51
|
Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. Using the dominant mutation gene Ae1-5180 ( amylose extender) to develop high-amylose maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:57. [PMID: 37313014 PMCID: PMC10248602 DOI: 10.1007/s11032-022-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Maize amylose is a type of high value-added starch used for medical, food, and chemical applications. Mutations in the starch branching enzyme (SBEIIb), with recessive ae (amylose extender) and dominant Ae1-5180 alleles, are the primary way to improve maize endosperm amylose content (AC). However, studies on Ae1-5180 mutation are scarce, and its roles in starch synthesis and breeding potential are unclear. We found that the AC of the Ae1-5180 mutant was 47.23%, and its kernels were tarnished and glassy and are easily distinguished from those of the wild type (WT), indicating that the dominant mutant has the classical characteristics of the ae mutant. Starch granules of Ae1-5180 became smaller, and higher in amount with irregular shape. The degree of amylopectin polymerisation changed to induce an increase in starch thermal stability. Compared with WT, the activity of granule-bound starch synthase and starch synthase was higher in early stages and lower in later stages, and other starch synthesis enzymes decreased during kernel development in the Ae1-5180 mutant. We successfully developed a marker (mu406) for the assisted selection of 17 Ae1-5180 near isogenic lines (NILs) according to the position of insertion of the Mu1 transposon in the SBEIIb promoter of Ae1-5180. JH214/Ae1-5180, CANS-1/Ae1-5180, CA240/Ae1-5180, and Z1698/Ae1-5180 have high breeding application potential with their higher AC (> 40%) and their 100-kernel weight decreased to < 25% compared to respective recurrent parents. Therefore, using the dominant Ae1-5180 mutant as a donor can detect the kernel phenotype and AC of Ae1-5180-NILs in advance, thereby accelerating the high-amylose breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01323-7.
Collapse
Affiliation(s)
- Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zenghui Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Meijuan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Shiyuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
52
|
Zhao G, Xie S, Zong S, Wang T, Mao C, Shi J, Li J. Mutation of TL1, encoding a novel C 2H 2 zinc finger protein, improves grains eating and cooking quality in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3531-3543. [PMID: 35994056 DOI: 10.1007/s00122-022-04198-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 05/02/2023]
Abstract
The cloning and characterization of a novel C2H2 zinc finger protein that affects rice eating and cooking quality by regulating amylose content and amylopectin chain-length distribution in rice. One of the major objectives in rice breeding aims to increase simultaneously yield and grain quality especially eating and cooking quality (ECQ). Controlling amylose content (AC) and amylopectin chain-length distribution (ACLD) in rice is a major strategy for improving rice ECQ. Previous studies show that some starch synthesis-related genes (SSRGs) are required for normal AC and ACLD, but its underlying regulating network is still unclear. Here, we report the cloning and characterization of a novel C2H2 zinc finger protein TL1 (Translucent endosperm 1) that positively regulates amylose synthesis in rice grains. Loss of TL1 function reduced apparent amylose content (AAC), total starch, gel consistency, and gelatinisation temperature, whereas increased viscosity, total lipid, and ratio of amylopectin A chains with degree of polymerization (DP) 6-12 to B1 chains with DP 13-24, resulting in an enhanced grain ECQ. The improved ECQ was accompanied by altered expression patterns of several tested SSRGs in tl1 mutant grains. Furthermore, knockout of TL1 in the high-yielding rice variety JiaHua NO.1 reduced AAC without obvious side effects on major agronomic traits. These findings expand our understanding of the regulating networks of grain starch metabolism and provide new insights into how rice ECQ quality can be improved via genetic approach.
Collapse
Affiliation(s)
- Guochao Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Shuifeng Xie
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shipeng Zong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianyue Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
53
|
Effect of Heading Date on the Starch Structure and Grain Yield of Rice Lines with Low Gelatinization Temperature. Int J Mol Sci 2022; 23:ijms231810783. [PMID: 36142691 PMCID: PMC9502985 DOI: 10.3390/ijms231810783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Early flowering trait is essential for rice cultivars grown at high latitude since delayed flowering leads to seed development at low temperature, which decreases yield. However, early flowering at high temperature promotes the formation of chalky seeds with low apparent amylose content and high starch gelatinization temperature, thus affecting grain quality. Deletion of starch synthase IIa (SSIIa) shows inverse effects of high temperature, and the ss2a mutant shows higher apparent amylose content and lower gelatinization temperature. Heading date 1 (Hd1) is the major regulator of flowering time, and a nonfunctional hd1 allele is required for early flowering. To understand the relationship among heading date, starch properties, and yield, we generated and characterized near-isogenic rice lines with ss2a Hd1, ss2a Hd1 hd1, and ss2a hd1 genotypes. The ss2a Hd1 line showed the highest plant biomass; however, its grain yield varied by year. The ss2a Hd1 hd1 showed higher total grain weight than ss2a hd1. The ss2a hd1 line produced the lowest number of premature seeds and showed higher gelatinization temperature and lower apparent amylose content than ss2a Hd1. These results highlight Hd1 as the candidate gene for developing high-yielding rice cultivars with the desired starch structure.
Collapse
|
54
|
Ying Y, Xu F, Zhang Z, Tappiban P, Bao J. Dynamic Change in Starch Biosynthetic Enzymes Complexes during Grain-Filling Stages in BEIIb Active and Deficient Rice. Int J Mol Sci 2022; 23:ijms231810714. [PMID: 36142619 PMCID: PMC9501056 DOI: 10.3390/ijms231810714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Starch is the predominant reserve in rice (Oryza sativa L.) endosperm, which is synthesized by the coordinated efforts of a series of starch biosynthetic-related enzymes in the form of a multiple enzyme complex. Whether the enzyme complex changes during seed development is not fully understood. Here, we investigated the dynamic change in multi-protein complexes in an indica rice variety IR36 (wild type, WT) and its BEIIb-deficient mutant (be2b) at different developmental stages. Gel permeation chromatography (GPC) and Western blotting analysis of soluble protein fractions revealed most of the enzymes except for SSIVb were eluted in smaller molecular weight fractions at the early developing stage and were transferred to higher molecular weight fractions at the later stage in both WT and be2b. Accordingly, protein interactions were enhanced during seed development as demonstrated by co-immunoprecipitation analysis, suggesting that the enzymes were recruited to form larger protein complexes during starch biosynthesis. The converse elution pattern from GPC of SSIVb may be attributed to its vital role in the initiation step of starch synthesis. The number of protein complexes was markedly decreased in be2b at all development stages. Although SSIVb could partially compensate for the role of BEIIb in protein complex formation, it was hard to form a larger protein complex containing over five proteins in be2b. In addition, other proteins such as PPDKA and PPDKB were possibly present in the multi-enzyme complexes by proteomic analyses of high molecular weight fractions separated from GPC. Two putative protein kinases were found to be potentially associated with starch biosynthetic enzymes. Collectively, our findings unraveled a dynamic change in the protein complex during seed development, and potential roles of BEIIb in starch biosynthesis via various protein complex formations, which enables a deeper understanding of the complex mechanism of starch biosynthesis in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhongwei Zhang
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Correspondence: ; Tel.: +86-571-86971932
| |
Collapse
|
55
|
Ying Y, Zhang Z, Tappiban P, Xu F, Deng G, Dai G, Bao J. Starch fine structure and functional properties during seed development in BEIIb active and deficient rice. Carbohydr Polym 2022; 292:119640. [DOI: 10.1016/j.carbpol.2022.119640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
56
|
Zhang Y, Zhao J, Hu Y, Zhang Y, Ying Y, Xu F, Bao J. Combined Effects of Different Alleles of FLO2, Wx and SSIIa on the Cooking and Eating Quality of Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:2249. [PMID: 36079631 PMCID: PMC9460582 DOI: 10.3390/plants11172249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/15/2023]
Abstract
The improvement of the cooking and eating quality (CEQ) of rice is one of the major objectives of current rice-breeding programs. A few major genes such as Waxy (Wx) and starch synthase IIa (SSIIa) have been successfully applied in molecular breeding. However, their interactive effects on CEQ have not been fully understood. In this study, a recombinant inbred line (RIL) population was constructed by crossing the white-core mutant GM645 with the transparent phenotype of the japonica rice variety Tainung 67 (TN67). GM645 and TN67 contain different alleles of FLOURY ENDOSPERM2 (FLO2), Wx, and SSIIa. The effects of different allele combinations of FLO2, Wx, and SSIIa on the CEQ of rice were investigated. The inbred lines with the mutation allele flo2 had a significantly lower apparent amylose content (AAC), viscosity characteristics except for setback (SB), and gel texture properties compared to those lines with the FLO2 allele. The allelic combination of FLO2 and Wx significantly affected the AAC, breakdown (BD), and gel textural properties, which could explain most of the variations in those rice quality traits that were correlated with AAC. The allelic combination of FLO2 and SSIIa significantly affected the hot paste viscosity (HPV) and pasting temperature (PT). The Wx × SSIIa interaction had a significant effect on the PT. The interaction of FLO2, Wx and SSIIa significantly affected the AAC, cold paste viscosity (CPV), PT, and consistency viscosity (CS). These results highlight the important roles of these quality-related genes in regulating the CEQ of rice and provide new clues for rice-quality improvement by marker-assisted selection.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jiajia Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanni Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
