51
|
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 2019; 21:18-24. [PMID: 30602767 PMCID: PMC7615151 DOI: 10.1038/s41556-018-0237-6] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Tissue repair is critical for animal survival. The skin epidermis is particularly exposed to injuries, which necessitates rapid repair. The coordinated action of distinct epidermal stem cells recruited from various skin regions together with other cell types, including fibroblasts and immune cells, is required to ensure efficient and harmonious wound healing. A complex crosstalk ensures the activation, migration and plasticity of these cells during tissue repair.
Collapse
Affiliation(s)
- Sophie Dekoninck
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
52
|
Badolati N, Sommella E, Riccio G, Salviati E, Heintz D, Bottone S, Di Cicco E, Dentice M, Tenore G, Campiglia P, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Ignite Keratin Production in Hair Follicles by Inhibiting the Pentose Phosphate Pathway and Amino Acid Oxidation. Nutrients 2018; 10:nu10101406. [PMID: 30279339 PMCID: PMC6213762 DOI: 10.3390/nu10101406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Patterned hair loss (PHL) affects around 50% of the adult population worldwide. The negative impact that this condition exerts on people’s life quality has boosted the appearance of over-the-counter products endowed with hair-promoting activity. Nutraceuticals enriched in polyphenols have been recently shown to promote hair growth and counteract PHL. Malus pumila Miller cv. Annurca is an apple native to Southern Italy presenting one of the highest contents of Procyanidin B2. We have recently shown that oral consumption of Annurca polyphenolic extracts (AAE) stimulates hair growth, hair number, hair weight and keratin content in healthy human subjects. Despite its activity, the analysis of the molecular mechanism behind its hair promoting effect is still partially unclear. In this work we performed an unprecedented metabolite analysis of hair follicles (HFs) in mice topically treated with AAE. The metabolomic profile, based on a high-resolution mass spectrometry approach, revealed that AAE re-programs murine HF metabolism. AAE acts by inhibiting several NADPH dependent reactions. Glutaminolysis, pentose phosphate pathway, glutathione, citrulline and nucleotide synthesis are all halted in vivo by the treatment of HFs with AAE. On the contrary, mitochondrial respiration, β-oxidation and keratin production are stimulated by the treatment with AAE. The metabolic shift induced by AAE spares amino acids from being oxidized, ultimately keeping them available for keratin biosynthesis.
Collapse
Affiliation(s)
- Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry, Institut de Biologie Moleculaire des Plantes, CNRS, Universite de Strasbourg, 67000 Strasbourg, France.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
53
|
Wiener DJ, Basak O, Asra P, Boonekamp KE, Kretzschmar K, Papaspyropoulos A, Clevers H. Establishment and characterization of a canine keratinocyte organoid culture system. Vet Dermatol 2018; 29:375-e126. [PMID: 29963730 DOI: 10.1111/vde.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perturbations of epidermal and follicular homeostasis have been attributed to a variety of skin diseases affecting dogs. The availability of an in vitro system to investigate these diseases is important to understand underlying pathomechanisms. OBJECTIVES To establish an accurate and reliable in vitro 3D system of canine keratinocyte organoids to lay the basis for studying functional defects in interfollicular epidermis (IFE) and hair follicle (HF) morphogenesis, reconstitution and differentiation that lead to alopecic and epidermal diseases. ANIMALS Skin biopsies were obtained from freshly euthanized dogs of different breeds with no skin abnormalities. METHODS Cells derived from microdissected IFE and HFs were seeded in Matrigel and keratinocyte organoids were grown and characterized using immunohistochemistry, RT-qPCR and RNA sequencing. RESULTS Both organoid lines develop into a basal IFE-like cell type. Gene and protein expression analysis revealed high mRNA and protein levels of keratins 5 and 14, IFE differentiation markers and intercellular molecules. Key markers of HF stem cells were lacking. Withdrawal of growth factors resulted in upregulation of markers such as KRT16, Involucrin, KRT17 and SOX9, showing the potential of the organoids to develop towards more differentiated tissue. CONCLUSION AND CLINICAL IMPORTANCE Our 3D in vitro culture system provides the basis to explore epidermal function, to investigate the culture conditions necessary for the development of organoids with a HF signature and to address cutaneous disorders in dogs. However, for induction of HF signatures or hair growth, addition of different growth factors or co-culture with dermal papilla will be required.
