51
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
52
|
Al-Zeer MA, Dutkiewicz M, von Hacht A, Kreuzmann D, Röhrs V, Kurreck J. Alternatively spliced variants of the 5'-UTR of the ARPC2 mRNA regulate translation by an internal ribosome entry site (IRES) harboring a guanine-quadruplex motif. RNA Biol 2019; 16:1622-1632. [PMID: 31387452 DOI: 10.1080/15476286.2019.1652524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The 5'-UTR of the actin-related protein 2/3 complex subunit 2 (ARPC2) mRNA exists in two variants. Using a bicistronic reporter construct, the present study demonstrates that the longer variant of the 5'-UTR harbours an internal ribosome entry site (IRES) which is lacking in the shorter one. Multiple control assays confirmed that only this variant promotes cap-independent translation. Furthermore, it includes a guanine-rich region that is capable of forming a guanine-quadruplex (G-quadruplex) structure which was found to contribute to the IRES activity. To investigate the cellular function of the IRES element, we determined the expression level of ARPC2 at various cell densities. At high cell density, the relative ARPC2 protein level increases, supporting the presumed function of IRES elements in driving the expression of certain genes under stressful conditions that compromise cap-dependent translation. Based on chemical probing experiments and computer-based predictions, we propose a structural model of the IRES element, which includes the G-quadruplex motif exposed from the central stem-loop element. Taken together, our study describes the functional relevance of two alternative 5'-UTR splice variants of the ARPC2 mRNA, one of which contains an IRES element with a G-quadruplex as a central motif, promoting translation under stressful cellular conditions.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| | | | - Denise Kreuzmann
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Viola Röhrs
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| | - Jens Kurreck
- Institute of Biotechnology, Technische Universität Berlin , Berlin , Germany
| |
Collapse
|
53
|
Smirnova VV, Shestakova ED, Bikmetov DV, Chugunova AA, Osterman IA, Serebryakova MV, Sergeeva OV, Zatsepin TS, Shatsky IN, Terenin IM. eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. RNA (NEW YORK, N.Y.) 2019; 25:757-767. [PMID: 31010886 PMCID: PMC6573783 DOI: 10.1261/rna.065623.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ekaterina D Shestakova
- Department of Biochemistry, School of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russian Federation
| | - Dmitry V Bikmetov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Anastasia A Chugunova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ilya A Osterman
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Timofey S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation
| |
Collapse
|
54
|
Schuster SL, Hsieh AC. The Untranslated Regions of mRNAs in Cancer. Trends Cancer 2019; 5:245-262. [PMID: 30961831 PMCID: PMC6465068 DOI: 10.1016/j.trecan.2019.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
The 5' and 3' untranslated regions (UTRs) regulate crucial aspects of post-transcriptional gene regulation that are necessary for the maintenance of cellular homeostasis. When these processes go awry through mutation or misexpression of certain regulatory elements, the subsequent deregulation of oncogenic gene expression can drive or enhance cancer pathogenesis. Although the number of known cancer-related mutations in UTR regulatory elements has recently increased markedly as a result of advances in whole-genome sequencing, little is known about how the majority of these genetic aberrations contribute functionally to disease. In this review we explore the regulatory functions of UTRs, how they are co-opted in cancer, new technologies to interrogate cancerous UTRs, and potential therapeutic opportunities stemming from these regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; School of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
55
|
Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int J Mol Sci 2019; 20:ijms20040924. [PMID: 30791615 PMCID: PMC6412753 DOI: 10.3390/ijms20040924] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The cellular stress response corresponds to the molecular changes that a cell undergoes in response to various environmental stimuli. It induces drastic changes in the regulation of gene expression at transcriptional and posttranscriptional levels. Actually, translation is strongly affected with a blockade of the classical cap-dependent mechanism, whereas alternative mechanisms are activated to support the translation of specific mRNAs. A major mechanism involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation. IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators of cell responses, whose expression must be tightly controlled. IRESs allow the translation of these mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or synapse network formation. Most IRESs are regulated by IRES trans-acting factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents the history of viral and cellular IRES discovery as well as an update of the reported ITAFs regulating cellular mRNA translation and of their different mechanisms of action. The impact of ITAFs on the coordinated expression of mRNA families and consequences in cell physiology and diseases are also highlighted.
