tropism and viral localization. Injection of approximately 500 IAPV (IAPVinj stock) particles resulted in acute infection, viral loads within tissues that were relatively stable from bee to bee, and a distinctive tissue tropism, making this method suitable for studying systemic IAPV infection in bumblebees. Feeding with approximately 1 × 106 particles of the same virus stock did not result in systemic infection. A high-concentration stock of IAPV (IAPVfed stock) allowed us to feed bumblebees with approximately 1 × 109 viral particles, which induced both chronic and acute infection. We also observed a higher variability in viral titers within tissues and less clear tissue tropism during systemic infection, making feeding with IAPVfed stock less optimal for studying IAPV systemic infection. Strikingly, both infection methods and stocks with different viral loads gave a similar viral localization pattern in the brain and midgut of bumblebees with an acute infection. The implications of these findings in the study of the local immunity in bees and barriers to oral transmission are discussed. Our data provide useful information on the establishment of a systemic viral infection in bees.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Niels Piot
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
79
|
Chanpanitkitchote P, Chen Y, Evans JD, Li W, Li J, Hamilton M, Chantawannakul P. Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae. J Invertebr Pathol 2017; 151:131-136. [PMID: 29158015 DOI: 10.1016/j.jip.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Viruses, and especially RNA viruses, constantly change and adapt to new host species and vectors, posing a potential threat of new and reemerging infectious diseases. Honey bee Acute bee paralysis virus (ABPV) and Deformed wing virus (DWV) are two of the most common honey bee viruses found in European honey bees Apis mellifera and have been implicated in worldwide Varroa-associated bee colony losses. Previous studies have shown that DWV has jumped hosts several times in history causing infection in multiple host species. In the present study, we show that DWV infection could be detected in the Asian honey bee, A. cerana, and the parasitic mite Tropilaelaps mercedesae, confirming previous findings that DWV is a multi-host pathogen and supporting the notion that the high prevalence of DWV in honey bee host populations could be attributed to the high adaptability of this virus. Furthermore, our study provides the first evidence that ABPV occurs in both A. cerana and T. mercedesae in northern Thailand. The geographical proximity of host species likely played an important role in the initial exposure and the subsequent cross-species transmission of these viruses. Phylogenetic analyses suggest that ABPV might have moved from T. mercedesae to A. mellifera and to A. cerana while DWV might have moved in the opposite direction from A. cerana to A. mellifera and T. mercedesae. This result may reflect the differences in virus life history and virus-host interactions, warranting further investigation of virus transmission, epidemiology, and impacts of virus infections in the new hosts. The results from this study indicate that viral populations will continue to evolve and likely continue to expand host range, increasing the need for effective surveillance and control of virus infections in honey bee populations.
Collapse
Affiliation(s)
- Pichaya Chanpanitkitchote
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yanping Chen
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Jay D Evans
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Wenfeng Li
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Jianghong Li
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, MD 20705, USA; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Michele Hamilton
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
80
|
Anjum SI, Shah AH, El-shakh AS, Ullah I, Ullah A, Khan A, Ali M, Khan AA, Khan A. Use of Nepeta clarkei extracts for controlling honey bee pathogenic bacteria and mosquito larvae. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1381105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Haleem Shah
- Department of Biological Sciences, Gomal University, Khyber Pakhtunkhwa, Pakistan
| | | | - Imran Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ali
- Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan
| | - Abdul Azeez Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adnan Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
81
|
McAfee A, Chan QWT, Evans J, Foster LJ. A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Mol Cell Proteomics 2017; 16:2125-2137. [PMID: 28867676 PMCID: PMC5724176 DOI: 10.1074/mcp.ra117.000104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Varroa destructor is the most economically damaging honey bee pest, weakening colonies by simultaneously parasitizing bees and transmitting harmful viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here, we present a Varroa protein atlas crossing all major developmental stages (egg, protonymph, deutonymph, and adult) for both male and female mites as a web-based interactive tool (http://foster.nce.ubc.ca/varroa/index.html). We used intensity-based label-free quantitation to find 1,433 differentially expressed proteins across developmental stages. Enzymes for processing carbohydrates and amino acids were among many of these differences as well as proteins involved in cuticle formation. Lipid transport involving vitellogenin was the most significantly enriched biological process in the foundress (reproductive female) and young mites. In addition, we found that 101 proteins were sexually regulated and functional enrichment analysis suggests that chromatin remodeling may be a key feature of sex determination. In a proteogenomic effort, we identified 519 protein-coding regions, 301 of which were supported by two or more peptides and 169 of which were differentially expressed. Overall, this work provides a first-of-its-kind interrogation of the patterns of protein expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest.