Collapse
Affiliation(s)
- Dominique J Wiener
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, Inselspital, Bern University Hospital, Freiburgstrasse 14, 3010, Bern, Switzerland.,Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Priyanca Asra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kim E Boonekamp
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Angelos Papaspyropoulos
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands.,Princess Máxima Centre for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
54
|
Elofsson R, Kröger RHH. A variation of pigmentation in the glabrous skin of dogs. J Morphol 2018; 279:1194-1198. [DOI: 10.1002/jmor.20842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rolf Elofsson
- Unit of Functional Zoology, Department of Biology; Lund University; Lund Sweden
| | - Ronald H. H. Kröger
- Unit of Functional Zoology, Department of Biology; Lund University; Lund Sweden
| |
Collapse
|
55
|
Kwon E, Todorova K, Wang J, Horos R, Lee KK, Neel VA, Negri GL, Sorensen PH, Lee SW, Hentze MW, Mandinova A. The RNA-binding protein YBX1 regulates epidermal progenitors at a posttranscriptional level. Nat Commun 2018; 9:1734. [PMID: 29712925 PMCID: PMC5928080 DOI: 10.1038/s41467-018-04092-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
The integrity of stratified epithelia depends on the ability of progenitor cells to maintain a balance between proliferation and differentiation. While much is known about the transcriptional pathways underlying progenitor cells’ behavior in the epidermis, the role of posttranscriptional regulation by mRNA binding proteins—a rate-limiting step in sculpting the proteome—remains poorly understood. Here we report that the RNA binding protein YBX1 (Y-box binding protein-1) is a critical effector of progenitors’ function in the epidermis. YBX1 expression is restricted to the cycling keratinocyte progenitors in vivo and its genetic ablation leads to defects in the architecture of the skin. We further demonstrate that YBX1 negatively controls epidermal progenitor senescence by regulating the translation of a senescence-associated subset of cytokine mRNAs via their 3′ untranslated regions. Our study establishes YBX1 as a posttranscriptional effector required for maintenance of epidermal homeostasis. The integrity of the stratified epithelia relies on controlled cell turnover but it is unclear how mRNA binding proteins regulates this. Here, the authors show that the RNA binding protein Y-box binding protein-1 translationally represses cytokines, so preventing senescence and maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Eunjeong Kwon
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rastislav Horos
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Kevin K Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Gian Luca Negri
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA. .,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, 02142, USA. .,Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, Cambridge, MA, 02138, USA.
| |
Collapse
|
56
|
Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:1193-1207. [PMID: 29682604 PMCID: PMC5905671 DOI: 10.1021/acsbiomaterials.7b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.