57
|
Mohammed AE, Alotaibi MO, Elobeid M. Interactive influence of elevated CO 2 and arbuscular mycorrhizal fungi on sucrose and coumarin metabolism in Ammi majus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:45-54. [PMID: 35660776 DOI: 10.1016/j.plaphy.2022.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The elevated level of CO2 (eCO2) and arbuscular mycorrhizal fungi (AMF) have been known as successful eco-friendly agents for plant growth and development as well as quality enhancers. The current investigation was designed to study the influence of eCO2 (620 μmol CO2 mol-1 air) and AMF on sucrose and phenylpropanoid metabolism, including coumarins, the most important bioactive metabolite in Ammi majus. eCO2 and AMF were applied, and different parameters have been assessed in A. majus such as changes in mycorrhizal colonization, plant biomass production, photosynthesis, and levels of N, P, and Ca besides the key metabolites and enzymes in sucrose and coumarins metabolic pathways. The present outcomes revealed that eCO2 and AMF individually or combined enhanced the plant biomass and photosynthesis as well as nutrient concentrations. Furthermore, the levels of sucrose, soluble sugars, glucose, fructose, and the activities of some key enzymes in their metabolism besides phenylpropanoids metabolites in shoot and root of A. majus have been enhanced by eCO2 and AMF especially when combined. Moreover, upregulation of sucrose is linked to phenylpropanoids metabolic pathway via upregulation of phenylalanine ammonia-lyase activity suggesting high coumarin biosynthesis. Generally, the synergistic effect of both treatments was noted for most of the investigated parameters compared to the individual effect. It could be concluded that the combined application of eCO2 and AMF affects A. majus global metabolism and induces accumulation of phyto-molecules, coumarin, which might improve its medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Mudawi Elobeid
- Department of silviculture, Faculty of Forestry, University of Khartoum, Shambat, Sudan
| |
Collapse
|
58
|
Chen Y, Luo L, Xu F, Xu X, Bao J. Carbohydrate Repartitioning in the Rice Starch Branching Enzyme IIb Mutant Stimulates Higher Resistant Starch Content and Lower Seed Weight Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9802-9816. [PMID: 35903884 DOI: 10.1021/acs.jafc.2c03737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The starch branching enzyme IIb mutant (be2b) in rice significantly increases the resistant starch (RS) content and leads to reduced seed weight. However, the underlying metabolic mechanisms remain unclear. Proteomic analysis indicated that upregulation of starch synthase IIa (SSIIa) and SSIIIa and downregulation of BEI and SSI were possibly responsible for the decreased short amylopectin chains (DP 6-15) and increased longer chains (DP > 16) of be2b starch. The upregulation of granule-bound starch synthase led to increased amylose content (AC). These changes in the amylopectin structure and AC accounted for the increased RS content. α-Amylase 2A showed the strongest upregulation (up to 8.45-fold), indicating that the loss of BEIIb activity enhanced starch degradation. Upregulation of glycolysis-related proteins stimulated carbohydrate repartitioning through glycerate-3-phosphate and promoted the accumulation of tricarboxylic acid cycle intermediates, amino acids, and fatty acids. The unexpected carbohydrate partitioning and enhanced starch degradation resulted in the reduced seed weight in the be2b mutant.
Collapse
Affiliation(s)
- Yaling Chen
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Science, Jiangxi Normal University, Nanchang 330000, China
| | - Lili Luo
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Science, Jiangxi Normal University, Nanchang 330000, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaoyong Xu
- Yazhou Bay Laboratory, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Yazhou Bay Laboratory, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
59
|
Shim KC, Adeva C, Kang JW, Luong NH, Lee HS, Cho JH, Kim H, Tai TH, Ahn SN. Interaction of starch branching enzyme 3 and granule-bound starch synthase 1 alleles increases amylose content and alters physico-chemical properties in japonica rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968795. [PMID: 35991424 PMCID: PMC9389286 DOI: 10.3389/fpls.2022.968795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Four near-isogenic lines (NILs) with different allele combinations of the starch branching enzyme 3 (SBE3) and granule-bound starch synthase 1 (GBSS1) were developed by crossing the japonica rice cultivars "Dodamssal" and "Hwayeong." The associations between sequence variations in SBE3 and GBSS1, and starch-related traits were investigated. These sequence variations led to changes in seed morphology, starch structure, starch crystallinity, amylopectin chain length distribution, digestibility, apparent amylose content (AAC), and resistant starch content (RS). SBE3 and GBSS1 showed genetic interaction in regulating AAC and RS. Gene expression profiling of panicle tissues revealed significant differences in expression levels of GBSS1, SBE3, and other starch-related genes among the four NILs, indicating that variations in GBSS1 and SBE3 changed the expression level of starch-related genes. These variations contributed to the changes observed in AAC, RS, and physico-chemical characteristics of the rice starch from the NILs.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, Rural Development Administration, Miryang, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, Rural Development Administration, Miryang, South Korea
| | | | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
60
|
Chen L, Du M, Wang L, Yu W, Chen Y, Cheng B, Wu J. Maize STARCH SYNTHESIS REGULATING PROTEIN1 positively regulates starch biosynthesis in rice endosperm. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:773-783. [PMID: 35491402 DOI: 10.1071/fp21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Starch is a major component of the endosperm, directly determining grain yield and quality. Although the key enzymes of starch synthesis have been identified and characterised, the regulatory mechanisms remain unclear. In this study, we identified the novel maize STARCH SYNTHESIS REGULATING PROTEIN1 (ZmSSRP1 ), which encodes a typical carbohydrate-binding module 48 (CBM48) protein. Expression analysis revealed that ZmSSRP1 was highly expressed in the maize endosperm, while transient expression in maize leaf protoplasts showed localisation in the plastids, dependent on the N-terminal transit peptide. In addition, overexpression of ZmSSRP1 in rice resulted in a decrease in grain thickness and the 1000-grain weight, as well as affecting the starch content and structure of the rice endosperm. The physicochemical properties of starch in the rice endosperm were also altered compared with the wild-type seeds. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was subsequently performed to determine the expression of starch synthesis-related genes, revealing upregulation of mRNA expression of most genes in the transgenic compared with wild-type lines. Collectively, these findings suggest that ZmSSRP1 acts as a potential regulator of starch synthesis, providing new insight for molecular breeding of high-yielding high-quality maize.
Collapse
Affiliation(s)
- Long Chen
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ming Du
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China; and Shanghai Zhongke Quanyin Molecular Breeding Technology, Shanghai 200030, China
| | - Long Wang
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wei Yu
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yirong Chen
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
61
|
Li Y, Karim H, Wang B, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Regulation of Amylose Content by Single Mutations at an Active Site in the Wx-B1 Gene in a Tetraploid Wheat Mutant. Int J Mol Sci 2022; 23:ijms23158432. [PMID: 35955567 PMCID: PMC9368913 DOI: 10.3390/ijms23158432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/15/2023] Open
Abstract
The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.
Collapse
Affiliation(s)
- Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071 Cordoba, Spain;
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-0958; Fax: +86-28-8265-0350
| |
Collapse
|
62
|
Xu H, Li S, Kazeem BB, Ajadi AA, Luo J, Yin M, Liu X, Chen L, Ying J, Tong X, Wang Y, Niu B, Chen C, Zeng X, Zhang J. Five Rice Seed-Specific NF-YC Genes Redundantly Regulate Grain Quality and Seed Germination via Interfering Gibberellin Pathway. Int J Mol Sci 2022; 23:ijms23158382. [PMID: 35955515 PMCID: PMC9368926 DOI: 10.3390/ijms23158382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
NF-YCs are important transcription factors with diverse functions in the plant kingdoms including seed development. NF-YC8, 9, 10, 11 and 12 are close homologs with similar seed-specific expression patterns. Despite the fact that some of the NF-YCs are functionally known; their biological roles have not been systematically explored yet, given the potential functional redundancy. In this study, we generated pentuple mutant pnfyc of NF-YC8-12 and revealed their functions in the regulation of grain quality and seed germination. pnfyc grains displayed significantly more chalkiness with abnormal starch granule packaging. pnfyc seed germination and post-germination growth are much slower than the wild-type NIP, largely owing to the GA-deficiency as exogenous GA was able to fully recover the germination phenotype. The RNA-seq experiment identified a total of 469 differentially expressed genes, and several GA-, ABA- and grain quality control-related genes might be transcriptionally regulated by the five NF-YCs, as revealed by qRT-PCR analysis. The results demonstrated the redundant functions of NF-YC8-12 in regulating GA pathways that underpin rice grain quality and seed germination, and shed a novel light on the functions of the seed-specific NF-YCs.
