51
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
52
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
53
|
An Emerging Role for Epigenetics in Cerebral Palsy. J Pers Med 2021; 11:jpm11111187. [PMID: 34834539 PMCID: PMC8625874 DOI: 10.3390/jpm11111187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy is a set of common, severe, motor disabilities categorized by a static, nondegenerative encephalopathy arising in the developing brain and associated with deficits in movement, posture, and activity. Spastic CP, which is the most common type, involves high muscle tone and is associated with altered muscle function including poor muscle growth and contracture, increased extracellular matrix deposition, microanatomic disruption, musculoskeletal deformities, weakness, and difficult movement control. These muscle-related manifestations of CP are major causes of progressive debilitation and frequently require intensive surgical and therapeutic intervention to control. Current clinical approaches involve sophisticated consideration of biomechanics, radiologic assessments, and movement analyses, but outcomes remain difficult to predict. There is a need for more precise and personalized approaches involving omics technologies, data science, and advanced analytics. An improved understanding of muscle involvement in spastic CP is needed. Unfortunately, the fundamental mechanisms and molecular pathways contributing to altered muscle function in spastic CP are only partially understood. In this review, we outline evidence supporting the emerging hypothesis that epigenetic phenomena play significant roles in musculoskeletal manifestations of CP.
Collapse
|
54
|
Kyung Lee M, Armstrong DA, Hazlett HF, Dessaint JA, Mellinger DL, Aridgides DS, Christensen BC, Ashare A. Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages. Epigenetics 2021; 16:1187-1200. [PMID: 33380271 PMCID: PMC8813072 DOI: 10.1080/15592294.2020.1853318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
Various pathogens use differing strategies to evade host immune response including modulating the host's epigenome. Here, we investigate if EVs secreted from P. aeruginosa alter DNA methylation in human lung macrophages, thereby potentially contributing to a dysfunctional innate immune response. Using a genome-wide DNA methylation approach, we demonstrate that P. aeruginosa EVs alter certain host cell DNA methylation patterns. We identified 1,185 differentially methylated CpGs (FDR < 0.05), which were significantly enriched for distal DNA regulatory elements including enhancer regions and DNase hypersensitive sites. Notably, all but one of the 1,185 differentially methylated CpGs were hypomethylated in association with EV exposure. Significantly hypomethylated CpGs tracked to genes including AXL, CFB and CCL23. Gene expression analysis identified 310 genes exhibiting significantly altered expression 48 hours post P. aeruginosa EV treatment, with 75 different genes upregulated and 235 genes downregulated. Some CpGs associated with cytokines such as CSF3 displayed strong negative correlations between DNA methylation and gene expression. Our infection model illustrates how secreted products (EVs) from bacteria can alter DNA methylation of the host epigenome. Changes in DNA methylation in distal DNA regulatory regions in turn can modulate cellular gene expression and potential downstream cellular processes.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Haley F. Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A. Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane L. Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
55
|
Bourdonnay E, Henry T. Transcriptional and Epigenetic Regulation of Gasdermins. J Mol Biol 2021; 434:167253. [PMID: 34537234 DOI: 10.1016/j.jmb.2021.167253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Gasdermins (GSDM) are a family of six homologous proteins (GSDMA to E and Pejvakin) in humans. GSDMA-E are pore-forming proteins targeting the plasma membrane to trigger a rapid cell death termed pyroptosis or bacterial membranes to promote antibacterial immune defenses. Activation of GSDM relies on a proteolytic cleavage but is highly dependent on GSDM expression levels. The different GSDM genes have tissue-specific expression pattern although metabolic, environmental signals, cell stress and numerous cytokines modulate their expression levels in tissues. Furthermore, expression of GSDM genes can be modulated by polymorphisms and have been associated with susceptibility to asthma, inflammatory bowel diseases and rhinovirus wheezing illness. Finally, the expression level of GSDMs controls the balance between apoptosis and pyroptosis affecting both the response and the toxicity to chemotactic drugs and antitumoral treatments. Numerous cancer demonstrate positive or negative modulation of GSDM expression levels correlating with distinct tumor-specific prognosis. In this review, we present the transcriptional and epigenetic mechanisms controlling GSDM levels and their functional consequences in asthma, infection, cancers and inflammatory bowel disease to highlight how this first layer of regulations has key consequences on disease susceptibility and response to treatment.
Collapse
Affiliation(s)
- Emilie Bourdonnay
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, F-69007 Lyon, France.
| |
Collapse
|
56
|
Bhagirath AY, Medapati MR, de Jesus VC, Yadav S, Hinton M, Dakshinamurti S, Atukorallaya D. Role of Maternal Infections and Inflammatory Responses on Craniofacial Development. FRONTIERS IN ORAL HEALTH 2021; 2:735634. [PMID: 35048051 PMCID: PMC8757860 DOI: 10.3389/froh.2021.735634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is a tightly regulated immunological state. Mild environmental perturbations can affect the developing fetus significantly. Infections can elicit severe immunological cascades in the mother's body as well as the developing fetus. Maternal infections and resulting inflammatory responses can mediate epigenetic changes in the fetal genome, depending on the developmental stage. The craniofacial development begins at the early stages of embryogenesis. In this review, we will discuss the immunology of pregnancy and its responsive mechanisms on maternal infections. Further, we will also discuss the epigenetic effects of pathogens, their metabolites and resulting inflammatory responses on the fetus with a special focus on craniofacial development. Understanding the pathophysiological mechanisms of infections and dysregulated inflammatory responses during prenatal development could provide better insights into the origins of craniofacial birth defects.
Collapse
Affiliation(s)
- Anjali Y. Bhagirath
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Manoj Reddy Medapati
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sneha Yadav
- Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Martha Hinton
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Pediatrics and Physiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Devi Atukorallaya
- Biology of Breathing, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
57
|
Abstract
The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways. In this viewpoint, rather than focusing on the downstream effects of IFN signaling (which have been extensively reviewed elsewhere), we will summarize the historical and current understanding of the stepwise assembly and function of factors that regulate IFNβ enhancer activity (the "enhanceosome") and highlight opportunities for deeper understanding of the transcriptional control of the ifnb gene.
Collapse
Affiliation(s)
- Andrew W Daman
- Department of Pathology, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
58
|
Correa-Macedo W, Fava VM, Orlova M, Cassart P, Olivenstein R, Sanz J, Xu YZ, Dumaine A, Sindeaux RH, Yotova V, Pacis A, Girouard J, Kalsdorf B, Lange C, Routy JP, Barreiro LB, Schurr E. Alveolar macrophages from persons living with HIV show impaired epigenetic response to Mycobacterium tuberculosis. J Clin Invest 2021; 131:e148013. [PMID: 34473646 DOI: 10.1172/jci148013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Persons living with HIV (PLWH) are at increased risk of tuberculosis (TB). HIV-associated TB is often the result of recent infection with Mycobacterium tuberculosis (Mtb) followed by rapid progression to disease. Alveolar macrophages (AM) are the first cells of the innate immune system that engage Mtb, but how HIV and antiretroviral therapy (ART) impact on the anti-mycobacterial response of AM is not known. To investigate the impact of HIV and ART on the transcriptomic and epigenetic response of AM to Mtb, we obtained AM by bronchoalveolar lavage from 20 PLWH receiving ART, 16 control subjects who were HIV-free (HC), and 14 subjects who received ART as pre-exposure prophylaxis (PrEP) to prevent HIV infection. Following in-vitro challenge with Mtb, AM from each group displayed overlapping but distinct profiles of significantly up- and down-regulated genes in response to Mtb. Comparatively, AM isolated from both PLWH and PrEP subjects presented a substantially weaker transcriptional response. In addition, AM from HC subjects challenged with Mtb responded with pronounced chromatin accessibility changes while AM obtained from PLWH and PrEP subjects displayed no significant changes in their chromatin state. Collectively, these results revealed a stronger adverse effect of ART than HIV on the epigenetic landscape and transcriptional responsiveness of AM.