Collapse
Affiliation(s)
- Mehrdad T Kiani
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
- Department of Materials Science, 496 Lomita Mall, Stanford University, Stanford CA 94305 USA
| | - Claire A Higgins
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| |
Collapse
|
57
|
Abstract
Central to the classical hematopoietic stem cell (HSC) paradigm is the concept that the maintenance of blood cell numbers is exclusively executed by a discrete physical entity: the transplantable HSC. The HSC paradigm has served as a stereotypic template in stem cell biology, yet the search for rare, hardwired professional stem cells has remained futile in most other tissues. In a more open approach, the focus on the search for stem cells as a physical entity may need to be replaced by the search for stem cell function, operationally defined as the ability of an organ to replace lost cells. The nature of such a cell may be different under steady state conditions and during tissue repair. We discuss emerging examples including the renewal strategies of the skin, gut epithelium, liver, lung, and mammary gland in comparison with those of the hematopoietic system. While certain key housekeeping and developmental signaling pathways are shared between different stem cell systems, there may be no general, deeper principles underlying the renewal mechanisms of the various individual tissues.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands;
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
58
|
Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss DE, Frappart L, von Deimling A, Feuerer M, Abdollahi A, Frappart PO. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget 2018; 7:23006-18. [PMID: 27050272 PMCID: PMC5029606 DOI: 10.18632/oncotarget.8470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/22/2016] [Indexed: 01/05/2023] Open
Abstract
Nijmegen Breakage Syndrome is a disease caused by NBN mutations. Here, we report a novel function of Nbn in skin homeostasis. We found that Nbn deficiency in hair follicle (HF) progenitors promoted increased DNA damage signaling, stimulating p16Ink4a up-regulation, Trp53 stabilization and cytokines secretion leading to HF-growth arrest and hair loss. At later stages, the basal keratinocytes layer exhibited also enhanced DNA damage response but in contrast to the one in HF progenitor was not associated with pro-inflammatory cytokines expression, but rather increased proliferation, lack of differentiation and immune response resembling psoriasiform dermatitis. Simultaneous Nbn and Trp53 inactivation significantly exacerbated this phenotype, due to the lack of inhibition of pro-inflammatory cytokines secretion by Trp53. Altogether, we demonstrated novel functions of Nbn in HF maintenance and prevention of skin inflammation and we provide a mechanistic explanation that links cell intrinsic DNA maintenance with large scale morphological tissue alterations.
Collapse
Affiliation(s)
- Philipp Seidel
- Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Medical School (HUMS), Heidelberg, Germany.,German Cancer Consortium (DKTK) and Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Delacher
- Helmholtz Young Investigator Group Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Lucien Frappart
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Markus Feuerer
- Helmholtz Young Investigator Group Immune Tolerance, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Medical School (HUMS), Heidelberg, Germany.,German Cancer Consortium (DKTK) and Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
59
|
Divergent proliferation patterns of distinct human hair follicle epithelial progenitor niches in situ and their differential responsiveness to prostaglandin D2. Sci Rep 2017; 7:15197. [PMID: 29123134 PMCID: PMC5680340 DOI: 10.1038/s41598-017-15038-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Human scalp hair follicles (hHF) harbour several epithelial stem (eHFSC) and progenitor cell sub-populations organised into spatially distinct niches. However, the constitutive cell cycle activity of these niches remains to be characterized in situ. Therefore, the current study has studied these characteristics of keratin 15+ (K15), CD200+ or CD34+ cells within anagen VI hHFs by immunohistomorphometry, using Ki-67 and 5-ethynyl-2'-deoxyuridine (EdU). We quantitatively demonstrate in situ the relative cell cycle inactivity of the CD200+/K15+ bulge compared to other non-bulge CD34+ and K15+ progenitor compartments and found that in each recognized eHFSC/progenitor niche, proliferation associates negatively with eHFSC-marker expression. Furthermore, we also show how prostaglandin D2 (PGD2), which is upregulated in balding scalp, differentially impacts on the proliferation of distinct eHFSC populations. Namely, 24 h organ-cultured hHFs treated with PGD2 displayed reduced Ki-67 expression and EdU incorporation in bulge resident K15+ cells, but not in supra/proximal bulb outer root sheath K15+ progenitors. This study emphasises clear differences between the cell cycle behaviour of spatially distinct stem/progenitor cell niches in the hHF, and demonstrates a possible link between PGD2 and perturbed proliferation dynamics in epithelial stem cells.
Collapse
|
60
|
Prodinger CM, Reichelt J, Bauer JW, Laimer M. Current and Future Perspectives of Stem Cell Therapy in Dermatology. Ann Dermatol 2017; 29:667-687. [PMID: 29200755 PMCID: PMC5705348 DOI: 10.5021/ad.2017.29.6.667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells capable of generating, sustaining, and replacing terminally differentiated cells and tissues. They can be isolated from embryonic as well as almost all adult tissues including skin, but are also generated through genetic reprogramming of differentiated cells. Preclinical and clinical research has recently tremendously improved stem cell therapy, being a promising treatment option for various diseases in which current medical therapies fail to cure, prevent progression or relieve symptoms. With the main goal of regeneration or sustained genetic correction of damaged tissue, advanced tissue-engineering techniques are especially applicable for many dermatological diseases including wound healing, genodermatoses (like the severe blistering disorder epidermolysis bullosa) and chronic (auto-)inflammatory diseases. This review summarizes general aspects as well as current and future perspectives of stem cell therapy in dermatology.
