51
|
Prieto MA, López CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:305-350. [PMID: 31445598 DOI: 10.1016/bs.afnr.2019.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glucosinolates are a large group of plant secondary metabolites with nutritional effects and biologically active compounds. Glucosinolates are mainly found in cruciferous plants such as Brassicaceae family, including common edible plants such as broccoli (Brassica oleracea var. italica), cabbage (B. oleracea var. capitata f. alba), cauliflower (B. oleracea var. botrytis), rapeseed (Brassica napus), mustard (Brassica nigra), and horseradish (Armoracia rusticana). If cruciferous plants are consumed without processing, myrosinase enzyme will hydrolyze the glucosinolates to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. On the other hand, when cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. This review paper summarizes the glucosinolate molecular breakdown, their genetic aspects from biosynthesis to precursors, their bioavailability (assimilation, absorption, and elimination of these molecules), their sensory properties, identified healthy and adverse effects, as well as the impact of processing on their bioavailability.
Collapse
Affiliation(s)
- M A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Cecilia Jiménez López
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.
| |
Collapse
|
52
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
53
|
Nintemann SJ, Hunziker P, Andersen TG, Schulz A, Burow M, Halkier BA. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. PHYSIOLOGIA PLANTARUM 2018; 163:138-154. [PMID: 29194649 DOI: 10.1111/ppl.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates constitute the primary defense metabolites in Arabidopsis thaliana (Arabidopsis). Indole and aliphatic glucosinolates, biosynthesized from tryptophan and methionine, respectively, are known to serve distinct biological functions. Although all genes in the biosynthetic pathways are identified, and it is known where glucosinolates are stored, it has remained elusive where glucosinolates are produced at the cellular and tissue level. To understand how the spatial organization of the different glucosinolate biosynthetic pathways contributes to their distinct biological functions, we investigated the localization of enzymes of the pathways under constitutive conditions and, for indole glucosinolates, also under induced conditions, by analyzing the spatial distribution of several fluorophore-tagged enzymes at the whole plant and the cellular level. We show that key steps in the biosynthesis of the different types of glucosinolates are localized in distinct cells in separate as well as overlapping vascular tissues. The presence of glucosinolate biosynthetic enzymes in parenchyma cells of the vasculature may assign new defense-related functions to these cell types. The knowledge gained in this study is an important prerequisite for understanding the orchestration of chemical defenses from site of synthesis to site of storage and potential (re)mobilization upon attack.
Collapse
Affiliation(s)
- Sebastian J Nintemann
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Pascal Hunziker
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Tonni G Andersen
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Barbara A Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
54
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
55
|
Sørensen M, Neilson EHJ, Møller BL. Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. MOLECULAR PLANT 2018; 11:95-117. [PMID: 29275165 DOI: 10.1016/j.molp.2017.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Oximes (R1R2C=NOH) are nitrogen-containing chemical constituents that are formed in species representing all kingdoms of life. In plants, oximes are positioned at important metabolic bifurcation points between general and specialized metabolism. The majority of plant oximes are amino acid-derived metabolites formed by the action of a cytochrome P450 from the CYP79 family. Auxin, cyanogenic glucosides, glucosinolates, and a number of other bioactive specialized metabolites including volatiles are produced from oximes. Oximes with the E configuration have high biological activity compared with Z-oximes. Oximes or their derivatives have been demonstrated or proposed to play roles in growth regulation, plant defense, pollinator attraction, and plant communication with the surrounding environment. In addition, oxime-derived products may serve as quenchers of reactive oxygen species and storage compounds for reduced nitrogen that may be released on demand by the activation of endogenous turnover pathways. As highly bioactive molecules, chemically synthesized oximes have found versatile uses in many sectors of society, especially in the agro- and medical sectors. This review provides an update on the structural diversity, occurrence, and biosynthesis of oximes in plants and discusses their role as key players in plant general and specialized metabolism.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth H J Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
56
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Nintemann SJ, Vik D, Svozil J, Bak M, Baerenfaller K, Burow M, Halkier BA. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2028. [PMID: 29238354 PMCID: PMC5712850 DOI: 10.3389/fpls.2017.02028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches-split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens-to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.