Collapse
Affiliation(s)
- Huayu Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Shufan Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Bello Babatunde Kazeem
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Jinjin Luo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Man Yin
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Xinyong Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Lijuan Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
| | - Baixiao Niu
- College of Agriculture, Yangzhou University, Yangzhou 225009, China; (B.N.); (C.C.)
| | - Chen Chen
- College of Agriculture, Yangzhou University, Yangzhou 225009, China; (B.N.); (C.C.)
| | - Xiaoshan Zeng
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (X.Z.); (J.Z.); Tel./Fax: +86-731-86491768 (X.Z.); +86-571-63370277 (J.Z.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (H.X.); (S.L.); (B.B.K.); (A.A.A.); (J.L.); (M.Y.); (X.L.); (L.C.); (J.Y.); (X.T.); (Y.W.)
- Correspondence: (X.Z.); (J.Z.); Tel./Fax: +86-731-86491768 (X.Z.); +86-571-63370277 (J.Z.)
| |
Collapse
|
63
|
Takahashi K, Fujita H, Fujita N, Takahashi Y, Kato S, Shimizu T, Suganuma Y, Sato T, Waki H, Yamada Y. A Pilot Study to Assess Glucose, Insulin, and Incretin Responses Following Novel High Resistant Starch Rice Ingestion in Healthy Men. Diabetes Ther 2022; 13:1383-1393. [PMID: 35708892 PMCID: PMC9240163 DOI: 10.1007/s13300-022-01283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION A newly developed resistant starch (RS) rice line with double mutation of starch synthase IIIa and branching enzyme IIb (ss3a/be2b) exhibits a tenfold greater percentage RS value than the wild-type rice line. Currently, the effects of cooked rice with such high RS content on secretion and action of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are unclear. Therefore, we conducted a pilot study to assess postprandial responses of GLP-1 and GIP along with glucose and insulin and also gastric emptying after ingestion of the high-RS cooked rice with ss3a/be2b in healthy subjects. METHODS In a non-randomized crossover design, five healthy men ingested two test foods, control (low-RS) and high-RS cooked rice, with at least 1-week washout period between testing days. Plasma glucose, serum insulin, plasma total GLP-1, plasma total GIP, and also gastric emptying rate were measured after ingestion of each test food, and the incremental area under the curves (iAUC) was calculated for each biochemical parameter using the values from 0 to 180 min after ingestion. RESULTS The high-RS cooked rice ingestion tended to reduce iAUC-glucose (p = 0.06) and significantly reduced iAUC-insulin (p < 0.01) and iAUC-GLP-1 (p < 0.05) but not iAUC-GIP (p = 0.21) relative to control cooked rice ingestion. In addition, the high-RS cooked rice ingestion did not affect gastric emptying. CONCLUSIONS The present results indicate that the suppressive effects of the high-RS cooked rice ingestion on postprandial responses of glucose and insulin may be provided through attenuation in GLP-1 secretion along with its low digestibility into glucose. We suggest that the high-RS rice with ss3a/be2b may serve as a better carbohydrate source and also as a novel functional food for dietary interventions to improve postprandial hyperglycemia and hyperinsulinemia without both enhancing GLP-1 secretion and affecting gastric emptying in patients with diabetes.
Collapse
Affiliation(s)
- Kazuyuki Takahashi
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroki Fujita
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Naoko Fujita
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Yuya Takahashi
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shunsuke Kato
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tatsunori Shimizu
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yumi Suganuma
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takehiro Sato
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hironori Waki
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuichiro Yamada
- Department of Metabolism and Endocrinology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| |
Collapse
|
64
|
Cai Y, Zhang W, Fu Y, Shan Z, Xu J, Wang P, Kong F, Jin J, Yan H, Ge X, Wang Y, You X, Chen J, Li X, Chen W, Chen X, Ma J, Tang X, Zhang J, Bao Y, Jiang L, Wang H, Wan J. Du13 encodes a C 2 H 2 zinc-finger protein that regulates Wx b pre-mRNA splicing and microRNA biogenesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1387-1401. [PMID: 35560858 PMCID: PMC9241381 DOI: 10.1111/pbi.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre-mRNA. Here, we uncover dual roles for a novel Dull gene in pre-mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map-based cloning showed that Du13 encodes a C2 H2 zinc-finger protein. Du13 coordinates with the nuclear cap-binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein-coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre-mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yushuang Fu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Zhuangzhuang Shan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xinyuan Ge
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yongxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Li
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yiqun Bao
- College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
65
|
Yang J, He Z, Chen C, Zhao J, Fang R. Starch Branching Enzyme 1 Is Important for Amylopectin Synthesis and Cyst Reactivation in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0189121. [PMID: 35446124 PMCID: PMC9241709 DOI: 10.1128/spectrum.01891-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii (T. gondii) bradyzoites facilitate chronic infections that evade host immune response. Furthermore, reactivation in immunocompromised individuals causes severe toxoplasmosis. The presence of abundant granules containing the branched starch amylopectin is major characteristic of bradyzoites that is nearly absent from tachyzoites that drive acute disease. T. gondii genome encodes to potential Starch branching enzyme 1 (SBE1) that creates branching during amylopectin biosynthesis. However, the physiological function of the amylopectin in T. gondii remains unclear. In this study, we generated a SBE1 knockout parasites and revealed that deletion of SBE1 caused amylopectin synthesis defects while having no significant impact on the growth of tachyzoites under normal culture conditions in vitro as well as virulence and brain cyst formation. Nevertheless, SBE1 knockout decreased the influx of exogenous glucose and reduced tachyzoites proliferation in nutrition-deficient conditions. Deletion of SBE1 together with the α-amylase (α-AMY), responsible for starch digestion, abolished amylopectin production and attenuated virulence while restoring brain cyst formation. In addition, cysts with defective amylopectin metabolism showed abnormal morphology and were avirulent to mice. In conclusion, SBE1 is essential for the synthesis of amylopectin, which serves as energy storage during the development and reactivation of bradyzoites. IMPORTANCE Toxoplasmosis has become a global, serious public health problem due to the extensiveness of the host. There are great differences in the energy metabolism in the different stages of infection. The most typical difference is the abundant accumulation of amylopectin granules in bradyzoites, which is almost absent in tachyzoites. Until now, the physiological functions of amylopectin have not been clearly elucidated. We focused on starch branching enzyme 1 (SBE1) in the synthesis pathway to reveal the exact physiological significance of amylopectin. Our study clarified the role of SBE1 in the synthesis pathway and amylopectin in tachyzoites and bradyzoites, and demonstrated that amylopectin, as an important carbon source, was critical to parasites growth under an unfavorable environment and the reactivation of bradyzoites to tachyzoites. The findings obtained from our study provides a new avenue for the development of Toxoplasma vaccines and anti-chronic toxoplasmosis drugs.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengming He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chengjie Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
66
|
Yao D, Wu J, Luo Q, Zhang D, Zhuang W, Xiao G, Deng Q, Bai B. Effects of Salinity Stress at Reproductive Growth Stage on Rice (Oryza sativa L.) Composition, Starch Structure, and Physicochemical Properties. Front Nutr 2022; 9:926217. [PMID: 35845782 PMCID: PMC9277441 DOI: 10.3389/fnut.2022.926217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the changes in polished rice composition, starch structure, and physicochemical properties from three rice cultivars treated with medium and high salinity stress at the reproductive growth stage. The results showed that salt stress led to poor milling and appearance quality, higher total starch content, protein content, higher proportion of the medium, and long chains of amylopectin, as well as gelatinization temperature (GT) but lower amylose content and lower proportion of the short chain of amylopectin. Compared with salt-sensitive cultivars, the salt-tolerant cultivars exhibited lower GT and gelatinization enthalpy, better pasting properties, and more stable crystal structure; therefore, their eating and cooking quality (ECQ) was less affected. The above results imply that salt stress at the reproductive growth stage can degrade ECQ and can slightly increase the pasting property of starch from salt-tolerant rice cultivar.