Collapse
Affiliation(s)
- Anne-Claire Godet
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florian David
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Fransky Hantelys
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Florence Tatin
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Eric Lacazette
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Barbara Garmy-Susini
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| | - Anne-Catherine Prats
- UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, 31432 Toulouse cedex 4, France.
| |
Collapse
|
56
|
Koernig S, Campbell IK, Mackenzie-Kludas C, Schaub A, Loetscher M, Ching Ng W, Zehnder R, Pelczar P, Sanli I, Alhamdoosh M, Ng M, Brown LE, Käsermann F, Vonarburg C, Zuercher AW. Topical application of human-derived Ig isotypes for the control of acute respiratory infection evaluated in a human CD89-expressing mouse model. Mucosal Immunol 2019; 12:1013-1024. [PMID: 31105268 PMCID: PMC7746524 DOI: 10.1038/s41385-019-0167-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Recurrent and persistent airway infections remain prevalent in patients with primary immunodeficiency (PID), despite restoration of serum immunoglobulin levels by intravenous or subcutaneous plasma-derived IgG. We investigated the effectiveness of different human Ig isotype preparations to protect mice against influenza when delivered directly to the respiratory mucosa. Four polyvalent Ig preparations from pooled plasma were compared: IgG, monomeric IgA (mIgA), polymeric IgA-containing IgM (IgAM) and IgAM associated with the secretory component (SIgAM). To evaluate these preparations, a transgenic mouse expressing human FcαRI/CD89 within the myeloid lineage was created. CD89 was expressed on all myeloid cells in the lung and blood except eosinophils, reflecting human CD89 expression. Intranasal administration of IgA-containing preparations was less effective than IgG in reducing pulmonary viral titres after infection of mice with A/California/7/09 (Cal7) or the antigenically distant A/Puerto Rico/8/34 (PR8) viruses. However, IgA reduced weight loss and inflammatory mediator expression. Both IgG and IgA protected mice from a lethal dose of PR8 virus and for mIgA, this effect was partially CD89 dependent. Our data support the beneficial effect of topically applied Ig purified from pooled human plasma for controlling circulating and non-circulating influenza virus infections. This may be important for reducing morbidity in PID patients.
Collapse
Affiliation(s)
- Sandra Koernig
- 0000 0001 1512 2287grid.1135.6CSL Limited, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3010 Australia
| | - Ian K. Campbell
- 0000 0001 1512 2287grid.1135.6CSL Limited, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3010 Australia
| | - Charley Mackenzie-Kludas
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000 Australia
| | - Alexander Schaub
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| | - Marius Loetscher
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| | - Wy Ching Ng
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000 Australia
| | - Roland Zehnder
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Ildem Sanli
- Center for Transgenic Models, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Monther Alhamdoosh
- 0000 0001 1512 2287grid.1135.6CSL Limited, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3010 Australia
| | - Milica Ng
- 0000 0001 1512 2287grid.1135.6CSL Limited, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3010 Australia
| | - Lorena E. Brown
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000 Australia
| | - Fabian Käsermann
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| | - Cédric Vonarburg
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| | - Adrian W. Zuercher
- 0000 0004 0646 1916grid.488260.0CSL Behring AG, Wankdorfstrasse 10, 3010 Bern, Switzerland
| |
Collapse
|
57
|
Hitti FL, Gonzalez-Alegre P, Lucas TH. Gene Therapy for Neurologic Disease: A Neurosurgical Review. World Neurosurg 2019; 121:261-273. [DOI: 10.1016/j.wneu.2018.09.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
|
58
|
Chou AC, Aslanian A, Sun H, Hunter T. An internal ribosome entry site in the coding region of tyrosyl-DNA phosphodiesterase 2 drives alternative translation start. J Biol Chem 2018; 294:2665-2677. [PMID: 30593505 DOI: 10.1074/jbc.ra118.006269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/26/2018] [Indexed: 11/06/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a multifunctional protein that has been implicated in a myriad of cellular pathways. Although most well-known for its phosphodiesterase activity removing stalled topoisomerase 2 from DNA, TDP2 has also been shown to interact with both survival and apoptotic mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, it facilitates enterovirus replication and has been genetically linked to neurological disorders ranging from Parkinson's disease to dyslexia. To accurately evaluate TDP2 as a therapeutic target, we need to understand how TDP2 performs such a wide diversity of functions. Here, we use cancer cell lines modified with CRISPR/Cas9 or stably-expressed TDP2-targeted shRNA and transfection of various TDP2 mutants to show that its expression is regulated at the translational level via an internal ribosome entry site (IRES) that initiates translation at codon 54, the second in-frame methionine of the TDP2 coding sequence. We observed that this IRES drives expression of a shorter, N-terminally truncated isoform of TDP2, ΔN-TDP2, which omits a nuclear localization sequence. Additionally, we noted that ΔN-TDP2 retains phosphodiesterase activity and is protective against etoposide-induced cell death, but co-immunoprecipitates with fewer high-molecular-weight ubiquitinated peptide species, suggesting partial loss-of-function of TDP2's ubiquitin-association domain. In summary, our findings suggest the existence of an IRES in the 5' coding sequence of TDP2 that translationally regulates expression of an N-terminally truncated, cytoplasmic isoform of TDP2. These results shed light on the regulation of this multifunctional protein and may inform the design of therapies targeting TDP2 and associated pathways.
