51
|
Abstract
Ornamental plants use unique adaptive mechanisms to overcome the negative effects of drought stress. A large number of species grown in the Mediterranean area offer the opportunity to select some for ornamental purposes with the ability to adapt to drought conditions. The plants tolerant to drought stress show different adaptation mechanisms to overcome drought stress, including morphological, physiological, and biochemical modifications. These responses include increasing root/shoot ratio, growth reduction, leaf anatomy change, and reduction of leaf size and total leaf area to limit water loss and guarantee photosynthesis. In this review, the effect of drought stress on photosynthesis and chlorophyll a fluorescence is discussed. Recent information on the mechanisms of signal transduction and the development of drought tolerance in ornamental plants is provided. Finally, drought-induced oxidative stress is analyzed and discussed. The purpose of this review is to deepen our knowledge of how drought may modify the morphological and physiological characteristics of plants and reduce their aesthetic value—that is, the key parameter of assessment of ornamental plants.
Collapse
|
52
|
Li Y, Sun W, Liu F, Cheng J, Zhang X, Zhang H, Zhao Y. Methods for grafting Arabidopsis thaliana and Eutrema salsugineum. PLANT METHODS 2019; 15:93. [PMID: 31417609 PMCID: PMC6691545 DOI: 10.1186/s13007-019-0477-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/02/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grafting, an ancient agronomic technique, is an artificial mode of asexual reproduction in plants. Recently, grafting research has gradually shifted from modifying agronomic traits to the study of molecular mechanism. Grafting is an excellent tool to study long-range signaling processes in plants. And the grafting between species will help elucidate the molecular mechanisms underlying contrasting differences between different species. Arabidopsis thaliana is a salt-sensitive model glycophyte and Eutrema salsugineum (previously Thellungiella salsuginea, salt cress) is a salt-tolerant model halophyte. Successful grafting of these two model plants will help further study the physiological and molecular mechanisms underlying salt tolerance in plants. The aim of this study was to demonstrate two sterile micro-grafting methods for Arabidopsis and salt cress. RESULTS We developed the methods for sterile grafting between A. thaliana and E. salsugineum; this is the first report on inter-generic grafting between Arabidopsis and Eutrema. The method involves cut-in grafting under sterile conditions. The grafted plant part was placed in half strength Murashige and Skoog medium with 1% agar and 1% sugar, and then cultured vertically with 22 °C/18 °C short-day/night cycles. The plants were then transferred to half strength Hoagland nutrient solution for hydroponics. The reported method is simple and easy to operate. Self-grafted Arabidopsis-Arabidopsis and Eutrema-Eutrema plants were used as controls, which were obtained with an improved hypocotyl-cutting grafting method. Ion contents in grafted plants were detected by inductively coupled plasma optical emission spectroscopy. The results showed that the ion content in salt cress and Arabidopsis changed to different degrees after grafting. CONCLUSIONS The inter-species grafting technique described here makes it possible to study hybrid plants between Arabidopsis and Eutrema and will contribute to further understanding of long-distance communications in plants. This technique also provides a reference for improving plant varieties using grafting, such as gardening plants, as well as fruit and vegetable crops.
Collapse
Affiliation(s)
- Yan Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Fulin Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Jin Cheng
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Xiaojie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014 Shandong China
| |
Collapse
|
53
|
Flowers TJ, Glenn EP, Volkov V. Could vesicular transport of Na+ and Cl- be a feature of salt tolerance in halophytes? ANNALS OF BOTANY 2019; 123:1-18. [PMID: 30247507 PMCID: PMC6344095 DOI: 10.1093/aob/mcy164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
Background Halophytes tolerate external salt concentrations of 200 mm and more, accumulating salt concentrations of 500 mm and more in their shoots; some, recretohalophytes, excrete salt through glands on their leaves. Ions are accumulated in central vacuoles, but the pathway taken by these ions from the outside of the roots to the vacuoles inside the cells is poorly understood. Do the ions cross membranes through ion channels and transporters or move in vesicles, or both? Vesicular transport from the plasma membrane to the vacuole would explain how halophytes avoid the toxicity of high salt concentrations on metabolism. There is also a role for vesicles in the export of ions via salt glands. Scope and Methods We have collected data on the fluxes of sodium and chloride ions in halophytes, based on the weight of the transporting organs and on the membrane area across which the flux occurs; the latter range from 17 nmol m-2 s-1 to 4.2 μmol m-2 s-1 and values up to 1 μmol m-2 s-1 need to be consistent with whatever transport system is in operation. We have summarized the sizes and rates of turnover of vesicles in plants, where clathrin-independent vesicles are 100 nm or more in diameter and can merge with the plasma membrane at rates of 100 s-1. We gathered evidence for vesicular transport of ions in halophytes and evaluated whether vesicular transport could account for the observable fluxes. Conclusions There is strong evidence in favour of vesicular transport in plants and circumstantial evidence in favour of the movement of ions in vesicles. Estimated rates of vesicle turnover could account for ion transport at the lower reported fluxes (around 20 nmol m-2 s-1), but the higher fluxes may require vesicles of the order of 1 μm or more in diameter. The very high fluxes reported in some salt glands might be an artefact of the way they were measured.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Edward P Glenn
- Environmental Research Laboratory of the University of Arizona, 1601 East, Airport Drive, Tucson, AZ, USA
| | - Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan University, London N7, UK
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
54
|
Zhang H, Li Y, Zhu JK. Developing naturally stress-resistant crops for a sustainable agriculture. NATURE PLANTS 2018; 4:989-996. [PMID: 30478360 DOI: 10.1038/s41477-018-0309-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
A major problem facing humanity is that our numbers are growing but the availability of land and fresh water for agriculture is not. This problem is being exacerbated by climate change-induced increases in drought, and other abiotic stresses. Stress-resistant crops are needed to ensure yield stability under stress conditions and to minimize the environmental impacts of crop production. Evolution has created thousands of species of naturally stress-resistant plants (NSRPs), some of which have already been subjected to human domestication and are considered minor crops. Broader cultivation of these minor crops will diversify plant agriculture and the human diet, and will therefore help improve global food security and human health. More research should be directed toward understanding and utilizing NSRPs. Technologies are now available that will enable researchers to rapidly improve the genetics of NSRPs, with the goal of increasing NSRP productivity while retaining NSRP stress resistance and nutritional value.
