51
|
Zhao Y, Wang J, Liu Y, Miao H, Cai C, Shao Z, Guo R, Sun B, Jia C, Zhang L, Gigolashvili T, Wang Q. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:920-33. [PMID: 25645692 DOI: 10.1111/tpj.12778] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1-induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1-induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col-0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase β-thioglucoside glucohydrolase (TGG)-deficient double mutant tgg1 tgg2, rather than atypical myrosinase-deficient mutant pen2-2, is more sensitive to FB1 than Col-0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG-dependent IGS hydrolysis is involved in FB1-induced PCD. Indole-3-acetonitrile (IAN) and indole-3-carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS-scavenging ability. Despite the involvement of indole-3-acetic acid (IAA) in restricting FB1-induced PCD, feeding of IAN and I3C attenuated FB1-induced PCD in the IAA receptor mutant tir1-1 just as in Col-0. Taken together, our results indicate that TGG-catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA-independent way.
Collapse
Affiliation(s)
- Yanting Zhao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sohrabi R, Huh JH, Badieyan S, Rakotondraibe LH, Kliebenstein DJ, Sobrado P, Tholl D. In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. THE PLANT CELL 2015; 27:874-90. [PMID: 25724638 PMCID: PMC4558649 DOI: 10.1105/tpc.114.132209] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/31/2015] [Accepted: 02/07/2015] [Indexed: 05/19/2023]
Abstract
Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.
Collapse
Affiliation(s)
- Reza Sohrabi
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Jung-Hyun Huh
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | | | | | | | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
53
|
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. TRENDS IN PLANT SCIENCE 2015; 20:91-101. [PMID: 25307784 DOI: 10.1016/j.tplants.2014.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/17/2023]
Abstract
Diseases caused by soil-borne pathogens result worldwide in significant yield losses in economically important crops. In contrast to foliar diseases, relatively little is known about the nature of root defenses against these pathogens. This review summarizes the current knowledge on root infection strategies, root-specific preformed barriers, pathogen recognition, and defense signaling. Studies reviewed here suggest that many commonalities as well as differences exist in defense strategies employed by roots and foliar tissues during pathogen attack. Importantly, in addition to pathogens, plant roots interact with a plethora of non-pathogenic and symbiotic microorganisms. Therefore, a good understanding of how plant roots interact with the microbiome would be particularly important to engineer resistance to root pathogens without negatively altering root-beneficial microbe interactions.
Collapse
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Christine Vos
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium.
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
54
|
Strehmel N, Böttcher C, Schmidt S, Scheel D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. PHYTOCHEMISTRY 2014; 108:35-46. [PMID: 25457500 DOI: 10.1016/j.phytochem.2014.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 10/08/2014] [Indexed: 05/20/2023]
Abstract
To explore the chemical composition of root exudates of the model plant Arabidopsis thaliana a workflow for nontargeted metabolite profiling of the semipolar fraction of root exudates was developed. It comprises hydroponic plant cultivation and sampling of root exudates under sterile conditions, sample preparation by solid-phase extraction and analysis by reversed-phase UPLC/ESI-QTOFMS. Following the established workflow, root exudates of six-week-old plants were profiled and a set of reproducibly occurring molecular features was compiled. To structurally elucidate the corresponding metabolites, accurate mass tandem mass spectrometry and on-line hydrogen/deuterium exchange were applied. Currently, a total of 103 compounds were detected and annotated by elemental composition of which more than 90 were structurally characterized or classified. Among them, 42 compounds were rigorously identified using an authenticated standard. The compounds identified so far include nucleosides, deoxynucleosides, aromatic amino acids, anabolites and catabolites of glucosinolates, dipeptides, indolics, salicylic and jasmonic acid catabolites, coumarins, mono-, di- and trilignols, hydroxycinnamic acid derivatives and oxylipins and exemplify the high chemical diversity of plant root exudates.
Collapse
|
55
|
Siwinska J, Kadzinski L, Banasiuk R, Gwizdek-Wisniewska A, Olry A, Banecki B, Lojkowska E, Ihnatowicz A. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC PLANT BIOLOGY 2014; 14:280. [PMID: 25326030 PMCID: PMC4252993 DOI: 10.1186/s12870-014-0280-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/09/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Scopoletin and its glucoside scopolin are important secondary metabolites synthesized in plants as a defense mechanism against various environmental stresses. They belong to coumarins, a class of phytochemicals with significant biological activities that is widely used in medical application and cosmetics industry. Although numerous studies showed that a variety of coumarins occurs naturally in several plant species, the details of coumarins biosynthesis and its regulation is not well understood. It was shown previously that coumarins (predominantly scopolin and scopoletin) occur in Arabidopsis thaliana (Arabidopsis) roots, but until now nothing is known about natural variation of their accumulation in this model plant. Therefore, the genetic architecture of coumarins biosynthesis in Arabidopsis has not been studied before. RESULTS Here, the variation in scopolin and scopoletin content was assessed by comparing seven Arabidopsis accessions. Subsequently, a quantitative trait locus (QTL) mapping was performed with an Advanced Intercross Recombinant Inbred Lines (AI-RILs) mapping population EstC (Est-1 × Col). In order to reveal the genetic basis of both scopolin and scopoletin biosynthesis, two sets of methanol extracts were made from Arabidopsis roots and one set was additionally subjected to enzymatic hydrolysis prior to quantification done by high-performance liquid chromatography (HPLC). We identified one QTL for scopolin and five QTLs for scopoletin accumulation. The identified QTLs explained 13.86% and 37.60% of the observed phenotypic variation in scopolin and scopoletin content, respectively. In silico analysis of genes located in the associated QTL intervals identified a number of possible candidate genes involved in coumarins biosynthesis. CONCLUSIONS Together, our results demonstrate for the first time that Arabidopsis is an excellent model for studying the genetic and molecular basis of natural variation in coumarins biosynthesis in plants. It additionally provides a basis for fine mapping and cloning of the genes involved in scopolin and scopoletin biosynthesis. Importantly, we have identified new loci for this biosynthetic process.