Collapse
Affiliation(s)
- Christine M Prodinger
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Julia Reichelt
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
61
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
62
|
Lanfredini S, Olivero C, Borgogna C, Calati F, Powell K, Davies KJ, De Andrea M, Harries S, Tang HKC, Pfister H, Gariglio M, Patel GK. HPV8 Field Cancerization in a Transgenic Mouse Model Is due to Lrig1+ Keratinocyte Stem Cell Expansion. J Invest Dermatol 2017; 137:2208-2216. [PMID: 28595997 PMCID: PMC5613749 DOI: 10.1016/j.jid.2017.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 11/23/2022]
Abstract
β-Human papillomaviruses (HPVs) cause near ubiquitous latent skin infection within long-lived hair follicle (HF) keratinocyte stem cells. In patients with epidermodysplasia verruciformis, β-HPV viral replication is associated with skin keratosis and cutaneous squamous cell carcinoma. To determine the role of HF keratinocyte stem cells in β-HPV-induced skin carcinogenesis, we utilized a transgenic mouse model in which the keratin 14 promoter drives expression of the entire HPV8 early region (HPV8tg). HPV8tg mice developed thicker skin in comparison with wild-type littermates consistent with a hyperproliferative epidermis. HF keratinocyte proliferation was evident within the Lrig1+ keratinocyte stem cell population (69 vs. 55%, P < 0.01, n = 7), and not in the CD34+, LGR5+, and LGR6+ keratinocyte stem cell populations. This was associated with a 2.8-fold expansion in Lrig1+ keratinocytes and 3.8-fold increased colony-forming efficiency. Consistent with this, we observed nuclear p63 expression throughout this population and the HF infundibulum and adjoining interfollicular epidermis, associated with a switch from p63 transcriptional activation isoforms to ΔNp63 isoforms in HPV8tg skin. Epidermodysplasia verruciformis keratosis and in some cases actinic keratoses demonstrated similar histology associated with β-HPV reactivation and nuclear p63 expression within the HF infundibulum and perifollicular epidermis. These findings would suggest that β-HPV field cancerization arises from the HF junctional zone and predispose to squamous cell carcinoma.
Collapse
Affiliation(s)
- Simone Lanfredini
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Kathryn Powell
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Kelli-Jo Davies
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco De Andrea
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Sarah Harries
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Hiu Kwan Carolyn Tang
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
63
|
Huang PY, Kandyba E, Jabouille A, Sjolund J, Kumar A, Halliwill K, McCreery M, DelRosario R, Kang HC, Wong CE, Seibler J, Beuger V, Pellegrino M, Sciambi A, Eastburn DJ, Balmain A. Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nat Genet 2017; 49:1624-1632. [PMID: 28945253 PMCID: PMC5662105 DOI: 10.1038/ng.3957] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
The G-protein-coupled receptors Lgr4/5/6 are Wnt signalling mediators, but their functions in squamous carcinomas (SCCs) are unclear. Using lineage tracing in Lgr5-EGFP-CreERT2- and Lgr6-EGFP-CreERT2- Rosa26/Tomato reporter mice, we demonstrate that Lgr6, but not Lgr5, acts as an epithelial stem cell marker in vivo in SCCs. We identify, by single molecule in situ hybridisation and cell sorting, rare Lgr6-positive cells in immortalised keratinocytes, and show that their frequency increases in advanced SCCs. Lgr6 expression is enriched in cells with stem cell characteristics, and Lgr6 downregulation in vivo causes increased epidermal proliferation, with expanded lineage tracing from Lgr6+ epidermal stem cells. Surprisingly, Lgr6 germline knockout mice are predisposed to SCC development, by a mechanism that includes compensatory upregulation of Lgr5. These data provide a model for human patients with germline loss of function mutations in WNT pathway genes RSPO1 or LGR4, who show increased susceptibility to squamous tumour development.