Collapse
Affiliation(s)
- Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yuanyuan Li
- Key Laboratory of Plant Stress Research, Shandong Normal University, Jinan, Shandong, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
55
|
Maggio A, Bressan RA, Zhao Y, Park J, Yun DJ. It's Hard to Avoid Avoidance: Uncoupling the Evolutionary Connection between Plant Growth, Productivity and Stress "Tolerance". Int J Mol Sci 2018; 19:E3671. [PMID: 30463352 PMCID: PMC6274854 DOI: 10.3390/ijms19113671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
In the last 100 years, agricultural developments have favoured selection for highly productive crops, a fact that has been commonly associated with loss of key traits for environmental stress tolerance. We argue here that this is not exactly the case. We reason that high yield under near optimal environments came along with hypersensitization of plant stress perception and consequently early activation of stress avoidance mechanisms, such as slow growth, which were originally needed for survival over long evolutionary time periods. Therefore, mechanisms employed by plants to cope with a stressful environment during evolution were overwhelmingly geared to avoid detrimental effects so as to ensure survival and that plant stress "tolerance" is fundamentally and evolutionarily based on "avoidance" of injury and death which may be referred to as evolutionary avoidance (EVOL-Avoidance). As a consequence, slow growth results from being exposed to stress because genes and genetic programs to adjust growth rates to external circumstances have evolved as a survival but not productivity strategy that has allowed extant plants to avoid extinction. To improve productivity under moderate stressful conditions, the evolution-oriented plant stress response circuits must be changed from a survival mode to a continued productivity mode or to avoid the evolutionary avoidance response, as it were. This may be referred to as Agricultural (AGRI-Avoidance). Clearly, highly productive crops have kept the slow, reduced growth response to stress that they evolved to ensure survival. Breeding programs and genetic engineering have not succeeded to genetically remove these responses because they are polygenic and redundantly programmed. From the beginning of modern plant breeding, we have not fully appreciated that our crop plants react overly-cautiously to stress conditions. They over-reduce growth to be able to survive stresses for a period of time much longer than a cropping season. If we are able to remove this polygenic redundant survival safety net we may improve yield in moderately stressful environments, yet we will face the requirement to replace it with either an emergency slow or no growth (dormancy) response to extreme stress or use resource management to rescue crops under extreme stress (or both).
Collapse
Affiliation(s)
- Albino Maggio
- Department of Agricultural Science, University of Napoli Federico II, 80055 Portici, NA, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junghoon Park
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
56
|
Hajiboland R, Bahrami-Rad S, Akhani H, Poschenrieder C. Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2018; 131:1029-1046. [PMID: 29967980 DOI: 10.1007/s10265-018-1053-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Salt tolerance mechanisms were studied in three Irano-Turanian halophytic species from the Brassicaceae (Lepidium latifolium, L. perfoliatum and Schrenkiella parvula) and compared with the glycophyte Arabidopsis thaliana. According to seed germination under salt stress, L. perfoliatum was the most tolerant species, while L. latifolium and S. parvula were rather susceptible. Contrastingly, based on biomass production L. perfoliatum was more salt sensitive than the other two species. In S. parvula biomass was increased up to 2.8-fold by 100 mM NaCl; no significant growth reduction was observed even when exposed to 400 mM NaCl. Stable activities of antioxidative defense enzymes, nil or negligible accumulation of superoxide anion and hydrogen peroxide, as well as stable membrane integrity in the three halophytes revealed that no oxidative stress occurred in these tolerant species under salt stress. Proline levels increased in response to salt treatment. However, it contributed only by 0.3‒2.0% to the total osmolyte concentration in the three halophytes (at 400 mM NaCl) and even less (0.04%) in the glycophyte, A. thaliana (at 100 mM NaCl). Soluble sugars in all three halophytes and free amino acids pool in S. parvula decreased under salt treatment in contrast to the glycophyte, A. thaliana. The contribution of organic osmolytes to the total osmolyte pool increased by salt treatment in the roots, while decreased in halophyte and glycophyte, A. thaliana leaves. Interestingly, this reduction was compensated by a higher relative contribution of K in the leaves of the halophytes, but of Na in A. thaliana. Taken together, biomass data and biochemical indicators show that S. parvula is more salt tolerant than the two Lepidium species. Our data indicate that L. latifolium, as a perennial halophyte with a large biomass, is highly suitable for both restoration of saline habitats and saline agriculture.
Collapse
Affiliation(s)
- Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Sara Bahrami-Rad
- Department of Plant Science, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Hossein Akhani
- Halophytes and C4 Plants Research Laboratory, Department of Plant Science, School of Biology, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universidad Autónoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
57
|
Hmidi D, Abdelly C, Athar HUR, Ashraf M, Messedi D. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1017-1033. [PMID: 30425420 PMCID: PMC6214428 DOI: 10.1007/s12298-018-0601-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 05/08/2023]
Abstract
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | | | - Dorsaf Messedi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
58
|
Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S. Halophytism: What Have We Learnt From Arabidopsis thaliana Relative Model Systems? PLANT PHYSIOLOGY 2018; 178:972-988. [PMID: 30237204 PMCID: PMC6236594 DOI: 10.1104/pp.18.00863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 05/06/2023]
Abstract
Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Gil Eshel
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John M Cheeseman
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
59
|
Liu C, Sun Q, Zhao L, Li Z, Peng Z, Zhang J. Heterologous Expression of the Transcription Factor EsNAC1 in Arabidopsis Enhances Abiotic Stress Resistance and Retards Growth by Regulating the Expression of Different Target Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1495. [PMID: 30374363 PMCID: PMC6196249 DOI: 10.3389/fpls.2018.01495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
Heterologous expression of a transcription factor (TF) gene in a related species is a useful method for crop breeding and the identification of gene function. The differences in phenotype and target gene expression between HE lines (with the heterologous expression of an ortholog) and OX lines (with an overexpressed native gene) must be understood. EsNAC1, encoding a NAC protein and the ortholog of RD26 in Arabidopsis, was cloned from Eutrema salsugineum and introduced into Arabidopsis. The heterologous expression of EsNAC1 retarded the vegetative growth of Arabidopsis, and the transgenic plants (HE lines) showed much greater resistance to salt and oxidative stress than the wild type, Col-0. The HE lines accumulated 2.8-fold (8-h light) of starch, 1.42-fold of Chlorophyll a and 1.31-fold of Chlorophyll b than Col-0 during the light period, with obvious differences compared to the RD26OX line. A genome-wide ChIP (chromatin immunoprecipitation analysis)-on-chip assay revealed that EsNAC1 targeted promoters of different genes compared to RD26. In HE lines, EsNAC1 could specifically upregulate the expression level of TF genes NAC DOMAIN CONTAINING PROTEIN 62 (ANAC062), INTEGRASE-TYPE DNA-BINDING PROTEIN (TINY2), and MYB HYPOCOTYL ELONGATION-RELATED (MYBH) to show more effective abiotic stress resistance than RD26OX lines. Moreover, DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1), TRYPTOPHAN BIOSYNTHESIS 2 (TRP2) or GALACTINOL SYNTHASE 2 (GOLS2), was also specifically regulated by EsNAC1 to retard the vegetative growth of HE lines, but not the brassinosteroid singling pathway in RD26OX lines. These differences in phenotypes and metabolism between the HE lines and the RD26OX line implied that the differential features could be produced from the diversity of target genes in the transgenic plants when the ortholog was introduced.