Collapse
Affiliation(s)
- Joanna Siwinska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Leszek Kadzinski
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Rafal Banasiuk
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Anna Gwizdek-Wisniewska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Alexandre Olry
- />Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, Vandœuvre-lès-Nancy, 54505 France
- />INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, Vandœuvre-lès-Nancy, 54505 France
| | - Bogdan Banecki
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Ewa Lojkowska
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| | - Anna Ihnatowicz
- />Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, ul. Kladki 24, Gdansk, 80-822 Poland
| |
Collapse
|
56
|
Böttcher C, Chapman A, Fellermeier F, Choudhary M, Scheel D, Glawischnig E. The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:841-853. [PMID: 24728709 PMCID: PMC4044862 DOI: 10.1104/pp.114.235630] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from tryptophan via the intermediates indole-3-acetaldoxime and indole-3-acetonitrile. Based on feeding experiments combined with nontargeted metabolite profiling, their composition in nontreated and silver nitrate (AgNO3)-treated leaf tissue was comprehensively analyzed. As major derivatives, glucose conjugates of 5-hydroxyindole-3-carbaldehyde, ICOOH, and 6-hydroxyindole-3-carboxylic acid were identified. Quantification of ICHO and ICOOH derivative pools after glucosidase treatment revealed that, in response to AgNO3 treatment, their total accumulation level was similar to that of camalexin. ARABIDOPSIS ALDEHYDE OXIDASE1 (AAO1), initially discussed to be involved in the biosynthesis of indole-3-acetic acid, and Cytochrome P450 (CYP) 71B6 were found to be transcriptionally coexpressed with camalexin biosynthetic genes. CYP71B6 was expressed in Saccharomyces cerevisiae and shown to efficiently convert indole-3-acetonitrile into ICHO and ICOOH, thereby releasing cyanide. To evaluate the role of both enzymes in the biosynthesis of ICHO and ICOOH derivatives, knockout and overexpression lines for CYP71B6 and AAO1 were established and analyzed for indolic metabolites. The observed metabolic phenotypes suggest that AAO1 functions in the oxidation of ICHO to ICOOH in both nontreated and AgNO3-treated leaves, whereas CYP71B6 is relevant for ICOOH derivative biosynthesis specifically after induction. In summary, a model for the biosynthesis of ICHO and ICOOH derivatives is presented.
Collapse
Affiliation(s)
- Christoph Böttcher
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Alexandra Chapman
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Franziska Fellermeier
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Manisha Choudhary
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| | - Erich Glawischnig
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, 06120 Halle/Saale, Germany (C.B., D.S.); andLehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany (A.C., F.F., M.C., E.G.)
| |
Collapse
|
57
|
Simon C, Langlois-Meurinne M, Didierlaurent L, Chaouch S, Bellvert F, Massoud K, Garmier M, Thareau V, Comte G, Noctor G, Saindrenan P. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. PLANT, CELL & ENVIRONMENT 2014; 37:1114-29. [PMID: 24131360 DOI: 10.1111/pce.12221] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst-AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T-DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst-AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)-induced genes whose pathogen-induced expression is co-regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan-derived SM accumulation after Pst-AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS-reactive SMs during the HR to Pst-AvrRpm1, and that decreased resistance to Pst-AvrRpm1 in ugt mutants is tightly linked to redox perturbation.
Collapse
Affiliation(s)
- Clara Simon
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, Bâtiment 630, 91405, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense. TRENDS IN PLANT SCIENCE 2014; 19:90-8. [PMID: 24332225 DOI: 10.1016/j.tplants.2013.11.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/23/2013] [Accepted: 11/14/2013] [Indexed: 05/20/2023]
Abstract
The significance of root exudates as belowground defense substances has long been underestimated, presumably due to being buried out of sight. Nevertheless, this chapter of root biology has been progressively addressed within the past decade through the characterization of novel constitutively secreted and inducible phytochemicals that directly repel, inhibit, or kill pathogenic microorganisms in the rhizosphere. In addition, the complex transport machinery involved in their export has been considerably unraveled. It has become evident that the profile of defense root exudates is not only diverse in its composition, but also strikingly dynamic. In this review, we discuss current knowledge of the nature and regulation of root-secreted defense compounds and the role of transport proteins in modulating their release.
Collapse
Affiliation(s)
- Ulrike Baetz
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| |
Collapse
|
59
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
Affiliation(s)
- Ryohei T. Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznañ, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto UniversityKyoto, Japan
- *Correspondence: Ikuko Hara-Nishimura, Laboratory of Plant Molecular and Cell Biology, Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan e-mail:
| |
Collapse
|
60
|
Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K, Saijo Y. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J 2013; 33:62-75. [PMID: 24357608 DOI: 10.1002/embj.201284303] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate- and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.
Collapse
Affiliation(s)
- Annegret Ross
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genet 2013; 9:e1003840. [PMID: 24098147 PMCID: PMC3789834 DOI: 10.1371/journal.pgen.1003840] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. Gene co-expression networks unite genes with similar expression patterns. From these networks, gene co-expression modules can be identified. A specific family of transcription factor(s) may regulate the genes within a co-expression module. Thus, module identification is important to decipher the gene regulatory network. Previously, module identification relied on clustering the gene network into gene clusters that were then treated as modules. This represents a top-down approach. Here, we introduce a reverse approach aiming at identifying gene co-expression modules regulated by known promoter motifs. For a given promoter motif, we calculated the probability of each gene within the network to belong to a module regulated by that motif via motif enrichment analysis or motif position bias analysis. A sub-network containing the genes with a high probability of belonging to a motif driven module was then extracted from the gene co-expression network. From this sub-network, the modular structure can be identified via visual inspection. Our bottom-up approach recovered many known and novel modules for the G-box, MYB, W-box and site II elements motif, whose expression may be regulated by the transcription factors that bind to these motifs. Additionally, we developed a rapid transcription factor-promoter interaction screening system to validate predicted interactions.
Collapse
|
62
|
Smith RA, Schuetz M, Roach M, Mansfield SD, Ellis B, Samuels L. Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. THE PLANT CELL 2013; 25:3988-99. [PMID: 24096341 PMCID: PMC3877792 DOI: 10.1105/tpc.113.117176] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 05/17/2023]
Abstract
Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against cinnamoyl CoA-reductase1 driven by the promoter from cellulose synthase7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification.