Collapse
Affiliation(s)
- Phillips Y Huang
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA.,Genome Institute of Singapore, Singapore
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Arnaud Jabouille
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Jonas Sjolund
- Division of Translational Cancer Research, University of Lund, Lund, Sweden
| | - Atul Kumar
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Melissa McCreery
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | - Reyno DelRosario
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | - Adam Sciambi
- Mission Bio, Inc., San Francisco, California, USA
| | | | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, California, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
64
|
Yi R. Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells 2017; 35:2323-2330. [PMID: 28856849 DOI: 10.1002/stem.2696] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023]
Abstract
Maintaining a pool of adult stem cells is essential for tissue homeostasis and wound repair. In mammalian tissues, notably hair follicles, blood, and muscle, stem cells acquire quiescence and infrequently divide for self-renewal. Mechanistic understanding of stem cell quiescence is critical for applying these multipotent cells in regenerative medicine and interrogating their roles in human diseases such as cancer. Quiescent and dividing epithelial stem cells located in hair follicle are conspicuously organized in a spatiotemporally specific manner, allowing them to be studied at a considerable depth. Recent advancements in mouse genetics, genomics, and imaging have revealed unprecedented insights into establishment, maintenance, and regulation of quiescent hair follicle stem cells. This concise review summarizes the progress with a focus on mechanisms mediated by signaling pathways and transcription factors and discusses their implications in the understanding of stem cell biology. Stem Cells 2017;35:2323-2330.
Collapse
Affiliation(s)
- Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
65
|
Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal Stem Cells in Skin Wound Healing. Adv Wound Care (New Rochelle) 2017; 6:297-307. [PMID: 28894637 DOI: 10.1089/wound.2017.0728] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Significance: Skin serves as a protective barrier for mammals. Epidermal stem cells are responsible for maintaining skin homeostasis. When cutaneous injuries occur, skin homeostasis and integrity are damaged, leading to dire consequences such as acute, chronic, or infected wounds. Skin wound healing is an intrinsic self-saving chain reaction, which is crucial to facilitating the replacement of damaged or lost tissue. Recent Advances: An immense amount of research has uncovered the underlying mechanisms behind the complex and highly regulated wound healing process. In this review, we will dissect the biological process of adult skin wound healing and emphasize the importance of epidermal stem cells during the wound healing. Critical Issues: We will comprehensively discuss the current clinical practices used on patients with cutaneous wounds, including both traditional skin grafting procedures and advanced grafting techniques with cultured skin stem cells. The majority of these leading techniques still retain some deficiencies during clinical use. Moreover, the regeneration of skin appendages after severe injuries remains a challenge in treatment. Future Directions: Understanding epidermal stem cells and their essential functions during skin wound healing are fundamental components behind the development of clinical treatment on patients with cutaneous wounds. It is important to improve the current standard of care and to develop novel techniques improving patient outcomes and long-term rehabilitation, which should be the goals of future endeavors in the field of skin wound healing.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Jamie Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
66
|
Hufbauer M, Akgül B. Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis. Viruses 2017; 9:v9070187. [PMID: 28708084 PMCID: PMC5537679 DOI: 10.3390/v9070187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Infection of the cutaneous skin with human papillomaviruses (HPV) of genus betapapillomavirus (βHPV) is associated with the development of premalignant actinic keratoses and squamous cell carcinoma. Due to the higher viral loads of βHPVs in actinic keratoses than in cancerous lesions, it is currently discussed that these viruses play a carcinogenic role in cancer initiation. In vitro assays performed to characterize the cell transforming activities of high-risk HPV types of genus alphapapillomavirus have markedly contributed to the present knowledge on their oncogenic functions. However, these assays failed to detect oncogenic functions of βHPV early proteins. They were not suitable for investigations aiming to study the interactive role of βHPV positive epidermis with mesenchymal cells and the extracellular matrix. This review focuses on βHPV gene functions with special focus on oncogenic mechanisms that may be relevant for skin cancer development.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| |
Collapse
|
67
|
Watanabe M, Natsuga K, Nishie W, Kobayashi Y, Donati G, Suzuki S, Fujimura Y, Tsukiyama T, Ujiie H, Shinkuma S, Nakamura H, Murakami M, Ozaki M, Nagayama M, Watt FM, Shimizu H. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife 2017; 6:e26635. [PMID: 28693719 PMCID: PMC5505703 DOI: 10.7554/elife.26635] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yu Fujimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
68
|