Collapse
Affiliation(s)
- Sebastian J. Nintemann
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Vik
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Julia Svozil
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Bak
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | | | - Meike Burow
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara A. Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
58
|
Mondragón-Palomino M, John-Arputharaj A, Pallmann M, Dresselhaus T. Similarities between Reproductive and Immune Pistil Transcriptomes of Arabidopsis Species. PLANT PHYSIOLOGY 2017; 174:1559-1575. [PMID: 28483878 PMCID: PMC5490908 DOI: 10.1104/pp.17.00390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/07/2017] [Indexed: 05/20/2023]
Abstract
Independent lines of evidence suggest that members from ancient and polymorphic gene families such as defensins and receptor-like kinases mediate intercellular communication during both the immune response and reproduction. Here, we report a large-scale analysis to investigate the extent of overlap between these processes by comparing differentially expressed genes (DEGs) in the pistil transcriptomes of Arabidopsis thaliana and Arabidopsis halleri during self-pollination and interspecific pollination and during infection with Fusarium graminearum In both Arabidopsis species, the largest number of DEGs was identified in infected pistils, where genes encoding regulators of cell division and development were most frequently down-regulated. Comparison of DEGs between infection and various pollination conditions showed that up to 79% of down-regulated genes are shared between conditions and include especially defensin-like genes. Interspecific pollination of A.thaliana significantly up-regulated thionins and defensins. The significant overrepresentation of similar groups of DEGs in the transcriptomes of reproductive and immune responses of the pistil makes it a prime system in which to study the consequences of plant-pathogen interactions on fertility and the evolution of intercellular communication in pollination.
Collapse
Affiliation(s)
- Mariana Mondragón-Palomino
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Ajay John-Arputharaj
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Maria Pallmann
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
59
|
Xu D, Hanschen FS, Witzel K, Nintemann SJ, Nour-Eldin HH, Schreiner M, Halkier BA. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3205-3214. [PMID: 27702989 PMCID: PMC5853541 DOI: 10.1093/jxb/erw355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study the transport routes of plant-derived metabolites from the site of synthesis to the rhizosphere. Analysing the expression of GLS synthetic genes in the root indicate that the stele is the major site for the synthesis of aliphatic GLS, whereas indole GLS can be synthesized in both the stele and the cortex. Sampling root exudates from the wild type and the double mutant of the GLS importers GTR1 and GTR2 show that GTR-mediated retention of stele-synthesized GLS is a prerequisite for the exudation of both intact GLS and their catabolites into the rhizosphere. The expression of the GTRs inside the stele, combined with the previous observation that GLS are exported from biosynthetic cells, suggest three possible routes of stele-synthesized aliphatic GLS after their synthesis: (i) GTR-dependent import to cells symplastically connected to the cortical cells and the rhizosphere; (ii) GTR-independent transport via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals.
Collapse
Affiliation(s)
- Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Franziska S Hanschen
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, Grossbeeren, Germany
| | - Katja Witzel
- Department of Plant Health, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, Grossbeeren, Germany
| | - Sebastian J Nintemann
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Monika Schreiner
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, Grossbeeren, Germany
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
- Correspondence:
| |
Collapse
|
60
|
|
61
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
62
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
Liu F, Yang H, Wang L, Yu B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth Biol 2016; 5:1557-1565. [PMID: 27389525 DOI: 10.1021/acssynbio.6b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine β-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.
Collapse
Affiliation(s)
- Feixia Liu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Yang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Wang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
64
|
Katsarou D, Omirou M, Liadaki K, Tsikou D, Delis C, Garagounis C, Krokida A, Zambounis A, Papadopoulou KK. Glucosinolate biosynthesis in Eruca sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:452-466. [PMID: 27816826 DOI: 10.1016/j.plaphy.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.
Collapse
Affiliation(s)
- Dimitra Katsarou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Michalis Omirou
- Agricultural Research Institute, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus
| | - Kalliopi Liadaki
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Daniela Tsikou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Costas Delis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | | - Afrodite Krokida
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Antonis Zambounis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | |
Collapse
|
65
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
66
|
Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK. Analysis of transcriptional response to heat stress in Rhazya stricta. BMC PLANT BIOLOGY 2016; 16:252. [PMID: 27842501 PMCID: PMC5109689 DOI: 10.1186/s12870-016-0938-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. RESULTS Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. CONCLUSION This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.
Collapse
Affiliation(s)
- Abdullah Y. Obaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Xuan Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Z. Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
67
|
Sotelo T, Velasco P, Soengas P, Rodríguez VM, Cartea ME. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway. FRONTIERS IN PLANT SCIENCE 2016; 7:1012. [PMID: 27471510 PMCID: PMC4945695 DOI: 10.3389/fpls.2016.01012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/27/2016] [Indexed: 05/20/2023]
Abstract
Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales.