Collapse
Affiliation(s)
- Rebecca A. Smith
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Melissa Roach
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shawn D. Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Address correspondence to
| |
Collapse
|
63
|
Montaut S, Bleeker RS. Review on Cardamine diphylla (Michx.) A. wood (Brassicaceae): ethnobotany and glucosinolate chemistry. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:401-408. [PMID: 23892204 DOI: 10.1016/j.jep.2013.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardamine diphylla (Michx.) A. Wood, commonly called toothwort, is a spring perennial herb belonging to the Brassicaceae family. This endemic plant of Eastern North America has been widely used by multiple American First Nations (i.e. indigenous people of North America) for food and medicine for centuries. APPROACH AND METHODS The aim of the review is to describe the botany, ethnopharmacology, phytochemistry, and bioactivity of Cardamine diphylla. The review covers literature on Cardamine diphylla, and the alternative name Dentaria diphylla, from English and French language sources. RESULTS Multiple traditional uses of Cardamine diphylla by American First Nations are well documented. Initial health studies showed that the tested concentrations of the extract were not toxic against brine shrimp larvae and the same extract had a weak free-radical scavenging activity. However, bioactive compounds in the form of aliphatic and indole glucosinolates and some indole alkaloids have been isolated from this plant. Ecological research regarding Cardamine diphylla-insect interactions (such as feeding and oviposition) is also available in the literature. CONCLUSIONS The wide range of traditional uses by multiple American First Nations suggests that the antibacterial, antiviral, immunostimulant, analgesic, antipyretic, and anti-inflammatory activities of this plant should be explored in in vitro and in vivo tests. Traditional modes of preparation of the plant suggest that some of the medicinal properties could certainly be attributed to glucosinolate degradation products (i.e. isothiocyanates), but a clear assignment of active molecules and mechanisms of action remain to be elucidated. The presence of glucosinolates indicates that the plant could be probed for cancer chemopreventive properties. Overall, the review shows that more investigation is necessary to determine the possible benefits of Cardamine diphylla extracts to pharmaceutical companies as a nutraceutic specialty phytotherapeutic agent against respiratory (cold and sore throat) or gastrointestinal problems.
Collapse
Affiliation(s)
- Sabine Montaut
- Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, Sudbury, ON, Canada.
| | | |
Collapse
|
64
|
The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One 2013; 8:e70771. [PMID: 23940639 PMCID: PMC3733641 DOI: 10.1371/journal.pone.0070771] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022] Open
Abstract
Glucosinolates are a diverse class of S- and N-containing secondary metabolites that play a variety of roles in plant defense. In this study, we used Arabidopsis thaliana mutants that contain different amounts of glucosinolates and glucosinolate-breakdown products to study the effects of these phytochemicals on phytopathogenic fungi. We compared the fungus Botrytis cinerea, which infects a variety of hosts, with the Brassicaceae-specific fungus Alternaria brassicicola. B. cinerea isolates showed variable composition-dependent sensitivity to glucosinolates and their hydrolysis products, while A. brassicicola was more strongly affected by aliphatic glucosinolates and isothiocyanates as decomposition products. We also found that B. cinerea stimulates the accumulation of glucosinolates to a greater extent than A. brassicicola. In our work with A. brassicicola, we found that the type of glucosinolate-breakdown product is more important than the type of glucosinolate from which that product was derived, as demonstrated by the sensitivity of the Ler background and the sensitivity gained in Col-0 plants expressing epithiospecifier protein both of which accumulate simple nitrile and epithionitriles, but not isothiocyanates. Furthermore, in vivo, hydrolysis products of indole glucosinolates were found to be involved in defense against B. cinerea, but not in the host response to A. brassicicola. We suggest that the Brassicaceae-specialist A. brassicicola has adapted to the presence of indolic glucosinolates and can cope with their hydrolysis products. In contrast, some isolates of the generalist B. cinerea are more sensitive to these phytochemicals.
Collapse
|
65
|
Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R. Linking plant nutritional status to plant-microbe interactions. PLoS One 2013; 8:e68555. [PMID: 23874669 PMCID: PMC3713015 DOI: 10.1371/journal.pone.0068555] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022] Open
Abstract
Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.
Collapse
Affiliation(s)
- Lilia C. Carvalhais
- Molecular Plant Nutrition, University of Hohenheim, Stuttgart, Germany
- Bakteriengenetik, Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | - Paul G. Dennis
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ben Fan
- Institute of Forest Protection, Nanjing Forestry University, Nanjing, China
| | - Dmitri Fedoseyenko
- Molecular Plant Nutrition, University of Hohenheim, Stuttgart, Germany
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Kinga Kierul
- Bakteriengenetik, Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | - Anke Becker
- Molekulare Genetik, Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Nicolaus von Wiren
- Molecular Plant Nutrition, University of Hohenheim, Stuttgart, Germany
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rainer Borriss
- Bakteriengenetik, Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
- ABiTEP GmbH, Berlin, Germany
| |
Collapse
|
66
|
|
67
|
Møldrup ME, Geu-Flores F, Halkier BA. Assigning gene function in biosynthetic pathways: camalexin and beyond. THE PLANT CELL 2013; 25:360-7. [PMID: 23449503 PMCID: PMC3608764 DOI: 10.1105/tpc.112.104745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
68
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
69
|
Buxdorf K, Yaffe H, Barda O, Levy M. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One 2013. [PMID: 23940639 DOI: 10.1371/journalpone0070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Glucosinolates are a diverse class of S- and N-containing secondary metabolites that play a variety of roles in plant defense. In this study, we used Arabidopsis thaliana mutants that contain different amounts of glucosinolates and glucosinolate-breakdown products to study the effects of these phytochemicals on phytopathogenic fungi. We compared the fungus Botrytis cinerea, which infects a variety of hosts, with the Brassicaceae-specific fungus Alternaria brassicicola. B. cinerea isolates showed variable composition-dependent sensitivity to glucosinolates and their hydrolysis products, while A. brassicicola was more strongly affected by aliphatic glucosinolates and isothiocyanates as decomposition products. We also found that B. cinerea stimulates the accumulation of glucosinolates to a greater extent than A. brassicicola. In our work with A. brassicicola, we found that the type of glucosinolate-breakdown product is more important than the type of glucosinolate from which that product was derived, as demonstrated by the sensitivity of the Ler background and the sensitivity gained in Col-0 plants expressing epithiospecifier protein both of which accumulate simple nitrile and epithionitriles, but not isothiocyanates. Furthermore, in vivo, hydrolysis products of indole glucosinolates were found to be involved in defense against B. cinerea, but not in the host response to A. brassicicola. We suggest that the Brassicaceae-specialist A. brassicicola has adapted to the presence of indolic glucosinolates and can cope with their hydrolysis products. In contrast, some isolates of the generalist B. cinerea are more sensitive to these phytochemicals.