Sugaya K. Effects of gamma rays on the regeneration of murine hair follicles in the natural hair cycle. Int J Radiat Biol 2017. [PMID: 28627318 DOI: 10.1080/09553002.2017.1344362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This review evaluates the effects of γ-rays on the regeneration of murine hair follicles in the natural hair cycle. A series of studies were performed to investigate this issue, in which the whole bodies of C57BL/10JHir mice in the 1st telogen phase of the hair cycle were irradiated with γ-rays. RESULTS The dermis of the irradiated skin showed a decrease in hair follicle density and induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs in the 2nd and 3rd anagen phases. An increased frequency of hypopigmented hair bulbs was still observed in the later hair cycle at postnatal day 200. There was no significant difference in the number of stem cells in the hair bulge region between control and irradiated skin. CONCLUSIONS These results show that the effects of γ-rays on the pigmentation of murine hair follicles are persistently carried over to later hair cycles, although those on the number and structure of hair follicles appear to be hidden by the effects of aging. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration in connection with age-related phenotypes.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- a Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics , National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| |
Collapse
|
69
|
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties. Nat Cell Biol 2017; 19:603-613. [PMID: 28504705 DOI: 10.1038/ncb3532] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
Collapse
Affiliation(s)
- Giacomo Donati
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Toru Hiratsuka
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Esther Hoste
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,VIB Center for Inflammation Research, Department of Biomedical Molecular Biology (Ghent University), B-9052 Ghent, Belgium
| | - Gozde Kar
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Kai Kretzschmar
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Hubrecht Institute, KNAW and UMC Utrecht, 3584CT Utrecht, The Netherlands
| | - Klaas W Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Sarah A Teichmann
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
70
|
A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun 2017; 8:14744. [PMID: 28332498 PMCID: PMC5376649 DOI: 10.1038/ncomms14744] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 01/13/2023] Open
Abstract
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2.
Collapse
|
71
|
Xia X, Ahmad I. Unlocking the Neurogenic Potential of Mammalian Müller Glia. Int J Stem Cells 2016; 9:169-175. [PMID: 27572710 PMCID: PMC5155712 DOI: 10.15283/ijsc16020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
Müller glia (MG) are the primary support cells in the vertebrate retina, regulating homeostasis in one of the most metabolically active tissues. In lower vertebrates such as fish, they respond to injury by proliferating and reprogramming to regenerate retinal neurons. In mammals, MG may also react to injury by proliferating, but they fail to initiate regeneration. The barriers to regeneration could be intrinsic to mammalian MG or the function of the niche that cannot support the MG reprogramming required for lineage conversion or both. Understanding these mechanisms in light of those being discovered in fish may lead to the formulation of strategies to unlock the neurogenic potential of MG and restore regeneration in the mammalian retina.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
72
|
Natsuga K. Stem cell markers of skin appendages in human skin tumours. Br J Dermatol 2016; 175:459. [PMID: 27632963 DOI: 10.1111/bjd.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
73
|
Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M. Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity. Cell Syst 2016; 3:221-237.e9. [PMID: 27641957 PMCID: PMC5052454 DOI: 10.1016/j.cels.2016.08.010] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
The murine epidermis with its hair follicles represents an invaluable model system for tissue regeneration and stem cell research. Here we used single-cell RNA-sequencing to reveal how cellular heterogeneity of murine telogen epidermis is tuned at the transcriptional level. Unbiased clustering of 1,422 single-cell transcriptomes revealed 25 distinct populations of interfollicular and follicular epidermal cells. Our data allowed the reconstruction of gene expression programs during epidermal differentiation and along the proximal-distal axis of the hair follicle at unprecedented resolution. Moreover, transcriptional heterogeneity of the epidermis can essentially be explained along these two axes, and we show that heterogeneity in stem cell compartments generally reflects this model: stem cell populations are segregated by spatial signatures but share a common basal-epidermal gene module. This study provides an unbiased and systematic view of transcriptional organization of adult epidermis and highlights how cellular heterogeneity can be orchestrated in vivo to assure tissue homeostasis. Single-cell RNA-seq analysis identifies 25 populations of epidermal cells Differentiation and spatial gene expression signatures can be defined Interplay of differentiation and spatial signatures explains most heterogeneity Stem cell populations are divided by spatial signatures and only share basal identity
Collapse
Affiliation(s)
- Simon Joost
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Amit Zeisel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden
| | - Gioele La Manno
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden.
