51
|
Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J. Role of polyamines in plant vascular development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:534-9. [PMID: 20137964 DOI: 10.1016/j.plaphy.2010.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/21/2009] [Accepted: 01/14/2010] [Indexed: 05/03/2023]
Abstract
Several pieces of evidence suggest a role for polyamines in the regulation of plant vascular development. For instance, polyamine oxidase gene expression has been shown to be associated with lignification, and downregulation of S-adenosylmethionine decarboxylase causes dwarfism and enlargement of the vasculature. Recent evidence from Arabidopsis thaliana also suggests that the active polyamine in the regulation of vascular development is the tetraamine thermospermine. Thermospermine biosynthesis is catalyzed by the aminopropyl transferase encoded by ACAULIS5, which is specifically expressed in xylem vessel elements. Both genetic and molecular evidence support a fundamental role for thermospermine in preventing premature maturation and death of the xylem vessel elements. This safeguard action of thermospermine has significant impact on xylem cell morphology, cell wall patterning and cell death as well as on plant growth in general. This manuscript reviews recent reports on polyamine function and places polyamines in the context of the known regulatory mechanisms that govern vascular development.
Collapse
Affiliation(s)
- Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
52
|
Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. TREE PHYSIOLOGY 2010; 30:914-22. [PMID: 20462936 DOI: 10.1093/treephys/tpq030] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving dehydration tolerance of citrus in vitro plants by exogenous application of spermine (Spm). 'Red Tangerine' (Citrus reticulata Blanco) in vitro plants pretreated with 1 mM Spm exhibited less wilted phenotype and lower water loss and electrolyte leakage than the control under dehydration. Spm-pretreated plants contained higher endogenous polyamine content during the course of the experiment relative to the control, particularly at the end of dehydration, coupled with higher expression levels of ADC and SPMS. Histochemical staining showed that the Spm-pretreated leaves were stained to a lower extent than those without Spm pretreatment, implying generation of less reactive oxygen species (ROS). On the contrary, activities of peroxidase (POD) and superoxide dismutase (SOD) in the Spm-pretreated samples were higher than the control at a given time point or during the whole experiment, suggesting that Spm exerted a positive effect on antioxidant systems. In addition, significantly smaller stomatal aperture size was observed in Spm-pretreated epidermal peels, which showed that stomatal closure was promoted by polyamines. All of these data suggest that Spm pretreatment causes accumulation of higher endogenous polyamines and accordingly leads to more effective ROS scavenging (less tissue damage) and stimulated stomatal closure (lower water loss) upon dehydration, which may function collectively to enhance dehydration tolerance.
Collapse
Affiliation(s)
- Jie Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
53
|
Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. PLANT PHYSIOLOGY 2010; 152:1731-47. [PMID: 20089770 PMCID: PMC2832263 DOI: 10.1104/pp.109.151738] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/13/2010] [Indexed: 05/17/2023]
Abstract
Although phenylpropanoid-polyamine conjugates (PPCs) occur ubiquitously in plants, their biological roles remain largely unexplored. The two major PPCs of Nicotiana attenuata plants, caffeoylputrescine (CP) and dicaffeoylspermidine, increase dramatically in local and systemic tissues after herbivore attack and simulations thereof. We identified NaMYB8, a homolog of NtMYBJS1, which in BY-2 cells regulates PPC biosynthesis, and silenced its expression by RNA interference in N. attenuata (ir-MYB8), to understand the ecological role(s) of PPCs. The regulatory role of NaMYB8 in PPC biosynthesis was validated by a microarray analysis, which revealed that transcripts of several key biosynthetic genes in shikimate and polyamine metabolism accumulated in a NaMYB8-dependent manner. Wild-type N. attenuata plants typically contain high levels of PPCs in their reproductive tissues; however, NaMYB8-silenced plants that completely lacked CP and dicaffeoylspermidine showed no changes in reproductive parameters of the plants. In contrast, a defensive role for PPCs was clear; both specialist (Manduca sexta) and generalist (Spodoptera littoralis) caterpillars feeding on systemically preinduced young stem leaves performed significantly better on ir-MYB8 plants lacking PPCs compared with wild-type plants expressing high levels of PPCs. Moreover, the growth of M. sexta caterpillars was significantly reduced when neonates were fed ir-MYB8 leaves sprayed with synthetic CP, corroborating the role of PPCs as direct plant defense. The spatiotemporal accumulation and function of PPCs in N. attenuata are consistent with the predictions of the optimal defense theory: plants preferentially protect their most fitness-enhancing and vulnerable parts, young tissues and reproductive organs, to maximize their fitness.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Gális