Collapse
Affiliation(s)
- Dongping Yao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Plant Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qiuhong Luo
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Dongmeng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Wen Zhuang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- Bio-Rice (Hunan) Co. Ltd., Changsha, China
| | - Bin Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Bin Bai
| |
Collapse
|
67
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
68
|
Miura S, Narita M, Crofts N, Itoh Y, Hosaka Y, Oitome NF, Abe M, Takahashi R, Fujita N. Improving Agricultural Traits While Maintaining High Resistant Starch Content in Rice. RICE (NEW YORK, N.Y.) 2022; 15:28. [PMID: 35662383 PMCID: PMC9167398 DOI: 10.1186/s12284-022-00573-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Resistant starch (RS) is beneficial for human health. Loss of starch branching enzyme IIb (BEIIb) increases the proportion of amylopectin long chains, which greatly elevates the RS content. Although high RS content cereals are desired, an increase in RS content is often accompanied by a decrease in seed weight. To further increase the RS content, genes encoding active-type starch synthase (SS) IIa, which elongates amylopectin branches, and high expression-type granule-bound SSI (GBSSI), which synthesizes amylose, were introduced into the be2b mutant rice. This attempt increased the RS content, but further improvement of agricultural traits was required because of a mixture of indica and japonica rice phonotype, such as different grain sizes, flowering times, and seed shattering traits. In the present study, the high RS lines were backcrossed with an elite rice cultivar, and the starch properties of the resultant high-yielding RS lines were analyzed. RESULTS The seed weight of high RS lines was greatly improved after backcrossing, increasing up to 190% compared with the seed weight before backcrossing. Amylopectin structure, gelatinization temperature, and RS content of high RS lines showed almost no change after backcrossing. High RS lines contained longer amylopectin branch chains than the wild type, and lines with active-type SSIIa contained a higher proportion of long amylopectin chains compared with the lines with less active-SSIIa, and thus showed higher gelatinization temperature. Although the RS content of rice varied with the cooking method, those of high RS lines remained high after backcrossing. The RS contents of cooked rice of high RS lines were high (27-35%), whereas that of the elite parental rice was considerably low (< 0.7%). The RS contents of lines with active-type SSIIa and high-level GBSSI expression in be2b or be2b ss3a background were higher than those of lines with less-active SSIIa. CONCLUSIONS The present study revealed that backcrossing high RS rice lines with elite rice cultivars could increase the seed weight, without compromising the RS content. It is likely that backcrossing introduced loci enhancing seed length and width as well as loci promoting early flowering for ensuring an optimum temperature during RS biosynthesis.
Collapse
Affiliation(s)
- Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Maiko Narita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Yuki Itoh
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko F. Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Rika Takahashi
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| |
Collapse
|
69
|
Zhang Z, Zhao J, Tappiban P, Ying Y, Hu Y, Xu F, Bao J. Diurnal changes in starch molecular structures and expression profiles of starch biosynthesis enzymes in rice developing seeds. Int J Biol Macromol 2022; 209:2165-2174. [PMID: 35500783 DOI: 10.1016/j.ijbiomac.2022.04.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Abstract
The diurnal changes in the expression profiles of starch synthesis related enzymes (SSREs) has been previously studied in transitory starches, while its influences on storage starch molecular structures in the rice endosperm during seed development have not been elucidated. In this study, the changes in the transcript levels of starch synthesis related genes (SSRGs), the protein abundances and enzyme activities of SSREs as well as starch molecular structures in rice endosperm at 10 days after flowering (DAF) over the diurnal cycle were analyzed. It was found that the expression profiles of SSRG and the protein contents of SSREs displayed different diurnal patterns between two indica rice varieties with medium- and high-amylose content (AC), respectively. The expression levels of SSRGs were higher in the light time, and most SSREs also accumulated during this period except debranching enzymes. Amylose synthesis displayed distinct diurnal patterns in two rice varieties, which is attributed to the diurnal changes in the protein content of granule-bound starch synthase I (GBSSI), but amylopectin chain-length distributions (CLDs) remained unaltered due to its vast numbers of branches. The results provide the first step to understand the roles of each enzyme isoform involved in starch synthesis in response to diurnal regulation in rice endosperm.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiajia Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
70
|
Selim S, Akhtar N, Hagagy N, Alanazi A, Warrad M, El Azab E, Elamir MYM, Al-Sanea MM, Jaouni SKA, Abdel-Mawgoud M, Shah AA, Abdelgawad H. Selection of Newly Identified Growth-Promoting Archaea Haloferax Species With a Potential Action on Cobalt Resistance in Maize Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:872654. [PMID: 35665142 PMCID: PMC9161300 DOI: 10.3389/fpls.2022.872654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with cobalt (Co) negatively impacts plant growth and production. To combat Co toxicity, plant growth-promoting microorganisms for improving plant growth are effectively applied. To this end, unclassified haloarchaeal species strain NRS_31 (OL912833), belonging to Haloferax genus, was isolated, identified for the first time, and applied to mitigate the Co phytotoxic effects on maize plants. This study found that high Co levels in soil lead to Co accumulation in maize leaves. Co accumulation in the leaves inhibited maize growth and photosynthetic efficiency, inducing oxidative damage in the tissue. Interestingly, pre-inoculation with haloarchaeal species significantly reduced Co uptake and mitigated the Co toxicity. Induced photosynthesis improved sugar metabolism, allocating more carbon to defend against Co stress. Concomitantly, the biosynthetic key enzymes involved in sucrose (sucrose-P-synthase and invertases) and proline (pyrroline-5- carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR)) biosynthesis significantly increased to maintain plant osmotic potential. In addition to their osmoregulation potential, soluble sugars and proline can contribute to maintaining ROS hemostasis. Maize leaves managed their oxidative homeostasis by increasing the production of antioxidant metabolites (such as phenolics and tocopherols) and increasing the activity of ROS-scavenging enzymes (such as POX, CAT, SOD, and enzymes involved in the AsA/GSH cycle). Inside the plant tissue, to overcome heavy Co toxicity, maize plants increased the synthesis of heavy metal-binding ligands (metallothionein, phytochelatins) and the metal detoxifying enzymes (glutathione S transferase). Overall, the improved ROS homeostasis, osmoregulation, and Co detoxification systems were the basis underlying Co oxidative stress, mitigating haloarchaeal treatment's impact.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat, Saudi Arabia
| | - Eman El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat, Saudi Arabia
| | | | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerpen, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
71
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
72
|
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. PLANT COMMUNICATIONS 2022; 3:100271. [PMID: 35576153 PMCID: PMC9251384 DOI: 10.1016/j.xplc.2021.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/14/2023]
Abstract
The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Rhowell N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
73
|
Fujita N, Miura S, Crofts N. Effects of Various Allelic Combinations of Starch Biosynthetic Genes on the Properties of Endosperm Starch in Rice. RICE (NEW YORK, N.Y.) 2022; 15:24. [PMID: 35438319 PMCID: PMC9018920 DOI: 10.1186/s12284-022-00570-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 05/09/2023]
Abstract
Rice endosperm accumulates large amounts of photosynthetic products as insoluble starch within amyloplasts by properly arranging structured, highly branched, large amylopectin molecules, thus avoiding osmotic imbalance. The amount and characteristics of starch directly influence the yield and quality of rice grains, which in turn influence their application and market value. Therefore, understanding how various allelic combinations of starch biosynthetic genes, with different expression levels, affect starch properties is important for the identification of targets for breeding new rice cultivars. Research over the past few decades has revealed the spatiotemporal expression patterns and allelic variants of starch biosynthetic genes, and enhanced our understanding of the specific roles and compensatory functions of individual isozymes of starch biosynthetic enzymes through biochemical analyses of purified enzymes and characterization of japonica rice mutants lacking these enzymes. Furthermore, it has been shown that starch biosynthetic enzymes can mutually and synergistically increase their activities by forming protein complexes. This review focuses on the more recent discoveries made in the last several years. Generation of single and double mutants and/or high-level expression of specific starch synthases (SSs) allowed us to better understand how the starch granule morphology is determined; how the complete absence of SSIIa affects starch structure; why the rice endosperm stores insoluble starch rather than soluble phytoglycogen; how to elevate amylose and resistant starch (RS) content to improve health benefits; and how SS isozymes mutually complement their activities. The introduction of active-type SSIIa and/or high-expression type GBSSI into ss3a ss4b, isa1, be2b, and ss3a be2b japonica rice mutants, with unique starch properties, and analyses of their starch properties are summarized in this review. High-level accumulation of RS is often accompanied by a reduction in grain yield as a trade-off. Backcrossing rice mutants with a high-yielding elite rice cultivar enabled the improvement of agricultural traits, while maintaining high RS levels. Designing starch structures for additional values, breeding and cultivating to increase yield will enable the development of a new type of rice starch that can be used in a wide variety of applications, and that can contribute to food and agricultural industries in the near future.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195 Japan
| |
Collapse
|
74
|
Zhang X, Karim H, Feng X, Lan J, Tang H, Guzmán C, Xu Q, Zhang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. A single base change at exon of Wx-A1 caused gene inactivation and starch properties modified in a wheat EMS mutant line. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2012-2022. [PMID: 34558070 DOI: 10.1002/jsfa.11540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuteng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
75
|
Wang L, Wang Y, Makhmoudova A, Nitschke F, Tetlow IJ, Emes MJ. CRISPR-Cas9-mediated editing of starch branching enzymes results in altered starch structure in Brassica napus. PLANT PHYSIOLOGY 2022; 188:1866-1886. [PMID: 34850950 PMCID: PMC8968267 DOI: 10.1093/plphys/kiab535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 05/24/2023]
Abstract
Starch branching enzymes (SBEs) are one of the major classes of enzymes that catalyze starch biosynthesis in plants. Here, we utilized the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene editing system to investigate the effects of SBE mutation on starch structure and turnover in the oilseed crop Brassica napus. Multiple single-guide RNA (sgRNA) expression cassettes were assembled into a binary vector and two rounds of transformation were employed to edit all six BnaSBE genes. All mutations were heterozygous monoallelic or biallelic, and no chimeric mutations were detected from a total of 216 editing events. Previously unannotated gene duplication events associated with two BnaSBE genes were characterized through analysis of DNA sequencing chromatograms, reflecting the complexity of genetic information in B. napus. Five Cas9-free homozygous mutant lines carrying two to six mutations of BnaSBE were obtained, allowing us to compare the effect of editing different BnaSBE isoforms. We also found that in the sextuple sbe mutant, although indels were introduced at the genomic DNA level, an alternate transcript of one BnaSBE2.1 gene bypassed the indel-induced frame shift and was translated to a modified full-length protein. Subsequent analyses showed that the sextuple mutant possesses much lower SBE enzyme activity and starch branching frequency, higher starch-bound phosphate content, and altered pattern of amylopectin chain length distribution relative to wild-type (WT) plants. In the sextuple mutant, irregular starch granules and a slower rate of starch degradation during darkness were observed in rosette leaves. At the pod-filling stage, the sextuple mutant was distinguishable from WT plants by its thick main stem. This work demonstrates the applicability of the CRISPR-Cas9 system for the study of multi-gene families and for investigation of gene-dosage effects in the oil crop B. napus. It also highlights the need for rigorous analysis of CRISPR-Cas9-mutated plants, particularly with higher levels of ploidy, to ensure detection of gene duplications.