Collapse
Affiliation(s)
- Annie C Chou
- From the Graduate Program in Biomedical Sciences, University of California, San Diego, La Jolla, California 92093 and.,the Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Aaron Aslanian
- the Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Huaiyu Sun
- the Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tony Hunter
- the Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
59
|
Focus on Translation Initiation of the HIV-1 mRNAs. Int J Mol Sci 2018; 20:ijms20010101. [PMID: 30597859 PMCID: PMC6337239 DOI: 10.3390/ijms20010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins.
Collapse
|
60
|
Hartwick EW, Costantino DA, MacFadden A, Nix JC, Tian S, Das R, Kieft JS. Ribosome-induced RNA conformational changes in a viral 3'-UTR sense and regulate translation levels. Nat Commun 2018; 9:5074. [PMID: 30498211 PMCID: PMC6265322 DOI: 10.1038/s41467-018-07542-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
Structured RNA elements, programmed RNA conformational changes, and interactions between different RNA domains underlie many modes of regulating gene expression, mandating studies to understand the foundational principles that govern these phenomena. Exploring the structured 3' untranslated region (UTR) of a viral RNA, we discovered that different contexts of the 3'-UTR confer different abilities to enhance translation of an associated open reading frame. In one context, ribosome-induced conformational changes in a 'sensor' RNA domain affect a separate RNA 'functional' domain, altering translation efficiency. The structure of the entire 3'-UTR reveals that structurally distinct domains use a spine of continuously stacked bases and a strut-like linker to create a conduit for communication within the higher-order architecture. Thus, this 3'-UTR RNA illustrates how RNA can use programmed conformational changes to sense the translation status of an upstream open reading frame, then create a tuned functional response by communicating that information to other RNA elements.
Collapse
Affiliation(s)
- Erik W Hartwick
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA.,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - David A Costantino
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA. .,RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
61
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
62
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
63
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
64
|
Roberts L, Wieden HJ. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnol Genet Eng Rev 2018; 34:60-75. [PMID: 29804514 DOI: 10.1080/02648725.2018.1471567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internal ribosome entry sites (IRESs) are cis-acting RNA elements capable of recruiting ribosomes and initiating translation on an internal portion of an mRNA. This is divergent from canonical eukaryotic translation initiation, where the 5' cap is recognized by initiation factors (IFs) that recruit the ribosome to initiate translation of the encoded peptide. All known IRESs are capable of initiating translation in a cap-independent manner, and are therefore not constrained by the absence or presence of a 5' m7G cap. In addition to being cap-independent, IRES-mediated translation often uses only a subset of IFs allowing them to function independently of canonical initiation. The ability to function independently of the canonical translation initiation pathway allows IRESs to mediate gene expression when cap-dependent translation has been inhibited. Recent reports of viral IRESs capable of initiating translation across taxonomic domains (Eukarya and Bacteria) have sparked interest in designing gene expression systems compatible with multiple organisms. The ability to drive translation independent of cellular context using a common mechanism would have a wide range of applications ranging from agriculture biotechnology to the development of antiviral drugs. Here we discuss IRES-mediated translation and critically compare the available mechanistic and structural information. A particular focus will be on IRES-meditated translation across domains of life (viral and cellular IRESs) , IRES bioengineering and the possibility of an evolutionary conserved translation initiation mechanism.