Collapse
Affiliation(s)
| | - Vinicius M Fava
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Marianna Orlova
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Pauline Cassart
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Ron Olivenstein
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Joaquín Sanz
- Institute for Bio-computation and Physics of Complex Systems BIFI, Departme, University of Zaragoza, Zaragoza, Spain
| | - Yong Zhong Xu
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Anne Dumaine
- Department of Medicine, University of Chicago, Chicago, United States of America
| | | | - Vania Yotova
- Research Centre, CHU Sainte-Justine Hospital, Montréal, Canada
| | - Alain Pacis
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, Canada
| | - Josée Girouard
- Chronic Viral Illnesses Service and Division of Hematology, McGill University, Montréal, Canada
| | - Barbara Kalsdorf
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Christoph Lange
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Jean-Pierre Routy
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Luis B Barreiro
- Department of Medicine, University of Chicago, Chicago, United States of America
| | - Erwin Schurr
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
| |
Collapse
|
59
|
Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021; 9:1142. [PMID: 34572329 PMCID: PMC8466119 DOI: 10.3390/biomedicines9091142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- National Cancer Center Hospital, Department of Endoscopy, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
60
|
Baxter A, Capitanio JP, Bales K, Kinnally EL. Biobehavioral organization shapes the immune epigenome in infant rhesus Macaques (Macaca mulatta). Brain Behav Immun 2021; 96:256-270. [PMID: 34144148 PMCID: PMC8901048 DOI: 10.1016/j.bbi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
How individuals respond to and cope with stress is linked with their health and well-being. It is presumed that early stress responsiveness helps shape the health of the developing organism, but the relationship between stress responsiveness and early immune function during development is not well-known. We hypothesized that stress responsiveness may shape epigenetic regulation of immune genes in infancy. We investigated whether aspects of behavioral responsiveness and hypothalamic-pituitary adrenal stress-response were associated with epigenome-wide immune cell DNA methylation patterns in 154 infant rhesus monkeys (3-4 months old). Infants' behavioral and physiological responses were collected during a standardized biobehavioral assessment, which included temporary relocation and separation from their mother and social group. Genome-wide DNA methylation was quantified using restricted representation bisulfite sequencing (RRBS) from blood DNA collected 2-hours post-separation. Epigenome-wide analyses were conducted using simple regression, multiple regression controlling for immune cell counts, and permutation regression, all corrected for false discovery rate. Across the variables analyzed, there were 20,368 unique sites (in 9,040 genes) at which methylation was significantly associated with at least one behavioral responsiveness or cortisol measure across the three analyses. There were significant associations in 442 genes in the Immune System Process ontology category, and 94 genes in the Inflammation mediated by chemokine and cytokine signaling gene pathway. Out of 35 candidate genes that were selected for further investigation, there were 13 genes with at least one site at which methylation was significantly associated with behavioral responsiveness or cortisol, including two intron sites in the glucocorticoid receptor gene, at which methylation was negatively correlated with emotional behavior the day following the social separation (Day 2 Emotionality; β = -0.39, q < 0.001) and cortisol response following a relocation stressor (Sample 1; β = -0.33, q < 0.001). We conclude that biobehavioral stress responsiveness may correlate with the developing epigenome, and that DNA methylation of immune cells may be a mechanism by which patterns of stress response affect health and immune functioning.
Collapse
Affiliation(s)
- A. Baxter
- University of California, Davis, Department of Psychology, One Shields Drive, Davis CA 95616 USA,California National Primate Research Center, Davis CA 95616 USA
| | - J. P. Capitanio
- University of California, Davis, Department of Psychology, One Shields Drive, Davis CA 95616 USA,California National Primate Research Center, Davis CA 95616 USA
| | - K.L. Bales
- University of California, Davis, Department of Psychology, One Shields Drive, Davis CA 95616 USA,California National Primate Research Center, Davis CA 95616 USA,University of California, Davis, Department of Neurobiology, Physiology, and Behavior, One Shields Drive, Davis CA 95616 USA
| | - E. L. Kinnally
- University of California, Davis, Department of Psychology, One Shields Drive, Davis CA 95616 USA,California National Primate Research Center, Davis CA 95616 USA,indicates corresponding author: Kinnally, E. L.:
| |
Collapse
|
61
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
62
|
Wu Y, Wang CZ, Wan JY, Yao H, Yuan CS. Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Maintenance and Disease Prevention. Int J Mol Sci 2021; 22:6933. [PMID: 34203243 PMCID: PMC8267743 DOI: 10.3390/ijms22136933] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota exists throughout the full life cycle of the human body, and it has been proven to have extensive impacts on health and disease. Accumulating evidence demonstrates that the interplay between gut microbiota and host epigenetics plays a multifaceted role in health maintenance and disease prevention. Intestinal microflora, along with their metabolites, could regulate multiple epigenetic pathways; e.g., DNA methylation, miRNA, or histone modification. Moreover, epigenetic factors can serve as mediators to coordinate gut microbiota within the host. Aiming to dissect this interplay mechanism, the present review summarizes the research profile of gut microbiota and epigenetics in detail, and further interprets the biofunctions of this interplay, especially the regulation of intestinal inflammation, the improvement of metabolic disturbances, and the inhibition of colitis events. This review provides new insights into the interplay of epigenetics and gut microbiota, and attempts to reveal the mysteries of health maintenance and disease prevention from this new perspective.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
63
|
Immunomodulation by epigenome alterations in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 128:102077. [PMID: 33812175 DOI: 10.1016/j.tube.2021.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (MTB) has co-evolved with humans for decades and developed several mechanisms to evade host immunity. It can efficiently alter the host epigenome, thus playing a major role in immunomodulation by either activating or suppressing genes responsible for mounting an immune response against the pathogen. Epigenetic modifications such as DNA methylation and chromatin remodelling regulate gene expression and influence several cellular processes. The involvement of epigenetic factors in disease onset and development had been overlooked upon in comparison to genetic mutations. It is now believed that assessment of epigenetic changes hold great potential in diagnosis, prevention and treatment strategies for a wide range of diseases. In this review, we unravel the principles of epigenetics and the numerous ways by which MTB re-shapes the host epigenetic landscape as a strategy to overpower the host immune system for its survival and persistence.
Collapse
|
64
|
Maes K, Mondino A, Lasarte JJ, Agirre X, Vanderkerken K, Prosper F, Breckpot K. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Front Immunol 2021; 12:652160. [PMID: 33859645 PMCID: PMC8042276 DOI: 10.3389/fimmu.2021.652160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.