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Novum, 141 83 Huddinge, Sweden.
| |
Collapse
|
74
|
Mastrogiannaki M, Lichtenberger BM, Reimer A, Collins CA, Driskell RR, Watt FM. β-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the Reticular Dermis. J Invest Dermatol 2016; 136:1130-1142. [PMID: 26902921 PMCID: PMC4874948 DOI: 10.1016/j.jid.2016.01.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
The Wnt/β-catenin pathway plays a central role in epidermal homeostasis and regeneration, but how it affects fibroblast fate decisions is unknown. We investigated the effect of targeted β-catenin stabilization in dermal fibroblasts. Comparative gene expression profiling of stem cell antigen 1- (Sca1-) and Sca1+ neonatal fibroblasts from upper and lower dermis, respectively, confirmed that Sca1+ cells had a preadipocyte signature and showed differential expression of Wnt/β-catenin–associated genes. By targeting all fibroblasts or selectively targeting Dlk1+ lower dermal fibroblasts, we found that β-catenin stabilization between developmental stages E16.5 and P2 resulted in a reduction in the dermal adipocyte layer with a corresponding increase in dermal fibrosis and an altered hair cycle. The fibrotic phenotype correlated with a reduction in the potential of Sca1+ fibroblasts to undergo adipogenic differentiation ex vivo. Our findings indicate that Wnt/β-catenin signaling controls adipogenic cell fate within the lower dermis, which potentially contributes to the pathogenesis of fibrotic skin diseases.
Collapse
Affiliation(s)
- Maria Mastrogiannaki
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Beate M Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Andreas Reimer
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Charlotte A Collins
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
75
|
Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo. Int J Mol Sci 2016; 17:ijms17010089. [PMID: 26771605 PMCID: PMC4730332 DOI: 10.3390/ijms17010089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.
Collapse
|
76
|
Kretzschmar K, Weber C, Driskell RR, Calonje E, Watt FM. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity. Cell Rep 2016; 14:269-81. [PMID: 26771241 PMCID: PMC4713864 DOI: 10.1016/j.celrep.2015.12.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/26/2015] [Accepted: 12/06/2015] [Indexed: 01/01/2023] Open
Abstract
Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6(+) and LRIG1(+) stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5(+) cells did not. Lgr6, but not Lrig1 or Lgr5, was expressed in a subpopulation of interfollicular epidermal cells that were competent to form new hair follicles. Oncogenic β-catenin expression in LGR5(+) cells led to formation of pilomatricomas, while LRIG1(+) cells formed trichoadenomas and LGR6(+) cells formed dermatofibromas. Tumor formation was always accompanied by a local increase in dermal fibroblast density and transient extracellular matrix remodeling. However, each tumor had a distinct stromal signature in terms of immune cell infiltrate and expression of CD26 and CD44. We conclude that compartmentalization of epidermal stem cells underlies different responses to β-catenin and skin tumor heterogeneity.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Christine Weber
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Eduardo Calonje
- Dermatopathology Laboratory, St. John's Institute of Dermatology, St. Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28(th) Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
77
|
Füllgrabe A, Joost S, Are A, Jacob T, Sivan U, Haegebarth A, Linnarsson S, Simons BD, Clevers H, Toftgård R, Kasper M. Dynamics of Lgr6⁺ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. Stem Cell Reports 2015; 5:843-855. [PMID: 26607954 PMCID: PMC4649262 DOI: 10.1016/j.stemcr.2015.09.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023] Open
Abstract
The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6⁺ -expressing basal cells in the HF isthmus, SG, and IFE.We show that these Lgr6⁺ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6⁺ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6⁺ and Lgr6⁺ cells did not reveal a distinct Lgr6⁺ -associated gene expression signature, raising the question of whether Lgr6⁺ expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6⁺ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.