Collapse
Affiliation(s)
- Kobi Buxdorf
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
70
|
López-Gresa MP, Lisón P, Kim HK, Choi YH, Verpoorte R, Rodrigo I, Conejero V, Bellés JM. Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1586-96. [PMID: 22795749 DOI: 10.1016/j.jplph.2012.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 05/20/2023]
Abstract
(1)H nuclear magnetic resonance (NMR)-based metabolomics has been applied to study the compatible interaction between tomato plants and Tomato Mosaic Virus (ToMV). A detailed time course of metabolic fingerprinting of ToMV-inoculated and non-inoculated systemically infected tomato leaves has provided a fundamental understanding of the metabolic state of the plant not only in response to ToMV infection, but also under various physiological conditions. By this analytical platform a total of 32 metabolites including amino/organic acids, sugars, phenylpropanoids, flavonoids and other miscellaneous compounds were detected. Using multivariate data analysis, we have identified a subset of metabolites induced during the plant defence response and metabolites whose accumulation was dependent on the developmental stage, the position of the leaf on the stem, and the harvesting time. Specifically, a general time-dependent decrease in organic acids, amino acids (excluding asparagine), phenylpropanoids and rutin was observed in individual leaves. In addition, metabolite alterations were also found to correlate with the developmental stage of the leaf: high levels of organic acids, some amino acids, phenylpropanoids, and flavonoids were found in lower leaves while elevated amounts of sugars were present in the upper ones. Moreover, a marked variation in the content of some metabolites was also observed to be associated to the asymptomatic ToMV infection both in inoculated and systemically infected leaves. While flavonoids accumulated in virus-inoculated leaves, increased levels of phenylpropanoids were observed in non-inoculated leaves where ToMV actively replicates. Finally, diurnal changes in the metabolite content were also observed: an increase of amino acids and organic acids (except glutamic acid) were observed in the samples collected in the morning, whereas sugars and secondary metabolite levels increased in the tomato leaves harvested in the evening.
Collapse
Affiliation(s)
- M Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Chapelle A, Morreel K, Vanholme R, Le-Bris P, Morin H, Lapierre C, Boerjan W, Jouanin L, Demont-Caulet N. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols. PLANT PHYSIOLOGY 2012; 160:1204-17. [PMID: 22984124 PMCID: PMC3490608 DOI: 10.1104/pp.112.203364] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
Monolignol glucosides are thought to be implicated in the lignin biosynthesis pathway as storage and/or transportation forms of cinnamyl alcohols between the cytosol and the lignifying cell walls. The hydrolysis of these monolignol glucosides would involve β-glucosidase activities. In Arabidopsis (Arabidopsis thaliana), in vitro studies have shown the affinity of β-GLUCOSIDASE45 (BGLU45) and BGLU46 for monolignol glucosides. BGLU45 and BGLU46 genes are expressed in stems. Immunolocalization experiments showed that BGLU45 and BGLU46 proteins are mainly located in the interfascicular fibers and in the protoxylem, respectively. Knockout mutants for BGLU45 or BGLU46 do not have a lignin-deficient phenotype. Coniferin and syringin could be detected by ultra-performance liquid chromatography-mass spectrometry in Arabidopsis stems. Stems from BGLU45 and BGLU46 mutant lines displayed a significant increase in coniferin content without any change in coniferyl alcohol, whereas no change in syringin content was observed. Other glucosylated compounds of the phenylpropanoid pathway were also deregulated in these mutants, but to a lower extent. By contrast, BGLU47, which is closely related to BGLU45 and BGLU46, is not implicated in either the general phenylpropanoid pathway or in the lignification of stems and roots. These results confirm that the major in vivo substrate of BGLU45 and BGLU46 is coniferin and suggest that monolignol glucosides are the storage form of monolignols in Arabidopsis, but not the direct precursors of lignin.
Collapse
|
72
|
Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W. Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. MOLECULAR PLANT 2012; 5:1389-402. [PMID: 22522512 DOI: 10.1093/mp/sss044] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex, respectively. Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors, stress-, and defense-related genes. Here, we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites. Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites. In Verticillium-infected roots, we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1), but no increase in antifungal IGS breakdown products. In contrast, indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro. Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms, a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility. Hence, our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.
Collapse
Affiliation(s)
- Tim Iven
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. TRENDS IN PLANT SCIENCE 2012; 17:73-90. [PMID: 22209038 DOI: 10.1016/j.tplants.2011.11.002] [Citation(s) in RCA: 603] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway.
| | | | | |
Collapse
|
74
|
Deflorio G, Horgan G, Jaspars M, Woodward S. Defence response of Sitka spruce before and after inoculation with Heterobasidion annosum: 1H NMR fingerprinting of bark and sapwood metabolites. Anal Bioanal Chem 2012; 402:3333-44. [DOI: 10.1007/s00216-011-5666-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/27/2022]
|
75
|
Purwar S, Gupta SM, Kumar A. Enzymes of Phenylpropanoid Metabolism Involved in Strengthening the Structural Barrier for Providing Genotype and Stage Dependent Resistance to Karnal Bunt in Wheat. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.32031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
76
|
Bednarek P, Piślewska-Bednarek M, Ver Loren van Themaat E, Maddula RK, Svatoš A, Schulze-Lefert P. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. THE NEW PHYTOLOGIST 2011; 192:713-26. [PMID: 21793828 DOI: 10.1111/j.1469-8137.2011.03824.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• A hallmark of the innate immune system of plants is the biosynthesis of low-molecular-weight compounds referred to as secondary metabolites. Tryptophan-derived branch pathways contribute to the capacity for chemical defense against microbes in Arabidopsis thaliana. • Here, we investigated phylogenetic patterns of this metabolic pathway in relatives of A. thaliana following inoculation with filamentous fungal pathogens that employ contrasting infection strategies. • The study revealed unexpected phylogenetic conservation of the pathogen-induced indole glucosinolate (IG) metabolic pathway, including a metabolic shift of IG biosynthesis to 4-methoxyindol-3-ylmethylglucosinolate and IG metabolization. By contrast, indole-3-carboxylic acid and camalexin biosyntheses are clade-specific innovations within this metabolic framework. A Capsella rubella accession was found to be devoid of any IG metabolites and to lack orthologs of two A. thaliana genes needed for 4-methoxyindol-3-ylmethylglucosinolate biosynthesis or hydrolysis. However, C. rubella was found to retain the capacity to deposit callose after treatment with the bacterial flagellin-derived epitope flg22 and pre-invasive resistance against a nonadapted powdery mildew fungus. • We conclude that pathogen-inducible IG metabolism in the Brassicaceae is evolutionarily ancient, while other tryptophan-derived branch pathways represent relatively recent manifestations of a plant-pathogen arms race. Moreover, at least one Brassicaceae lineage appears to have evolved IG-independent defense signaling and/or output pathway(s).