Collapse
Affiliation(s)
| | | | | | | | | | - Juren Zhang
- School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
60
|
Ali A, Khan IU, Jan M, Khan HA, Hussain S, Nisar M, Chung WS, Yun DJ. The High-Affinity Potassium Transporter EpHKT1;2 From the Extremophile Eutrema parvula Mediates Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1108. [PMID: 30105045 PMCID: PMC6077265 DOI: 10.3389/fpls.2018.01108] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/09/2018] [Indexed: 05/23/2023]
Abstract
To survive salt stress, plants must maintain a balance between sodium and potassium ions. High-affinity potassium transporters (HKTs) play a key role in reducing Na+ toxicity through K+ uptake. Eutrema parvula (formerly known as Thellungiella parvula), a halophyte closely related to Arabidopsis, has two HKT1 genes that encode EpHKT1;1 and EpHKT1;2. In response to high salinity, the EpHKT1;2 transcript level increased rapidly; by contrast, the EpHKT1;1 transcript increased more slowly in response to salt treatment. Yeast cells expressing EpHKT1;2 were able to tolerate high concentrations of NaCl, whereas EpHKT1;1-expressing yeast cells remained sensitive to NaCl. Amino acid sequence alignment with other plant HKTs showed that EpHKT1;1 contains an asparagine residue (Asn-213) in the second pore-loop domain, but EpHKT1;2 contains an aspartic acid residue (Asp-205) at the same position. Yeast cells expressing EpHKT1;1, in which Asn-213 was substituted with Asp, were able to tolerate high concentrations of NaCl. In contrast, substitution of Asp-205 by Asn in EpHKT1;2 did not enhance salt tolerance and rather resulted in a similar function to that of AtHKT1 (Na+ influx but no K+ influx), indicating that the presence of Asn or Asp determines the mode of cation selectivity of the HKT1-type transporters. Moreover, Arabidopsis plants (Col-gl) overexpressing EpHKT1;2 showed significantly higher tolerance to salt stress and accumulated less Na+ and more K+ compared to those overexpressing EpHKT1;1 or AtHKT1. Taken together, these results suggest that EpHKT1;2 mediates tolerance to Na+ ion toxicity in E. parvula and is a major contributor to its halophytic nature.
Collapse
Affiliation(s)
- Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Irfan Ullah Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Masood Jan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Shah Hussain
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Muhammad Nisar
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Woo Sik Chung
- Division of Applied Life Science (BK21plus program), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
61
|
Oscar MA, Barak S, Winters G. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. FRONTIERS IN PLANT SCIENCE 2018; 9:950. [PMID: 30022993 PMCID: PMC6040085 DOI: 10.3389/fpls.2018.00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 05/30/2023]
Abstract
The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of H. stipulacea exposed to different salinities, with that of its nearest freshwater relative, Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, H. stipulacea plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and Fv/Fm, followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.
Collapse
Affiliation(s)
- Michelle A. Oscar
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Dead-Sea & Arava Science Center, Neve Zohar, Israel
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | |
Collapse
|
62
|
Ben-Romdhane W, Ben-Saad R, Meynard D, Zouari N, Mahjoub A, Fki L, Guiderdoni E, Al-Doss A, Hassairi A. Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. PROTOPLASMA 2018; 255:1161-1177. [PMID: 29450758 DOI: 10.1007/s00709-018-1223-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.
Collapse
Affiliation(s)
- Walid Ben-Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Rania Ben-Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Donaldo Meynard
- CIRAD-UMR AGAP (Centre de coopération Internationale en Recherche Agronomique pour le Développement), Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ali Mahjoub
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, B.P 802, 3038, Sfax, Tunisia
| | - Emmanuel Guiderdoni
- CIRAD-UMR AGAP (Centre de coopération Internationale en Recherche Agronomique pour le Développement), Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
63
|
Wang XJ, Hu QJ, Guo XY, Wang K, Ru DF, German DA, Weretilnyk EA, Abbott RJ, Lascoux M, Liu JQ. Demographic expansion and genetic load of the halophyte model plantEutrema salsugineum. Mol Ecol 2018; 27:2943-2955. [DOI: 10.1111/mec.14738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao-Juan Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Quan-Jun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Xin-Yi Guo
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Kun Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Da-Fu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
| | - Dmitry A. German
- Department of Biodiversity and Plant Systematics; Centre for Organismal Studies (COS Heidelberg); Heidelberg University; Heidelberg Germany
- South-Siberian Botanical Garden; Altai State University; Barnaul Russia
| | | | | | - Martin Lascoux
- Department of Ecology and Genetics; Evolutionary Biology Center and Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Jian-quan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education; College of Life Sciences; Sichuan University; Chengdu China
- State Key Laboratory of Grassland Agro-Ecosystem; College of Life Science; Lanzhou University; Lanzhou China
| |
Collapse
|
64
|
Li X, Wu Y, Li B, He W, Yang Y, Yang Y. Genome-Wide Identification and Expression Analysis of the Cation Diffusion Facilitator Gene Family in Turnip Under Diverse Metal Ion Stresses. Front Genet 2018; 9:103. [PMID: 29670641 PMCID: PMC5893799 DOI: 10.3389/fgene.2018.00103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
The cation diffusion facilitator (CDF) family is one of the gene families involved in metal ion uptake and transport in plants, but the understanding of the definite roles and mechanisms of most CDF genes remain limited. In the present study, we identified 18 candidate CDF genes from the turnip genome and named them BrrMTP1.1-BrrMTP12. Then, we performed a comparative genomic analysis on the phylogenetic relationships, gene structures and chromosome distributions, conserved domains, and motifs of turnip CDFs. The constructed phylogenetic tree indicated that the BrrMTPs were divided into seven groups (groups 1, 5, 6, 7, 8, 9, and 12) and formed three major clusters (Zn-CDFs, Fe/Zn-CDFs, and Mn-CDFs). Moreover, the structural characteristics of the BrrMTP members in the same group were similar but varied among groups. To investigate the potential roles of BrrMTPs in turnip, we conducted an expression analysis on all BrrMTP genes under Mg, Zn, Cu, Mn, Fe, Co, Na, and Cd stresses. Results showed that the expression levels of all BrrMTP members were induced by at least one metal ion, indicating that these genes may be related to the tolerance or transport of those metal ions. Based on the roles of different metal ions for plants, we hypothesized that BrrMTP genes are possibly involved in heavy metal accumulation and tolerance to salt stress apart from their roles in the maintenance of mineral nutrient homeostasis in turnip. These findings are helpful to understand the roles of MTPs in plants and provide preliminary information for the study of the functions of BrrMTP genes.