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, D–07745 Jena, Germany
| |
Collapse
|
54
|
Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S. Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. ACTA ACUST UNITED AC 2010; 51:422-34. [DOI: 10.1093/pcp/pcq007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
55
|
Paschalidis KA, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Polyamine anabolic/catabolic regulation along the woody grapevine plant axis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1508-1519. [PMID: 19450900 DOI: 10.1016/j.jplph.2009.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 05/27/2023]
Abstract
The distribution of the endogenous PA fractions throughout the entire perennial woody grapevine (Vitis vinifera L.) plant was studied, along with the expression profiles of the PA anabolic and catabolic genes and their substrates and secondary metabolites. Putrescine fractions increased with increasing leaf age, although the expression of its biosynthetic enzymes Arg and Orn decarboxylases decreased. Orn transport from young organs dramatically enhanced putrescine biosynthesis in older tissues, via the Orn decarboxylase pathway. S-adenosylmethionine decarboxylase and spermidine synthase genes were down-regulated during development in a tissue/organ-specific manner, as were spermidine and spermine levels. In contrast, amine oxidases, peroxidases and phenolics increased from the youngest to the fully developed vascular tissues; they also increased from the peripheral regions of leaves to the petioles. Hydrogen peroxide generated by amine oxidases accumulated for the covalent linkage of proteins via peroxidases during lignification. These results could be valuable for addressing further questions on the role of PAs in plant development.
Collapse
|
56
|
Gemperlová L, Cvikrová M, Fischerová L, Binarová P, Fischer L, Eder J. Polyamine metabolism during the cell cycle of synchronized tobacco BY-2 cell line. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:584-91. [PMID: 19321355 DOI: 10.1016/j.plaphy.2009.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 02/23/2009] [Accepted: 02/28/2009] [Indexed: 05/27/2023]
Abstract
The time courses of the contents of free, soluble and insoluble polyamine (PA) conjugates, PA biosynthetic and catabolic enzyme activities and mRNA levels of PA biosynthetic genes were monitored during the cell cycle of synchronized tobacco BY-2 cell line (Nicotiana tabacum L. cv. Bright Yellow 2). Progression through the cell cycle was characterized by specific biphasic changes of PA levels. The first, moderate peak in the amount of free PAs coincided with the S-phase. After a transient decline in G2 phase the contents of free PAs increased rapidly and peaked again during G2/M interface. Then sharply decreased with the minimum at the end of mitosis and during M/G1 transition and started to rise again with the next replication phase. Levels of PA soluble conjugates paralleled those of the free forms. Biosynthetic enzyme activities followed the biphasic manner analogous to the levels of free PAs and seemed to be regulated on both transcriptional and (post)translational level. PA cellular levels were further controlled by both catabolic degradation and conjugation of PAs. PA catabolism played an important role in the PA down-regulation during G2 phase and late mitosis, while the decline in free PAs in G2/M interface and during the whole mitosis resulted mainly from PA conjugation. This study's results demonstrate that during the cell cycle of tobacco BY-2 cells endogenous PA levels are intricately controlled, involving regulation of activities of biosynthetic, catabolic and conjugation enzymes.
Collapse
Affiliation(s)
- Lenka Gemperlová
- Institute of Experimental Botany v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 236, 16502 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
57
|
Moschou PN, Sarris PF, Skandalis N, Andriopoulou AH, Paschalidis KA, Panopoulos NJ, Roubelakis-Angelakis KA. Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. PLANT PHYSIOLOGY 2009; 149:1970-81. [PMID: 19218362 PMCID: PMC2663742 DOI: 10.1104/pp.108.134932] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 02/04/2009] [Indexed: 05/18/2023]
Abstract
Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum 'Xanthi') plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.