Collapse
Affiliation(s)
- Paweł Bednarek
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Köln, Germany.
| | | | | | | | | | | |
Collapse
|
77
|
Clay NK. Chemical diversity on display in the plant innate immune systems of closely-related species. THE NEW PHYTOLOGIST 2011; 192:566-569. [PMID: 22007882 DOI: 10.1111/j.1469-8137.2011.03921.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
78
|
Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. PLANT PHYSIOLOGY 2011; 157:815-30. [PMID: 21813654 PMCID: PMC3192561 DOI: 10.1104/pp.111.182931] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/01/2011] [Indexed: 05/18/2023]
Abstract
Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Thomas Roitsch
- Institute for Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria (D.K.G., H.P., E.v.d.G., U.S., T.R.); Department of Pharmaceutical Biology, University of Würzburg, 97082 Wuerzburg, Germany (M.N., U.R.A., N.P., T.E.); Department of Biology, University of Düsseldorf, 40225 Duesseldorf, Germany (T.G., J.Z.); Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, 78371 Olomouc, Czech Republic (O.N., M.S.)
| |
Collapse
|
79
|
Adio AM, Casteel CL, De Vos M, Kim JH, Joshi V, Li B, Juéry C, Daron J, Kliebenstein DJ, Jander G. Biosynthesis and defensive function of Nδ-acetylornithine, a jasmonate-induced Arabidopsis metabolite. THE PLANT CELL 2011; 23:3303-18. [PMID: 21917546 PMCID: PMC3203426 DOI: 10.1105/tpc.111.088989] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 05/20/2023]
Abstract
Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid N(δ)-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce N(δ)-acetylornithine. MeJA-induced N(δ)-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and N(δ)-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of N(δ)-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by N(δ)-acetylornithine addition.
Collapse
Affiliation(s)
- Adewale M. Adio
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Clare L. Casteel
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Martin De Vos
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Jae Hak Kim
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Vijay Joshi
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Caroline Juéry
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Josquin Daron
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to
| |
Collapse
|
80
|
Giannuzzi G, D'Addabbo P, Gasparro M, Martinelli M, Carelli FN, Antonacci D, Ventura M. Analysis of high-identity segmental duplications in the grapevine genome. BMC Genomics 2011; 12:436. [PMID: 21871077 PMCID: PMC3179966 DOI: 10.1186/1471-2164-12-436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/26/2011] [Indexed: 02/04/2023] Open
Abstract
Background Segmental duplications (SDs) are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. SDs show at the sequence level the same characteristics as other regions of the human genome: they contain both high-copy repeats and gene sequences. SDs play an important role in genome plasticity by creating new genes and modeling genome structure. Although data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera) genome (PN40024). Results We demonstrate that recent SDs (> 94% identity and >= 10 kb in size) are a relevant component of the grapevine genome (85 Mb, 17% of the genome sequence). We detected mitochondrial and plastid DNA and genes (10% of gene annotation) in segmentally duplicated regions of the nuclear genome. In particular, the nine highest copy number genes have a copy in either or both organelle genomes. Further we showed that several duplicated genes take part in the biosynthesis of compounds involved in plant response to environmental stress. Conclusions These data show the great influence of SDs and organelle DNA transfers in modeling the Vitis vinifera nuclear DNA structure as well as the impact of SDs in contributing to the adaptive capacity of grapevine and the nutritional content of grape products through genome variation. This study represents a step forward in the full characterization of duplicated genes important for grapevine cultural needs and human health.
Collapse
|
81
|
|
82
|
Pedras MSC, Yaya EE, Glawischnig E. The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 2011; 28:1381-405. [PMID: 21681321 DOI: 10.1039/c1np00020a] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytoalexins are antimicrobial secondary metabolites produced de novo by plants in response to stress, including microbial attack. In general, phytoalexins are important components of plant defenses against fungal and bacterial pathogens. The phytoalexins of crucifers are indole alkaloids derived from (S)-tryptophan, most of which contain a sulfur atom derived from cysteine. Beside their antimicrobial activity against different plant pathogenic species, cruciferous phytoalexins have shown anticarcinogenic effects on various human cell lines. This review focuses on the phytoalexins produced by cruciferous plants reported to date, with particular emphasis on their chemical synthesis, biosynthesis, metabolism by plant fungal pathogens and biological activities. A summary table containing all phytoalexins, their cultivated and wild cruciferous sources, their synthetic starting materials, biotransformation products and biological activities is provided.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | | | | |
Collapse
|
83
|
Leiss KA, Choi YH, Verpoorte R, Klinkhamer PGL. An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2011; 10:205-216. [PMID: 21765818 PMCID: PMC3105236 DOI: 10.1007/s11101-010-9175-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/22/2010] [Indexed: 05/08/2023]
Abstract
Secondary metabolites provide a potential source for the generation of host plant resistance and development of biopesticides. This is especially important in view of the rapid and vast spread of agricultural and horticultural pests worldwide. Multiple pests control tactics in the framework of an integrated pest management (IPM) programme are necessary. One important strategy of IPM is the use of chemical host plant resistance. Up to now the study of chemical host plant resistance has, for technical reasons, been restricted to the identification of single compounds applying specific chemical analyses adapted to the compound in question. In biological processes however, usually more than one compound is involved. Metabolomics allows the simultaneous detection of a wide range of compounds, providing an immediate image of the metabolome of a plant. One of the most universally used metabolomic approaches comprises nuclear magnetic resonance spectroscopy (NMR). It has been NMR which has been applied as a proof of principle to show that metabolomics can constitute a major advancement in the study of host plant resistance. Here we give an overview on the application of NMR to identify candidate compounds for host plant resistance. We focus on host plant resistance to western flower thrips (Frankliniella occidentalis) which has been used as a model for different plant species.
Collapse
Affiliation(s)
- Kirsten A. Leiss
- Section Plant Ecology and Metabolomics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Young H. Choi
- Section Plant Ecology and Metabolomics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Robert Verpoorte
- Section Plant Ecology and Metabolomics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Peter G. L. Klinkhamer
- Section Plant Ecology and Metabolomics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
84
|
González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos JF. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC PLANT BIOLOGY 2010; 10:194. [PMID: 20807411 PMCID: PMC2956543 DOI: 10.1186/1471-2229-10-194] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/31/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Postharvest losses of citrus fruit due to green mold decay, caused by the fungus Penicillium digitaum, have a considerable economic impact. However, little is known about the molecular processes underlying the response of citrus fruit to P. digitatum. RESULTS Here we describe the construction of a subtracted cDNA library enriched in citrus genes preferentially expressed in response to pathogen infection followed by cDNA macroarray hybridization to investigate gene expression during the early stages of colonization of the fruit's peel by P. digitatum. Sequence annotation of clones from the subtracted cDNA library revealed that induction of secondary and amino acid metabolisms constitutes the major response of citrus fruits to P. digitatum infection. Macroarray hybridization analysis was conducted with RNA from either control, wounded, ethylene treated or P. digitatum infected fruit. Results indicate an extensive overlap in the response triggered by the three treatments, but also demonstrated specific patterns of gene expression in response to each stimulus. Collectively our data indicate a significant presence of isoprenoid, alkaloid and phenylpropanoid biosynthetic genes in the transcriptomic response of citrus fruits to P. digitatum infection. About half of the genes that are up-regulated in response to pathogen infection are also induced by ethylene, but many examples of ethylene-independent gene regulation were also found. Two notable examples of this regulation pattern are the genes showing homology to a caffeine synthase and a berberine bridge enzyme, two proteins involved in alkaloid biosynthesis, which are among the most induced genes upon P. digitatum infection but are not responsive to ethylene. CONCLUSIONS This study provided the first global picture of the gene expression changes in citrus fruit in response to P. digitatum infection, emphasizing differences and commonalities with those triggered by wounding or exogenous ethylene treatment. Interpretation of the differentially expressed genes revealed that metabolism is redirected to the synthesis of isoprenes, alkaloids and phenylpropanoids.