Collapse
Affiliation(s)
- Anja Füllgrabe
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Simon Joost
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Alexandra Are
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Tina Jacob
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Unnikrishnan Sivan
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Andrea Haegebarth
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Sten Linnarsson
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Hans Clevers
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, the Netherlands
| | - Rune Toftgård
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden
| | - Maria Kasper
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Novum, 141 83 Huddinge, Sweden.
| |
Collapse
|
78
|
Kretzschmar K, Cottle DL, Schweiger PJ, Watt FM. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells. J Invest Dermatol 2015; 135:2753-2763. [PMID: 26121213 PMCID: PMC4641324 DOI: 10.1038/jid.2015.242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 01/06/2023]
Abstract
Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Denny L Cottle
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Pawel J Schweiger
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital Campus, London, UK.
| |
Collapse
|
79
|
|
80
|
Gorski DJ, Xiao W, Li J, Luo W, Lauer M, Kisiday J, Plaas A, Sandy J. Deletion of ADAMTS5 does not affect aggrecan or versican degradation but promotes glucose uptake and proteoglycan synthesis in murine adipose derived stromal cells. Matrix Biol 2015; 47:66-84. [DOI: 10.1016/j.matbio.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/22/2023]
|
81
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
82
|
Mesa KR, Rompolas P, Greco V. The Dynamic Duo: Niche/Stem Cell Interdependency. Stem Cell Reports 2015; 4:961-6. [PMID: 26028534 PMCID: PMC4471832 DOI: 10.1016/j.stemcr.2015.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023] Open
Abstract
Most tissues in our bodies undergo constant cellular turnover. This process requires a dynamic balance between cell production and elimination. Stem cells have been shown in many of these tissues to be the major source of new cells. However, despite the tremendous advances made, it still remains unclear how stem cell behavior and activity are regulated in vivo. Furthermore, we lack basic understanding for the mechanisms that coordinate niche/stem cell interactions to maintain normal tissue homeostasis. Our lab has established a novel imaging approach in live mice using the skin as a model system to investigate these fundamental processes in both physiological and pathological settings such as cancer, with the goal of understanding how tissues successfully orchestrate tissue regeneration throughout the lifetime of an organism.
Collapse
Affiliation(s)
- Kailin R Mesa
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
83
|
Abstract
Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural.
Collapse
Affiliation(s)
- Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
84
|
BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports 2014; 3:620-33. [PMID: 25358790 PMCID: PMC4223714 DOI: 10.1016/j.stemcr.2014.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/03/2023] Open
Abstract
B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1) was previously reported to define a sebaceous gland (SG) progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1(+) cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1(+) sebocytes have no greater clonogenic potential than BLIMP1(-) sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.
Collapse
|
85
|
Liakath-Ali K, Vancollie VE, Heath E, Smedley DP, Estabel J, Sunter D, Ditommaso T, White JK, Ramirez-Solis R, Smyth I, Steel KP, Watt FM. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen. Nat Commun 2014; 5:3540. [PMID: 24721909 PMCID: PMC3996542 DOI: 10.1038/ncomms4540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022] Open
Abstract
Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. Large-scale efforts are put into the generation of knockout mutant mice for many individual genes. Here, the authors systematically screen skin from 538 mutant mice and identify 50 mutants with epidermal phenotypes, of which 9 are also associated with human skin defects.
Collapse
Affiliation(s)
- Kifayathullah Liakath-Ali
- 1] Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK [2] Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK [3] Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Valerie E Vancollie
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emma Heath
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Damian P Smedley
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeanne Estabel
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Sunter
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tia Ditommaso
- 1] Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia [2] Present address: Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Ian Smyth
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Karen P Steel
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|