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuansheng Wu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Boqun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wenqi He
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Yonghong Yang
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
65
|
Yin J, Gosney MJ, Dilkes BP, Mickelbart MV. Dark period transcriptomic and metabolic profiling of two diverse Eutrema salsugineum accessions. PLANT DIRECT 2018; 2:e00032. [PMID: 31245703 PMCID: PMC6508522 DOI: 10.1002/pld3.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 05/16/2023]
Abstract
Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Michael J. Gosney
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Michael V. Mickelbart
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
66
|
Cui F, Sui N, Duan G, Liu Y, Han Y, Liu S, Wan S, Li G. Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:217. [PMID: 29520289 PMCID: PMC5827294 DOI: 10.3389/fpls.2018.00217] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/05/2018] [Indexed: 05/18/2023]
Abstract
HIGHLIGHTS Metabolites and transcripts related to plant physiology in salt stress conditions, especially to the recovery process were disclosed in peanut. Peanut (Arachis hypogaea L.) is considered as a moderately salt-sensitive species and thus soil salinity can be a limiting factor for peanut cultivation. To gain insights into peanut plant physiology in response to salt stress and alleviation, we comprehensively characterized leaf relative electrolyte leakage (REC), photosynthesis, leaf transpiration, and metabolism of plants under salt stress and plants that were subjected to salt stress followed by salt alleviation period. As expected, we found that REC levels were higher when plants were subjected to salt stress compared with the untreated plants. However, in contrast to expectations, REC was even higher compared with salt treated plants when plants were transferred from salt stress to standard conditions. To decipher REC variation in response to salt stress, especial during the recovery, metabolite, and transcript variations were analyzed by GC/MS and RNA-seq method, respectively. Ninety two metabolites, among total 391 metabolites identified, varied in response to salt and 42 metabolites responded to recovery specially. Transcriptomics data showed 1,742 in shoots and 3,281 in roots transcript varied in response to salt stress and 372 in shoots and 1,386 transcripts in roots responded specifically to recovery, but not salt stress. Finally, 95 transcripts and 1 metabolite are indicated as candidates involved in REC, photosynthesis, transpiration, and Na+ accumulation variation were revealed by using the principal component analysis (PCA) and correlation analysis. This study provides valuable information on peanut response to salt stress and recovery and may inspire further study to improve salt tolerance in peanut germplasm innovation.
Collapse
Affiliation(s)
- Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Na Sui
- College of Life Science, Shandong Normal University, Jinan, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Yiyang Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yan Han
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Shanshan Liu
- College of Life Science, Shandong Normal University, Jinan, China
| | - Shubo Wan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- *Correspondence: Shubo Wan
| | - Guowei Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- Guowei Li
| |
Collapse
|
67
|
Liu C, Wang B, Li Z, Peng Z, Zhang J. TsNAC1 Is a Key Transcription Factor in Abiotic Stress Resistance and Growth. PLANT PHYSIOLOGY 2018; 176:742-756. [PMID: 29122985 PMCID: PMC5761785 DOI: 10.1104/pp.17.01089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 05/05/2023]
Abstract
NAC proteins constitute one of the largest families of plant-specific transcription factors, and a number of these proteins participate in the regulation of plant development and responses to abiotic stress. T. HALOPHILA STRESS RELATED NAC1 (TsNAC1), cloned from the halophyte Thellungiella halophila, is a NAC transcription factor gene, and its overexpression can improve abiotic stress resistance, especially in salt stress tolerance, in both T. halophila and Arabidopsis (Arabidopsis thaliana) and retard the growth of these plants. In this study, the transcriptional activation activity of TsNAC1 and RD26 from Arabidopsis was compared with the target genes' promoter regions of TsNAC1 from T. halophila, and the results showed that the transcriptional activation activity of TsNAC1 was higher in tobacco (Nicotiana tabacum) and yeast. The target sequence of the promoter from the target genes also was identified, and TsNAC1 was shown to target the positive regulators of ion transportation, such as T. HALOPHILA H+-PPASE1, and the transcription factors MYB HYPOCOTYL ELONGATION-RELATED and HOMEOBOX12 In addition, TsNAC1 negatively regulates the expansion of cells, inhibits LIGHT-DEPENDENT SHORT HYPOCOTYLS1 and UDP-XYLOSYLTRANSFERASE2, and directly controls the expression of MULTICOPY SUPPRESSOR OF IRA14 Based on these results, we propose that TsNAC1 functions as an important upstream regulator of plant abiotic stress responses and vegetative growth.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Baomei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhaoxia Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhenghua Peng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Juren Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
68
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
69
|
Prerostova S, Dobrev PI, Gaudinova A, Hosek P, Soudek P, Knirsch V, Vankova R. Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:188-198. [PMID: 28969799 DOI: 10.1016/j.plantsci.2017.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 05/25/2023]
Abstract
Salt stress responses in salt-sensitive Arabidopsis thaliana (2-150mM NaCl) and the closely related salt-tolerant Thellungiella salsuginea (Eutrema halophila, 150-350mM NaCl) were compared to identify hormonal and transcriptomic changes associated with enhanced stress tolerance. Phytohormone levels, expression of selected genes, membrane stability, and Na+ and K+ concentrations were measured in shoot apices, leaves, and roots. Thellungiella exhibited higher salt stress tolerance associated with elevated basal levels of abscisic acid and jasmonic acid, and lower levels of active cytokinins (excluding cis-zeatin) in shoot apices. Analysis of the dynamics of the early salt stress response (15min to 24h) revealed that the halophyte response was faster and stronger. Very mild stress, in our hydropony arrangement 2-25mM NaCl, affected the transcription of genes involved in cytokinin metabolism (AtIPTs, AtCKXs). Mild stress induced in Arabidopsis (50mM) stress responses only in shoot apices, while in Thellungiella (150mM) across the whole plant. Arabidopsis exhibited in hydropony evidence of severe stress above 75mM NaCl and died in 150mM, whereas the halophyte only became severely stressed above 225mM. The responses of individual phytohormones (cytokinins, auxin, abscisic acid, jasmonic acid, salicylic acid and their metabolites) to salinity are discussed.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic; Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Petr Hosek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
70
|
Adem GD, Roy SJ, Huang Y, Chen ZH, Wang F, Zhou M, Bowman JP, Holford P, Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1147-1159. [PMID: 32480640 DOI: 10.1071/fp17133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 06/11/2023]
Abstract
Salinity is a global problem affecting agriculture that results in an estimated US$27 billion loss in revenue per year. Overexpression of vacuolar ATPase subunits has been shown to be beneficial in improving plant performance under saline conditions. Most studies, however, have not shown whether overexpression of genes encoding ATPase subunits results in improvements in grain yield, and have not investigated the physiological mechanisms behind the improvement in plant growth. In this study, we constitutively expressed Arabidopsis Vacuolar ATPase subunit C (AtVHA-C) in barley. Transgenic plants were assessed for agronomical and physiological characteristics, such as fresh and dry biomass, leaf pigment content, stomatal conductance, grain yield, and leaf Na+ and K+ concentration, when grown in either 0 or 300mM NaCl. When compared with non-transformed barley, AtVHA-C expressing barley lines had a smaller reduction in both biomass and grain yield under salinity stress. The transgenic lines accumulated Na+ and K+ in leaves for osmotic adjustment. This in turn saves energy consumed in the synthesis of organic osmolytes that otherwise would be needed for osmotic adjustment.