Collapse
Affiliation(s)
- Luc Roberts
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Hans-Joachim Wieden
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| |
Collapse
|
65
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
66
|
Shirokikh NE, Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1473. [PMID: 29624880 DOI: 10.1002/wrna.1473] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Gene expression universally relies on protein synthesis, where ribosomes recognize and decode the messenger RNA template by cycling through translation initiation, elongation, and termination phases. All aspects of translation have been studied for decades using the tools of biochemistry and molecular biology available at the time. Here, we focus on the mechanism of translation initiation in eukaryotes, which is remarkably more complex than prokaryotic initiation and is the target of multiple types of regulatory intervention. The "consensus" model, featuring cap-dependent ribosome entry and scanning of mRNA leader sequences, represents the predominantly utilized initiation pathway across eukaryotes, although several variations of the model and alternative initiation mechanisms are also known. Recent advances in structural biology techniques have enabled remarkable molecular-level insights into the functional states of eukaryotic ribosomes, including a range of ribosomal complexes with different combinations of translation initiation factors that are thought to represent bona fide intermediates of the initiation process. Similarly, high-throughput sequencing-based ribosome profiling or "footprinting" approaches have allowed much progress in understanding the elongation phase of translation, and variants of them are beginning to reveal the remaining mysteries of initiation, as well as aspects of translation termination and ribosomal recycling. A current view on the eukaryotic initiation mechanism is presented here with an emphasis on how recent structural and footprinting results underpin axioms of the consensus model. Along the way, we further outline some contested mechanistic issues and major open questions still to be addressed. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| |
Collapse
|
67
|
Abstract
In contrast to well-established internal ribosomal entry site (IRES)-mediated translational initiation in animals and plants, no IRESs were established in fungal viral or cellular RNAs. To identify IRES elements in mycoviruses, we developed a luciferase-based dual-reporter detection system in Cryphonectria parasitica, a model filamentous fungus for virus-host interactions. A bicistronic construct entails a codon-optimized Renilla and firefly luciferase (ORluc and OFluc, respectively) gene, between which potential IRES sequences can be inserted. In this system, ORluc serves as an internal control, while OFluc represents IRES activity. Virus sequences in the 5′ untranslated regions (UTRs) of the genomes of diverse positive-sense single-stranded RNA and double-stranded RNA (dsRNA) viruses were analyzed. The results show relatively high IRES activities for Cryphonectria hypovirus 1 (CHV1) and CHV2 and faint but measurable activity for CHV3. The weak IRES signal of CHV3 may be explained by its monocistronic nature, differing from the bicistronic nature of CHV1 and CHV2. This would allow these three hypoviruses to have similar rates of translation of replication-associated protein per viral mRNA molecule. The importance of 24 5′-proximal codons of CHV1 as well as the 5′ UTR for IRES function was confirmed. Furthermore, victoriviruses and chrysoviruses tested IRES positive, whereas mycoreoviruses, partitiviruses, and quadriviruses showed similar Fluc activities as the negative controls. Overall, this study represents the first development of an IRES identification system in filamentous fungi based on the codon-optimized dual-luciferase assay and provides evidence for IRESs in filamentous fungi. Cap-independent, internal ribosomal entry site (IRES)-mediated translational initiation is often used by virus mRNAs and infrequently by cellular mRNAs in animals and plants. However, no IRESs have been established in fungal virus RNAs or cellular RNAs in filamentous fungi. Here, we report the development of a dual-luciferase assay system and measurement of the IRES activities of fungal RNA viruses in a model filamentous fungal host, Cryphonectria parasitica. Viruses identified as IRES positive include hypoviruses (positive-sense RNA viruses, members of the expanded Picornavirus supergroup), totiviruses (nonsegmented dsRNA viruses), and chrysoviruses (tetrasegmented dsRNA viruses). No IRES activities were observed in the 5′ untranslated regions of mycoreoviruses (11-segmented dsRNA viruses), quadriviruses (tetrasegmented dsRNA viruses), or partitiviruses (bisegmented dsRNA viruses). This study provides the first evidence for IRES activities in diverse RNA viruses in filamentous fungi and is a first step toward identifying trans-acting host factors and cis-regulatory viral RNA elements.