Collapse
Affiliation(s)
- Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universiteit Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felipe Prosper
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
65
|
The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun 2021; 12:1556. [PMID: 33692344 PMCID: PMC7946903 DOI: 10.1038/s41467-021-21661-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The differentiation of human blood monocytes (MO), the post-mitotic precursors of macrophages (MAC) and dendritic cells (moDC), is accompanied by the active turnover of DNA methylation, but the extent, consequences and mechanisms of DNA methylation changes remain unclear. Here, we profile and compare epigenetic landscapes during IL-4/GM-CSF-driven MO differentiation across the genome and detect several thousand regions that are actively demethylated during culture, both with or without accompanying changes in chromatin accessibility or transcription factor (TF) binding. We further identify TF that are globally associated with DNA demethylation processes. While interferon regulatory factor 4 (IRF4) is found to control hallmark dendritic cell functions with less impact on DNA methylation, early growth response 2 (EGR2) proves essential for MO differentiation as well as DNA methylation turnover at its binding sites. We also show that ERG2 interacts with the 5mC hydroxylase TET2, and its consensus binding sequences show a characteristic DNA methylation footprint at demethylated sites with or without detectable protein binding. Our findings reveal an essential role for EGR2 as epigenetic pioneer in human MO and suggest that active DNA demethylation can be initiated by the TET2-recruiting TF both at stable and transient binding sites. DNA methylation turnover is an essential epigenetic process during development. Here, the authors look at the changes in DNA methylation during the differentiation of post-mitotic human monocytes (MO), and find that EGR2 interacts with TET2 and is required for DNA demethylation at its binding sites; revealing EGR2 as an epigenetic pioneer factor in human MO.
Collapse
|
66
|
Chang YL, Rossetti M, Gjertson DW, Rubbi L, Thompson M, Montoya DJ, Morselli M, Ruffin F, Hoffmann A, Pellegrini M, Fowler VG, Yeaman MR, Reed EF. Human DNA methylation signatures differentiate persistent from resolving MRSA bacteremia. Proc Natl Acad Sci U S A 2021; 118:e2000663118. [PMID: 33649198 PMCID: PMC7958259 DOI: 10.1073/pnas.2000663118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is life threatening and occurs in up to 30% of MRSA bacteremia cases despite appropriate antimicrobial therapy. Isolates of MRSA that cause antibiotic-persistent methicillin-resistant S. aureus bacteremia (APMB) typically have in vitro antibiotic susceptibilities equivalent to those causing antibiotic-resolving methicillin-resistant S. aureus bacteremia (ARMB). Thus, persistence reflects host-pathogen interactions occurring uniquely in context of antibiotic therapy in vivo. However, host factors and mechanisms involved in APMB remain unclear. We compared DNA methylomes in circulating immune cells from patients experiencing APMB vs. ARMB. Overall, methylation signatures diverged in the distinct patient cohorts. Differentially methylated sites intensified proximate to transcription factor binding sites, primarily in enhancer regions. In APMB patients, significant hypomethylation was observed in binding sites for CCAAT enhancer binding protein-β (C/EBPβ) and signal transducer/activator of transcription 1 (STAT1). In contrast, hypomethylation in ARMB patients localized to glucocorticoid receptor and histone acetyltransferase p300 binding sites. These distinct methylation signatures were enriched in neutrophils and achieved a mean area under the curve of 0.85 when used to predict APMB using a classification model. These findings validated by targeted bisulfite sequencing (TBS-seq) differentiate epigenotypes in patients experiencing APMB vs. ARMB and suggest a risk stratification strategy for antibiotic persistence in patients treated for MRSA bacteremia.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - David W Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Liudmilla Rubbi
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Michael Thompson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095
| | | | - Marco Morselli
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Felicia Ruffin
- Division of Infectious Diseases, Duke University, Durham, NC 27710
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University, Durham, NC 27710
| | - Michael R Yeaman
- Division of Molecular Medicine, Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502
- Division of Infectious Diseases, Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502
- Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
67
|
Dobbs KR, Embury P, Koech E, Ogolla S, Munga S, Kazura JW, Dent AE. Age-related differences in monocyte DNA methylation and immune function in healthy Kenyan adults and children. Immun Ageing 2021; 18:11. [PMID: 33685492 PMCID: PMC7938546 DOI: 10.1186/s12979-021-00223-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. RESULTS We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. CONCLUSIONS These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.
Collapse
Affiliation(s)
- Katherine R Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Paula Embury
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA
| | - Emmily Koech
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sidney Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA
| | - Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University, 10900 Euclid Avenue LC: 4983, Cleveland, OH, 44106, USA.
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| |
Collapse
|
68
|
Gao ZJ, Li WP, Mao XT, Huang T, Wang HL, Li YN, Liu BQ, Zhong JY, Renjie C, Jin J, Li YY. Single-nucleotide methylation specifically represses type I interferon in antiviral innate immunity. J Exp Med 2021; 218:e20201798. [PMID: 33616624 PMCID: PMC7903198 DOI: 10.1084/jem.20201798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Frequent outbreaks of viruses have caused a serious threat to public health. Previous evidence has revealed that DNA methylation is correlated with viral infections, but its role in innate immunity remains poorly investigated. Additionally, DNA methylation inhibitors promote IFN-I by upregulating endogenous retrovirus; however, studies of intrinsically demethylated tumors do not support this conclusion. This study found that Uhrf1 deficiency in myeloid cells significantly upregulated Ifnb expression, increasing resistance to viral infection. We performed whole-genome bisulfite sequencing and found that a single-nucleotide methylation site in the Ifnb promoter region disrupted IRF3 recruitment. We used site-specific mutant knock-in mice and a region-specific demethylation tool to confirm that this methylated site plays a critical role in regulating Ifnb expression and antiviral responses. These findings provide essential insight into DNA methylation in the regulation of the innate antiviral immune response.
Collapse
Affiliation(s)
- Zheng-jun Gao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Wen-ping Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-tao Mao
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao-li Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-ning Li
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-qin Liu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang-yan Zhong
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chai Renjie
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jin Jin
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
69
|
Lutz PE, Chay MA, Pacis A, Chen GG, Aouabed Z, Maffioletti E, Théroux JF, Grenier JC, Yang J, Aguirre M, Ernst C, Redensek A, van Kempen LC, Yalcin I, Kwan T, Mechawar N, Pastinen T, Turecki G. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation. Nat Commun 2021; 12:1132. [PMID: 33602921 PMCID: PMC7892573 DOI: 10.1038/s41467-021-21365-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Early-life adversity (ELA) is a major predictor of psychopathology, and is thought to increase lifetime risk by epigenetically regulating the genome. Here, focusing on the lateral amygdala, a major brain site for emotional homeostasis, we describe molecular cross-talk among multiple mechanisms of genomic regulation, including 6 histone marks and DNA methylation, and the transcriptome, in subjects with a history of ELA and controls. In the healthy brain tissue, we first uncover interactions between different histone marks and non-CG methylation in the CAC context. Additionally, we find that ELA associates with methylomic changes that are as frequent in the CAC as in the canonical CG context, while these two forms of plasticity occur in sharply distinct genomic regions, features, and chromatin states. Combining these multiple data indicates that immune-related and small GTPase signaling pathways are most consistently impaired in the amygdala of ELA individuals. Overall, this work provides insights into genomic brain regulation as a function of early-life experience.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Marc-Aurèle Chay
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Alain Pacis
- Department of Genetics, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Gary G Chen
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Elisabetta Maffioletti
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Jean-François Théroux
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Jean-Christophe Grenier
- Department of Genetics, CHU Sainte-Justine Research Center, Montréal, Canada
- Institut de Cardiologie de Montréal, Montréal, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Maria Aguirre
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Carl Ernst
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Adriana Redensek
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Léon C van Kempen
- Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, Canada
- Center for Pediatric Genomic Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada.