Collapse
Affiliation(s)
- Getnet D Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feifei Wang
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Paul Holford
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
71
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
72
|
Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:194-200. [PMID: 28818375 PMCID: PMC5567406 DOI: 10.1016/j.plantsci.2017.07.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
Environmental constraints limit the geographic distribution of many economically important crops. Cold stress is an important abiotic stress that affects plant growth and development, resulting in loss of vigour and surface lesions. These symptoms are caused by, among other metabolic processes, the altered physical and chemical composition of cell membranes. As a major component of cell membranes lipids have been recognized as having a significant role in cold stress, both as a mechanical defence through leaf surface protection and plasma membrane remodelling, and as signal transduction molecules. We present an overview integrating gene expression and lipidomic data published so far in Arabidopsis and its relative the extremophile Eutrema salsugineum. This data enables a better understanding of the contribution of the lipidome in determining the ability to tolerate suboptimal temperature conditions. Collectively this information will allow us to identify the key lipids and pathways responsible for resilience, enabling the development of new approaches for crop tolerance to stress.
Collapse
Affiliation(s)
| | - Susana Silvestre
- Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Richard P Haslam
- Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK.
| | | |
Collapse
|
73
|
Luo Q, Peng M, Zhang X, Lei P, Ji X, Chow W, Meng F, Sun G. Comparative mitochondrial proteomic, physiological, biochemical and ultrastructural profiling reveal factors underpinning salt tolerance in tetraploid black locust (Robinia pseudoacacia L.). BMC Genomics 2017; 18:648. [PMID: 28830360 PMCID: PMC5568289 DOI: 10.1186/s12864-017-4038-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background Polyploidy is an important phenomenon in plants because of its roles in agricultural and forestry production as well as in plant tolerance to environmental stresses. Tetraploid black locust (Robinia pseudoacacia L.) is a polyploid plant and a pioneer tree species due to its wide ranging adaptability to adverse environments. To evaluate the ploidy-dependent differences in leaf mitochondria between diploid and tetraploid black locust under salinity stress, we conducted comparative proteomic, physiological, biochemical and ultrastructural profiling of mitochondria from leaves. Results Mitochondrial proteomic analysis was performed with 2-DE and MALDI-TOF-MS, and the ultrastructure of leaf mitochondria was observed by transmission electron microscopy. According to 2-DE analysis, 66 proteins that responded to salinity stress significantly were identified from diploid and/or tetraploid plants and classified into 9 functional categories. Assays of physiological characters indicated that tetraploids were more tolerant to salinity stress than diploids. The mitochondrial ultrastructure of diploids was damaged more severely under salinity stress than that of tetraploids. Conclusions Tetraploid black locust possessed more tolerance of, and ability to acclimate to, salinity stress than diploids, which may be attributable to the ability to maintain mitochondrial structure and to trigger different expression patterns of mitochondrial proteins during salinity stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4038-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuxiang Luo
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Xiuli Zhang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ximei Ji
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wahsoon Chow
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Division of Plant Science, Research School of Biology, The Australian National University, ACT, 2601, Australia
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Guanyu Sun
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
74
|
Khanal N, Bray GE, Grisnich A, Moffatt BA, Gray GR. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum. PLANTS (BASEL, SWITZERLAND) 2017; 6:E32. [PMID: 28792470 PMCID: PMC5620588 DOI: 10.3390/plants6030032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing capacity, while Yukon showed greater growth plasticity to irradiance. Both of these Eutrema accessions are able to photosynthetically acclimate but do so by different mechanisms. The Shandong accessions demonstrate a stable response, favouring energy partitioning to photochemistry while the Yukon accession shows a more rapid response with partitioning to other (non-photochemical) strategies.
Collapse
Affiliation(s)
- Nityananda Khanal
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Geoffrey E Bray
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Anna Grisnich
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Barbara A Moffatt
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Gordon R Gray
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
75
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
76
|
SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Dev Biol 2017; 425:1-7. [PMID: 28263767 DOI: 10.1016/j.ydbio.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants.
Collapse
|
77
|
Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AOB PLANTS 2017; 9:plx009. [PMID: 28439395 PMCID: PMC5391712 DOI: 10.1093/aobpla/plx009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/07/2017] [Accepted: 02/17/2017] [Indexed: 05/07/2023]
Abstract
Some deleterious effects of drought, soil salinity and other abiotic stresses are mediated by the generation of oxidative stress through an increase in reactive oxygen species (ROS) that damage cellular membranes, proteins and DNA. In response to increased ROS, plants activate an array of enzymatic and non-enzymatic antioxidant defences. We have correlated the activation of these responses with the contrasting tolerance to salinity and drought of three species of the genus Juncus, viz. J. maritimus, J. acutus (both halophytes) and J. articulatus (salt-sensitive). Both stresses were given for 8 weeks to 6-week-old seedlings in a controlled environment chamber. Each stress inhibited growth and degraded photosynthetic pigments in the three species with the most pronounced effects being in J. articulatus. Salt and water stress also generated oxidative stress in all three taxa with J. articulatus being the most affected in terms of accumulation of malondialdehyde (a reliable oxidative stress marker). The apparent lower oxidative stress in halophytic J. maritimus and J. acutus compared with salt-sensitive J. articulatus is explained by a more efficient activation of antioxidant systems since salt or water deficiency induced a stronger accumulation of antioxidant phenolic compounds and flavonoids in J. maritimus and J. acutus than in J. articulatus. Qualitative and quantitative differences in antioxidant enzymes were also detected when comparing the three species and the two stress treatments. Accordingly, glutathione reductase and superoxide dismutase activities increased in the two halophytes under both stresses, but only in response to drought in J. articulatus. In contrast, ascorbate peroxidase activity varied between and within species according to treatment. These results show the relative importance of different antioxidant responses for stress tolerance in species with distinct ecological requirements. The salt-sensitive J. articulatus, contrary to the tolerant taxa, did not activate enzymatic antioxidant responses to salinity-induced oxidative stress.