Collapse
|
68
|
Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 2018; 19:158-174. [PMID: 29165424 PMCID: PMC5820134 DOI: 10.1038/nrm.2017.103] [Citation(s) in RCA: 578] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Departments of Biochemistry and Physics, Stanford University, Stanford, California 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
69
|
Liu X, Yu T, Sun Y, Wang H. Characterization of novel alternative splicing variants of Oct4 gene expressed in mouse pluripotent stem cells. J Cell Physiol 2018; 233:5468-5477. [PMID: 29266259 DOI: 10.1002/jcp.26411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023]
Abstract
Oct4 is an important transcription factor for maintaining self-renewal and pluripotency of pluripotent stem cells (PSCs). Human OCT4 can be alternatively spliced and generate OCT4a, OCT4b, and OCT4b1. In this study, we discovered the novel Oct4 variants of Oct4b' and Oct4b1-3 in mouse PSCs for the first time. The expression of Oct4b variants, especially for Oct4b', was down regulated along with the downregulation of Oct4a when stem cells were differentiated. We also found four Oct4 translational products that were differentially expressed in mouse PSCs under the different culture conditions. The constructs of Oct4b2 and Oct4b3 could be alternatively spliced into Oct4b and Oct4b' when constructs were transiently transfected in NIH3T3 cells. Oct4b' encoded a 189 aa protein, and Oct4b could generate three distinct proteins including Oct4b-246aa, Oct4b-221aa, and Oct4b-189aa. The Oct4b variants could be alternatively translated in different type cells under the control of internal ribosome entry site (IRES) element that is within 5' upstream sequence of Oct4b. These findings provide new insights into reconsidering Oct4 variants expression and its additional role in maintaining the pluripotency of stem cells.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Sun
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
70
|
Awasthi R, Singh AK, Mishra G, Maurya A, Chellappan DK, Gupta G, Hansbro PM, Dua K. An Overview of Circular RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:3-14. [PMID: 30259353 DOI: 10.1007/978-981-13-1426-1_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5'-3' polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.
Collapse
Affiliation(s)
- Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India.
| | - Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gaurav Mishra
- NKBR College of Pharmacy and Research Centre, Meerut, Uttar Pradesh, India
| | - Anand Maurya
- NKBR College of Pharmacy and Research Centre, Meerut, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, Newcastle, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, Newcastle, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
71
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
72
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
73
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
74
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
75
|
Gao G, Dhar S, Bedford MT. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1. Nucleic Acids Res 2017; 45:4359-4369. [PMID: 28115626 PMCID: PMC5416833 DOI: 10.1093/nar/gkw1367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/19/2023] Open
Abstract
The type II arginine methyltransferase PRMT5 is responsible for the symmetric dimethylation of histone to generate the H3R8me2s and H4R3me2s marks, which correlate with the repression of transcription. However, the protein level of a number of genes (MEP50, CCND1, MYC, HIF1a, MTIF and CDKN1B) are reported to be downregulated by the loss of PRMT5, while their mRNA levels remain unchanged, which is counterintuitive for PRMT5's proposed role as a transcription repressor. We noticed that the majority of the genes regulated by PRMT5, at the posttranscriptional level, express mRNA containing an internal ribosome entry site (IRES). Using an IRES-dependent reporter system, we established that PRMT5 facilitates the translation of a subset of IRES-containing genes. The heterogeneous nuclear ribonucleoprotein, hnRNP A1, is an IRES transacting factor (ITAF) that regulates the IRES-dependent translation of Cyclin D1 and c-Myc. We showed that hnRNP A1 is methylated by PRMT5 on two residues, R218 and R225, and that this methylation facilitates the interaction of hnRNP A1 with IRES RNA to promote IRES-dependent translation. This study defines a new role for PRMT5 regulation of cellular protein levels, which goes beyond the known functions of PRMT5 as a transcription and splicing regulator.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Surbhi Dhar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
76
|
Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation. Biochem Soc Trans 2017; 45:353-364. [PMID: 28408475 DOI: 10.1042/bst20160357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) mRNA translation is a complex process that uses the host translation machinery to synthesise viral proteins. Several mechanisms for HIV-1 mRNA translation initiation have been proposed including (1) cap-dependent, eIF4E-dependent, (2) cap-dependent, cap-binding complex-dependent, (3) internal ribosome entry sites, and (4) ribosome shunting. While these mechanisms promote HIV-1 mRNA translation in the context of in vitro systems and subgenomic constructs, there are substantial knowledge gaps in understanding how they regulate viral protein production in the context of full-length virus infection. In this review, we will summarise the different translation mechanisms used by HIV-1 mRNAs and the challenges in understanding how they regulate protein synthesis during viral infection.