Collapse
Affiliation(s)
- Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amina Makhmoudova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
76
|
Possibility for Prevention of Type 2 Diabetes Mellitus and Dementia Using Three Kinds of Brown Rice Blends after High-Pressure Treatment. Foods 2022; 11:foods11060818. [PMID: 35327240 PMCID: PMC8947517 DOI: 10.3390/foods11060818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
As it has been reported that type 2 diabetes mellitus increases the risk of Alzheimer’s disease, we investigated how to prevent type 2 diabetes and dementia using biofunctional boiled rice. We adopted unpolished super-hard rice (SHBR) for diabetes and wax-free unpolished black rice (WFBBR) for dementia and blended those with ordinary non-polished rice (KBR) (blending ratio 4:4:2), adding 2.5% waxy black rice bran (WBB) and 0.3% rice oil after high-pressure treatment (HPT) (WFBSK) to improve its palatability. This boiled rice is rich in dietary fiber, anthocyanin, free ferulic acid and β-secretase inhibitory activity. A randomized, parallel-group comparison study was conducted for 12 weeks with 24 subjects, using Cognitrax to evaluate their cognitive function primarily. Furthermore, as the secondary purpose, we performed a single-dose test for postprandial blood glucose and insulin secretion at the end of the human intervention test. After 12 weeks, consumers of the WFBSK rice exhibited significant improvement in language memory by cognitive test battery compared with those who consumed the control white rice (p < 0.05). Moreover, subjects who consumed the WFBSK rice had lower insulin secretion levels than those who consumed the control polished rice (p < 0.05).
Collapse
|
77
|
Ida T, Crofts N, Miura S, Matsushima R, Fujita N. Starch biosynthetic protein complex formation in rice <i>ss2a be2b (</i>+<i>)</i> double mutant differs from their parental single mutants. J Appl Glycosci (1999) 2022; 69:23-33. [PMID: 35891898 PMCID: PMC9276526 DOI: 10.5458/jag.jag.jag-2021_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Amylopectin, which consists of highly branched glucose polymers, is a major component of starch. Biochemical processes that regulate the elongation of glucose polymers and the generation and removal of glucose branches are essential for determining the properties of starch. Starch synthases (SSs) and branching enzyme (BE) mainly form complexes consisting of SSI, SSIIa, and BEIIb during endosperm development. Loss of BEIIb in rice is complemented by BEIIa, but the compensatory effects differ depending on the presence or absence of inactive BEIIb. To better understand these compensatory mechanisms, ss2a be2b (+) double mutant, which possessed truncated inactive SSIIa and inactive BEIIb, were analyzed. Soluble proteins separated by gel filtration chromatography showed that SSIIa and BEIIb proteins in the wild-type exhibited a broad range of elution patterns and only small amounts were detected in high molecular mass fractions. In contrast, most of truncated inactive SSIIa and inactive BEIIb from ss2a be2b (+) were found in high molecular mass fractions, and the SSI-SSIIa-BEIIb trimeric protein complex found in the wild-type was likely absent in ss2a be2b (+). Those SSIIa and BEIIb proteins in high molecular mass fractions in ss2a be2b (+) were also identified by mass spectrometry. Parental ss2a single mutant had negligible amounts of SSIIa suggesting that the truncated inactive SSIIa was recruited to high-molecular mass complexes in the presence of inactive BEIIb in ss2a be2b (+) double mutant. In addition, SSIVb might be involved in the formation of alternative protein complexes with < 300 kDa in ss2a be2b (+).
Collapse
Affiliation(s)
- Tamami Ida
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Naoko Crofts
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Satoko Miura
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University
| | - Naoko Fujita
- Institute of Plant Science and Resources, Okayama University
| |
Collapse
|
78
|
Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, Ono M, Nakamura Y, Seki M. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. PLANT MOLECULAR BIOLOGY 2022; 108:413-427. [PMID: 34767147 DOI: 10.1007/s11103-021-01209-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Suppression of starch branching enzymes 1 and 2 in cassava leads to increased resistant starch content through the production of high-amylose and modification of the amylopectin structure. Cassava (Manihot esculenta Crantz) is a starchy root crop used for human consumption as a staple food and industrial applications. Starch is synthesized by various isoforms of several enzymes. However, the function of starch branching enzymes (SBEs) in starch biosynthesis and mechanisms of starch regulation in cassava have not been understood well. In this study, we aimed to suppress the expression of SBEs in cassava to generate starches with a range of distinct properties, in addition to verifying the functional characteristics of the SBEs. One SBE1, two SBE2, and one SBE3 genes were classified by phylogenetic analysis and amino acid alignment. Quantitative real-time RT-PCR revealed tissue-specific expression of SBE genes in the tuberous roots and leaves of cassava. We introduced RNAi constructs containing fragments of SBE1, SBE2, or both genes into cassava by Agrobacterium-mediated transformation, and assessed enzymatic activity of SBE using tuberous roots and leaves from these transgenic plants. Simultaneous suppression of SBE1 and SBE2 rendered an extreme starch phenotype compared to suppression of SBE2 alone. Degree of polymerization of 6-13 chains in amylopectin was markedly reduced by suppression of both SBE1 and SBE2 in comparison to the SBE2 suppression; however, no change in chain-length profiles was observed in the SBE1 suppression alone. The role of SBE1 and SBE2 may have functional overlap in the storage tissue of cassava. Simultaneous suppression of SBE1 and SBE2 resulted in highly resistant starch with increased apparent amylose content compared to suppression of SBE2 alone. This study provides valuable information for understanding starch biosynthesis and suggests targets for altering starch quality.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Okamoto
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
79
|
Nakamura Y, Kubo A, Ono M, Yashiro K, Matsuba G, Wang Y, Matsubara A, Mizutani G, Matsuki J, Kainuma K. Changes in fine structure of amylopectin and internal structures of starch granules in developing endosperms and culms caused by starch branching enzyme mutations of japonica rice. PLANT MOLECULAR BIOLOGY 2022; 108:481-496. [PMID: 35099666 DOI: 10.1007/s11103-021-01237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BEIIb plays a specific role in determining the structure of amylopectin in rice endosperm, whereas BEIIa plays the similar role in the culm where BEIIb is absent. Cereals have three types of starch branching enzymes (BEs), BEI, BEIIa, and BEIIb. It is widely known that BEIIb is specifically expressed in the endosperm and plays a distinct role in the structure of amylopectin because in its absence the amylopectin type changes to the amylose-extender-type (ae-type) or B-type from the wild-type or A-type and this causes the starch crystalline allomorph to the B-type from the wild-type A-type. This study aimed to clarify the role of BEIIa in the culm where BEIIb is not expressed, by using a be2a mutant in comparison with results with be2b and be1 mutants. The results showed that the amylopectin structure exhibited the B-type in the be2a culm compared with the A-type in the wild-type culm. The starch granules from the be2a culm also showed the B-type like allomorph when examined by X-ray diffraction analysis and optical sum frequency generation spectroscopy. Both amylopectin chain-length profile and starch crystalline properties were found to be the A-type at the very early stage of endosperm development at 4-6 days after pollination (DAP) even in the be2b mutant. All these results support a view that in the culm as well as in the endosperm at 4-6 DAP, BEIIa can play the role of BEIIb which has been well documented in maturing endosperm. The possible mechanism as to how BEIIa can play its role is discussed.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd., Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan.
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan.