- Department of Psychiatry, McGill University, Montréal, Canada.
| |
Collapse
|
70
|
Ward MC, Banovich NE, Sarkar A, Stephens M, Gilad Y. Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes. eLife 2021; 10:e57345. [PMID: 33554857 PMCID: PMC7906610 DOI: 10.7554/elife.57345] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
One life-threatening outcome of cardiovascular disease is myocardial infarction, where cardiomyocytes are deprived of oxygen. To study inter-individual differences in response to hypoxia, we established an in vitro model of induced pluripotent stem cell-derived cardiomyocytes from 15 individuals. We measured gene expression levels, chromatin accessibility, and methylation levels in four culturing conditions that correspond to normoxia, hypoxia, and short- or long-term re-oxygenation. We characterized thousands of gene regulatory changes as the cells transition between conditions. Using available genotypes, we identified 1,573 genes with a cis expression quantitative locus (eQTL) in at least one condition, as well as 367 dynamic eQTLs, which are classified as eQTLs in at least one, but not in all conditions. A subset of genes with dynamic eQTLs is associated with complex traits and disease. Our data demonstrate how dynamic genetic effects on gene expression, which are likely relevant for disease, can be uncovered under stress.
Collapse
Affiliation(s)
- Michelle C Ward
- Department of Medicine, University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Nicholas E Banovich
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Integrated Cancer Genomics Division, Translational Genomics Research InstitutePhoenixUnited States
| | - Abhishek Sarkar
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Matthew Stephens
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Statistics, University of ChicagoChicagoUnited States
| | - Yoav Gilad
- Department of Medicine, University of ChicagoChicagoUnited States
- Department of Human Genetics, University of ChicagoChicagoUnited States
| |
Collapse
|
71
|
Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer Immunity. Cancers (Basel) 2021; 13:cancers13030545. [PMID: 33535484 PMCID: PMC7867049 DOI: 10.3390/cancers13030545] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shafaat A. Rabbani
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-843-1632
| |
Collapse
|
72
|
Halter T, Wang J, Amesefe D, Lastrucci E, Charvin M, Singla Rastogi M, Navarro L. The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. eLife 2021; 10:e62994. [PMID: 33470193 PMCID: PMC7880685 DOI: 10.7554/elife.62994] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we demonstrate that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a transposable element (TE)-derived repeat embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.
Collapse
Affiliation(s)
- Thierry Halter
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Jingyu Wang
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Delase Amesefe
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Emmanuelle Lastrucci
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Magali Charvin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Meenu Singla Rastogi
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| | - Lionel Navarro
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de recherche Paris, Sciences & Lettres (PSL)ParisFrance
| |
Collapse
|
73
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2020; 16:1335-1346. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has sorted several efforts to its control, generating enormous economic losses. Epigenetic alterations, such as DNA methylation, can play a relevant role in the modulation of the metazoans response to pathogens. Bacterial disease may activate global and local immune responses generating intricate responses with significant biological impact in the host. However, it is scarcely understood how bacterial infections influence fish epigenetic alterations. In the present study, we utilized Pacific salmon and Piscirickettsiosis as model, to gain understanding into the dynamics of DNA methylation among fish-bacterial infection interactions. A genome-wide analysis of DNA methylation patterns in female spleen tissue of Pacific salmon was achieved by reduced representation bisulphite sequencing from a time course design. We determined 2,251, 1,918, and 2,516 differentially methylated regions DMRs among infected and control Pacific salmon in 1 dpi, 5 dpi, and 15 dpi, respectively. The mean methylation difference per DMR among control and infected groups was of ~35%, with an oscillatory pattern of hypo, hyper, and hypomethylation across the disease. DMCs, among the control and infected group, showed that they were statistically enriched in intergenic regions and depleted in exons. Functional annotation of the DMR genes demonstrated three KEGG principal categories, associated directly with the host response to pathogens infections. Our results provide the first evidence of epigenetic variation in fish provoked by bacterial infection and demonstrate that this variation can be modulated across the disease.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Nicolás Bascuñan
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
74
|
Bronchial Epithelial Tet2 Maintains Epithelial Integrity during Acute Pseudomonas aeruginosa Pneumonia. Infect Immun 2020; 89:IAI.00603-20. [PMID: 33046509 DOI: 10.1128/iai.00603-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Respiratory epithelial cells are important for pulmonary innate immune responses during Pseudomonas aeruginosa infection. Tet methylcytosine dioxygenase 2 (Tet2) has been implicated in the regulation of host defense by myeloid and lymphoid cells, but whether Tet2 also contributes to epithelial responses during pneumonia is unknown. The aim of this study was to investigate the role of bronchial epithelial Tet2 in acute pneumonia caused by P. aeruginosa To this end, we crossed mice with Tet2 flanked by two Lox-P sites (Tet2fl/fl mice) with mice expressing Cre recombinase under the bronchial epithelial cell-specific Cc10 promoter (Cc10Cre mice) to generate bronchial epithelial cell-specific Tet2-deficient (Tet2fl/fl Cc10Cre ) mice. Six hours after infection with P. aeruginosa, Tet2fl/fl Cc10Cre and wild-type mice had similar bacterial loads in bronchoalveolar lavage fluid (BALF). At this time point, Tet2fl/fl Cc10Cre mice displayed reduced mRNA levels of the chemokines Cxcl1, Cxcl2, and Ccl20 in bronchial brushes. However, Cxcl1, Cxcl2, and Ccl20 protein levels and leukocyte recruitment in BALF were not different between groups. Tet2fl/fl Cc10Cre mice had increased protein levels in BALF after infection, indicating a disturbed epithelial barrier function, which was corroborated by reduced mRNA expression of tight junction protein 1 and occludin in bronchial brushes. Differences detected between Tet2fl/fl Cc10Cre and wild-type mice were no longer present at 24 h after infection. These results suggest that bronchial epithelial Tet2 contributes to maintaining epithelial integrity by enhancing intracellular connections between epithelial cells during the early phase of P. aeruginosa pneumonia.
Collapse
|
75
|
Uren C, Hoal EG, Möller M. Mycobacterium tuberculosis complex and human coadaptation: a two-way street complicating host susceptibility to TB. Hum Mol Genet 2020; 30:R146-R153. [PMID: 33258469 DOI: 10.1093/hmg/ddaa254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
For centuries, the Mycobacterium tuberculosis complex (MTBC) has infected numerous populations, both human and non-human, causing symptomatic tuberculosis (TB) in some hosts. Research investigating the MTBC and how it has evolved with its host over time is sparse and has not resulted in many significant findings. There are even fewer studies investigating adaptation of the human host susceptibility to TB and these have largely focused on genome-wide association and candidate gene association studies. However, results emanating from these association studies are rarely replicated and appear to be population specific. It is, therefore, necessary to relook at the approach taken to investigate the relationship between the MTBC and the human host. Understanding that the evolution of the pathogen is coupled to the evolution of the host might be the missing link needed to effectively investigate their relationship. We hypothesize that this knowledge will bolster future efforts in combating the disease.