Collapse
|
77
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
78
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
79
|
Sajjanar B, Deb R, Raina SK, Pawar S, Brahmane MP, Nirmale AV, Kurade NP, Manjunathareddy GB, Bal SK, Singh NP. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses. J Therm Biol 2017; 65:69-75. [DOI: 10.1016/j.jtherbio.2017.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
|
80
|
A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus. J Virol 2017; 91:JVI.02421-16. [PMID: 28179526 DOI: 10.1128/jvi.02421-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
To maximize the coding potential of viral genomes, internal ribosome entry sites (IRES) can be used to bypass the traditional requirement of a 5' cap and some/all of the associated translation initiation factors. Although viral IRES typically contain higher-order RNA structure, an unstructured sequence of about 84 nucleotides (nt) immediately upstream of the Turnip crinkle virus (TCV) coat protein (CP) open reading frame (ORF) has been found to promote internal expression of the CP from the genomic RNA (gRNA) both in vitro and in vivo An absence of extensive RNA structure was predicted using RNA folding algorithms and confirmed by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing. Analysis of the IRES region in vitro by use of both the TCV gRNA and reporter constructs did not reveal any sequence-specific elements but rather suggested that an overall lack of structure was an important feature for IRES activity. The CP IRES is A-rich, independent of orientation, and strongly conserved among viruses in the same genus. The IRES was dependent on eIF4G, but not eIF4E, for activity. Low levels of CP accumulated in vivo in the absence of detectable TCV subgenomic RNAs, strongly suggesting that the IRES was active in the gRNA invivo Since the TCV CP also serves as the viral silencing suppressor, early translation of the CP from the viral gRNA is likely important for countering host defenses. Cellular mRNA IRES also lack extensive RNA structures or sequence conservation, suggesting that this viral IRES and cellular IRES may have similar strategies for internal translation initiation.IMPORTANCE Cap-independent translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5' cap structure. Viral IRES, in general, contain extensive secondary structure that is critical for activity. In contrast, we demonstrate that a region of viral RNA devoid of extensive secondary structure has IRES activity and produces low levels of viral coat protein in vitro and in vivo Our findings may be applicable to cellular mRNA IRES that also have little or no sequences/structures in common.
Collapse
|
81
|
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of CircRNAs. Mol Cell 2017; 66:9-21.e7. [PMID: 28344080 PMCID: PMC5387669 DOI: 10.1016/j.molcel.2017.02.021] [Citation(s) in RCA: 1338] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/04/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.
Collapse
Affiliation(s)
- Nagarjuna Reddy Pamudurti
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marvin Jens
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Reut Ashwal-Fluss
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Christin Stottmeister
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Larissa Ruhe
- Non Coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Emanuel Wyler
- RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Daniel Perez-Hernandez
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Evelyn Ramberger
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shlomo Shenzis
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Moshe Samson
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Marina Chekulaeva
- Non Coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
82
|
Etzel M, Mörl M. Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017; 56:1181-1198. [PMID: 28206750 DOI: 10.1021/acs.biochem.6b01218] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.
Collapse
Affiliation(s)
- Maja Etzel
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
83
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
84
|
Luhur A, Sokol N. Starving for more: Nutrient sensing by LIN-28 in adult intestinal progenitor cells. Fly (Austin) 2016; 9:173-7. [PMID: 26934725 DOI: 10.1080/19336934.2016.1158366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.
Collapse
Affiliation(s)
- Arthur Luhur
- a Department of Biology ; Indiana University ; Bloomington , IN USA
| | - Nicholas Sokol
- a Department of Biology ; Indiana University ; Bloomington , IN USA
| |
Collapse
|
85
|
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:4115-4125. [PMID: 27770025 PMCID: PMC5144980 DOI: 10.1534/g3.116.033035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.