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan.
| | - Akiko Kubo
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan
| | - Masami Ono
- Starch Technologies, Co., Ltd., Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan
| | - Kazuki Yashiro
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yifei Wang
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Akira Matsubara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Goro Mizutani
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Junko Matsuki
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Keiji Kainuma
- Science Academy of Tsukuba, 2-20-3 Takezono, Tsukuba, Ibaraki, 305-0032, Japan
| |
Collapse
|
80
|
Tappiban P, Hu Y, Deng J, Zhao J, Ying Y, Zhang Z, Xu F, Bao J. Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice. PLANT MOLECULAR BIOLOGY 2022; 108:399-412. [PMID: 34750721 DOI: 10.1007/s11103-021-01207-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Down-regulation of starch branching enzymes alters fine structure and starch properties, especially the B-type crystalline pattern and extremely high amylose content identified in the BEIIb-deficiency mutant in the indica rice. The relative importance of the starch branching enzymes in determining the molecular fine structure and starch functional properties were uncovered in this study. An indica rice, Guangluai 4 with high amylose content (AC) and high gelatinization temperature (GT) was used to generate the clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein-9 (Cas9) knockout lines. Five mutant lines were identified including be1-1, be1-2, be2a-1, be2a-2 and be2b-1, and analysis of western blot showed the CRISPR/Cas9 system was successful in inducing mutations in the targeted genes. AC of be2b-1 (34.1%) was greater than that of wild type (WT) (27.4%) and other mutants. Mutations of either BEI or BEIIa did not alter the starch crystallite pattern (A-type). The BEIIb deficiency caused an opaque endosperm phenotype, changed the crystallite pattern from A- to B-type, and dramatically increased the degree of ordered structure, the relative proportion of amylose chains and intermediate to long amylopectin chains, average chain length of amylopectin molecules as well as GT. The BEIIa deficiency had no effect on the proportion of amylose chains, the length of amylopectin intermediate-long chains, conclusion temperature and enthalpy of gelatinization. Down-regulation of BEI increased the proportion of shortest amylopectin chains (fa) but decreased the proportion of long amylopectin chains (fb2 and fb3), leading to a lower GT. It is concluded that the relative importance in determining starch fine structures and functionality was in the order of BEIIb > BEI > BEIIa. Our results provide new information for utilizations of BE-deficient mutants in rice quality breeding.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yaqi Hu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiaming Deng
- Department of Applied Bioscience, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiajia Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhongwei Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China.
| |
Collapse
|
81
|
Okpala NE, Aloryi KD, An T, He L, Tang X. The roles of starch branching enzymes and starch synthase in the biosynthesis of amylose in rice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
82
|
Crofts N, Domon A, Miura S, Hosaka Y, Oitome NF, Itoh A, Noge K, Fujita N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. PLANT MOLECULAR BIOLOGY 2022; 108:379-398. [PMID: 34671919 DOI: 10.1007/s11103-021-01197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Asaka Domon
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Ayaka Itoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
83
|
Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. PLANT MOLECULAR BIOLOGY 2022; 108:429-442. [PMID: 34792751 DOI: 10.1007/s11103-021-01215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The production of high-amylose cassava through CRISPR/Cas9-mediated mutagenesis of the starch branching enzyme gene SBE2 was firstly achieved. High-amylose cassava (Manihot esculenta Crantz) is desirable for starch industrial applications and production of healthier processed food for human consumption. In this study, we report the production of high-amylose cassava through CRISPR/Cas9-mediated mutagenesis of the starch branching enzyme 2 (SBE2). Mutations in two targeted exons of SBE2 were identified in all regenerated plants; these mutations, which included nucleotide insertions, and short or long deletions in the SBE2 gene, were classified into eight mutant lines. Three mutants, M6, M7 and M8, with long fragment deletions in the second exon of SBE2 showed no accumulation of SBE2 protein. After harvest from the field, significantly higher amylose (up to 56% in apparent amylose content) and resistant starch (up to 35%) was observed in these mutants compared with the wild type, leading to darker blue coloration of starch granules after quick iodine staining and altered starch viscosity with a higher pasting temperature and peak time. Further 1H-NMR analysis revealed a significant reduction in the degree of starch branching, together with fewer short chains (degree of polymerization [DP] 15-25) and more long chains (DP>25 and especially DP>40) of amylopectin, which indicates that cassava SBE2 catalyzes short chain formation during amylopectin biosynthesis. Transition from A- to B-type crystallinity was also detected in the starches. Our study showed that CRISPR/Cas9-mediated mutagenesis of starch biosynthetic genes in cassava is an effective approach for generating novel varieties with valuable starch properties for food and industrial applications.
Collapse
Affiliation(s)
- Shu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yingying Zhong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Sanshu Biotechnology Co., LTD, Shanghai, 201210, China
| | - Jianling Jing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zusheng Wei
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Sanshu Biotechnology Co., LTD, Shanghai, 201210, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yinong Tian
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
84
|
Crofts N, Satoh Y, Miura S, Hosaka Y, Abe M, Fujita N. Active-type starch synthase (SS) IIa from indica rice partially complements the sugary-1 phenotype in japonica rice endosperm. PLANT MOLECULAR BIOLOGY 2022; 108:325-342. [PMID: 34287741 DOI: 10.1007/s11103-021-01161-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 05/21/2023]
Abstract
Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yoshiki Satoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
85
|
Zhang L, Li N, Zhang J, Zhao L, Qiu J, Wei C. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. PLANT MOLECULAR BIOLOGY 2022; 108:343-361. [PMID: 34387795 DOI: 10.1007/s11103-021-01178-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Linglong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jiajing Qiu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
86
|
Nagamatsu S, Wada T, Matsushima R, Fujita N, Miura S, Crofts N, Hosaka Y, Yamaguchi O, Kumamaru T. Mutation in BEIIb mitigates the negative effect of the mutation in ISA1 on grain filling and amyloplast formation in rice. PLANT MOLECULAR BIOLOGY 2022; 108:497-512. [PMID: 35083581 DOI: 10.1007/s11103-022-01242-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Mutation of the BEIIb gene in an isa1 mutant background mitigates the negative effect of the ISA1 mutation on grain filling, and facilitates recovery of amyloplast formation in rice endosperm. In this study, the effect of branching enzyme IIb and isoamylase 1 deficiency on starch properties was demonstrated using high resistant starch rice lines, Chikushi-kona 85 and EM129. Both lines harbored a mutation in the BEIIb and ISA1 genes and showed no BEIIb and ISA1 activity, implying that both lines are beIIb isa1 double mutants. The amylopectin long chain and apparent amylose content of both mutant lines were higher than those of the wild-type. While both mutants contained loosely packed, round starch grains, a trait specific to beIIb mutants, they also showed collapsed starch grains at the center of the endosperm, a property specific to isa1 mutants. Furthermore, beIIb isa1 double mutant F2 lines derived from a cross between Chikushi-kona 85 and Nishihomare (wild-type cultivar) showed significantly heavier seed weight than the beIIb and isa1 single mutant lines. These results suggest that co-occurrence of beIIb and isa1 mutant alleles in a single genetic background mitigates the negative effect of the isa1 allele on grain filling, and contributes to recovery of the amyloplast formation defect in the isa1 single mutant.
Collapse
Affiliation(s)
- Shiro Nagamatsu
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan.
| | - Takuya Wada
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan
| | - Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo Kurashiki, Okayama, 710-0046, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Osamu Yamaguchi
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
87
|
Lei J, Teng X, Wang Y, Jiang X, Zhao H, Zheng X, Ren Y, Dong H, Wang Y, Duan E, Zhang Y, Zhang W, Yang H, Chen X, Chen R, Zhang Y, Yu M, Xu S, Bao X, Zhang P, Liu S, Liu X, Tian Y, Jiang L, Wang Y, Wan J. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:437-453. [PMID: 34655511 PMCID: PMC8882802 DOI: 10.1111/pbi.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 05/13/2023]
Abstract
Starch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis. We identified the floury endosperm19 (flo19) mutant which shows opaque of the interior endosperm. Abnormal compound starch grains (SGs) were present in the endosperm cells of the mutant. Molecular cloning revealed that the FLO19 allele encodes a plastid-localized pyruvate dehydrogenase complex E1 component subunit α1 (ptPDC-E1-α1) that is expressed in all rice tissues. In vivo enzyme assays demonstrated that the flo19 mutant showed decreased activity of the plastidic pyruvate dehydrogenase complex. In addition, the amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were much lower in the developing flo19 mutant endosperm, suggesting that FLO19 participates in fatty acid supply for galactolipid biosynthesis in amyloplasts. FLO19 overexpression significantly increased seed size and weight, but did not affect other important agronomic traits, such as panicle length, tiller number and seed setting rate. An analysis of single nucleotide polymorphism data from a panel of rice accessions identified that the pFLO19L haplotype was positively associated with grain length, implying a potential application in rice breeding. In summary, our study demonstrates that FLO19 is involved in galactolipid biosynthesis which is essential for amyloplast development and starch biosynthesis in rice.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaokang Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Huanhuan Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hang Yang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Mingzhou Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Pengcheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
88
|
Nakamura Y, Kainuma K. On the cluster structure of amylopectin. PLANT MOLECULAR BIOLOGY 2022; 108:291-306. [PMID: 34599732 DOI: 10.1007/s11103-021-01183-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/15/2021] [Indexed: 05/21/2023]
Abstract
Two opposing models for the amylopectin structure are historically and comprehensively reviewed, which leads us to a better understanding of the specific fine structure of amylopectin. Amylopectin is a highly branched glucan which accounts for approximately 65-85 of starch in most plant tissues. However, its fine structure is still not fully understood due to the limitations of current methodologies. Since the 1940 s, many scientists have attempted to elucidate the distinct structure of amylopectin. One of the most accepted concepts is that amylopectin has a structural element known as "cluster", in which neighboring side chains with a degree of polymerization of ≥ 10 in the region of their non-branched segments form double helices. The double helical structures are arranged in inter- and intra-clusters and are the origin of the distinct physicochemical and crystalline properties of starch granules. Several models of the cluster structure have been proposed by starch scientists worldwide during the progress of analytical methods, whereas no direct evidence so far has been provided. Recently, Bertoft and colleagues proposed a new model designated as "the building block and backbone (BB) model". The BB model sharply contrasts with the cluster model in that the structural element for the BB model is the building block, and that long chains are separately synthesized and positioned from short chains constituting the building block. In the present paper, we conduct the historical review of the cluster concept detailing how and when the concept was established based on experimental results by many scientists. Then, differences between the two opposing concepts are explained and both models are critically discussed, particularly from the point of view of the biochemical regulation of amylopectin biosynthesis.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies, Co., Ltd, Akita Prefectural University, Shimoshinjo-Nakano, Akita-city, Akita, 010-0195, Japan.