Collapse
|
58
|
Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1845-57. [PMID: 18583528 PMCID: PMC2492618 DOI: 10.1104/pp.108.123802] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/18/2008] [Indexed: 05/18/2023]
Abstract
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to back-convert Spm to Put. Arabidopsis (Arabidopsis thaliana) genome contains at least five putative PA oxidase (PAO) members with yet-unknown localization and physiological role(s). AtPAO1 was recently identified as an enzyme similar to the mammalian Spm oxidase, which converts Spm to spermidine (Spd). In this work, we have performed in silico analysis of the five Arabidopsis genes and have identified PAO3 (AtPAO3) as a nontypical PAO, in terms of homology, compared to other known PAOs. We have expressed the gene AtPAO3 and have purified a protein corresponding to it using the inducible heterologous expression system of Escherichia coli. AtPAO3 catalyzed the sequential conversion/oxidation of Spm to Spd, and of Spd to Put, thus exhibiting functional homology to the mammalian PAOs. The best substrate for this pathway was Spd, whereas the N(1)-acetyl-derivatives of Spm and Spd were oxidized less efficiently. On the other hand, no activity was detected when diamines (agmatine, cadaverine, and Put) were used as substrates. Moreover, although AtPAO3 does not exhibit significant similarity to the other known PAOs, it is efficiently inhibited by guazatine, a potent PAO inhibitor. AtPAO3 contains a peroxisomal targeting motif at the C terminus, and it targets green fluorescence protein to peroxisomes when fused at the N terminus but not at the C terminus. These results reveal that AtPAO3 is a peroxisomal protein and that the C terminus of the protein contains the sorting information. The overall data reinforce the view that plants and mammals possess a similar PA oxidation system, concerning both the subcellular localization and the mode of its action.
Collapse
|
59
|
Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 2008; 9:81-96. [PMID: 18633655 DOI: 10.1007/s10142-008-0090-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/22/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Endodormant grapevine buds require a period of chilling before they break and begin to grow. Custom Vitis bud cDNA microarrays (9,216 features) were used to examine gene expression patterns in overwintering Vitis riparia buds during 2,000 h of 4 degrees C chilling. Three-node cuttings collected concurrently with buds were monitored to determine dormancy status. Chilling requirement was fulfilled after 1,500 h of chilling; however, 2,000 h of chilling significantly increased the rate of bud break. Microarray analysis identified 1,469 significantly differentially expressed (p value < 0.05) array features when 1,000, 1,500, and 2,000 h of chilling were compared to 500 h of chilling. Functional classification revealed that the majority of genes were involved in metabolism, cell defense/stress response, and genetic information processing. The number of significantly differentially expressed genes increased with chilling hour accumulation. The expression of a group of 130 genes constantly decreased during the chilling period. Up-regulated genes were not detected until the later stages of chilling accumulation. Hierarchical clustering of non-redundant expressed sequence tags revealed inhibition of genes involved in carbohydrate and energy metabolism and activation of genes involved in signaling and cell growth. Clusters with expression patterns associated with increased chilling and bud break were identified, indicating several candidate genes that may serve as indicators of bud chilling requirement fulfillment.
Collapse
Affiliation(s)
- Kathy Mathiason
- Department of Horticulture, Forestry, Landscape, and Parks, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Cvikrová M, Gemperlová L, Eder J, Zazímalová E. Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents. PLANT CELL REPORTS 2008; 27:1147-56. [PMID: 18369627 DOI: 10.1007/s00299-008-0538-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/06/2008] [Indexed: 05/26/2023]
Abstract
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.
Collapse
Affiliation(s)
- Milena Cvikrová
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 236, 16502 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
61
|
Sfichi-Duke L, Ioannidis NE, Kotzabasis K. Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: a comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. PLANTA 2008; 228:341-53. [PMID: 18443817 DOI: 10.1007/s00425-008-0741-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/12/2008] [Indexed: 05/07/2023]
Abstract
The functional and biochemical aspects of the photosynthetic apparatus in response to UV-B radiation were examined in unicellular oxygenic algae Scenedesmus obliquus. The wild type (Wt) and a chlorophyll b-less mutant (Wt-lhc) were used as a specific tool for the understanding of antenna role. Photosynthesis was monitored during and after UV-B stress by time resolved fluorescence spectroscopy and polarography. Carotenoids, such as neoxanthin, loroxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, alpha- and beta-carotene, cellular and thylakoid-associated putrescine, spermidine, spermine and subcomplexes of light-harvesting complex (LHCII) of photosystem II (PSII) were investigated to assess their possible involvement in response to UV-B. Oxygen evolution depression by UV-B was higher in the Wt-lhc mutant than in the Wt. Photosynthesis recovery occurred in the Wt, but not in the mutant. The dissipation of excess excitation energy during UV-B stress was accompanied by changes in the thylakoid-associated polyamines which were much higher than changes in xanthophylls. We conclude that, at least in the unicellular green alga S. obliquus, mutants lacking chlorophyll b have significant lower capacity for recovery after UV-B stress. In addition, the comparison of xanthophylls and thylakoid-associated polyamines reveals that the latter are more responsive to UV-B stress and in a reversible manner.