Collapse
Affiliation(s)
- Alison McAfee
- From the ‡Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Queenie W T Chan
- From the ‡Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jay Evans
- §Bee Research Laboratory, Beltsville Agricultural Research Center-East, U.S. Department of Agriculture, Beltsville, MD, USA 20705-0000
| | - Leonard J Foster
- §Bee Research Laboratory, Beltsville Agricultural Research Center-East, U.S. Department of Agriculture, Beltsville, MD, USA 20705-0000
| |
Collapse
|
82
|
Glenny W, Cavigli I, Daughenbaugh KF, Radford R, Kegley SE, Flenniken ML. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLoS One 2017; 12:e0182814. [PMID: 28817641 PMCID: PMC5560708 DOI: 10.1371/journal.pone.0182814] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.
Collapse
Affiliation(s)
- William Glenny
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
| | - Ian Cavigli
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Katie F. Daughenbaugh
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Rosemarie Radford
- Pesticide Research Institute, Berkeley, California, United States of America
| | - Susan E. Kegley
- Pesticide Research Institute, Berkeley, California, United States of America
| | - Michelle L. Flenniken
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
83
|
Li Z, Li M, He J, Zhao X, Chaimanee V, Huang WF, Nie H, Zhao Y, Su S. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:1-8. [PMID: 28755688 DOI: 10.1016/j.pestbp.2017.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 05/25/2023]
Abstract
Acute toxicities (LD50s) of imidacloprid and clothianidin to Apis mellifera and A. cerana were investigated. Changing patterns of immune-related gene expressions and the activities of four enzymes between the two bee species were compared and analyzed after exposure to sublethal doses of insecticides. Results indicated that A. cerana was more sensitive to imidacloprid and clothianidin than A. mellifera. The acute oral LD50 values of imidacloprid and clothianidin for A. mellifera were 8.6 and 2.0ng/bee, respectively, whereas the corresponding values for A. cerana were 2.7 and 0.5ng/bee. The two bee species possessed distinct abilities to mount innate immune response against neonicotinoids. After 48h of imidacloprid treatment, carboxylesterase (CCE), prophenol oxidase (PPO), and acetylcholinesterase (AChE) activities were significantly downregulated in A. mellifera but were upregulated in A. cerana. Glutathione-S-transferase (GST) activity was significantly elevated in A. mellifera at 48h after exposure to imidacloprid, but no significant change was observed in A. cerana. AChE was downregulated in both bee species at three different time points during clothianidin exposure, and GST activities were upregulated in both species exposed to clothianidin. Different patterns of immune-related gene expression and enzymatic activities implied distinct detoxification and immune responses of A. cerana and A. mellifera to imidacloprid and clothianidin.