Collapse
|
86
|
Song J, Perreault JP, Topisirovic I, Richard S. RNA G-quadruplexes and their potential regulatory roles in translation. ACTA ACUST UNITED AC 2016; 4:e1244031. [PMID: 28090421 PMCID: PMC5173311 DOI: 10.1080/21690731.2016.1244031] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
DNA guanine (G)-rich 4-stranded helical nucleic acid structures called G-quadruplexes (G4), have been extensively studied during the last decades. However, emerging evidence reveals that 5′- and 3′-untranslated regions (5′- and 3′-UTRs) as well as open reading frames (ORFs) contain putative RNA G-quadruplexes. These stable secondary structures play key roles in telomere homeostasis and RNA metabolism including pre-mRNA splicing, polyadenylation, mRNA targeting and translation. Interestingly, multiple RNA binding proteins such as nucleolin, FMRP, DHX36, and Aven were identified to bind RNA G-quadruplexes. Moreover, accumulating reports suggest that RNA G-quadruplexes regulate translation in cap-dependent and -independent manner. Herein, we discuss potential roles of RNA G-quadruplexes and associated trans-acting factors in the regulation of mRNA translation.
Collapse
Affiliation(s)
- Jingwen Song
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Ivan Topisirovic
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Segal Cancer Center, McGill University, Montréal, Québec, Canada; Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
87
|
Sharifulin DE, Bartuli YS, Meschaninova MI, Ven'yaminova AG, Graifer DM, Karpova GG. Exploring accessibility of structural elements of the mammalian 40S ribosomal mRNA entry channel at various steps of translation initiation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1328-38. [DOI: 10.1016/j.bbapap.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023]
|
88
|
Young SK, Wek RC. Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem 2016; 291:16927-35. [PMID: 27358398 DOI: 10.1074/jbc.r116.733899] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5'-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.
Collapse
Affiliation(s)
- Sara K Young
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
89
|
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science 2016; 352:1413-6. [PMID: 27313038 DOI: 10.1126/science.aad9868] [Citation(s) in RCA: 748] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivaylo P Ivanov
- Group on Cell Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
90
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
91
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
92
|
sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:848-59. [PMID: 27168114 DOI: 10.1016/j.bbagrm.2016.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 11/23/2022]
Abstract
Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2.
Collapse
|
93
|
Smirnova VV, Terenin IM, Khutornenko AA, Andreev DE, Dmitriev SE, Shatsky IN. Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site? Biochimie 2016; 121:228-37. [DOI: 10.1016/j.biochi.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
|
94
|
Thakor N, Smith MD, Roberts L, Faye MD, Patel H, Wieden HJ, Cate JHD, Holcik M. Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biol 2016; 14:553-567. [PMID: 26828225 PMCID: PMC5449081 DOI: 10.1080/15476286.2015.1137419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
IRES-mediated translation of key cell fate regulating genes has been implicated in tumorigenesis. Concerted action of canonical eukaryotic initiation factors and IRES transacting factors (ITAFs) was shown to regulate cellular IRES mediated translation; however, the precise molecular mechanism of ribosome recruitment to cellular IRESes remains unclear. Here we show that the X-linked inhibitor of apoptosis (XIAP) IRES operates in an evolutionary conserved viral like mode and the structural integrity, particularly in the vicinity of AUG, is critical for ribosome recruitment. The binding of eIF3 together with PABP potentiates ribosome recruitment to the IRES. Our data support the model in which eIF3 binds directly to the XIAP IRES RNA in a structure-dependent manner and acts as a scaffold for IRES RNA, PABP and the 40S ribosome.
Collapse
Affiliation(s)
- Nehal Thakor
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - M Duane Smith
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Luc Roberts
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Mame Daro Faye
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada
| | - Harshil Patel
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Hans-Joachim Wieden
- c Department of Chemistry and Biochemistry , Alberta RNA Research and Training Institute, University of Lethbridge , Lethbridge , AB , Canada
| | - Jamie H D Cate
- d Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Martin Holcik
- a Apoptosis Research Center , Children's Hospital of Eastern Ontario Research Institute , Ottawa , Ontario , Canada.,b Department of Pediatrics , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
95
|
Garcia-Moreno M, Sanz MA, Carrasco L. A Viral mRNA Motif at the 3'-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution. Sci Rep 2016; 6:19217. [PMID: 26755446 PMCID: PMC4709744 DOI: 10.1038/srep19217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/08/2015] [Indexed: 11/25/2022] Open
Abstract
Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3′ untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3′-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5′-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3′-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range.