Collapse
Affiliation(s)
- Liliana Sfichi-Duke
- Department of Biology, University of Crete, PO Box 2208, Heraklion, Crete 71409, Greece
| | | | | |
Collapse
|
62
|
Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. THE PLANT CELL 2008; 20:1708-24. [PMID: 18577660 PMCID: PMC2483379 DOI: 10.1105/tpc.108.059733] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/07/2008] [Accepted: 06/02/2008] [Indexed: 05/18/2023]
Abstract
Polyamines (PAs) exert a protective effect against stress challenges, but their molecular role in this remains speculative. In order to detect the signaling role of apoplastic PA-derived hydrogen peroxide (H2O2) under abiotic stress, we developed a series of tobacco (Nicotiana tabacum cv Xanthi) transgenic plants overexpressing or downregulating apoplastic polyamine oxidase (PAO; S-pao and A-pao plants, respectively) or downregulating S-adenosyl-l-methionine decarboxylase (samdc plants). Upon salt stress, plants secreted spermidine (Spd) into the apoplast, where it was oxidized by the apoplastic PAO, generating H2O2. A-pao plants accumulated less H2O2 and exhibited less programmed cell death (PCD) than did wild-type plants, in contrast with S-pao and samdc downregulating plants. Induction of either stress-responsive genes or PCD was dependent on the level of Spd-derived apoplastic H2O2. Thus, in wild-type and A-pao plants, stress-responsive genes were efficiently induced, although in the latter at a lower rate, while S-pao plants, with higher H2O2 levels, failed to accumulate stress-responsive mRNAs, inducing PCD instead. Furthermore, decreasing intracellular PAs, while keeping normal apoplastic Spd oxidation, as in samdc downregulating transgenic plants, caused enhanced salinity-induced PCD. These results reveal that salinity induces the exodus of Spd into the apoplast, where it is catabolized by PAO, producing H2O2. The accumulated H2O2 results in the induction of either tolerance responses or PCD, depending also on the levels of intracellular PAs.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Adenosylmethionine Decarboxylase/genetics
- Adenosylmethionine Decarboxylase/metabolism
- Apoptosis/drug effects
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Plant/drug effects
- Germination/drug effects
- Germination/genetics
- Germination/physiology
- Hydrogen Peroxide/metabolism
- Microscopy, Electron, Transmission
- Oxidation-Reduction/drug effects
- Oxidoreductases Acting on CH-NH Group Donors/genetics
- Oxidoreductases Acting on CH-NH Group Donors/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/genetics
- Seeds/metabolism
- Seeds/ultrastructure
- Sodium Chloride/pharmacology
- Spermidine/metabolism
- Spermidine/pharmacology
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/ultrastructure
- Polyamine Oxidase
Collapse
|
63
|
Yang J, Yunying C, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. PLANTA 2008; 228:137-149. [PMID: 18340459 DOI: 10.1007/s00425-008-0725-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/29/2008] [Indexed: 05/26/2023]
Abstract
Early-flowered superior spikelets usually exhibit a faster grain filling rate and heavier grain weight than late-flowered inferior spikelets in rice (Oryza sativa L.). But the intrinsic factors responsible for the variations between the two types of spikelets are unclear. This study investigated whether and how polyamines (PAs) are involved in regulating post-anthesis development of rice spikelets. Six rice genotypes differing in grain filling rate were field grown, and PA levels and activities of the enzymes involved in PA biosynthesis were measured in both superior and inferior spikelets. The results showed that superior spikelets exhibited higher levels of free spermidine (Spd) and free spermine (Spm) and higher activities of arginine decarboxylase (ADC, EC 4.1.1.19), S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) and Spd synthase (EC 2.5.1.16) than inferior spikelets at the early endosperm cell division and grain filling stage. The maximum concentrations of free Spd and free Spm and the maximum activities of ADC, SAMDC and Spd synthase were significantly correlated with the maximum cell division and grain filling rates, maximum cell number and grain weight. Application of Spd and Spm to panicles resulted in significantly higher rates of endosperm cell division and grain filling in inferior spikelets along with the activities of sucrose synthase (EC 2.4.1.13), ADP glucose pyrophosphorylase (EC 2.7.7.27) and soluble starch synthase (EC 2.4.1.21), suggesting that these PAs are involved in the sucrose-starch metabolic pathway. The results indicate that the poor development of inferior spikelets is attributed, at least partly, to the low PA level and its low biosynthetic activity.