Collapse
Affiliation(s)
- Zhiguo Li
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Meng Li
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingfang He
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomeng Zhao
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Veeranan Chaimanee
- Department of Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Wei-Fone Huang
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongyi Nie
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yazhou Zhao
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Songkun Su
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
84
|
Roberts JMK, Anderson DL, Durr PA. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci Rep 2017; 7:6925. [PMID: 28761114 PMCID: PMC5537221 DOI: 10.1038/s41598-017-07290-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 01/28/2023] Open
Abstract
Honeybee (Apis mellifera) health is threatened globally by the complex interaction of multiple stressors, including the parasitic mite Varroa destructor and a number of pathogenic viruses. Australia provides a unique opportunity to study this pathogenic viral landscape in the absence of V. destructor. We analysed 1,240A. mellifera colonies across Australia by reverse transcription-polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS). Five viruses were prevalent: black queen cell virus (BQCV), sacbrood virus (SBV), Israeli acute paralysis virus (IAPV) and the Lake Sinai viruses (LSV1 and LSV2), of which the latter three were detected for the first time in Australia. We also showed several viruses were absent in our sampling, including deformed wing virus (DWV) and slow bee paralysis virus (SBPV). Our findings highlight that viruses can be highly prevalent in A. mellifera populations independently of V. destructor. Placing these results in an international context, our results support the hypothesis that the co-pathogenic interaction of V. destructor and DWV is a key driver of increased colony losses, but additional stressors such as pesticides, poor nutrition, etc. may enable more severe and frequent colony losses to occur.
Collapse
Affiliation(s)
- John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Denis L Anderson
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
- ADFCA, Research and Development Division, Al Ain, UAE
| | - Peter A Durr
- CSIRO-Australian Animal Health Laboratory, Geelong, Victoria, 3219, Australia
| |
Collapse
|
85
|
DeGrandi-Hoffman G, Ahumada F, Danka R, Chambers M, DeJong EW, Hidalgo G. Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:809-815. [PMID: 28334279 DOI: 10.1093/jee/tox069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- USDA-ARS, Carl Hayden Bee Research Center, 2000 East Allen Rd., Tucson, AZ 85719 ( ; ; ; )
- Corresponding author, e-mail:
| | | | - Robert Danka
- Genetics and Physiology Laboratory, USDA-ARS Honey Bee Breeding, 1157 Ben Hur Rd., Baton Rouge, LA 70820
| | - Mona Chambers
- USDA-ARS, Carl Hayden Bee Research Center, 2000 East Allen Rd., Tucson, AZ 85719 (; ; ; )
| | - Emily Watkins DeJong
- USDA-ARS, Carl Hayden Bee Research Center, 2000 East Allen Rd., Tucson, AZ 85719 (; ; ; )
| | - Geoff Hidalgo
- USDA-ARS, Carl Hayden Bee Research Center, 2000 East Allen Rd., Tucson, AZ 85719 (; ; ; )
| |
Collapse
|
86
|
Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera. INSECT SCIENCE 2017; 24:467-477. [PMID: 26990560 DOI: 10.1111/1744-7917.12335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 05/21/2023]
Abstract
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.
Collapse
Affiliation(s)
- Pendo M Abbo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | - Joshua K Kawasaki
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Steven C Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Wen Feng Li
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Liu
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
87
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
88
|
Molineri A, Giacobino A, Pacini A, Bulacio Cagnolo N, Fondevila N, Ferrufino C, Merke J, Orellano E, Bertozzi E, Masciángelo G, Pietronave H, Signorini M. Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies. Prev Vet Med 2017; 140:106-115. [DOI: 10.1016/j.prevetmed.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/29/2016] [Accepted: 02/27/2017] [Indexed: 01/30/2023]
|
89
|
Condition-dependent virulence of slow bee paralysis virus in Bombus terrestris: are the impacts of honeybee viruses in wild pollinators underestimated? Oecologia 2017; 184:305-315. [PMID: 28361244 PMCID: PMC5487845 DOI: 10.1007/s00442-017-3851-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/08/2017] [Indexed: 11/03/2022]
Abstract
Slow bee paralysis virus (SBPV)-previously considered an obligate honeybee disease-is now known to be prevalent in bumblebee species. SBPV is highly virulent in honeybees in association with Varroa mites, but has been considered relatively benign otherwise. However, condition-dependent pathogens can appear asymptomatic under good, resource abundant conditions, and negative impacts on host fitness may only become apparent when under stressful or resource-limited conditions. We tested whether SBPV expresses condition-dependent virulence in its bumblebee host, Bombus terrestris, by orally inoculating bees with SBPV and recording longevity under satiated and starvation conditions. SBPV infection resulted in significant virulence under starvation conditions, with infected bees 1.6 times more likely to die at any given time point (a median of 2.3 h earlier than uninfected bees), whereas there was no effect under satiated conditions. This demonstrates clear condition-dependent virulence for SBPV in B. terrestris. Infections that appear asymptomatic in non-stressful laboratory assays may nevertheless have significant impacts under natural conditions in the wild. For multi-host pathogens such as SBPV, the use of sentinel host species in laboratory assays may further lead to the underestimation of pathogen impacts on other species in nature. In this case the impact of 'honeybee viruses' on wild pollinators may be underestimated, with detrimental effects on conservation and food security. Our results highlight the importance of multiple assays and multiple host species when testing for virulence, in order for laboratory studies to accurately inform conservation policy and mitigate disease impacts in wild pollinators.