Collapse
Affiliation(s)
| | | | | | | | - María E. Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientíficasPontevedra, Spain
| |
Collapse
|
68
|
Yamaguchi T, Noge K, Asano Y. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. PLANT MOLECULAR BIOLOGY 2016; 91:229-239. [PMID: 26928800 DOI: 10.1007/s11103-016-0459-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The giant knotweed Fallopia sachalinensis (Polygonaceae) synthesizes phenylacetonitrile (PAN) from L-phenylalanine when infested by the Japanese beetle Popillia japonica or treated with methyl jasmonate (MeJA). Here we identified (E/Z)-phenylacetaldoxime (PAOx) as the biosynthetic precursor of PAN and identified a cytochrome P450 that catalysed the conversion of (E/Z)-PAOx to PAN. Incorporation of deuterium-labelled (E/Z)-PAOx into PAN emitted from the leaves of F. sachalinensis was detected using gas chromatography-mass spectrometry. Further, using liquid chromatography-tandem mass spectrometry, we detected the accumulation of (E/Z)-PAOx in MeJA-treated leaves. These results showed that (E/Z)-PAOx is the biosynthetic precursor of PAN. MeJA-induced mRNAs were analysed by differential expression analysis using a next-generation sequencer. Of the 74,329 contigs obtained from RNA-seq and de novo assembly, 252 contigs were induced by MeJA treatment. Full-length cDNAs encoding MeJA-induced cytochrome P450s CYP71AT96, CYP82AN1, CYP82D125 and CYP715A35 were cloned using 5'- and 3'-RACE and were expressed using a baculovirus expression system. Among these cytochrome P450s, CYP71AT96 catalysed the conversion of (E/Z)-PAOx to PAN in the presence of NADPH and a cytochrome P450 reductase. It also acted on (E/Z)-4-hydroxyphenylacetaldoxime and (E/Z)-indole-3-acetaldoxime. The broad substrate specificity of CYP71AT96 was similar to that of aldoxime metabolizing cytochrome P450s. Quantitative RT-PCR analysis showed that CYP71AT96 expression was highly induced because of treatment with MeJA as well as feeding by the Japanese beetle. These results indicate that CYP71AT96 likely contributes the herbivore-induced PAN biosynthesis in F. sachalinensis.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
69
|
Liu S, Bartnikas LM, Volko SM, Ausubel FM, Tang D. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:227. [PMID: 26973671 PMCID: PMC4774424 DOI: 10.3389/fpls.2016.00227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/10/2016] [Indexed: 05/06/2023]
Abstract
Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.
Collapse
Affiliation(s)
- Simu Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology – Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lisa M. Bartnikas
- Department of Molecular Biology, Massachusetts General Hospital, BostonMA, USA
| | - Sigrid M. Volko
- Department of Molecular Biology, Massachusetts General Hospital, BostonMA, USA
- Department of Genetics, Harvard Medical School, BostonMA, USA
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, BostonMA, USA
- Department of Genetics, Harvard Medical School, BostonMA, USA
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology – Chinese Academy of SciencesBeijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
70
|
Srivastava S, Sangwan RS, Tripathi S, Mishra B, Narnoliya LK, Misra LN, Sangwan NS. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation. PROTOPLASMA 2015; 252:1421-37. [PMID: 25687294 DOI: 10.1007/s00709-015-0766-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/20/2015] [Indexed: 05/16/2023]
Abstract
Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.
Collapse
MESH Headings
- Biotransformation
- Cloning, Molecular
- Computational Biology
- Cytochrome P-450 Enzyme System/chemistry
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Genetic
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Hydroxylation
- Indoleacetic Acids/pharmacology
- Isoenzymes
- Light
- Models, Molecular
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Medicinal
- Protein Conformation
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Structure-Activity Relationship
- Substrate Specificity
- Withania/drug effects
- Withania/enzymology
- Withania/genetics
- Withania/radiation effects
- Withanolides/metabolism
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Negev, Israel
| | - Rajender Singh Sangwan
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India.
- Centre of Innovative and Applied Bioprocessing (CIAB), (A National Institute under Department of Biotechnology, Government of India), Mohali, 1600 71, Punjab, India.
| | - Sandhya Tripathi
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - Bhawana Mishra
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - L K Narnoliya
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - L N Misra
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - Neelam S Sangwan
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India.
- Centre of Innovative and Applied Bioprocessing (CIAB), (A National Institute under Department of Biotechnology, Government of India), Mohali, 1600 71, Punjab, India.
| |
Collapse
|
71
|
Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0140491. [PMID: 26465156 PMCID: PMC4605783 DOI: 10.1371/journal.pone.0140491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/25/2015] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.
Collapse
|
72
|
Burow M, Atwell S, Francisco M, Kerwin RE, Halkier BA, Kliebenstein DJ. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis. MOLECULAR PLANT 2015; 8:1201-12. [PMID: 25758208 DOI: 10.1016/j.molp.2015.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 05/02/2023]
Abstract
Survival in changing and challenging environments requires an organism to efficiently obtain and use its resources. Due to their sessile nature, it is particularly critical for plants to dynamically optimize their metabolism. In plant primary metabolism, metabolic fine-tuning involves feed-back mechanisms whereby the output of a pathway controls its input to generate a precise and robust response to environmental changes. By contrast, few studies have addressed the potential for feed-back regulation of secondary metabolism. In Arabidopsis, accumulation of the defense compounds glucosinolates has previously been linked to genetic variation in the glucosinolate biosynthetic gene AOP2. AOP2 expression can increase the transcript levels of two known regulators (MYB28 and MYB29) of the pathway, suggesting that AOP2 plays a role in positive feed-back regulation controlling glucosinolate biosynthesis. We generated mutants affecting AOP2, MYB28/29, or both. Transcriptome analysis of these mutants identified a so far unrecognized link between AOP2 and jasmonic acid (JA) signaling independent of MYB28 and MYB29. Thus, AOP2 is part of a regulatory feed-back loop linking glucosinolate biosynthesis and JA signaling and thereby allows the glucosinolate pathway to influence JA sensitivity. The discovery of this regulatory feed-back loop provides insight into how plants optimize the use of resources for defensive metabolites.