Collapse
Affiliation(s)
- Luis González-Candelas
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Apartado de Correos 73, Burjassot, E46100-Valencia, Spain
| | - Santiago Alamar
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Apartado de Correos 73, Burjassot, E46100-Valencia, Spain
| | - Paloma Sánchez-Torres
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Apartado de Correos 73, Burjassot, E46100-Valencia, Spain
- Insituto Valenciano de Investigaciones Agrarias, Carretera Moncada - Náquera, Km. 4,5. Moncada, E46113-Valencia, Spain
| | - Lorenzo Zacarías
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Apartado de Correos 73, Burjassot, E46100-Valencia, Spain
| | - Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Apartado de Correos 73, Burjassot, E46100-Valencia, Spain
| |
Collapse
|
85
|
Montaut S, Bleeker RS. Isolation and structure elucidation of 5'-O-beta-D-glucopyranosyl-dihydroascorbigen from Cardamine diphylla rhizome. Carbohydr Res 2010; 345:1968-70. [PMID: 20673575 DOI: 10.1016/j.carres.2010.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/30/2010] [Accepted: 07/04/2010] [Indexed: 01/10/2023]
Abstract
From the methanol extract of Cardamine diphylla rhizome, 5'-O-beta-d-glucopyranosyl-dihydroascorbigen (1) and 6-hydroxyindole-3-carboxylic acid 6-O-beta-d-glucopyranoside (2) were isolated. The structures of the compounds were elucidated using spectroscopic methods. This is the second report on the presence of a glucosylated indole ascorbigen in plants.
Collapse
Affiliation(s)
- Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| | | |
Collapse
|
86
|
Simon C, Langlois-Meurinne M, Bellvert F, Garmier M, Didierlaurent L, Massoud K, Chaouch S, Marie A, Bodo B, Kauffmann S, Noctor G, Saindrenan P. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3355-70. [PMID: 20530195 DOI: 10.1093/jxb/erq157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secondary metabolites (SMs) play key roles in pathogen responses, although knowledge of their precise functions is limited by insufficient characterization of their spatial response. The present study addressed this issue in Arabidopsis leaves by non-targeted and targeted metabolite profiling of Pseudomonas syringae pv. tomato (Pst-AvrRpm1) infected and adjacent uninfected leaf tissues. While overlap was observed between infected and uninfected areas, the non-targeted metabolite profiles of these regions differed quantitatively and clustering analysis underscores a differential distribution of SMs within distinct metabolic pathways. Targeted metabolite profiling revealed that infected tissues accumulate more salicylic acid and the characteristic phytoalexin of Arabidopsis, camalexin, than uninfected adjacent areas. On the contrary, the antioxidant coumarin derivative, scopoletin, was induced in infected tissues while its glucoside scopolin predominated in adjacent tissues. To elucidate the still unclear relationship between the accumulation of SMs and reactive oxygen species (ROS) accumulation and signalling, a catalase-deficient line (cat2) in which ROS signalling is up-regulated, was used. Metabolic analysis of cat2 suggests that some SMs have important interactions with ROS in redox homeostasis during the hypersensitive response to Pst-AvrRpm1. Overall, the study demonstrates that ROS availability influences both the amount and the pattern of infection-induced SM accumulation.
Collapse
Affiliation(s)
- Clara Simon
- Institut de Biologie des Plantes, CNRS-Université Paris-Sud 11, UMR 8618, Bâtiment 630, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:115-27. [PMID: 20408997 DOI: 10.1111/j.1365-313x.2010.04224.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A defence pathway contributing to non-host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)-derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate-limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non-adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp-derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non-adapted P. cucumerina isolates, and super-susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp-derived secondary metabolites in limiting the growth of both non-adapted and adapted necrotrophic fungi. However, 4-methoxy-indol-3-ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non-adapted necrotrophs. This contrasts with a major role of these two trp-derived phytochemicals in limiting invasive growth of non-adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp-derived metabolites in resistance responses to non-adapted necrotrophic P. cucumerina. Impaired defence to non-adapted P. cucumerina, but not to the non-adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non-host resistance to necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Andrea Sanchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus Montegancedo, E-28223-Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
88
|
Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, Kombrink E, Scheel D, Parker JE. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves. J Biol Chem 2010; 285:25654-65. [PMID: 20538606 DOI: 10.1074/jbc.m109.092569] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An intricate network of hormone signals regulates plant development and responses to biotic and abiotic stress. Salicylic acid (SA), derived from the shikimate/isochorismate pathway, is a key hormone in resistance to biotrophic pathogens. Several SA derivatives and associated modifying enzymes have been identified and implicated in the storage and channeling of benzoic acid intermediates or as bioactive molecules. However, the range and modes of action of SA-related metabolites remain elusive. In Arabidopsis, Enhanced Disease Susceptibility 1 (EDS1) promotes SA-dependent and SA-independent responses in resistance against pathogens. Here, we used metabolite profiling of Arabidopsis wild type and eds1 mutant leaf extracts to identify molecules, other than SA, whose accumulation requires EDS1 signaling. Nuclear magnetic resonance and mass spectrometry of isolated and purified compounds revealed 2,3-dihydroxybenzoic acid (2,3-DHBA) as an isochorismate-derived secondary metabolite whose accumulation depends on EDS1 in resistance responses and during ageing of plants. 2,3-DHBA exists predominantly as a xylose-conjugated form (2-hydroxy-3-beta-O-D-xylopyranosyloxy benzoic acid) that is structurally distinct from known SA-glucose conjugates. Analysis of DHBA accumulation profiles in various Arabidopsis mutants suggests an enzymatic route to 2,3-DHBA synthesis that is under the control of EDS1. We propose that components of the EDS1 pathway direct the generation or stabilization of 2,3-DHBA, which as a potentially bioactive molecule is sequestered as a xylose conjugate.