Collapse
|
90
|
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies. INSECTS 2017; 8:insects8010031. [PMID: 28287445 PMCID: PMC5371959 DOI: 10.3390/insects8010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.
Collapse
|
91
|
Drescher N, Klein AM, Neumann P, Yañez O, Leonhardt SD. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. INSECTS 2017; 8:E15. [PMID: 28178181 PMCID: PMC5371943 DOI: 10.3390/insects8010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.
Collapse
Affiliation(s)
- Nora Drescher
- Institute of Ecology, Leuphana University of Lüneburg, Scharnhorststr. 1, Lüneburg D-21335, Germany.
| | - Alexandra-Maria Klein
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Str. 4, Freiburg D-79106, Germany.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, Bern CH-3003, Switzerland.
- Swiss Bee Research Centre, Agroscope, Bern CH-3003, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, Bern CH-3003, Switzerland.
- Swiss Bee Research Centre, Agroscope, Bern CH-3003, Switzerland.
| | - Sara D Leonhardt
- Department of Animal Department of Ecology and Tropical Biology, University of Würzburg, Biocenter-Am Hubland, Würzburg D-97074, Germany.
| |
Collapse
|
92
|
Whitten M, Dyson P. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 2017; 39. [DOI: 10.1002/bies.201600247] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miranda Whitten
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| | - Paul Dyson
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| |
Collapse
|
93
|
Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus. J Virol 2017; 91:JVI.02060-16. [PMID: 27928006 PMCID: PMC5286892 DOI: 10.1128/jvi.02060-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023] Open
Abstract
Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro. We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae. The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release.
IMPORTANCE Honeybee populations in Europe and North America are declining due to pressure from pathogens, including viruses. Israeli acute bee paralysis virus (IAPV), a member of the family Dicistroviridae, causes honeybee colony collapse disorder in the United States. The delivery of virus genomes into host cells is necessary for the initiation of infection. Here we present a structural cryo-electron microscopy analysis of IAPV particles induced to release their genomes. We show that genome release is not preceded by an expansion of IAPV virions as in the case of related picornaviruses that infect vertebrates. Furthermore, minor capsid proteins detach from the capsid upon genome release. The genome leaves behind empty particles that have compact protein shells.
Collapse
|
94
|
Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci Rep 2016; 6:37710. [PMID: 27883042 PMCID: PMC5121581 DOI: 10.1038/srep37710] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.