Collapse
Affiliation(s)
- Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | |
Collapse
|
64
|
Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. PLANTA 2008; 228:37-49. [PMID: 18320213 DOI: 10.1007/s00425-008-0717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/15/2008] [Indexed: 05/10/2023]
Abstract
The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).
Collapse
Affiliation(s)
- R C Efrose
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA. Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. PHYSIOLOGIA PLANTARUM 2008; 133:140-56. [PMID: 18282192 DOI: 10.1111/j.1399-3054.2008.01049.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The molecular and biochemical mechanism(s) of polyamine (PA) action remain largely unknown. Transgenic tobacco plants overexpressing polyamine oxidase (PAO) from Zea mays exhibited dramatically increased expression levels of Mpao and high 1,3-diaminopropane (Dap) content. All fractions of spermidine and spermine decreased significantly in the transgenic lines. Although Dap was concomitantly generated with H(2)O(2) by PAO, the latter was below the detection limits. To show the mode(s) of H(2)O(2) scavenging, the antioxidant machinery of the transgenics was examined. Specific isoforms of peroxidase, superoxide dismutase and catalase were induced in the transgenics but not in the wild-type (WT), along with increase in activities of additional enzymes contributing to redox homeostasis. One would expect that because the antioxidant machinery was activated, the transgenics would be able to cope with increased H(2)O(2) generated by abiotic stimuli. However, despite the enhanced antioxidant machinery, further increase in the intracellular reactive oxygen species (ROS) by exogenous H(2)O(2), or addition of methylviologen or menadione to transgenic leaf discs, resulted in oxidative stress as evidenced by the lower quantum yield of PSII, the higher ion leakage, lipid peroxidation and induction of programmed cell death (PCD). These detrimental effects of oxidative burst were as a result of the inability of transgenic cells to further respond as did the WT in which induction of antioxidant enzymes was evident soon following the treatments. Thus, although the higher levels of H(2)O(2) generated by overexpression of Mpao in the transgenics, with altered PA homeostasis, were successfully controlled by the concomitant activation of the antioxidant machinery, further increase in ROS was detrimental to cellular functions and induced the PCD syndrome.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Biology, University of Crete, PO Box 2280, 71409 Heraklion Crete, Greece
| | | | | | | |
Collapse
|
66
|
Falasca G, Capitani F, Della Rovere F, Zaghi D, Franchin C, Biondi S, Altamura MM. Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants, inhibit polyamine biosynthetic gene expression, and promote long-term remobilisation of cell calcium. PLANTA 2008; 227:835-52. [PMID: 17992537 DOI: 10.1007/s00425-007-0660-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/22/2007] [Indexed: 05/25/2023]
Abstract
Long-sized oligogalacturonides (OGs) are cell wall fragments that induce defence and developmental responses. The Ca(2+)-dependent "egg-box" conformation is required for their activity, and polyamines may prevent them from adopting this conformation. Although OGs are known to inhibit auxin-induced growth processes, their effect on cytokinin-induced ones requires investigation. In the present work OGs were shown to promote cytokinin (benzyladenine, BA)-induced vegetative shoot formation from tobacco leaf explants, independent of the presence of CaCl(2) in the medium and of auxin (indoleacetic acid, IAA) supply. The effect of polyamines, putrescine (PU) and spermidine (SD) supplied with/without their biosynthetic inhibitors (DFMO, CHA) was also investigated, and showed that spermidine enhanced adventitious vegetative shoot formation, but only on medium containing Ca(2+) and IAA. Treatments with inhibitors blocked this promotive effect. OGs did not alter free polyamine concentrations, but caused a moderate increase of conjugated ones, and exhibited an early inhibitory effect on polyamine biosynthetic gene expression. OGs, but not SD, caused long-term changes in calcium-associated epifluorescent signals in the cell walls, and, later, inside the cells of specific tissues. Electron microscopy analysis (ESI system) demonstrated that calcium accumulated in the cell walls and vacuoles of OG-cultured explants. The relationship between OGs, cytokinin, calcium, and polyamines in adventitious vegetative shoot formation is discussed.