Collapse
Affiliation(s)
- Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| |
Collapse
|
76
|
Adams K, Weber KS, Johnson SM. Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. Int J Mol Sci 2020; 21:ijms21228462. [PMID: 33187101 PMCID: PMC7697998 DOI: 10.3390/ijms21228462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Immune memory is a defining characteristic of adaptive immunity, but recent work has shown that the activation of innate immunity can also improve responsiveness in subsequent exposures. This has been coined “trained immunity” and diverges with the perception that the innate immune system is primitive, non-specific, and reacts to novel and recurrent antigen exposures similarly. The “exposome” is the cumulative exposures (diet, exercise, environmental exposure, vaccination, genetics, etc.) an individual has experienced and provides a mechanism for the establishment of immune training or immunotolerance. It is becoming increasingly clear that trained immunity constitutes a delicate balance between the dose, duration, and order of exposures. Upon innate stimuli, trained immunity or tolerance is shaped by epigenetic and metabolic changes that alter hematopoietic stem cell lineage commitment and responses to infection. Due to the immunomodulatory role of the exposome, understanding innate immune training is critical for understanding why some individuals exhibit protective phenotypes while closely related individuals may experience immunotolerant effects (e.g., the order of exposure can result in completely divergent immune responses). Research on the exposome and trained immunity may be leveraged to identify key factors for improving vaccination development, altering inflammatory disease development, and introducing potential new prophylactic treatments, especially for diseases such as COVID-19, which is currently a major health issue for the world. Furthermore, continued exposome research may prevent many deleterious effects caused by immunotolerance that frequently result in host morbidity or mortality.
Collapse
|
77
|
Asaad M, Abo-kadoum M, NZUNGIZE L, UAE M, NZAOU SA, Xie J. Methylation in Mycobacterium-host interaction and implications for novel control measures. INFECTION GENETICS AND EVOLUTION 2020; 83:104350. [DOI: 10.1016/j.meegid.2020.104350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
|
78
|
Elad O, Uribe-Diaz S, Losada-Medina D, Yitbarek A, Sharif S, Rodriguez-Lecompte JC. Epigenetic effect of folic acid (FA) on the gene proximal promoter area and mRNA expression of chicken B cell as antigen presenting cells. Br Poult Sci 2020; 61:725-733. [PMID: 32705890 DOI: 10.1080/00071668.2020.1799332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. This study evaluated and characterised the effect of folic acid (FA) on chromosomal DNA methylation and the epigenetic result on gene expression control mechanisms in chicken B cells as a model of antigen presenting cells. 2. After FA supplementation, the methylation pattern on the proximal promoter area and mRNA expression of toll-like receptor (TLR) 2b, TLR4, B cell receptor (BCR) immunoglobulin (Ig) β and major histocompatibility complex (MHC) II β chain genes in chicken B cells was observed 3. Chicken B cell line (DT40) cultures were incubated with 0, 1.72 or 3.96 mM of FA for 4 and 8 h and samples were taken at specific time points. After 4 h of incubation, cells were challenged with 0, 1 or 10 µg/ml of lipopolysaccharide (LPS) and samples were collected 4 h post-challenge. 4. FA supplementation modified the methylation patterns of the proximal promoter regions of TLR4, Igß, and MHCII ß chain at 4 and 8 hours of incubation; however, the single CpG dinucleotide of TLR2b remained methylated regardless of the treatment. 5. A positive association was found between FA concentration and percentage DNA methylation on the promoter area of Igβ and TLR2b. However, there was a negative association between FA and MHCII β chain. 6. There were downregulatory effects in TLR4, Igß and MHCII ß chain gene expression after 8 h of incubation, nut not at 4 h. Although incubation time did not affect TLR2b gene expression, FA concentration did, whereby it increased TLR2b expression at 1.72 mM FA (P < 0.05). 7. LPS significant downregulated TLR2b expression, while an interaction between FA and LPS concentration affected TLR4 and Igβ gene expression. 8. In conclusion, the results showed that FA can have an immunomodulatory effect on chicken B cells, possibly affecting their ability to both recognise antigens through the TLR and BCR pathways, and to present it via the MHCII presentation pathway.
Collapse
Affiliation(s)
- O Elad
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada
| | - S Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island , Charlottetown, Prince Edward Island, Canada
| | - D Losada-Medina
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island , Charlottetown, Prince Edward Island, Canada
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - J C Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College , Charlottetown, Canada
| |
Collapse
|
79
|
Barbato-Ferreira DA, Costa SFDS, Gomez RS, Bastos JV. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption. Braz Oral Res 2020; 34:e087. [PMID: 32785479 DOI: 10.1590/1807-3107bor-2020.vol34.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory external root resorption (IERR) is a pathological process defined by the progressive loss of dental hard tissue, dentin, and cementum, resulting from the combination of the loss of external root protective apparatus and root canal infection. It has been suggested that healing patterns after tooth replantation may be influenced by the genetic and immunological profiles of the patients. The purpose of the present investigation was to evaluate the DNA methylation patterns of 22 immune response-related genes in extracted human teeth presenting with IERR. Methylation assays were performed on samples of root fragments showing IERR and compared with healthy bone tissue collected during the surgical extraction of impacted teeth. The methylation patterns were quantified using EpiTect Methyl II Signature Human Cytokine Production PCR Array. The results revealed significantly higher hypermethylation of the FOXP3 gene promoter in IERR (65.95%) than in the bone group (23.43%) (p < 0.001). The ELANE gene was also highly methylated in the pooled IERR sample, although the difference was not statistically significant (p= 0.054). Our study suggests that the differential methylation patterns of immune response-related genes, such as FOXP3 and ELANE, may be involved in IERR modulation, and this could be related to the presence of root canal infection. However, further studies are needed to corroborate these findings to determine the functional relevance of these alterations and their role in the pathogenesis of IERR.
Collapse
Affiliation(s)
| | - Sara Ferreira Dos Santos Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Vilela Bastos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
80
|
Fol M, Włodarczyk M, Druszczyńska M. Host Epigenetics in Intracellular Pathogen Infections. Int J Mol Sci 2020; 21:ijms21134573. [PMID: 32605029 PMCID: PMC7369821 DOI: 10.3390/ijms21134573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Some intracellular pathogens are able to avoid the defense mechanisms contributing to host epigenetic modifications. These changes trigger alterations tothe chromatin structure and on the transcriptional level of genes involved in the pathogenesis of many bacterial diseases. In this way, pathogens manipulate the host cell for their own survival. The better understanding of epigenetic consequences in bacterial infection may open the door for designing new vaccine approaches and therapeutic implications. This article characterizes selected intracellular bacterial pathogens, including Mycobacterium spp., Listeria spp., Chlamydia spp., Mycoplasma spp., Rickettsia spp., Legionella spp. and Yersinia spp., which can modulate and reprogram of defense genes in host innate immune cells.