Collapse
|
95
|
Asensio I, Vicente-Rubiano M, Muñoz MJ, Fernández-Carrión E, Sánchez-Vizcaíno JM, Carballo M. Importance of Ecological Factors and Colony Handling for Optimizing Health Status of Apiaries in Mediterranean Ecosystems. PLoS One 2016; 11:e0164205. [PMID: 27727312 PMCID: PMC5058545 DOI: 10.1371/journal.pone.0164205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022] Open
Abstract
We analyzed six apiaries in several natural environments with a Mediterranean ecosystem in Madrid, central Spain, in order to understand how landscape and management characteristics may influence apiary health and bee production in the long term. We focused on five criteria (habitat quality, landscape heterogeneity, climate, management and health), as well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them according to relevance. Habitat quality proved to have the highest relevance, followed by beehive management. Within habitat quality, the following subcriteria proved to be most relevant: orographic diversity, elevation range and important plant species located 1.5 km from the apiary. The most important subcriteria under beehive management were honey production, movement of the apiary to a location with a higher altitude and wax renewal. Temperature was the most important subcriterion under climate, while pathogen and Varroa loads were the most significant under health. Two of the six apiaries showed the best values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony. This high productivity was due primarily to high elevation range and high orographic diversity, which favored high habitat quality. In addition, one of these apiaries showed the best value for beehive management, while the other showed the best value for health, reflected in the low pathogen load and low average number of viruses. These results highlight the importance of environmental factors and good sanitary practices to maximize apiary health and honey productivity.
Collapse
Affiliation(s)
- Irene Asensio
- Epidemiology & Environmental Health Department, Animal Health Research Center (CISA-INIA), Madrid, Spain
- * E-mail:
| | - Marina Vicente-Rubiano
- VISAVET, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Animal Health Department, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Jesús Muñoz
- Epidemiology & Environmental Health Department, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Eduardo Fernández-Carrión
- VISAVET, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Animal Health Department, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Animal Health Department, Faculty of Veterinary Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Matilde Carballo
- Epidemiology & Environmental Health Department, Animal Health Research Center (CISA-INIA), Madrid, Spain
| |
Collapse
|
96
|
Hou C, Li B, Luo Y, Deng S, Diao Q. First detection of Apis mellifera filamentous virus in Apis cerana cerana in China. J Invertebr Pathol 2016; 138:112-5. [PMID: 27369386 DOI: 10.1016/j.jip.2016.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/19/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022]
Abstract
Although many honey bee RNA viruses have been correlated with colony declines, little is known regarding the potential role of DNA viruses. Here, we examined seemingly healthy and crawling bee samples from China using PCR to identify whether Apis mellifera filamentous virus (AmFV) was present in A. cerana cerana. The highest AmFV infection percentage among Chinese provinces occurred in crawling bees from Gansu province (85.48%), and the lowest was in bees from Beijing (31.58%). A phylogenetic analysis showed that the Chinese isolate of AmFV exhibited a high genetic similarity with isolates from Belgium, Switzerland and USA. This is the first report of AmFV infections in Chinese A. cerana cerana populations.
Collapse
Affiliation(s)
- Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Beibei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China; Graduate School of the Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yuexiong Luo
- Guangdong Entomological Institute, Guangzhou 510260, PR China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| |
Collapse
|
97
|
Campbell EM, McIntosh CH, Bowman AS. A Toolbox for Quantitative Gene Expression in Varroa destructor: RNA Degradation in Field Samples and Systematic Analysis of Reference Gene Stability. PLoS One 2016; 11:e0155640. [PMID: 27182699 PMCID: PMC4868281 DOI: 10.1371/journal.pone.0155640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/02/2016] [Indexed: 11/29/2022] Open
Abstract
Varroa destructor is the major pest of Apis mellifera and contributes to the global honey bee health crisis threatening food security. Developing new control strategies to combat Varroa will require the application of molecular biology, including gene expression studies by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Both high quality RNA samples and suitable stable internal reference genes are required for accurate gene expression studies. In this study, ten candidate genes (succinate dehydrogenase (SDHA), NADH dehydrogenase (NADH), large ribsosmal subunit, TATA-binding protein, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA (18S), heat-shock protein 90 (HSP90), cyclophilin, α-tubulin, actin), were evaluated for their suitability as normalization genes using the geNorm, Normfinder, BestKeeper, and comparative ΔCq algorithims. Our study proposes the use of no more than two of the four most stable reference genes (NADH, 18S, SDHA and HSP90) in Varroa gene expression studies. These four genes remain stable in phoretic and reproductive stage Varroa and are unaffected by Deformed wing virus load. When used for determining changes in vitellogenin gene expression, the signal-to-noise ratio (SNR) for the relatively unstable genes actin and α-tubulin was much lower than for the stable gene combinations (NADH + HSP90 +18S; NADH + HSP90; or NADH). Using both electropherograms and RT-qPCR for short and long amplicons as quality controls, we demonstrate that high quality RNA can be recovered from Varroa up to 10 days later stored at ambient temperature if collected into RNAlater and provided the body is pierced. This protocol allows the exchange of Varroa samples between international collaborators and field sample collectors without requiring frozen collection or shipping. Our results make important contributions to gene expression studies in Varroa by proposing a validated sampling protocol to obtain high quality Varroa RNA and the validation of suitable reference genes for expression studies in this globally important pest.