Collapse
Affiliation(s)
- Giuseppina Falasca
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Zhao F, Song CP, He J, Zhu H. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. PLANT PHYSIOLOGY 2007; 145:1061-72. [PMID: 17905858 PMCID: PMC2048800 DOI: 10.1104/pp.107.105882] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/20/2007] [Indexed: 05/17/2023]
Abstract
Polyamines are known to increase in plant cells in response to a variety of stress conditions. However, the physiological roles of elevated polyamines are not understood well. Here we investigated the effects of polyamines on ion channel activities by applying patch-clamp techniques to protoplasts derived from barley (Hordeum vulgare) seedling root cells. Extracellular application of polyamines significantly blocked the inward Na(+) and K(+) currents (especially Na(+) currents) in root epidermal and cortical cells. These blocking effects of polyamines were increased with increasing polycation charge. In root xylem parenchyma, the inward K(+) currents were blocked by extracellular spermidine, while the outward K(+) currents were enhanced. At the whole-plant level, the root K(+) content, as well as the root and shoot Na(+) levels, was decreased significantly by exogenous spermidine. Together, by restricting Na(+) influx into roots and by preventing K(+) loss from shoots, polyamines were shown to improve K(+)/Na(+) homeostasis in barley seedlings. It is reasonable to propose that, therefore, elevated polyamines under salt stress should be a self-protecting response for plants to combat detrimental consequences resulted from imbalance of Na(+) and K(+).
Collapse
Affiliation(s)
- Fugeng Zhao
- School of Life Sciences, Nanjing University, Nanjing 210039, China.
| | | | | | | |
Collapse
|
68
|
Marconi PL, Alvarez MA, Pitta-Alvarez SI. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production. Appl Biochem Biotechnol 2007; 136:63-75. [PMID: 17416978 DOI: 10.1007/bf02685939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/24/2006] [Accepted: 05/04/2006] [Indexed: 10/22/2022]
Abstract
Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.
Collapse
Affiliation(s)
- Patricia L Marconi
- ONICET, Fundación Pablo Cassará, Centro de Ciencia y Tecnología Dr César Milstein, Saladillo 2452 (1440FFX), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
69
|
Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus--the protective role of polyamines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:272-80. [PMID: 17408588 DOI: 10.1016/j.bbabio.2007.02.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 02/22/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
In the present study the green alga Scenedesmus obliquus was used to assess the effects of high salinity (high NaCl-concentration) on the structure and function of the photosynthetic apparatus and the possibility for alleviation by exogenous putrescine (Put). Chlorophyll fluorescence data revealed the range of the changes induced in the photosynthetic apparatus by different NaCl concentrations, which altogether pointed towards an increased excitation pressure. At the same time, changes in the levels of endogenous polyamine concentrations, both in cell and in isolated thylakoid preparations were also evidenced. Certain polyamine changes (Put reduction) were correlated with changes in the structure and function of the photosynthetic apparatus, such as the increase in the functional size of the antenna and the reduction in the density of active photosystem II reaction centers. Thus, exogenously added Put was used to compensate for this stress condition and to adjust the above mentioned changes, so that to confer some kind of tolerance to the photosynthetic apparatus against enhanced NaCl-salinity and permit cell growth even in NaCl concentrations that under natural conditions would be toxic.
Collapse
Affiliation(s)
- Georgia Demetriou
- University of Crete, Department of Biology, PO Box 2208, 71409 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
70
|
Liu JH, Moriguchi T. Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. PLANT CELL REPORTS 2007; 26:125-31. [PMID: 16912865 DOI: 10.1007/s00299-006-0223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/16/2006] [Accepted: 07/19/2006] [Indexed: 05/09/2023]
Abstract
In the present paper, correlation between free polyamines and growth of peach (Prunus persica cv. Yuzora) in vitro callus was investigated. Growth of the callus was divided into three phases based on measurement of fresh weight. Free polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), could be detected during peach callus growth. Changes in free Put titers followed the callus growth rate, as shown by low and stable levels in the first stage, quick increase at the beginning of the second phase, and slow increase in the last phase, whereas fluctuations of Spd and Spm titers were aberrant from that of Put at early stage. Expressions of five key genes involved in polyamine biosynthesis were characterized, in which only the genes leading to Put synthesis, ADC (arginine decarboxylase) and ODC (ornithine decarboxylase), agreed with callus growth and fluctuation of Put titers. Treatment of the callus with D-arginine, an inhibitor of ADC, led to significant growth inhibition and enormous reduction of endogenous Put, coupled with obvious decrease of mRNA levels of ADC and ODC. Exogenous application of Put partially restored the callus growth, along with resumption of endogenous Put and expression levels of ADC and ODC. Spd and Spm titers experienced minor change in comparison to Put. The data presented here suggested that free Put played an important part in peach callus growth. Putative mechanisms or mode of action underlying the role of Put in peach callus growth and different expression patterns of the genes responsible for polyamine biosynthesis are also discussed.