Collapse
Affiliation(s)
- Meike Burow
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Susanna Atwell
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Marta Francisco
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA; Misión Biológica de Galicia, (MBG-CSIC), PO Box 28, 36080 Pontevedra, Spain
| | - Rachel E Kerwin
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Barbara A Halkier
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
73
|
Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. PLoS One 2015; 10:e0128808. [PMID: 26046541 PMCID: PMC4457800 DOI: 10.1371/journal.pone.0128808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species.
Collapse
|
74
|
Kim JI, Dolan WL, Anderson NA, Chapple C. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. THE PLANT CELL 2015; 27:1529-46. [PMID: 25944103 PMCID: PMC4456644 DOI: 10.1105/tpc.15.00127] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/05/2015] [Accepted: 04/20/2015] [Indexed: 05/17/2023]
Abstract
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Whitney L Dolan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nickolas A Anderson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
75
|
Augustine R, Majee M, Pradhan AK, Bisht NC. Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea. PLANTA 2015; 241:651-65. [PMID: 25410614 DOI: 10.1007/s00425-014-2205-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
The multiple BjuCYP83A1 genes formed as a result of polyploidy have retained cell-, tissue-, and condition-specific transcriptional sub-functionalization to control the complex aliphatic glucosinolates biosynthesis in the allotetraploid Brassica juncea. Glucosinolates along with their breakdown products are associated with diverse roles in plant metabolism, plant defense and animal nutrition. CYP83A1 is a key enzyme that oxidizes aliphatic aldoximes to aci-nitro compounds in the complex aliphatic glucosinolate biosynthetic pathway. In this study, we reported the isolation of four CYP83A1 genes named BjuCYP83A1-1, -2, -3, and -4 from allotetraploid Brassica juncea (AABB genome), an economically important oilseed crop of Brassica genus. The deduced BjuCYP83A1 proteins shared 85.7-88.4 % of sequence identity with A. thaliana AtCYP83A1 and 84.2-95.8 % among themselves. Phylogenetic and divergence analysis revealed that the four BjuCYP83A1 proteins are evolutionary conserved and have evolved via duplication and hybridization of two relatively simpler diploid Brassica genomes namely B. rapa (AA genome) and B. nigra (BB genome), and have retained high level of sequence conservation following allopolyploidization. Ectopic over-expression of BjuCYP83A1-1 in A. thaliana showed that it is involved mainly in the synthesis of C4 aliphatic glucosinolates. Detailed expression analysis using real-time qRT-PCR in B. juncea and PromoterBjuCYP83A1-GUS lines in A. thaliana confirmed that the four BjuCYP83A1 genes have retained ubiquitous, overlapping but distinct expression profiles in different tissue and cell types of B. juncea, and in response to various elicitor treatments and environmental conditions. Taken together, this study demonstrated that transcriptional sub-functionalization and coordinated roles of multiple BjuCYP83A1 genes control the biosynthesis of aliphatic glucosinolates in the allotetraploid B. juncea, and provide a framework for metabolic engineering of aliphatic glucosinolates in economically important Brassica species.
Collapse
|
76
|
Xue M, Long J, Jiang Q, Wang M, Chen S, Pang Q, He Y. Distinct patterns of the histone marks associated with recruitment of the methionine chain-elongation pathway from leucine biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:805-12. [PMID: 25428994 PMCID: PMC4321544 DOI: 10.1093/jxb/eru440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aliphatic glucosinolates (GLSs) are derived from chain-elongated methionine produced by an iterative three-step process, known to be evolutionarily recruited from leucine biosynthesis. The divergence of homologous genes between two pathways is mainly linked to the alterations in biochemical features. In this study, it was discovered that a distinct pattern of histone modifications is associated with and/or contributes to the divergence of the two pathways. In general, genes involved in leucine biosynthesis were robustly associated with H3k4me2 and H3K4me3. In contrast, despite the considerable abundances of H3K4me2 observed in some of genes involved in methionine chain elongation, H3K4me3 was completely missing. This H3K4m3-depleted pattern had no effect on gene transcription, whereas it seemingly co-evolved with the entire pathway of aliphatic GLS biosynthesis. The results reveal a novel association of the epigenetic marks with plant secondary metabolism, and may help to understand the recruitment of the methionine chain-elongation pathway from leucine biosynthesis.
Collapse
Affiliation(s)
- Ming Xue
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jingcheng Long
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qinlong Jiang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Minghui Wang
- Computational Biology Service Unit, Cornell University, Ithaca, NY14853, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Northeast Forestry University, Harbin, Heilongjiang 14850, China
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
77
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
78
|
Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. PLANT PHYSIOLOGY 2014; 166:1956-71. [PMID: 25315601 PMCID: PMC4256863 DOI: 10.1104/pp.114.245548] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/08/2014] [Indexed: 05/17/2023]
Abstract
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production.