Collapse
Affiliation(s)
- Ewan M Campbell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Catriona H McIntosh
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
98
|
Sánchez-Bayo F, Desneux N. Neonicotinoids and the prevalence of parasites and disease in bees. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/0005772x.2015.1118962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Francisco Sánchez-Bayo
- Faculty of Agriculture & Environment, The University of Sydney , Building C81, 1 Central Avenue, Eveleigh, NSW 2015, Australia
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA) , 400 route des Chappes, Sophia-Antipolis
06903, France
| |
Collapse
|
99
|
Campbell EM, Budge GE, Watkins M, Bowman AS. Transcriptome analysis of the synganglion from the honey bee mite, Varroa destructor and RNAi knockdown of neural peptide targets. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:116-126. [PMID: 26721201 DOI: 10.1016/j.ibmb.2015.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Varroa mites (Varroa destructor) and the viruses that they transmit are one of the major contributing factors to the global honey bee crisis. Gene products within the nervous system are the targets of all the insecticides currently used to control Varroa but there is a paucity of transcriptomic data available for Varroa neural tissues. A cDNA library from the synganglia ("brains") of adult female Varroa was constructed and 600 ESTs sequenced and analysed revealing several current and potential druggable targets. Contigs coding for the deformed wing virus (DWV) variants V. destructor virus-1 (VDV-1) and the recombinant (VDV-1DVD) were present in the synganglion library. Negative-sense RNA-specific PCR indicated that VDV-1 replicates in the Varroa synganglion and all other tissues tested, but we could not detect DWV replicating in any Varroa tissue. Two neuropeptides were identified in the synganlion EST library: a B-type allatostatin and a member of the crustacean hyperglycaemic hormone (CHH) superfamily. Knockdown of the allatostatin or the CHH-like gene by double-stranded RNA-interference (dsRNAi) resulted in 85% and 55% mortality, respectively, of Varroa. Here, we present the first transcriptomic survey in Varroa and demonstrate that neural genes can be targeted by dsRNAi either for genetic validation of putative targets during drug discovery programmes or as a potential control measure in itself.
Collapse
Affiliation(s)
- Ewan M Campbell
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Giles E Budge
- National Bee Unit, Fera, Sand Hutton, York YO41 1LZ, UK
| | - Max Watkins
- Vita (Europe) Limited, Vita House, London Street, Basingstoke, Hampshire RG21 7PG, UK
| | - Alan S Bowman
- School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
100
|
Carrillo-Tripp J, Dolezal AG, Goblirsch MJ, Miller WA, Toth AL, Bonning BC. In vivo and in vitro infection dynamics of honey bee viruses. Sci Rep 2016; 6:22265. [PMID: 26923109 PMCID: PMC4770293 DOI: 10.1038/srep22265] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.
Collapse
Affiliation(s)
- Jimena Carrillo-Tripp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Adam G. Dolezal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|