Collapse
Affiliation(s)
- J H Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, PR China.
| | | |
Collapse
|
71
|
Vuosku J, Jokela A, Läärä E, Sääskilahti M, Muilu R, Sutela S, Altabella T, Sarjala T, Häggman H. Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. PLANT PHYSIOLOGY 2006; 142:1027-38. [PMID: 16963525 PMCID: PMC1630739 DOI: 10.1104/pp.106.083030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 09/05/2006] [Indexed: 05/11/2023]
Abstract
In this study, we show that both arginine decarboxylase (ADC) protein and mRNA transcript are present at different phases of mitosis in Scots pine (Pinus sylvestris) zygotic embryogenesis. We also examined the consistency of polyamine (PA) profiles with the effective temperature sum, the latter indicating the developmental stage of the embryos. PA metabolism was analyzed by fitting statistical regression models to the data of free and soluble conjugated PAs, to the enzyme activities of ADC and ornithine decarboxylase (ODC), as well as to the gene expression of ADC. According to the fitted models, PAs typically had the tendency to increase at the early stages but decrease at the late stages of embryogenesis. Only the free putrescine fraction remained stable during embryo development. The PA biosynthesis strongly preferred the ADC pathway. Both ADC gene expression and ADC enzyme activity were substantially higher than putative ODC gene expression or ODC enzyme activity, respectively. ADC gene expression and enzyme activity increased during embryogenesis, which suggests the involvement of transcriptional regulation in the expression of ADC. Both ADC mRNA and ADC protein localized in dividing cells of embryo meristems and more specifically within the mitotic spindle apparatus and close to the chromosomes, respectively. The results suggest the essential role of ADC in the mitosis of plant cells.
Collapse
Affiliation(s)
- Jaana Vuosku
- Department of Biology , University of Oulu, 90014 Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. THE PLANT CELL 2006; 18:2767-81. [PMID: 17041150 PMCID: PMC1626620 DOI: 10.1105/tpc.105.038323] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Glutamate dehydrogenase (GDH) may be a stress-responsive enzyme, as GDH exhibits considerable thermal stability, and de novo synthesis of the alpha-GDH subunit is induced by exogenous ammonium and senescence. NaCl treatment induces reactive oxygen species (ROS), intracellular ammonia, expression of tobacco (Nicotiana tabacum cv Xanthi) gdh-NAD;A1 encoding the alpha-subunit of GDH, increase in immunoreactive alpha-polypeptide, assembly of the anionic isoenzymes, and in vitro GDH aminating activity in tissues from hypergeous plant organs. In vivo aminating GDH activity was confirmed by gas chromatorgraphy-mass spectrometry monitoring of (15)N-Glu, (15)N-Gln, and (15)N-Pro in the presence of methionine sulfoximine and amino oxyacetic acid, inhibitors of Gln synthetase and transaminases, respectively. Along with upregulation of alpha-GDH by NaCl, isocitrate dehydrogenase genes, which provide 2-oxoglutarate, are also induced. Treatment with menadione also elicits a severalfold increase in ROS and immunoreactive alpha-polypeptide and GDH activity. This suggests that ROS participate in the signaling pathway for GDH expression and protease activation, which contribute to intracellular hyperammonia. Ammonium ions also mimic the effects of salinity in induction of gdh-NAD;A1 expression. These results, confirmed in tobacco and grape (Vitis vinifera cv Sultanina) tissues, support the hypothesis that the salinity-generated ROS signal induces alpha-GDH subunit expression, and the anionic iso-GDHs assimilate ammonia, acting as antistress enzymes in ammonia detoxification and production of Glu for Pro synthesis.
Collapse
|
73
|
Ioannidis NE, Sfichi L, Kotzabasis K. Putrescine stimulates chemiosmotic ATP synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:821-8. [PMID: 16828052 DOI: 10.1016/j.bbabio.2006.05.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/21/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
Putrescine is a main polyamine found in animals, plants and microbes, but the molecular mechanism underlying its mode of action is still obscure. In vivo chlorophyll a fluorescence in tobacco leaf discs indicated that putrescine treatment affects the energization of the thylakoid membrane. Molecular dissection of the electron transport chain by biophysical and biochemical means provided new evidence that putrescine can play an important bioenergetic role acting as a cation and as a permeant natural buffer. We demonstrate that putrescine increases chemiosmotic ATP synthesis more than 70%. Also a regulation of the energy outcome by small changes in putrescine pool under the same photonic environment (i.e., photosynthetically active radiation) is shown. The proposed molecular mechanism has at least four conserved features: (i) presence of a membrane barrier, (ii) a proton-driven ATPase, (iii) a DeltapH and (iv) a pool of putrescine.