Collapse
Affiliation(s)
- Michael Bartsch
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:840-51. [PMID: 20230487 DOI: 10.1111/j.1365-313x.2010.04197.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have analysed the role of tryptophan-derived secondary metabolites in disease resistance of Arabidopsis to the oomycete pathogen Phytophthora brassicae. Transcript analysis revealed that genes encoding enzymes involved in tryptophan, camalexin and indole glucosinolate (iGS) biosynthesis are coordinately induced in response to P. brassicae. However, a deficiency in either camalexin or iGS accumulation has only a minor effect on the disease resistance of Arabidopsis mutants. In contrast, the double mutant cyp79B2 cyp79B3, which has a blockage in the production of indole-3-aldoxime (IAOx), the common precursor of tryptophan-derived metabolites including camalexin and iGS, is highly susceptible to P. brassicae. Because cyp79B2 cyp79B3 shows no deficiencies in other tested disease resistance responses, we concluded that the lack of IAOx-derived compounds renders Arabidopsis susceptible despite wild-type-like pathogen-induced hypersensitive cell death, stress hormone signaling and callose deposition. The susceptibility of the double mutant pen2-1 pad3-1, which has a combined defect in camalexin synthesis and PEN2-catalysed hydrolysis of iGS compounds, demonstrates that both camalexin and products of iGS hydrolysis are important for disease resistance to P. brassicae. Products of iGS hydrolysis play an early defensive role, as indicated by enhanced epidermal penetration rates of Arabidopsis mutants affected in iGS synthesis or degradation. Our results show that disease resistance of Arabidopsis to P. brassicae is established by the sequential activity of the phytoanticipin iGS and the phytoalexin camalexin.
Collapse
Affiliation(s)
- Klaus Schlaeppi
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | |
Collapse
|
90
|
Truman WM, Bennett MH, Turnbull CG, Grant MR. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. PLANT PHYSIOLOGY 2010; 152:1562-73. [PMID: 20081042 PMCID: PMC2832264 DOI: 10.1104/pp.109.152173] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity.
Collapse
|
91
|
Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. THE PLANT CELL 2010; 22:973-90. [PMID: 20348432 PMCID: PMC2861455 DOI: 10.1105/tpc.109.069658] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 02/24/2010] [Accepted: 03/11/2010] [Indexed: 05/18/2023]
Abstract
Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.
Collapse
Affiliation(s)
- Yves A. Millet
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique–Unité Propre de Recherche 2357, Strasbourg, France
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Nicole K. Clay
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Wisuwat Songnuan
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Plant Science, Mahidol University, Bangkok 10400, Thailand
| | - Matthew D. Simon
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique–Unité Propre de Recherche 2357, Strasbourg, France
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Address correspondence to
| |
Collapse
|
92
|
Ferrari S. Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:152-66. [PMID: 21520710 DOI: 10.1007/978-1-4419-7347-4_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many secondary metabolites of interest for human health and nutrition are produced by plants when they are under attack of microbial pathogens or insects. Treatment with elicitors derived from phytopathogens can be an effective strategy to increase the yield of specific metabolites obtained from plant cell cultures. Understanding how plant cells perceive microbial elicitors and how this perception leads to the accumulation of secondary metabolites, may help us improve the production of nutraceutics in terms of quantity and of quality of the compounds. The knowledge gathered in the past decades on elicitor perception and transduction is now being combined to high-throughput methodologies, such as transcriptomics and metabolomics, to engineer plant cells that produce compounds of interest at industrial scale.
Collapse
Affiliation(s)
- Simone Ferrari
- Department of Plant Biology, University of Rome La Sapienza, Italy.
| |
Collapse
|
93
|
Morant M, Ekstrøm C, Ulvskov P, Kristensen C, Rudemo M, Olsen CE, Hansen J, Jørgensen K, Jørgensen B, Møller BL, Bak S. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. MOLECULAR PLANT 2010; 3:192-211. [PMID: 20008451 PMCID: PMC2807926 DOI: 10.1093/mp/ssp098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/26/2009] [Indexed: 05/20/2023]
Abstract
Auxin homeostasis is pivotal for normal plant growth and development. The superroot2 (sur2) mutant was initially isolated in a forward genetic screen for auxin overproducers, and SUR2 was suggested to control auxin conjugation and thereby regulate auxin homeostasis. However, the phenotype was not uniform and could not be described as a pure high auxin phenotype, indicating that knockout of CYP83B1 has multiple effects. Subsequently, SUR2 was identified as CYP83B1, a cytochrome P450 positioned at the metabolic branch point between auxin and indole glucosinolate metabolism. To investigate concomitant global alterations triggered by knockout of CYP83B1 and the countermeasures chosen by the mutant to cope with hormonal and metabolic imbalances, 10-day-old mutant seedlings were characterized with respect to their transcriptome and metabolome profiles. Here, we report a global analysis of the sur2 mutant by the use of a combined transcriptomic and metabolomic approach revealing pronounced effects on several metabolic grids including the intersection between secondary metabolism, cell wall turnover, hormone metabolism, and stress responses. Metabolic and transcriptional cross-talks in sur2 were found to be regulated by complex interactions between both positively and negatively acting transcription factors. The complex phenotype of sur2 may thus not only be assigned to elevated levels of auxin, but also to ethylene and abscisic acid responses as well as drought responses in the absence of a water deficiency. The delicate balance between these signals explains why minute changes in growth conditions may result in the non-uniform phenotype. The large phenotypic variation observed between and within the different surveys may be reconciled by the complex and intricate hormonal balances in sur2 seedlings decoded in this study.