Collapse
Affiliation(s)
- Mohamad Al Hassan
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
- Present address: The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Juliana Chaura
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
- Permanent address: Department of Biological Sciences, Faculty of Natural Sciences, Universidad ICESI, Cali, Colombia
| | - María P. Donat-Torres
- Instituto de Investigación para la Gestión Integral de Zonas Costeras (UPV), Universitat Politècnica de València, 46730 Grao de Gandía, Spain
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo (UPV), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Oscar Vicente
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
78
|
Field Guide to Plant Model Systems. Cell 2017; 167:325-339. [PMID: 27716506 DOI: 10.1016/j.cell.2016.08.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.
Collapse
|
79
|
Eshel G, Shaked R, Kazachkova Y, Khan A, Eppel A, Cisneros A, Acuna T, Gutterman Y, Tel-Zur N, Rachmilevitch S, Fait A, Barak S. Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema ( Thellungiella) salsugineum. FRONTIERS IN PLANT SCIENCE 2017; 7:1992. [PMID: 28144244 PMCID: PMC5239783 DOI: 10.3389/fpls.2016.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Simon Barak
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSde Boker, Israel
| |
Collapse
|
80
|
Shamustakimova AO, Leonova ТG, Taranov VV, de Boer AH, Babakov AV. Cold stress increases salt tolerance of the extremophytes Eutrema salsugineum (Thellungiella salsuginea) and Eutrema (Thellungiella) botschantzevii. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:128-138. [PMID: 27940414 DOI: 10.1016/j.jplph.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes VAB1, VAB2,VAB3, VP2, HA3 and genes encoding ion transporters SOS1, HKT1, NHX1, NHX2, NHX5 located in the plasma membrane or tonoplast were determined just after the cold treatment and the onset of the salt stress. In the same cold-acclimated E. botschantzevii plants, the Na+ concentration after salt treatment was around 80% lower than in non-acclimated plants, whereas the K+ concentration was higher. As a result of cold acclimation, the expression of, VAB3, NHX2, NHX5 genes and of SOS1, VP2, HA3 genes was strongly enhanced in E. botschantzevii and in E. salsugineum plants correspondently. None of the 10 genes analyzed showed any expression change in A. thaliana plants after cold acclimation. Altogether, the results indicate that cold-induced adaptation to subsequent salt stress exists in the extremophytes E. botschantzevii and to a lesser extend in E. salsugineum and is absent in Arabidopsis. This phenomenon may be attributed to the increased expression of ion transporter genes during cold acclimation in the Eutrema species.
Collapse
Affiliation(s)
- A O Shamustakimova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - Т G Leonova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - V V Taranov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - A V Babakov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia.
| |
Collapse
|
81
|
|
82
|
Zhou W, Wu J, Zheng Q, Jiang Y, Zhang M, Zhu S. Genome-wide identification and comparative analysis of Alfin-like transcription factors in maize. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
83
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
84
|
Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding. PLoS Genet 2016; 12:e1006255. [PMID: 27684709 PMCID: PMC5042403 DOI: 10.1371/journal.pgen.1006255] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/23/2016] [Indexed: 12/19/2022] Open
Abstract
Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals.
Collapse
Affiliation(s)
- Shuo Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Lixiu Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Hongye Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Dan Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xuan Peng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jiaojiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Junfeng Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Kunming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Liqun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
85
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
86
|
Bedre R, Mangu VR, Srivastava S, Sanchez LE, Baisakh N. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genomics 2016; 17:657. [PMID: 27542721 PMCID: PMC4992267 DOI: 10.1186/s12864-016-3017-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soil salinity affects growth and yield of crop plants. Plants respond to salinity by physiological and biochemical adjustments through a coordinated regulation and expression of a cascade of genes. Recently, halophytes have attracted attention of the biologists to understand their salt adaptation mechanisms. Spartina alterniflora (smooth cordgrass) is a Louisiana native monocot halophyte that can withstand salinity up to double the strength of sea water. To dissect the molecular mechanisms underlying its salinity adaptation, leaf and root transcriptome of S. alterniflora was sequenced using 454/GS-FLX. RESULTS Altogether, 770,690 high quality reads with an average length 324-bp were assembled de novo into 73,131 contigs (average 577-bp long) with 5.9X sequence coverage. Most unigenes (95 %) annotated to proteins with known functions, and had more than 90 % similarity to rice genes. About 28 % unigenes were considered specific to S. alterniflora. Digital expression profiles revealed significant enrichment (P < 0.01) of transporters, vacuolar proton pump members and transcription factors under salt stress, which suggested the role of ion homeostasis and transcriptional regulation in the salinity adaptation of this grass. Also, 10,805 SSRs markers from 9457 unigenes were generated and validated through genetic diversity analysis among 13 accessions of S. alterniflora. CONCLUSIONS The present study explores the transcriptome of S. alterniflora to understand the gene regulation under salt stress in halophytes. The sequenced transcriptome (control and salt-regulated) of S. alterniflora provides a platform for further gene finding studies in grasses. This study and our previously published studies suggested that S. alterniflora is a rich reservoir of salt tolerance genes that can be used to develop salt tolerant cereal crops, especially rice, a major food crop of global importance.
Collapse
Affiliation(s)
- Renesh Bedre
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Venkata Ramanarao Mangu
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Subodh Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Luis Eduardo Sanchez
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- Current address: Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Km 30.5 Via Perimetral, Guayaquil, Ecuador
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
87
|
Lee YP, Funk C, Erban A, Kopka J, Köhl KI, Zuther E, Hincha DK. Salt stress responses in a geographically diverse collection of Eutrema/Thellungiella spp. accessions. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:590-606. [PMID: 32480489 DOI: 10.1071/fp15285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/10/2015] [Indexed: 05/13/2023]
Abstract
Salinity strongly impairs plant growth and development. Natural genetic variation can be used to dissect complex traits such as plant salt tolerance. We used 16 accessions of the halophytic species Eutrema salsugineum (previously called Thellungiella salsuginea (Pallas) O.E.Schulz, Thellungiella halophila (C.A.Meyer) O.E. Schulz and Thellungiella botschantzevii D.A.German to investigate their natural variation in salinity tolerance. Although all accessions showed survival and growth up to 700mM NaCl in hydroponic culture, their relative salt tolerance varied considerably. All accessions accumulated the compatible solutes proline, sucrose, glucose and fructose and the polyamines putrescine and spermine. Relative salt tolerance was not correlated with the content of any of the investigated solutes. We compared the metabolomes and transcriptomes of Arabidopsis thaliana (L. Heynh.) Col-0 and E. salsugineum Yukon under control and salt stress conditions. Higher content of several metabolites in Yukon compared with Col-0 under control conditions indicated metabolic pre-adaptation to salinity in the halophyte. Most metabolic salt responses in Yukon took place at 200mM NaCl, whereas few additional changes were observed between 200 and 500mM. The opposite trend was observed for the transcriptome, with only little overlap between salt-regulated genes in the two species. In addition, only about half of the salt-regulated Yukon unigenes had orthologues in Col-0.