Collapse
|
74
|
Gemperlová L, Nováková M, Vanková R, Eder J, Cvikrová M. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1413-21. [PMID: 16556629 DOI: 10.1093/jxb/erj121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Changes in the contents of polyamines (PAs) in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under 16 h photoperiod were correlated with arginine and ornithine decarboxylase (EC 4.1.1.19 and EC 4.1.1.17) and diamine oxidase (EC 1.4.3.6) activities. The maximum of free and soluble conjugated forms of PAs occurred 1-2 h after the middle of the light period and was followed by two distinct peaks at the end of the light and at the beginning of the dark phase. Putrescine was the most abundant and cadaverine the least abundant PA in both free and PCA-soluble forms. However, cadaverine was predominant in PCA-insoluble conjugates, followed by putrescine, spermidine, and spermine. Both arginine and ornithine decarboxylases are involved in putrescine biosynthesis in tobacco leaves. Light dramatically stimulated the activity of ornithine decarboxylase, while no photoinduction of arginine decarboxylase activity was observed. Ornithine decarboxylase was found mainly in the particulate fraction. Only one peak, just after light induction, occurred in the cytosolic fraction, with 35% of the total ornithine decarboxylase activity. By contrast, the total arginine decarboxylase activity was equally divided between the soluble and pellet fractions. A sharp increase in diamine oxidase activity occurred 1 h after exposure to light, concomitant with the light-induced increase in ornithine decarboxylase activity. After a decline, diamine oxidase activity increased again, together with the rise in the amount of free Put. The roles of both conjugation of PAs with hydroxycinnamic acids and oxidative degradation of putrescine in maintaining free PA levels during the 24 h light/dark cycle are discussed. The presented results have shown that the parameters studied here followed rhythmical changes and were not only affected by light.
Collapse
Affiliation(s)
- Lenka Gemperlová
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, Rozvojová 135, 165 02 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
75
|
Eller MH, Warner AL, Knap HT. Genomic organization and expression analyses of putrescine pathway genes in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:49-57. [PMID: 16531054 DOI: 10.1016/j.plaphy.2006.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Indexed: 05/07/2023]
Abstract
Putrescine is synthesized using one of two alternative pathways in plants, from arginine by arginine decarboxylase (ADC) or from ornithine by ornithine decarboxylase (ODC) and is catabolized by diamine oxidase (DAO). A survey of approximately 310,000 expressed sequenced tags (ESTs) in soybean EST libraries identified diverse representation of ADC, ODC, and DAO ESTs, with ODC being least frequent and DAO ESTs most abundant. Southern analysis suggested that ADC and ODC belong to small gene families, and DAO is the most divergent. Using three bacterial artificial chromosome (BAC) libraries, 26X genome equivalents, two common loci for ADC and DAO and one independent DAO locus were identified. ADC and DAO are physically linked in the soybean genome within approximately 150 kb. Identification of genomic regions encoding ODC proved difficult and required using additional BAC libraries, increasing genome coverage to approximately 40X. Using Real Time reverse transcriptase-polymerase chain reaction (RT-PCR), higher steady-state levels of ADC than ODC in roots, leaves, shoot apices, and dry seeds suggested that ADC is the predominant pathway for putrescine biosynthesis in soybean. However, organ-specific expression showed that root is the major site of ODC transcription. Significantly elevated accumulation of ADC mRNA and elevated putrescine content in seeds of the fasciation mutant compared with the wild type may stimulate cell divisions and establishment of enlarged apical meristem during early mutant ontogeny. The DAO frequent representation in EST libraries constructed from root tissue and elevated steady-state levels in roots compared to above ground tissues show DAO is critical for regulation of putrescine content in soybean roots.
Collapse
Affiliation(s)
- Michele H Eller
- Department of Genetics and Biochemistry, 100 Jordan Hall, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|
76
|
Paschalidis KA, Roubelakis-Angelakis KA. Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. PLANT PHYSIOLOGY 2005; 138:2174-84. [PMID: 16040649 PMCID: PMC1183405 DOI: 10.1104/pp.105.063941] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 04/28/2005] [Accepted: 04/30/2005] [Indexed: 05/03/2023]
Abstract
We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development.
Collapse
|