Collapse
Affiliation(s)
- Marek Fol
- Correspondence: ; Tel.: +48-42-635-44-72
| | | | | |
Collapse
|
81
|
Byrne KA, Loving CL, McGill JL. Innate Immunomodulation in Food Animals: Evidence for Trained Immunity? Front Immunol 2020; 11:1099. [PMID: 32582185 PMCID: PMC7291600 DOI: 10.3389/fimmu.2020.01099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals. One rapidly evolving field of immunomodulation is innate memory in which innate immune cells undergo epigenetic changes of chromatin remodeling and metabolic reprogramming upon a priming event that results in either enhanced or suppressed responsiveness to secondary stimuli (training or tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG) or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram or "train" the innate immune system. Over the last decade, significant advancements increased our understanding of innate training in humans and rodent models, and strategies are being developed to specifically target or regulate innate memory. In veterinary species, the concept of enhancing the innate immune system is not new; however, there are few available studies which have purposefully investigated innate training as it has been defined in human literature. The development of targeted approaches to engage innate training in food animals, with the practical goal of enhancing the capacity to limit disease without the use of antibiotics, is an area which deserves attention. In this review, we provide an overview of innate immunomodulation and memory, and the mechanisms which regulate this long-term functional reprogramming in other animals (e.g., humans, rodents). We focus on studies describing innate training, or similar phenomenon (often referred to as heterologous or non-specific protection), in cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits and shortcomings of engaging innate training for enhancing disease resistance.
Collapse
Affiliation(s)
- Kristen A. Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, USDA, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
82
|
Jhamat N, Niazi A, Guo Y, Chanrot M, Ivanova E, Kelsey G, Bongcam-Rudloff E, Andersson G, Humblot P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genomics 2020; 21:385. [PMID: 32493210 PMCID: PMC7268755 DOI: 10.1186/s12864-020-06777-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 μg/mL LPS for 24 h. Results DNA samples extracted at 0 h and 24 h were sequenced using reduced representation bisulfite sequencing (RRBS). When comparing DNA methylation results at 24 h to time 0 h, a larger proportion of hypomethylated regions were identified in the LPS-treated groups, whereas the trend was opposite in controls. When comparing LPS groups to controls at 24 h, a total of 1291 differentially methylated regions (DMRs) were identified (55% hypomethylated and 45% hypermethylated). Integration of DNA methylation data obtained here with our previously published gene expression data obtained from the same samples showed a negative correlation (r = − 0.41 for gene promoter, r = − 0.22 for gene body regions, p < 0.05). Differential methylation analysis revealed that effects of LPS treatment were associated with methylation changes for genes involved in regulation of immune and inflammatory responses, cell adhesion, and external stimuli. Gene ontology and pathway analyses showed that most of the differentially methylated genes (DMGs) were associated with cell proliferation and apoptotic processes; and pathways such as calcium-, oxytocin- and MAPK-signaling pathways with recognized roles in innate immunity. Several DMGs were related to systemic inflammation and tissue re-modelling including HDAC4, IRAK1, AKT1, MAP3K6, Wnt7A and ADAMTS17. Conclusions The present results show that LPS altered the DNA methylation patterns of bovine endometrial epithelial cells. This information, combined with our previously reported changes in gene expression related to endometrial function, confirm that LPS activates pro-inflammatory mechanisms leading to perturbed immune balance and cell adhesion processes in the endometrium.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Information Technology, University of the Punjab, Gujranwala Campus, Gujranwala, Pakistan
| | - Adnan Niazi
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden. .,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| | - Yongzhi Guo
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Metasu Chanrot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 802 40, Thailand
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Centre for Reproductive Biology in Uppsala, CRU, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
83
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
84
|
Nutt SL, Chopin M. Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity 2020; 52:942-956. [DOI: 10.1016/j.immuni.2020.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
|
85
|
Barreiro LB, Quintana-Murci L. Evolutionary and population (epi)genetics of immunity to infection. Hum Genet 2020; 139:723-732. [PMID: 32285198 PMCID: PMC7285878 DOI: 10.1007/s00439-020-02167-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
Immune response is one of the functions that have been more strongly targeted by natural selection during human evolution. The evolutionary genetic dissection of the immune system has greatly helped to distinguish genes and functions that are essential, redundant or advantageous for human survival. It is also becoming increasingly clear that admixture between early Eurasians with now-extinct hominins such as Neanderthals or Denisovans, or admixture between modern human populations, can be beneficial for human adaptation to pathogen pressures. In this review, we discuss how the integration of population genetics with functional genomics in diverse human populations can inform about the changes in immune functions related to major lifestyle transitions (e.g., from hunting and gathering to farming), the action of natural selection to the evolution of the immune system, and the history of past epidemics. We also highlight the need of expanding the characterization of the immune system to a larger array of human populations-particularly neglected human groups historically exposed to different pathogen pressures-to fully capture the relative contribution of genetic, epigenetic, and environmental factors to immune response variation in humans.
Collapse
Affiliation(s)
- Luis B Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, 75015, Paris, France
- Collège de France, 75005, Paris, France
| |
Collapse
|
86
|
Abstract
OBJECTIVE The majority of patients with colorectal cancer are diagnosed with locally advanced and/or disseminated disease, and treatment options include surgery in combination with cytotoxic chemotherapy regimens, biologics, and/or radiotherapy. Thus, colorectal cancer remains a heavy burden on society and health care systems.Mounting evidence show that driver gene mutations play only part of the role in carcinogenesis. Epigenetics are strongly implicated in initiation and progression of colorectal cancer along with major players such as intestinal microbiotic dysbiosis and chronic mucosal inflammation.To assess phenotypic changes in proteins and gene expression, multigene expression signatures based on sequencing techniques have been developed to hopefully improve predictors of the tumor profile, immune response, and therapeutic outcomes. Our objective was to review current advances in the field and to update surgeons and academics on driver gene mutations and epigenetics in colorectal cancer. BACKGROUND AND METHODS This is a narrative review studying relevant research published in the PUBMED database from 2012-2018. RESULTS AND CONCLUSION Increased understanding of the molecular biology will improve options to characterize colorectal cancer with regard to mutations and molecular pathways, including microsatellite instability, epigenetics, microbiota, and microenvironment. Research will inevitably improve risk group stratification and targeted treatment approaches.Epigenetic profiling and epigenetic modulating drugs will increase risk stratification, increase accessibility for DNA targeting chemotherapeutics and reduce cytotoxic drug resistance.New generation antibiotics such as biofilm inhibitors and quorum sensing inhibitors are being developed to target the carcinogenetic impact of colonic dysbiosis and inflammation.