Collapse
Affiliation(s)
- Lisa Sundin
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Jan Geerinck
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - René Höfer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Hoon Kim
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - John Ralph
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.S., R.V., J.G., G.G., R.H., W.B.); andDepartments of Biochemistry and Biological Systems Engineering and Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726 (H.K., J.R.)
| |
Collapse
|
79
|
Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1095-107. [PMID: 25335755 DOI: 10.1111/tpj.12711] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.
Collapse
Affiliation(s)
- Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Hofberger JA, Lyons E, Edger PP, Chris Pires J, Eric Schranz M. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. Genome Biol Evol 2014; 5:2155-73. [PMID: 24171911 PMCID: PMC3845643 DOI: 10.1093/gbe/evt162] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success.
Collapse
Affiliation(s)
- Johannes A Hofberger
- Biosystematics Group, Wageningen University & Research Center, Wageningen, Gelderland, The Netherlands
| | | | | | | | | |
Collapse
|
81
|
Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Appl Environ Microbiol 2014; 80:6828-36. [PMID: 25172862 DOI: 10.1128/aem.01623-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biosynthetic pathway for the production of phenylacetonitrile (PAN), which has a wide variety of uses in chemical and pharmaceutical industries, was constructed in Escherichia coli utilizing enzymes from the plant glucosinolate-biosynthetic and bacterial aldoxime-nitrile pathways. First, the single-step reaction to produce E,Z-phenylacetaldoxime (PAOx) from l-Phe was constructed in E. coli by introducing the genes encoding cytochrome P450 (CYP) 79A2 and CYP reductase from Arabidopsis thaliana, yielding the E,Z-PAOx-producing transformant. Second, this step was expanded to the production of PAN by further introducing the aldoxime dehydratase (Oxd) gene from Bacillus sp. strain OxB-1, yielding the PAN-producing transformant. The E,Z-PAOx-producing transformant also produced phenethyl alcohol and PAN as by-products, which were suggested to be the metabolites of E,Z-PAOx produced by E. coli enzymes, while the PAN-producing transformant accumulated only PAN in the culture broth, which suggested that the CYP79A2 reaction (the conversion of l-Phe to E,Z-PAOx) was a potential bottleneck in the PAN production pathway. Expression of active CYP79A2 and concentration of biomass were improved by the combination of the autoinduction method, coexpression of groE, encoding the heat shock protein GroEL/GroES, N-terminal truncation of CYP79A2, and optimization of the culture conditions, yielding a >60-fold concentration of E,Z-PAOx (up to 2.9 mM). The concentration of PAN was 4.9 mM under the optimized conditions. These achievements show the potential of this bioprocess to produce nitriles and nitrile derivatives in the absence of toxic chemicals.
Collapse
|
82
|
Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfeilmeier S, König C, Schwab W, Eichmann R, Hückelhoven R. CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. THE NEW PHYTOLOGIST 2014; 202:1310-1319. [PMID: 24602105 DOI: 10.1111/nph.12759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/07/2014] [Indexed: 05/08/2023]
Abstract
Aliphatic glucosinolates function in the chemical defense of Capparales. The cytochrome P450 83A1 monooxygenase (CYP83A1) catalyzes the initial conversion of methionine-derived aldoximes to thiohydroximates in the biosynthesis of glucosinolates, and thus cyp83a1 mutants have reduced levels of aliphatic glucosinolates. Loss of CYP83A1 function leads to dramatically reduced parasitic growth of the biotrophic powdery mildew fungus Erysiphe cruciferarum on Arabidopsis thaliana. The cyp83a1 mutants support less well the germination and appressorium formation of E. cruciferarum on the leaf surface and post-penetration conidiophore formation by the fungus. By contrast, a myb28-1 myb29-1 double mutant, which totally lacks aliphatic glucosinolates, shows a wild-type level of susceptibility to E. cruciferarum. The cyp83a1 mutants also lack very-long-chain aldehydes on their leaf surface. Such aldehydes support appressorium formation by E. cruciferarum in vitro. In addition, when chemically complemented with the C26 aldehyde n-hexacosanal, cyp83a1 mutants can again support appressorium formation. The mutants further accumulate 5-methylthiopentanaldoxime, the potentially toxic substrate of CYP83A1. Loss of powdery mildew susceptibility by cyp83a1 may be explained by a reduced supply of the fungus with inductive signals from the host and an accumulation of potentially fungitoxic metabolites.