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan.
| | - Keiji Kainuma
- Science Academy of Tsukuba, 2-20-3 Takezono, Tsukuba, Ibaraki, 305-0032, Japan
| |
Collapse
|
89
|
The role of different Wx and BEIIb allele combinations on fine structures and functional properties of indica rice starches. Carbohydr Polym 2022; 278:118972. [PMID: 34973786 DOI: 10.1016/j.carbpol.2021.118972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
This study examined the effects of the combinations of Waxy (Wx) and starch branching enzyme IIb (BEIIb) alleles on starch fine structure and functional properties in indica rice cultivars. The results showed that be2b mutant starches with BEIIb deficiency had higher amylose content, shorter amylose long chains, a higher proportion of amylopectin long chains and molecular order, but a lower proportion of amylopectin short chains and relative crystallinity, resulting in higher gelatinization temperature but lower enthalpy and paste viscosity. Compared with the rice lines carrying Wxb allele, Wxa allele contributed to relatively higher amylose content, longer amylopectin chains, less short-range ordered structure and lower relative crystallinity, leading to a little lower gelatinization enthalpy. This study provides new insight into structure-function relations among rice lines with different allele combinations of starch synthesis related genes, which is a useful strategy for rice quality breeding.
Collapse
|
90
|
Zhang Z, Tappiban P, Ying Y, Hu Y, Bao J. Functional Interactions between Enzymes Involved in Amylose and Amylopectin Biosynthesis in Rice Based on Mathematical Models. Biomacromolecules 2022; 23:1443-1452. [PMID: 35143725 DOI: 10.1021/acs.biomac.1c01662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch biosynthesis is controlled by multiple enzymes, including granule-bound starch synthase I (GBSSI), soluble starch synthases (SSs), branching enzymes (BEs), and debranching enzymes (DBEs). Although the role of individual isoforms has been primarily elucidated, the precise information about how they work together in the synthesis of specific amylose and amylopectin chains is still unclear. In this study, starch molecular chain-length distributions (CLDs) of five rice varieties with different amylose contents were measured by fluorophore-assisted carbohydrate electrophoresis and size-exclusion chromatography and fitted with two mathematical models, and the protein abundance of 11 starch synthesis-related enzymes was measured by western blotting. The correlation between model fitting parameters of amylose and amylopectin CLDs demonstrated that amylose and amylopectin syntheses are closely dependent. GBSSI could interact with BEI, BEIIb, SSIIa, SSIVb, ISA1, PUL, and PHO1 to synthesize the amylopectin intermediate and long chains as well as amylose chains. In addition, the interaction among SSIVb and SSI, SSIIa, BEI, BEIIb, ISA1, and PUL possibly suggests that SSIVb assists them to synthesize the amylopectin chains. The results can help understand the mechanisms about the functional interaction of different enzyme isoforms in starch biosynthesis.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
91
|
Li R, Zheng W, Jiang M, Zhang H. A review of starch biosynthesis in cereal crops and its potential breeding applications in rice ( Oryza Sativa L.). PeerJ 2022; 9:e12678. [PMID: 35036154 PMCID: PMC8710062 DOI: 10.7717/peerj.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Starch provides primary storage of carbohydrates, accounting for approximately 85% of the dry weight of cereal endosperm. Cereal seeds contribute to maximum annual starch production and provide the primary food for humans and livestock worldwide. However, the growing demand for starch in food and industry and the increasing loss of arable land with urbanization emphasizes the urgency to understand starch biosynthesis and its regulation. Here, we first summarized the regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid more attention to how transcriptional factors (TFs) systematically respond to various stimulants via the regulation of the enzymes during starch biosynthesis. Finally, some strategies to improve cereal yield and quality were put forward based on the previous reports. This review would collectively help to design future studies on starch biosynthesis in cereal crops.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China.,College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
92
|
Zhang H, Xu H, Jiang Y, Zhang H, Wang S, Wang F, Zhu Y. Genetic Control and High Temperature Effects on Starch Biosynthesis and Grain Quality in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:757997. [PMID: 34975940 PMCID: PMC8718882 DOI: 10.3389/fpls.2021.757997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 05/29/2023]
Abstract
Grain quality is one of the key targets to be improved for rice breeders and covers cooking, eating, nutritional, appearance, milling, and sensory properties. Cooking and eating quality are mostly of concern to consumers and mainly determined by starch structure and composition. Although many starch synthesis enzymes have been identified and starch synthesis system has been established for a long time, novel functions of some starch synthesis genes have continually been found, and many important regulatory factors for seed development and grain quality control have recently been identified. Here, we summarize the progress in this field as comprehensively as possible and hopefully reveal some underlying molecular mechanisms controlling eating quality in rice. The regulatory network of amylose content (AC) determination is emphasized, as AC is the most important index for rice eating quality (REQ). Moreover, the regulatory mechanism of REQ, especially AC influenced by high temperature which is concerned as a most harmful environmental factor during grain filling is highlighted in this review.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shiyu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
93
|
Gavgani HN, Fawaz R, Ehyaei N, Walls D, Pawlowski K, Fulgos R, Park S, Assar Z, Ghanbarpour A, Geiger JH. A structural explanation for the mechanism and specificity of plant branching enzymes I and IIb. J Biol Chem 2021; 298:101395. [PMID: 34762912 PMCID: PMC8695356 DOI: 10.1016/j.jbc.2021.101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Branching enzymes (BEs) are essential in the biosynthesis of starch and glycogen and play critical roles in determining the fine structure of these polymers. The substrates of these BEs are long carbohydrate chains that interact with these enzymes via multiple binding sites on the enzyme’s surface. By controlling the branched-chain length distribution, BEs can mediate the physiological properties of starch and glycogen moieties; however, the mechanism and structural determinants of this specificity remain mysterious. In this study, we identify a large dodecaose binding surface on rice BE I (BEI) that reaches from the outside of the active site to the active site of the enzyme. Mutagenesis activity assays confirm the importance of this binding site in enzyme catalysis, from which we conclude that it is likely the acceptor chain binding site. Comparison of the structures of BE from Cyanothece and BE1 from rice allowed us to model the location of the donor-binding site. We also identified two loops that likely interact with the donor chain and whose sequences diverge between plant BE1, which tends to transfer longer chains, and BEIIb, which transfers exclusively much shorter chains. When the sequences of these loops were swapped with the BEIIb sequence, rice BE1 also became a short-chain transferring enzyme, demonstrating the key role these loops play in specificity. Taken together, these results provide a more complete picture of the structure, selectivity, and activity of BEs.
Collapse
Affiliation(s)
- Hadi Nayebi Gavgani
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Remie Fawaz
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Nona Ehyaei
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - David Walls
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Kathryn Pawlowski
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Raoul Fulgos
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Sunghoon Park
- Department of Foodservice Management and Nutrition, College of Natural Sciences, Sangmyung University, Seoul, South Korea
| | - Zahra Assar
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Alireza Ghanbarpour
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
94
|
Wakabayashi Y, Morita R, Aoki N. Metabolic factors restricting sink strength in superior and inferior spikelets in high-yielding rice cultivars. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153536. [PMID: 34619558 DOI: 10.1016/j.jplph.2021.153536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Many high-yielding rice cultivars with large sink size (total number of spikelet per unit area × mean grain weight) have been developed, but some japonica cultivars developed in Japan often fail to attain the expected high yield due to low sink strength of spikelets. Although there is natural variation in sink strength of spikelets among high-yielding cultivars, metabolic factors involved in the natural variation and relationships of sink strength in spikelets with final percentage of filled spikelets are not fully understood. In the present study, we examined cultivar differences in sink strength for superior and inferior spikelets (i.e. earlier fertilizing spikelets with faster growth and later fertilizing ones with slower growth, respectively) in a panicle, using each spikelet at 10 d after the onset of development (10 DAD) when starch accumulation in endosperm was actively proceeding. Nine high-yielding cultivars were used: five japonica-dominant and four indica-dominant cultivars. Cultivar differences were observed in starch contents at 10 DAD in each spikelet type, and indica cultivars had higher starch contents than japonica cultivars in both superior and inferior spikelets. In addition, starch contents at 10 DAD were closely related to percentage of filled grains at maturity in both spikelet types. The activities of sucrose synthase (SUS) and uridine diphosphoglucose pyrophosphorylase (UGP), and the protein levels of phosphorylase 1 (Pho1), were higher in indica than japonica cultivars, and were positively correlated with starch contents at 10 DAD for both superior and inferior spikelets; although metabolic states, revealed from relations between intermediate metabolites and starch contents, differed among spikelet types. Consequently, it was considered that SUS and UGP at the step from sucrose cleavage to adenosine diphosphoglucose synthesis, and Pho1 at the starch biosynthesis step, were key metabolic factors involved in cultivar differences of sink strength (ability to synthesize starch).