Collapse
|
87
|
Poullet M, Orlando L. Assessing DNA Sequence Alignment Methods for Characterizing Ancient Genomes and Methylomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
88
|
Singer BD. A Practical Guide to the Measurement and Analysis of DNA Methylation. Am J Respir Cell Mol Biol 2020; 61:417-428. [PMID: 31264905 DOI: 10.1165/rcmb.2019-0150tr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA methylation represents a fundamental epigenetic mark that is associated with transcriptional repression during development, maintenance of homeostasis, and disease. In addition to methylation-sensitive PCR and targeted deep-amplicon bisulfite sequencing to measure DNA methylation at defined genomic loci, numerous unsupervised techniques exist to quantify DNA methylation on a genome-wide scale, including affinity enrichment strategies and methods involving bisulfite conversion. Both affinity-enriched and bisulfite-converted DNA can serve as input material for array hybridization or sequencing using next-generation technologies. In this practical guide to the measurement and analysis of DNA methylation, the goal is to convey basic concepts in DNA methylation biology and explore genome-scale bisulfite sequencing as the current gold standard for assessment of DNA methylation. Bisulfite conversion chemistry and library preparation are discussed in addition to a bioinformatics approach to quality assessment, trimming, alignment, and methylation calling of individual cytosine residues. Bisulfite-converted DNA presents challenges for standard next-generation sequencing library preparation protocols and data-processing pipelines, but these challenges can be met with elegant solutions that leverage the power of high-performance computing systems. Quantification of DNA methylation, data visualization, statistical approaches to compare DNA methylation between sample groups, and examples of integrating DNA methylation data with other -omics data sets are also discussed. The reader is encouraged to use this article as a foundation to pursue advanced topics in DNA methylation measurement and data analysis, particularly the application of bioinformatics and computational biology principles to generate a deeper understanding of mechanisms linking DNA methylation to cellular function.
Collapse
Affiliation(s)
- Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Genetics, and Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
89
|
Osborne AJ, Pearson JF, Noble AJ, Gemmell NJ, Horwood LJ, Boden JM, Benton MC, Macartney-Coxson DP, Kennedy MA. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl Psychiatry 2020; 10:114. [PMID: 32321915 PMCID: PMC7176736 DOI: 10.1038/s41398-020-0800-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cannabis use is of increasing public health interest globally. Here we examined the effect of heavy cannabis use, with and without tobacco, on genome-wide DNA methylation in a longitudinal birth cohort (Christchurch Health and Development Study, CHDS). A total of 48 heavy cannabis users were selected from the CHDS cohort, on the basis of their adult exposure to cannabis and tobacco, and DNA methylation assessed from whole blood samples, collected at approximately age 28. Methylation in heavy cannabis users was assessed, relative to non-users (n = 48 controls) via the Illumina Infinium® MethylationEPIC BeadChip. We found the most differentially methylated sites in cannabis with tobacco users were in the AHRR and F2RL3 genes, replicating previous studies on the effects of tobacco. Cannabis-only users had no evidence of differential methylation in these genes, or at any other loci at the epigenome-wide significance level (P < 10-7). However, there were 521 sites differentially methylated at P < 0.001 which were enriched for genes involved in neuronal signalling (glutamatergic synapse and long-term potentiation) and cardiomyopathy. Further, the most differentially methylated loci were associated with genes with reported roles in brain function (e.g. TMEM190, MUC3L, CDC20 and SP9). We conclude that the effects of cannabis use on the mature human blood methylome differ from, and are less pronounced than, the effects of tobacco use, and that larger sample sizes are required to investigate this further.
Collapse
Affiliation(s)
- Amy J. Osborne
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - John F. Pearson
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Alexandra J. Noble
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - Neil J. Gemmell
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin, 9054 New Zealand
| | - L. John Horwood
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Joseph M. Boden
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Miles C. Benton
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Donia P. Macartney-Coxson
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Martin A. Kennedy
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| |
Collapse
|
90
|
Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness. Epigenetics 2020; 15:1021-1034. [PMID: 32290755 DOI: 10.1080/15592294.2020.1748918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The inappropriate use of antibiotics in man is driving to insurgence of pathogenic bacteria resistant to multiple drugs (MDR) representing a challenge in critical illness. The interaction of MDR bacteria with host cells can guide molecular perturbations of host transcriptional programmes involving epigenetic-sensitive mechanisms, mainly DNA methylation, histone modifications, and non-coding RNAs leading to pathogen survival. Clinical evidence of epigenetic manipulation from MDR bacteria mainly arises from Mycobacterium tuberculosis as well as Helicobacter pylori, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Legionella pneumophila infection suggesting possible biomarkers of disease. For example, DNA hypermethylation of E-cadherin (CDH1), upstream transcription factor 1/2 (USF1/2), WW domain containing oxidoreductase (WWOX), and mutL homolog 1 (MLH1) genes in gastric mucosa is correlated with malignancy suggesting useful biomarkers of early disease state. Moreover, upregulated circulating miR-361-5p, miR-889, miR-576-3p may be useful biomarkers to discriminate tuberculosis patients. Moreover, Listeria monocytogenes can indirectly induce H3 hyperacetylation leading to inflammation in human endothelial cells whereas Pseudomonas aeruginosa excretes QS 2-AA to directly induce H3 deacetylation leading to bacterial persistence in human monocytes. Remarkably, epigenetic-sensitive drugs may aid to counteract MDR in clinical setting. Trichostatin A, a histone deacetyltransferase inhibitor (HDACi), leads to AMP β-defensin 2 (HBD2) gene up-regulation in human epithelial cells suggesting a useful 'epi-therapy' for Escherichia coli-induced intestinal diseases. We update on the most current clinical studies focusing on epigenetic changes involved in bacterial-host interactions and their putative role as biomarkers or drug targets to improve precision medicine and personalized therapy in critical illness and transplantation setting.
Collapse
Affiliation(s)
- Ettore Crimi
- College of Medicine, University of Central Florida , Orlando, FL, USA.,Department of Anesthesiology and Critical Care Medicine, Ocala Health , Ocala, FL, USA
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato , Milan, Italy
| | - Rebecca Mutesi
- College of Medicine, University of Central Florida , Orlando, FL, USA
| | - Mario Faenza
- Multidisciplinary Department of Medical and Dental Specialties, Plastic Surgery Unit, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy.,IRCCS Foundation SDN , Naples, Italy
| |
Collapse
|
91
|
Zhang SC, Wang MY, Feng JR, Chang Y, Ji SR, Wu Y. Reversible promoter methylation determines fluctuating expression of acute phase proteins. eLife 2020; 9:51317. [PMID: 32223889 PMCID: PMC7136028 DOI: 10.7554/elife.51317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major human APR, that is C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-β and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-β that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.
Collapse
Affiliation(s)
- Shi-Chao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Rui Feng
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yue Chang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
92
|
Sun S, Barreiro LB. The epigenetically-encoded memory of the innate immune system. Curr Opin Immunol 2020; 65:7-13. [PMID: 32220702 DOI: 10.1016/j.coi.2020.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Stimulation or infection of innate immune cells induces profound epigenetic changes, including the induction of histone modifications and alterations in DNA methylation levels. While some of these changes are rapidly reversible, others appear to be long-lasting, even in mitotic populations, with important functional consequences for the stimulus-experienced cell. Here we discuss the individual contributions of each of the plethora of known epigenetic modifications to the initial transcriptional response to immune activation, their dynamics as cells return to homeostasis, and their contribution to memory of the initial stimulus.
Collapse
Affiliation(s)
- Sarah Sun
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
93
|
Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun 2020; 11:1512. [PMID: 32251296 PMCID: PMC7089947 DOI: 10.1038/s41467-020-15342-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Studies of inflammatory bowel disease (IBD) have been inconclusive in relating microbiota with distribution of inflammation. We report microbiota, host transcriptomics, epigenomics and genetics from matched inflamed and non-inflamed colonic mucosa [50 Crohn's disease (CD); 80 ulcerative colitis (UC); 31 controls]. Changes in community-wide and within-patient microbiota are linked with inflammation, but we find no evidence for a distinct microbial diagnostic signature, probably due to heterogeneous host-microbe interactions, and show only marginal microbiota associations with habitual diet. Epithelial DNA methylation improves disease classification and is associated with both inflammation and microbiota composition. Microbiota sub-groups are driven by dominant Enterbacteriaceae and Bacteroides species, representative strains of which are pro-inflammatory in vitro, are also associated with immune-related epigenetic markers. In conclusion, inflamed and non-inflamed colonic segments in both CD and UC differ in microbiota composition and epigenetic profiles.