Collapse
Affiliation(s)
- Corina Weis
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| | - Ulrich Hildebrandt
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Botanik II, Universität Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Thomas Hoffmann
- Biotechnologie der Naturstoffe, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Christoph Hemetsberger
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| | - Sebastian Pfeilmeier
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| | - Constanze König
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnologie der Naturstoffe, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ruth Eichmann
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany
| |
Collapse
|
83
|
Bednarek P. Recognition at the leaf surface. THE NEW PHYTOLOGIST 2014; 202:1098-1100. [PMID: 24806944 DOI: 10.1111/nph.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
84
|
Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:814-28. [PMID: 24431192 DOI: 10.1093/mp/ssu004] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of I3M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany
| | | |
Collapse
|
85
|
Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 2014; 9:e91428. [PMID: 24614913 PMCID: PMC3948865 DOI: 10.1371/journal.pone.0091428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Víctor M. Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
86
|
Kim CK, Kim JA, Choi JW, Jeong IS, Moon YS, Park DS, Seol YJ, Kim YK, Kim YH, Kim YK. A Multi-Layered Screening Method to Identify Plant Regulatory Genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:293-303. [PMID: 26355777 DOI: 10.1109/tcbb.2013.2296308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We used a seven-step process to identify genes involved in glucosinolate biosynthesis and metabolism in the Chinese cabbage (Brassica rapa). We constructed an annotated data set with 34,570 unigenes from B. rapa and predicted 11,526 glucosinolate-related candidate genes using expression profiles generated across nine stages of development on a 47k-gene microarray. Using our multi-layered screening method, we screened 392 transcription factors, 843 pathway genes, and 4,162 ortholog genes associated with glucosinolate-related biosynthesis. Finally, we identified five genes by comparison of the pathway-network genes including the transcription-factor genes and the ortholog-ontology genes. The five genes were anchored to the chromosomes of B. rapa to characterize their genetic-map positions, and phylogenetic reconstruction with homologous genes was performed. These anchored genes were verified by reverse-transcription polymerase chain reaction. While the five genes identified by our multi-layered screen require further characterization and validation, our study demonstrates the power of multi-layered screening after initial identification of genes on microarrays.
Collapse
|
87
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
88
|
Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C. Engineering complex metabolic pathways in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:187-223. [PMID: 24579989 DOI: 10.1146/annurev-arplant-050213-035825] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolic engineering can be used to modulate endogenous metabolic pathways in plants or introduce new metabolic capabilities in order to increase the production of a desirable compound or reduce the accumulation of an undesirable one. In practice, there are several major challenges that need to be overcome, such as gaining enough knowledge about the endogenous pathways to understand the best intervention points, identifying and sourcing the most suitable metabolic genes, expressing those genes in such a way as to produce a functional enzyme in a heterologous background, and, finally, achieving the accumulation of target compounds without harming the host plant. This article discusses the strategies that have been developed to engineer complex metabolic pathways in plants, focusing on recent technological developments that allow the most significant bottlenecks to be overcome.
Collapse
Affiliation(s)
- Gemma Farré
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Agrotecnio Center, 25198 Lleida, Spain;
| | | | | | | | | | | |
Collapse
|
89
|
Mathur V, Tytgat TOG, Hordijk CA, Harhangi HR, Jansen JJ, Reddy AS, Harvey JA, Vet LEM, van Dam NM. An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol Ecol 2013; 22:6179-96. [PMID: 24219759 DOI: 10.1111/mec.12555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.
Collapse
Affiliation(s)
- Vartika Mathur
- Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 11002, India
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Bourosh PN, Coropceanu EB, Ciloci AA, Clapco SF, Bologa OA, Bivol CM, Tiurina JP, Bulhac I. New Co(III) dioximates with hexafluorophosphate ion as stimulators of the proteolytic activity of the micromycete Fusarium gibbosum CNMN FD 12. RUSS J COORD CHEM+ 2013. [DOI: 10.1134/s107032841311002x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Weis C, Pfeilmeier S, Glawischnig E, Isono E, Pachl F, Hahne H, Kuster B, Eichmann R, Hückelhoven R. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. MOLECULAR PLANT PATHOLOGY 2013; 14:791-802. [PMID: 23782494 PMCID: PMC6638788 DOI: 10.1111/mpp.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thaliana BI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H(+) -ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
Collapse
Affiliation(s)
- Corina Weis
- Lehrstuhl für Phytopathologie, Technische Universität München, 85354 Freising, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Li Y, Sawada Y, Hirai A, Sato M, Kuwahara A, Yan X, Hirai MY. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. PLANT & CELL PHYSIOLOGY 2013; 54:1335-44. [PMID: 23792303 DOI: 10.1093/pcp/pct085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis transcription factors, MYB28, MYB29 and MYB76, positively regulate aliphatic glucosinolate (AGSL) biosynthesis. Mutual transcriptional regulation among these MYB genes makes it difficult to elucidate their individual function simply by analyzing knock-out mutants or ectopically overexpressing lines of these genes. In this study, we constructed transgenic lines expressing each MYB gene driven by its own promoter in the myb28myb29 background, where the expression of the endogenous MYB28, MYB29 and MYB76 was repressed with no AGSL accumulation. In leaves, transgenic MYB28 expression activated AGSL biosynthetic genes and restored accumulation of AGSLs with short side chains. Transgenic MYB29 expression activated the same biosynthetic pathway, but induction of the genes involved in side chain elongation was weaker than that by MYB28, resulting in a weaker recovery of AGSLs. Neither MYB28 nor MYB29 recovered long-chain AGSL accumulation. MYB76 was considered to require both MYB28 and MYB29 for its normal level of expression in leaves, and could not activate AGSL biosynthesis on its own. Interestingly, the accumulation in seeds of long- and short-chain AGSLs was restored by transgenic expression of MYB28 and MYB76, respectively. A sulfur stress experiment indicated that MYB28 expression was induced by sulfur deficiency, while the expression levels of MYB29 and MYB76 were positively correlated with sulfur concentration. This study illustrated how the individual MYBs work in regulating AGSL biosynthesis when expressed alone under normal transcriptional regulation.