Collapse
Affiliation(s)
| | - Miguel Angel Sanz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
96
|
Mouilleron H, Delcourt V, Roucou X. Death of a dogma: eukaryotic mRNAs can code for more than one protein. Nucleic Acids Res 2016; 44:14-23. [PMID: 26578573 PMCID: PMC4705651 DOI: 10.1093/nar/gkv1218] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma.
Collapse
Affiliation(s)
- Hélène Mouilleron
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada
| | - Vivian Delcourt
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Xavier Roucou
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada
| |
Collapse
|
97
|
Holcik M. Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Front Oncol 2015; 5:264. [PMID: 26636041 PMCID: PMC4659918 DOI: 10.3389/fonc.2015.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic initiation factor eIF2 is a key component of the ternary complex whose role is to deliver initiator tRNA into the ribosome. A variety of stimuli, both physiologic and pathophysiologic activate eIF2 kinases that phosphorylate the α subunit of eIF2, preventing it from forming the ternary complex, thus attenuating cellular protein synthesis. Paradoxically, in cancer cells, the phosphorylation of eIF2α is associated with activation of survival pathways. This review explores the recently emerged novel mechanism of eIF2α-independent translation initiation. This mechanism, which appears to be shared by some RNA viruses and Internal Ribosome Entry Site-containing cellular mRNAs and utilizes auxiliary proteins, such as eIF5B, eIF2D, and MCT-1, is responsible for the selective translation of cancer-associated genes and could represent a weak point amenable to specific targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Martin Holcik
- Department of Pediatrics, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
98
|
Haimov O, Sinvani H, Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1313-8. [PMID: 26381322 DOI: 10.1016/j.bbagrm.2015.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation is an intricate and multi-step process that includes 43S Pre-Initiation Complex (PIC) assembly, attachment of the PIC to the mRNA, scanning, start codon selection and 60S subunit joining. Translation initiation of most mRNAs involves recognition of a 5'end m7G cap and ribosomal scanning in which the 5' UTR is checked for complementarity with the AUG. There is however an increasing number of mRNAs directing translation initiation that deviate from the predominant mechanism. In this review we summarize the canonical translation initiation process and describe non-canonical mechanisms that are cap-dependent but operate without scanning. In particular we focus on several examples of translation initiation driven either by mRNAs with extremely short 5' leaders or by highly complex 5' UTRs that promote ribosome shunting.
Collapse
Affiliation(s)
- Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadar Sinvani
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
99
|
Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational Control of the HIV Unspliced Genomic RNA. Viruses 2015; 7:4326-51. [PMID: 26247956 PMCID: PMC4576183 DOI: 10.3390/v7082822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/18/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional control in both HIV-1 and HIV-2 is a highly regulated process that commences in the nucleus of the host infected cell and finishes by the expression of viral proteins in the cytoplasm. Expression of the unspliced genomic RNA is particularly controlled at the level of RNA splicing, export, and translation. It appears increasingly obvious that all these steps are interconnected and they result in the building of a viral ribonucleoprotein complex (RNP) that must be efficiently translated in the cytosolic compartment. This review summarizes our knowledge about the genesis, localization, and expression of this viral RNP.
Collapse
Affiliation(s)
- Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France.
- Inserm, U1111, Lyon 69007, France.
- Ecole Normale Supérieure de Lyon, Lyon 69007, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69007, France.
- CNRS, UMR5308, Lyon 69007, France.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
100
|
Brown JWS, Simpson CG, Marquez Y, Gadd GM, Barta A, Kalyna M. Lost in Translation: Pitfalls in Deciphering Plant Alternative Splicing Transcripts. THE PLANT CELL 2015; 27:2083-7. [PMID: 26286536 PMCID: PMC4568512 DOI: 10.1105/tpc.15.00572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 05/19/2023]
Abstract
Transcript annotation in plant databases is incomplete and often inaccurate, leading to misinterpretation. As more and more RNA-seq data are generated, plant scientists need to be aware of potential pitfalls and understand the nature and impact of specific alternative splicing transcripts on protein production. A primary area of concern and the topic of this article is the (mis)annotation of open reading frames and premature termination codons. The basic message is that to adequately address expression and functions of transcript isoforms, it is necessary to be able to predict their fate in terms of whether protein isoforms are generated or specific transcripts are unproductive or degraded.
Collapse
Affiliation(s)
- John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|