Collapse
|
94
|
Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12:455-469. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Epigenetics regulate gene function without any alteration in the DNA sequence. The epigenetics represent one of the most important regulators in different cellular processes and have initially been developed in microorganisms as a protective strategy. The evaluation of the epigenetic mechanisms is also important in achieving an efficient control strategy in tuberculosis (TB). TB is one of the most significant epidemiological concerns in human history. Despite several in vivo and in vitro studies that have evaluated different epigenetic modifications in TB, many aspects of the association between epigenetics and TB are not fully understood. The current paper is aimed at reviewing our knowledge on histone modifications and DNA methylation modifications, as well as miRNAs regulation in TB.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laboratory of Molecular Medicine, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Nayereh Ebrahimzadeh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aazami
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
95
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
96
|
Barnett KR, Decato BE, Scott TJ, Hansen TJ, Chen B, Attalla J, Smith AD, Hodges E. ATAC-Me Captures Prolonged DNA Methylation of Dynamic Chromatin Accessibility Loci during Cell Fate Transitions. Mol Cell 2020; 77:1350-1364.e6. [PMID: 31999955 DOI: 10.1016/j.molcel.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
DNA methylation of enhancers is dynamic, cell-type specific, and vital for cell fate progression. However, current models inadequately define its role within the hierarchy of gene regulation. Analysis of independent datasets shows an unanticipated overlap between DNA methylation and chromatin accessibility at enhancers of steady-state stem cells, suggesting that these two opposing features might exist concurrently. To define their temporal relationship, we developed ATAC-Me, which probes accessibility and methylation from single DNA library preparations. We identified waves of accessibility occurring rapidly across thousands of myeloid enhancers in a monocyte-to-macrophage cell fate model. Prolonged methylation states were observed at a majority of these sites, while transcription of nearby genes tracked closely with accessibility. ATAC-Me uncovers a significant disconnect between chromatin accessibility, DNA methylation status, and gene activity. This unexpected observation highlights the value of ATAC-Me in constructing precise molecular timelines for understanding the role of DNA methylation in gene regulation.
Collapse
Affiliation(s)
- Kelly R Barnett
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Benjamin E Decato
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Timothy J Scott
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew D Smith
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
97
|
de la Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the Relevance of DNA Methylation Changes in Immune Differentiation and Disease. Genes (Basel) 2020; 11:E110. [PMID: 31963661 PMCID: PMC7017047 DOI: 10.3390/genes11010110] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune cells are one of the most complex and diverse systems in the human organism. Such diversity implies an intricate network of different cell types and interactions that are dependently interconnected. The processes by which different cell types differentiate from progenitors, mature, and finally exert their function requires an orchestrated succession of molecular processes that determine cell phenotype and function. The acquisition of these phenotypes is highly dependent on the establishment of unique epigenetic profiles that confer identity and function on the various types of effector cells. These epigenetic mechanisms integrate microenvironmental cues into the genome to establish specific transcriptional programs. Epigenetic modifications bridge environment and genome regulation and play a role in human diseases by their ability to modulate physiological programs through external stimuli. DNA methylation is one of the most ubiquitous, stable, and widely studied epigenetic modifications. Recent technological advances have facilitated the generation of a vast amount of genome-wide DNA methylation data, providing profound insights into the roles of DNA methylation in health and disease. This review considers the relevance of DNA methylation to immune system cellular development and function, as well as the participation of DNA methylation defects in immune-mediated pathologies, illustrated by selected paradigmatic diseases.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (C.d.l.C.-F.); (O.M.-P.)
| |
Collapse
|
98
|
Potential Genes Related to Levofloxacin Resistance in Mycobacterium tuberculosis Based on Transcriptome and Methylome Overlap Analysis. J Mol Evol 2020; 88:202-209. [PMID: 31919584 PMCID: PMC6989609 DOI: 10.1007/s00239-019-09926-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become an increasingly serious public health problem and has complicated tuberculosis (TB) treatment. Levofloxacin (LOF) is an ideal anti-tuberculosis drug in clinical applications. However, the detailed molecular mechanisms of LOF-resistant M. tuberculosis in TB treatment have not been revealed. Our study performed transcriptome and methylome sequencing to investigate the potential biological characteristics of LOF resistance in M. tuberculosis H37Rv. In the transcriptome analysis, 953 differentially expressed genes (DEGs) were identified; 514 and 439 DEGs were significantly downregulated and upregulated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 97 pathways were enriched in this study. In the methylome analysis, 239 differentially methylated genes (DMGs) were identified; 150 and 89 DMGs were hypomethylated and hypermethylated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 74 pathways were enriched in this study. The overlap study suggested that 25 genes were obtained. It was notable that nine genes expressed downregulated mRNA and upregulated methylated levels, including pgi, fadE4, php, cyp132, pckA, rpmB1, pfkB, acg, and ctpF, especially cyp132, pckA, and pfkB, which were vital in LOF-resistant M. tuberculosis H37Rv. The overlapping genes between transcriptome and methylome could be essential for studying the molecular mechanisms of LOF-resistant M. tuberculosis H37Rv. These results may provide informative evidence for TB treatment with LOF.
Collapse
|
99
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
100
|
Schlosberg CE, Wu DY, Gabel HW, Edwards JR. ME-Class2 reveals context dependent regulatory roles for 5-hydroxymethylcytosine. Nucleic Acids Res 2019; 47:e28. [PMID: 30649543 PMCID: PMC6412249 DOI: 10.1093/nar/gkz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of 5-hydroxymethylcytosine (5hmC) as a prominent DNA modification found in mammalian genomes, an emergent question has been what role this mark plays in gene regulation. 5hmC is hypothesized to function as an intermediate in the demethylation of 5-methylcytosine (5mC) and in the reactivation of silenced promoters and enhancers. Further, weak positive correlations are observed between gene body 5hmC and gene expression. We previously demonstrated that ME-Class is an effective tool to understand relationships between whole-genome bisulfite sequencing data and expression. In this work, we present ME-Class2, a machine-learning based tool to perform integrative 5mCG, 5hmCG and expression analysis. Using ME-Class2 we analyze whole-genome single-base resolution 5mCG and 5hmCG datasets from 20 primary tissue and cell samples to reveal relationships between 5hmCG and expression. Our analysis indicates that conversion of 5mCG to 5hmCG within 2 kb of the transcription start site associates with distinct functions depending on the summed level of 5mCG + 5hmCG. Unchanged levels of 5mCG + 5hmCG (conversion from 5mCG to stable 5hmCG) associate with repression. Meanwhile, decreases in 5mCG + 5hmCG (5hmCG-mediated demethylation) associate with gene activation. Our results demonstrate that ME-Class2 will prove invaluable to interpret genome-wide 5mC and 5hmC datasets and guide mechanistic studies into the function of 5hmCG.
Collapse
Affiliation(s)
- Christopher E Schlosberg
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|