Collapse
Affiliation(s)
- Yimeng Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | | | |
Collapse
|
93
|
Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One 2013; 8:e53541. [PMID: 23308250 PMCID: PMC3538544 DOI: 10.1371/journal.pone.0053541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/29/2012] [Indexed: 12/30/2022] Open
Abstract
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.
Collapse
Affiliation(s)
- Zhongwei Zou
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiko Ishida
- NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Feng Li
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | | | - Sho Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
94
|
Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flügge UI. The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol. THE PLANT CELL 2012; 24:4187-204. [PMID: 23085732 PMCID: PMC3517245 DOI: 10.1105/tpc.112.101964] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/03/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Melanie Geier
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Natallia Ashykhmina
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Wulfert
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Krueger
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sarah G. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ulf-Ingo Flügge
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
95
|
Prasad KVSK, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, Windsor AJ, Clauss MJ, Manzaneda AJ, Naqvi I, Reichelt M, Gershenzon J, Rupasinghe SG, Schuler MA, Mitchell-Olds T. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 2012; 337:1081-4. [PMID: 22936775 DOI: 10.1126/science.1221636] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Collapse
Affiliation(s)
- Kasavajhala V S K Prasad
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 2012; 168:1694-717. [PMID: 22983743 DOI: 10.1007/s12010-012-9890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.
Collapse
|
97
|
Misra A, Chanotiya CS, Gupta MM, Dwivedi UN, Shasany AK. Characterization of cytochrome P450 monooxygenases isolated from trichome enriched fraction of Artemisia annua L. leaf. Gene 2012; 510:193-201. [PMID: 22986332 DOI: 10.1016/j.gene.2012.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/02/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
CYPs have major role in the biosynthesis and modification of secondary metabolites. Predicting the possible involvement of CYPs in secondary metabolism, 20 partial sequences were amplified from the cDNA of trichome enriched tissue of Artemisia annua. Seven CYPs were converted to full length and assigned to different families based on sequence homology. These were co-expressed with CPR in Saccharomyces cerevisiae and microsome fractions were assayed for conversion of sesquiterpenes, phenols and fatty acid substrates. CIM_CYP02(c73) and CIM_CYP05(c81) converted trans-cinnamic acid to p-coumaric acid; and capric acid, lauric acid to their hydroxylated products, respectively. Higher expression of CIM_CYP71AV1, CIM_CYP03(c72a), CIM_CYP06(c72b), CIM_CYP02(c73) and CIM_CYP04(c83) was observed in the mature leaf, whereas expression of CIM_CYP05(c81) was more in the seedling. CIM_CYP71AV1, CIM_CYP02(c73) and CIM_CYP04(c83) expressed more in the flower bud compared to the leaf, with minor expression in stem. All CYPs' expression increased progressively with time after wounding except for CIM_CYP07(c92). These results relate involvement of CIM_CYP02(c73) to phenyl-propanoid metabolism in the leaf and CIM_CYP05(c81) to fatty acid metabolism in the seedling. Expression of CIM_CYP71AV1 and CIM_CYP02(c73) significantly increased when sprayed with trans-cinnamic acid indicating a relationship between phenylpropanoid and artemisinic acid pathways.
Collapse
Affiliation(s)
- Amita Misra
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR), P.O. CIMAP, Lucknow-226015, U.P., India
| | | | | | | | | |
Collapse
|
98
|
Kliebenstein DJ, Osbourn A. Making new molecules - evolution of pathways for novel metabolites in plants. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:415-23. [PMID: 22683039 DOI: 10.1016/j.pbi.2012.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 05/22/2023]
Abstract
Plants have adapted to their environments by diversifying in various ways. This diversification is reflected at the phytochemical level in their production of numerous specialized secondary metabolites that provide protection against biotic and abiotic stresses. Plant speciation is therefore intimately linked to metabolic diversification, yet we do not currently have a deep understanding of how new metabolic pathways evolve. Recent evidence indicates that genes for individual secondary metabolic pathways can be either distributed throughout the genome or clustered, but the relative frequencies of these two pathway organizations remain to be established. While it is possible that clustering is a feature of pathways that have evolved in recent evolutionary time, the answer to this and how dispersed and clustered pathways may be related remain to be addressed. Recent advances enabled by genomics and systems biology are beginning to yield the first insights into network evolution in plant metabolism. This review focuses on recent progress in understanding the evolution of clustered and dispersed pathways for new secondary metabolites in plants.