Collapse
Affiliation(s)
- Yang Ping Lee
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Christian Funk
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Karin I Köhl
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
88
|
Rathore P, Geeta R, Das S. Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:35-48. [PMID: 27095398 DOI: 10.1016/j.plantsci.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Plant genomes are characterized by the presence of large miRNA gene families which are few in number. The expansion of miRNA families is thought to be driven by gene and genome duplication. Some members of these miRNA gene families are tandemly arranged and their analysis is of interest because such organisation may indicate origin through tandem duplication and also to investigate whether some such tandem clusters have similar expression patterns, and whether these are regulated through a common set of cis-regulatory elements (eg. promoters and enhancers). As a first step, we undertake a comprehensive study using micro-synteny analyses of tandemly organised miRNA families across the Brassicaceae spanning an evolutionary time scale of ca. 45 million years, among Arabidopsis, Capsella, Brassica and Thellungiella species, to address the following questions: Are most miRNA gene families present as tandem clusters? To what extent are these tandem patterns retained? To what extent can family sizes be ascribed to genome duplication? Our analysis of thirteen tandemly organised miRNA families revealed that synteny is largely conserved among Arabidopsis thaliana, A. lyrata and Capsella rubella, which form a clade spanning approximately between 6.2-9.8 my (Acarkan et al., 2000) [1]. On the other hand, comparison of sequences from these species with Brassica rapa, B. oleracea and Thellungiella halophila, which form a separate clade spanning 31 my (Franzke et al., 2011)[2] reveals many differences. The latter clade reveals several paralogous duplications that probably resulted from whole genome duplication, as well as disrupted synteny. Phylogenetic analyses of precursor sequences generally support the history inferred from synteny analysis. Synteny and phylogenetic analysis of six members of the tandemly organised miR169 family suggest that the Brassicaceae ancestral state consisted of a "dimer as a unit" which may have undergone direct local duplication to retain the transcriptional orientation followed by lineage specific changes. MiR169, to the best of our knowledge, is one of the largest tandemly organised miRNA gene family across plant kingdom and further analysis should reveal the generality of this pattern of evolution. The conserved organisation of miR395A-B-C and miR395 D-E-F as two clusters on same chromosome/scaffold across A. thaliana, B. rapa and salsuginea demonstrates retention of the large chromosomal segment across the two lineages. MiRNA family miR845 was detected only in Arabidopsis species and Thellungiella indicating a complex loss and retention history. MiR447A-B family was only found in A. thaliana indicating that it is a species-specific gene family of recent origin.
Collapse
Affiliation(s)
| | - R Geeta
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
89
|
Hossain MS, Dietz KJ. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:548. [PMID: 27242807 PMCID: PMC4861717 DOI: 10.3389/fpls.2016.00548] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/08/2016] [Indexed: 05/17/2023]
Abstract
Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.
Collapse
Affiliation(s)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of BielefeldBielefeld, Germany
| |
Collapse
|
90
|
Yang S, Luo C, Song Y, Wang J. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis. PLoS One 2016; 11:e0153517. [PMID: 27093611 PMCID: PMC4836749 DOI: 10.1371/journal.pone.0153517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/30/2016] [Indexed: 11/23/2022] Open
Abstract
Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1) transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group) based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs) were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs) exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the “gain-of-function” transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster transpirational water loss than wild type and 35S:B-TsRAVs lines. Taken together, our results suggest that two groups of TsRAVs perform distinct regulating roles during plant growth and abiotic defense including drought and salt, and A-TsRAVs are more likely than B-TsRAVs to act as negative regulators in the above-mentioned biological processes.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cui Luo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- * E-mail:
| |
Collapse
|
91
|
The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion. Int J Genomics 2016; 2016:5283628. [PMID: 27148547 PMCID: PMC4842374 DOI: 10.1155/2016/5283628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants.
Collapse
|
92
|
Sandoval JF, Yoo CY, Gosney MJ, Mickelbart MV. Growth of Arabidopsis thaliana and Eutrema salsugineum in a closed growing system designed for quantification of plant water use. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:110-118. [PMID: 26967004 DOI: 10.1016/j.jplph.2016.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The identification of genetic determinants for water-use efficiency (WUE) and their incorporation into crop plants is critical as world water resources are predicted to become less stable over the coming decades. However, quantification of WUE in small model species such as Arabidopsis is difficult because of low plant water loss relative to root zone evaporation. Furthermore, measurements of long-term WUE are labor-intensive and time-consuming. A novel high-throughput closed-container growing system for measuring plant WUE is described. The system eliminates nearly all water loss from the media and does not require irrigation throughout the duration of a typical experiment. Using the model species Arabidopsis thaliana and Eutrema salsugineum, it was confirmed that under growth chamber conditions, this system: (1) eliminates the need for irrigation for as much as 30 days with media water content remaining above 80% full capacity; (2) allows for quantification of WUE in plants with a leaf area as small as ca. 20 cm(2); (3) does not inhibit plant growth; and (4) does not alter media conditions outside of an acceptable range for these species. The growing system provides an efficient high-throughput system for quantifying plant water loss and WUE.
Collapse
Affiliation(s)
- Jhon F Sandoval
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States.
| | - Chan Yul Yoo
- Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| | - Michael J Gosney
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States; Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| | - Michael V Mickelbart
- Department of Botany & Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, United States; Department of Horticulture & Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, United States.
| |
Collapse
|
93
|
de Freitas-Silva L, de Araújo TO, da Silva LC, de Oliveira JA, de Araujo JM. Arsenic accumulation in Brassicaceae seedlings and its effects on growth and plant anatomy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:1-9. [PMID: 26435391 DOI: 10.1016/j.ecoenv.2015.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
We wished to evaluate the effects of arsenic on the morphology and anatomy of Brassica oleracea, Raphanus sativus, Brassica juncea, Brassica oleracea var. capitata and Brassica oleracea var. italica. Seeds were subjected to concentrations 0µM, 250µM, 350µM and 450µM arsenic in the form of sodium arsenate (Na2HAsO4·7H2O) during 12 days. All species accumulated more arsenic in the roots than in the shoots, except for B. oleracea var. capitata. There was no difference of translocation factor between species and treatments. Growth decrease was observed in roots of B. oleracea and R. sativus, and in shoots of R. sativus and B. oleracea var. italica. All species presented anatomical alterations in the roots, such as: cell hypertrophy, protoplast retraction, cellular plasmolysis, and necrotic regions. B. juncea presented collapse and hypertrophy of cells from the leaf blade tissues. Quantitative anatomical analyses performed on the root and leaves of B. oleracea and B. juncea revealed that arsenic interfered on the root vascular cylinder diameter and on height of epidermal cells of the adaxial leaf surface of both species. We concluded that arsenic was absorbed from the culture medium and induced alterations both on root and shoot growth of the seedlings. Retention of arsenic within the root was responsible for major damage in this organ.