Collapse
Affiliation(s)
- Yu Wakabayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryutaro Morita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
95
|
Selim S, AbdElgawad H, Alsharari SS, Atif M, Warrad M, Hagagy N, Madany MMY, Abuelsoud W. Soil enrichment with actinomycete mitigates the toxicity of arsenic oxide nanoparticles on wheat and maize growth and metabolism. PHYSIOLOGIA PLANTARUM 2021; 173:978-992. [PMID: 34237152 DOI: 10.1111/ppl.13496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The use of plant growth-promoting bacteria (PGPB) to enhance plant growth and protection against heavy metal toxicity has been extensively studied. However, its potentiality to reduce arsenate toxicity, a threat to plant growth and metabolism, has been hardly investigated. Moreover, the toxic effect of arsenic oxide nanoparticles (As-NPs) on plants and possible mechanisms for its alleviation has not yet been explored. In this study, the impact of the bioactive actinomycete Streptomyces spp. on the growth, physiology and stress-related metabolites, such as sugars and proline, on As-NPs-stressed wheat and maize plants was investigated. Soil amendment with arsenic oxide nanoparticles (As-NPs) induced the uptake and accumulation of As in the plants of both species, resulting in reduced growth and photosynthesis, but less marked in maize than in wheat plants. Under As-NPs-free conditions, Streptomyces spp. treatment markedly improved growth and photosynthesis in wheat only. The application of Streptomyces spp. reduced As accumulation, recovered the As-NPs-induced growth, photosynthesis inhibition, and oxidative damage in plants of both species. Wheat plants specifically accumulated soluble sugars, while both species accumulated proline. Under As-NPs stress, the ornithine pathway of proline biosynthesis was more important in maize than in wheat plants, while the glutamine pathway was dominant in wheat ones. The addition of Streptomyces spp. further induced the accumulation of proline and starch in both plant species. Overall, despite a different response to Streptomyces spp. under nontoxic conditions, the amendment of as-contaminated soil with Streptomyces spp. induced similar metabolic responses in the two tested species, which trigger stress recovery.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hamada AbdElgawad
- Faculty of Science, Department of Botany and Microbiology, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Salam S Alsharari
- Department of Biology, Jouf University, College of Science, Sakaka, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, Jouf University, College of Applied Medical Sciences, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, Jouf University, College of Applied Medical Sciences at Al-Quriat, Al-Quriat, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, University of Jeddah, College of Science and Arts at Khulis, Jeddah, Saudi Arabia
- Faculty of Science, Department of Botany, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Y Madany
- Faculty of Science, Department of Botany and Microbiology, Cairo University, Giza, Egypt
- Department of Biology, Taibah University, College of Science, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Walid Abuelsoud
- Faculty of Science, Department of Botany and Microbiology, Cairo University, Giza, Egypt
| |
Collapse
|
96
|
Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods 2021; 10:foods10112562. [PMID: 34828843 PMCID: PMC8622339 DOI: 10.3390/foods10112562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A novel rice germplasm sbeIIb/Lgc1 producing grains rich in resistant starch (RS) but low in glutelin has been developed through CRISPR/Cas9-mediated targeted mutagenesis for its potential benefits to patients with diabetes and kidney diseases. In this study, a hydrothermal approach known as heat-moisture treatment (HMT) was identified as a simple and effective method in reinforcing the nutritional benefits of sbeIIb/Lgc1 rice. As a result of HMT treatment at 120 °C for 2 h, significant reductions in in vitro digestibility and enhancements in RS content were observed in sbeIIb/Lgc1 rice flour when the rice flour mass fraction was 80% and 90%. The low-glutelin feature of sbeIIb/Lgc1 rice was not compromised by HMT. The potential impacts of HMT on a range of physicochemical properties of sbeIIb/Lgc1 rice flour have also been analyzed. HMT resulted in a darker color of rice flour, alteration in the semi-crystalline structure, an increase in gelatinization temperatures, and reductions in the pasting viscosities as the moisture content increased. This study provides vital data for the food industry to facilitate the application of this dual-functional rice flour as a health food ingredient.
Collapse
|
97
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
98
|
Selim S, Abuelsoud W, Al-Sanea MM, AbdElgawad H. Elevated CO 2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:235-245. [PMID: 34126591 DOI: 10.1016/j.plaphy.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 05/21/2023]
Abstract
Nano-sized arsenic oxide nanoparticles (As2O3-NP) limit crop growth and productivity. As2O3-NP represent a strong environmental hazard. The predicted rise in future atmospheric CO2 could boost plant growth both under optimal and heavy metal stress conditions. So far, the phytotoxicity of As2O3-NP and their interaction with eCO2 were not investigated at physiological and metabolic levels in crop species groups such as C3 and C4. We investigated how eCO2 level (620 ppm) alleviated soil As2O3-NP toxicity induced growth and mitigated oxidative damages through analysing photosynthetic parameters, primary (sugars and amino acids) and secondary (phenolics, flavonoids and anthocyanins) metabolism in C3 (barley) and C4 (maize) plants. Compared to maize, barley accumulated higher As2O3-NP level, which inhibited growth and induced oxidative damage particularly in barley (increased H2O2 and lipid peroxidation). Interestingly, eCO2 differently mitigated As2O3-NP toxicity on photosynthesis, which consequently improved sugar metabolism. Moreover, high carbon availability in eCO2 treated plants directed to produce osmo-protectant (soluble sugars and proline) and antioxidants (anthocyanins and tocopherols). In the line with increased proline and anthocyanins, their metabolism was also improved. Notable differences occurred between the two plant species. The ornithine pathway was preferred in maize while in barley proline accumulation was mainly through glutamate pathway. Moreover, under As2O3-NP stress, barley preferentially accumulated anthocyanins while maize accumulated total phenolics and flavonoids. This work contributes to improving our understanding of the differences in growth, physiological and biochemical responses of major crops of two functional photosynthetic groups (C3 and C4 plants) under ambient and elevated CO2 grown under As2O3-NP stress.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad M Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, 72341, Aljouf Province, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
99
|
Ida T, Crofts N, Miura S, Matsushima R, Fujita N. Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb. J Appl Glycosci (1999) 2021; 68:31-39. [PMID: 34429697 PMCID: PMC8367641 DOI: 10.5458/jag.jag.jag-2021_0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Starch biosynthetic enzymes form multi-protein complexes consisting of starch synthase (SS) I, SSIIa, and starch branching enzyme (BE) IIb, which synthesize amylopectin clusters. This study analyzed the starch properties in two double mutant rice lines lacking SSIIa and BEIIb, one of which expressed an inactive BEIIb protein. The ss2a be2b lines showed similar or greater seed weight than the be2b lines, and plant growth was not affected. The ss2a line showed increased short amylopectin chains resulting in a lower gelatinization temperature. Starch granule morphology and A-type crystallinity were similar between the ss2a line and the wild type, except for a mild chalky seed phenotype in the ss2a line. However, the starch phenotype of the ss2a be2b lines, which was similar to that of be2b but not ss2a, was characterized by increased long amylopectin chains, abnormal starch granules, and B-type crystallinity. The similarity in phenotype between the ss2a be2b and be2b lines may be attributed to the inability of the be2b mutants to generate short amylopectin branches, which serve as primers for SSIIa. Therefore, the presence or absence of SSIIa hardly affected the amylopectin structure under the be2b background. The amylose content was significantly higher in the ss2a be2b lines than in the be2b lines. Starch crystallinity was greater in ss2a be2b lines than in be2b lines, despite the fact that starch crystallinity is generally negatively correlated with amylose content. This suggests that the formation of a double helix between long amylopectin chains and amylose affects starch crystallinity in the ss2a be2b mutants.
Collapse
Affiliation(s)
- Tamami Ida
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Naoko Crofts
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Satoko Miura
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Ryo Matsushima
- 2 Institute of Plant Science and Resources, Okayama University
| | - Naoko Fujita
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| |
Collapse
|
100
|
Comprehensive evaluation of high temperature tolerance of six rice varieties during grain-filling period based on key starch physicochemical indexes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|