Collapse
|
99
|
Brenner WG, Schmülling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC PLANT BIOLOGY 2012; 12:112. [PMID: 22824128 PMCID: PMC3519560 DOI: 10.1186/1471-2229-12-112] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 06/13/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND The plant hormone cytokinin regulates growth and development of roots and shoots in opposite ways. In shoots it is a positive growth regulator whereas it inhibits growth in roots. It may be assumed that organ-specific regulation of gene expression is involved in these differential activities, but little is known about it. To get more insight into the transcriptional events triggered by cytokinin in roots and shoots, we studied genome-wide gene expression in cytokinin-treated and cytokinin-deficient roots and shoots. RESULTS It was found by principal component analysis of the transcriptomic data that the immediate-early response to a cytokinin stimulus differs from the later response, and that the transcriptome of cytokinin-deficient plants is different from both the early and the late cytokinin induction response. A higher cytokinin status in the roots activated the expression of numerous genes normally expressed predominantly in the shoot, while a lower cytokinin status in the shoot reduced the expression of genes normally more active in the shoot to a more root-like level. This shift predominantly affected nuclear genes encoding plastid proteins. An organ-specific regulation was assigned to a number of genes previously known to react to a cytokinin signal, including root-specificity for the cytokinin hydroxylase gene CYP735A2 and shoot specificity for the cell cycle regulator gene CDKA;1. Numerous cytokinin-regulated genes were newly discovered or confirmed, including the meristem regulator genes SHEPHERD and CLAVATA1, auxin-related genes (IAA7, IAA13, AXR1, PIN2, PID), several genes involved in brassinosteroid (CYP710A1, CYP710A2, DIM/DWF) and flavonol (MYB12, CHS, FLS1) synthesis, various transporter genes (e.g. HKT1), numerous members of the AP2/ERF transcription factor gene family, genes involved in light signalling (PhyA, COP1, SPA1), and more than 80 ribosomal genes. However, contrasting with the fundamental difference of the growth response of roots and shoots to the hormone, the vast majority of the cytokinin-regulated transcriptome showed similar response patterns in roots and shoots. CONCLUSIONS The shift of the root and shoot transcriptomes towards the respective other organ depending on the cytokinin status indicated that the hormone determines part of the organ-specific transcriptome pattern independent of morphological organ identity. Numerous novel cytokinin-regulated genes were discovered which had escaped earlier discovery, most probably due to unspecific sampling. These offer novel insights into the diverse activities of cytokinin, including crosstalk with other hormones and different environmental cues, identify the AP2/ERF class of transcriptions factors as particularly cytokinin sensitive, and also suggest translational control of cytokinin-induced changes.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| |
Collapse
|
100
|
Voelckel C, Gruenheit N, Biggs P, Deusch O, Lockhart P. Chips and tags suggest plant-environment interactions differ for two alpine Pachycladon species. BMC Genomics 2012; 13:322. [PMID: 22812500 PMCID: PMC3460751 DOI: 10.1186/1471-2164-13-322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression profiling has been proposed as a means for screening non-model organisms in their natural environments to identify genes potentially important in adaptive diversification. Tag profiling using high throughput sequencing is a relatively low cost means of expression profiling with deep coverage. However the extent to which very short cDNA sequences can be effectively used in screening for candidate genes is unclear. Here we investigate this question using an evolutionarily distant as well as a closely related transcriptome for referencing tags. We do this by comparing differentially expressed genes and processes between two closely related allopolyploid species of Pachycladon which have distinct altitudinal preferences in the New Zealand Southern Alps. We validate biological inferences against earlier microarray analyses. RESULTS Statistical and gene annotation enrichment analyses of tag profiles identified more differentially expressed genes of potential adaptive significance than previous analyses of array-based expression profiles. These include genes involved in glucosinolate metabolism, flowering time, and response to cold, desiccation, fungi and oxidation. In addition, despite the short length of 20mer tags, we were able to infer patterns of homeologous gene expression for 700 genes in our reference library of 7,128 full-length Pachycladon ESTs. We also demonstrate that there is significant information loss when mapping tags to the non-conspecific reference transcriptome of A. thaliana as opposed to P. fastigiatum ESTs but also describe mapping strategies by which the larger collection of A. thaliana ESTs can be used as a reference. CONCLUSION When coupled with a reference transcriptome generated using RNA-seq, tag sequencing offers a promising approach for screening natural populations and identifying candidate genes of potential adaptive significance. We identify computational issues important for the successful application of tag profiling in a non-model allopolyploid plant species.
Collapse
Affiliation(s)
- Claudia Voelckel
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|