Collapse
|
94
|
Kazachkova Y, Khan A, Acuña T, López-Díaz I, Carrera E, Khozin-Goldberg I, Fait A, Barak S. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1071. [PMID: 27536302 PMCID: PMC4971027 DOI: 10.3389/fpls.2016.01071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 05/08/2023]
Abstract
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Tania Acuña
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC–UPV, ValenciaSpain
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Sde BokerIsrael
- *Correspondence: Simon Barak, Aaron Fait,
| |
Collapse
|
95
|
Pilarska M, Wiciarz M, Jajić I, Kozieradzka-Kiszkurno M, Dobrev P, Vanková R, Niewiadomska E. A Different Pattern of Production and Scavenging of Reactive Oxygen Species in Halophytic Eutrema salsugineum (Thellungiella salsuginea) Plants in Comparison to Arabidopsis thaliana and Its Relation to Salt Stress Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1179. [PMID: 27540390 PMCID: PMC4972836 DOI: 10.3389/fpls.2016.01179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 05/08/2023]
Abstract
Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of [Formula: see text]/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very efficient antioxidant protection (in which glucosinolates might play a specific role) and a fine tuning of hormonal signaling to suppress the cell death program directed by jasmonate pathway.
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology – Polish Academy of SciencesKraków, Poland
| | - Monika Wiciarz
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian UniversityKraków, Poland
| | - Ivan Jajić
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian UniversityKraków, Poland
| | | | - Petre Dobrev
- Institute of Experimental Botany AS CRPrague, Czech Republic
| | | | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology – Polish Academy of SciencesKraków, Poland
- *Correspondence: Ewa Niewiadomska,
| |
Collapse
|
96
|
MacLeod MJR, Dedrick J, Ashton C, Sung WWL, Champigny MJ, Weretilnyk EA. Exposure of two Eutrema salsugineum (Thellungiella salsuginea) accessions to water deficits reveals different coping strategies in response to drought. PHYSIOLOGIA PLANTARUM 2015; 155:267-80. [PMID: 25496221 DOI: 10.1111/ppl.12316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 05/14/2023]
Abstract
Eutrema salsugineum is an extremophile related to Arabidopsis. Accessions from Yukon, Canada and Shandong, China, were evaluated for their tolerance to water deficits. Plants were exposed to two periods of water deficit separated by an interval of re-watering and recovery. All plants took the same time to wilt during the first drought exposure but Yukon plants took 1 day longer than Shandong plants following the second drought treatment. Following re-watering and turgor recovery, solute potentials of Shandong leaves returned to predrought values while those of Yukon leaves were lower than predrought levels consistent with having undergone osmotic adjustment. Polar metabolites profiled in re-watered plants showed that different metabolites are accumulated by Yukon and Shandong plants recovering from a water deficit with glucose more abundant in Yukon and fructose in Shandong leaves. The drought-responsive expression of dehydrin genes RAB18, ERD1, RD29A and RD22 showed greater changes in transcript abundance in Yukon relative to Shandong leaves during both water deficits and recovery with the greatest difference in expression appearing during the second drought. We propose that the initial exposure of Yukon plants to drought renders them more resilient to water loss during a subsequent water deficit leading to delayed wilting. Yukon plants also established a high leaf water content and increased specific leaf area during the second deficit. Shandong plants undergoing the same treatment regime do not show the same beneficial drought tolerance responses and likely use drought avoidance to cope with water deficits.
Collapse
Affiliation(s)
| | - Jeff Dedrick
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Claire Ashton
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Wilson W L Sung
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Marc J Champigny
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
97
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
98
|
Tao L, Wang XL, Guo MH, Zhang YW. Analysis of genomic DNA methylation and gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis) after continuous seedling breeding. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Chang L, Guo A, Jin X, Yang Q, Wang D, Sun Y, Huang Q, Wang L, Peng C, Wang X. The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:223-38. [PMID: 26025536 DOI: 10.1016/j.plantsci.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 05/11/2023]
Abstract
Thellungiella halophila, a new model halophyte, can survive under highly saline conditions. We performed comparative proteomics of chloroplasts from plants grown under different saline conditions. Seventy-five salt-responsive proteins were positively identified by mass spectrometry, which represented 43 unique ones. These proteins were categorized into 7 main pathways: light reaction, carbon fixation, energy metabolism, antenna proteins, cell structure, and protein degradation and folding. Saline conditions increased the abundance of proteins involved in photosynthesis, energy metabolism and cell structure. The results indicated that Thellungiella could withstand high salinity by maintaining normal or high photosynthetic capacity, reducing ROS production, as well as enhancing energy usage. Meanwhile, the ultrastructural and physiological data also agree with chloroplast proteomics results. Subsequently, the glyceraldehydes 3-phosphate dehydrogenase beta subunit (GAPB) involved in carbon fixation was selected and its role in salt tolerance was clarified by over-expressing it in Arabidopsis. ThGAPB-overexpressing plants had higher total chlorophyll contents, dry weights, water contents and survival rates than that of wild type plants. These results indicated that ThGAPB might improve plant salt tolerance by maintaining higher recycling rates of ADP and NADP(+) to decrease ROS production, helping to maintain photosynthetic efficiency and plant development under saline conditions.
Collapse
Affiliation(s)
- Lili Chang
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Anping Guo
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Cunzhi Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China
| | - Xuchu Wang
- College of Agriculture, Hainan University, Haikou city 570228, Hainan, China; Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou city 571101, Hainan, China.
| |
Collapse
|
100
|
Ariga H, Tanaka T, Ono H, Sakata Y, Hayashi T, Taji T. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 464:318-23. [PMID: 26123393 DOI: 10.1016/j.bbrc.2015.06.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
Abstract
Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses.
Collapse
Affiliation(s)
- Hirotaka Ariga
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Tanaka
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Hirokazu Ono
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Takahisa Hayashi
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|