Collapse
Affiliation(s)
- Marc Morant
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Claus Ekstrøm
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Peter Ulvskov
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | - Mats Rudemo
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Carl Erik Olsen
- Department of Natural Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Jørgen Hansen
- Evolva A/S, Bülowsvej 25, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Bodil Jørgensen
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Molecular Plant Physiology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- VKR research centre ‘Pro-Active Plants’, Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Center for Applied Bioinformatics at LIFE, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- To whom correspondence should be addressed. E-mail , fax +45 353 33333, tel. +45 353 33346
| |
Collapse
|
94
|
Tripathy BC, Sherameti I, Oelmüller R. Siroheme: an essential component for life on earth. PLANT SIGNALING & BEHAVIOR 2010; 5:14-20. [PMID: 20592802 PMCID: PMC2835951 DOI: 10.4161/psb.5.1.10173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/24/2009] [Indexed: 05/09/2023]
Abstract
Life on earth is dependent on sulphur (S) and nitrogen (N). In plants, the second step in the reduction of sulphate and nitrate are mediated by the enzymes sulphite and nitrite reductases, which contain the iron (Fe)-containing siroheme as a cofactor. It is synthesized from the tetrapyrrole primogenitor uroporphyrinogen III in the plastids via three enzymatic reactions, methylation, oxidation and ferrochelatation. Without siroheme biosynthesis, there would be no life on earth. Limitations in siroheme should have an enormous effect on the S- and N-metabolism, plant growth, development, fitness and reproduction, biotic and abiotic stresses including growth under S, N and Fe limitations, and the response to pathogens and beneficial interaction partners. Furthermore, the vast majority of redox-reactions in plants depend on S-components, and S-containing compounds are also involved in the detoxification of heavy metals and other chemical toxins. Disturbance of siroheme biosynthesis may cause the accumulation of light-sensitive intermediates and reactive oxygen species, which are harmful, or they can function as signaling molecules and participate in interorganellar signaling processes. This review highlights the role of siroheme in these scenarios.
Collapse
|
95
|
Peluffo L, Lia V, Troglia C, Maringolo C, Norma P, Escande A, Esteban Hopp H, Lytovchenko A, Fernie AR, Heinz R, Carrari F. Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection. PHYTOCHEMISTRY 2010; 71:70-80. [PMID: 19853265 DOI: 10.1016/j.phytochem.2009.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/23/2009] [Accepted: 09/13/2009] [Indexed: 05/08/2023]
Abstract
We report a comprehensive primary metabolite profiling of sunflower (Helianthus annuus) genotypes displaying contrasting behavior to Sclerotinia sclerotiorum infection. Applying a GC-MS-based metabolite profiling approach, we were able to identify differential patterns involving a total of 63 metabolites including major and minor sugars and sugar alcohols, organic acids, amino acids, fatty acids and few soluble secondary metabolites in the sunflower capitulum, the main target organ of pathogen attack. Metabolic changes and disease incidence of the two contrasting genotypes were determined throughout the main infection period (R5.2-R6). Both point-by-point and non-parametric statistical analyses showed metabolic differences between genotypes as well as interaction effects between genotype and time after inoculation. Network correlation analyses suggested that these metabolic changes were synchronized in a time-dependent manner in response to the pathogen. Concerted differential metabolic changes were detected to a higher extent in the susceptible, rather than the resistant genotype, thereby allowing differentiation of modules composed by intermediates of the same pathway which are highly interconnected in the susceptible line but not in the resistant one. Evaluation of these data also demonstrated a genotype specific regulation of distinct metabolic pathways, suggesting the importance of detection of metabolic patterns rather than specific metabolite changes when looking for metabolic markers differentially responding to pathogen infection. In summary, the GC-MS strategy developed in this study was suitable for detection of differences in carbon primary metabolism in sunflower capitulum, a tissue which is the main entry point for this and other pathogens which cause great detrimental impact on crop yield.
Collapse
Affiliation(s)
- Lucila Peluffo
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Ahn YO, Shimizu BI, Sakata K, Gantulga D, Zhou C, Bevan DR, Esen A. Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis. PLANT & CELL PHYSIOLOGY 2010; 51:132-43. [PMID: 19965874 DOI: 10.1093/pcp/pcp174] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three beta-glucosidases (At1g66270-BGLU21, At1g66280-BGLU22, and At3g09260-BGLU23) were purified from the roots of Arabidopsis and their cDNAs were expressed in insect cells. In addition, two beta-glucosidase binding protein cDNAs (At3g16420; PBPI and At3g16430; PBPII) were expressed in Escherichia coli and their protein products purified. These binding proteins interact with beta-glucosidases and activate them. BGLU21, 22 and 23 hydrolyzed the natural substrate scopolin specifically and also hydrolyzed to some extent substrates whose aglycone moiety is similar to scopolin (e.g. esculin and 4-MU-glucoside). In contrast, they hydrolyzed poorly DIMBOA-glucoside and did not hydrolyze pNP- and oNP-glucosides. We determined the physicochemical properties of native and recombinant BGLUs, and found no differences between them. They were stable in a narrow pH range (5-7.5) and had temperature and pH optima for activity at 35 degrees C and pH 5.5, respectively. As for thermostability, >95% of their activity was retained at 40 degrees C but dramatically decreased at >50 degrees C. The apparent K(m) of native and recombinant enzymes for scopolin was 0.73 and 0.81 mM, respectively, and it was 5.8 and 9.7 mM, respectively, for esculin. Western blot analysis showed that all three enzymes were exclusively expressed in roots of seedlings but not in any other plant part or organ under normal conditions. Furthermore, spatial expression patterns of all eight genes belonging to subfamily 3 were investigated at the transcription level by RT-PCR.
Collapse
Affiliation(s)
- Young Ock Ahn
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Badri DV, Weir TL, van der Lelie D, Vivanco JM. Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 2009; 20:642-50. [PMID: 19875278 DOI: 10.1016/j.copbio.2009.09.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/16/2022]
Abstract
Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemical communication that exists between plants and microorganisms and the biological processes they sustain.
Collapse
Affiliation(s)
- Dayakar V Badri
- Center for Rhizosphere Biology and Department of Horticulture & LA, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
98
|
Rauhut T, Glawischnig E. Evolution of camalexin and structurally related indolic compounds. PHYTOCHEMISTRY 2009; 70:1638-44. [PMID: 19523656 DOI: 10.1016/j.phytochem.2009.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/20/2009] [Accepted: 05/14/2009] [Indexed: 05/05/2023]
Abstract
Structurally related secondary products are rather rarely shared by organisms from different kingdoms. Consequently, the evolution of biosynthetic pathways of defence metabolites between distantly related organisms has not been broadly investigated. Thiazolylindoles are found in Arabidopsis thaliana, as the phytoalexin camalexin, and in a Streptomyces strain, which synthesizes a tumour-inhibitory derivative, designated BE-10988. Camalexin originates from cysteine and tryptophan, which is converted to indole-3-acetaldoxime and subsequently dehydrated to indole-3-acetonitrile. The metabolic origin of BE-10988 was determined by retrobiosynthetic NMR analysis and incorporation studies with direct precursors. Like camalexin, it is derived from tryptophan and cysteine. However, as BE-10988 is synthesized via indole-3-pyruvic acid, not via indole-3-acetaldoxime, independent mechanisms of tryptophan modification have evolved.
Collapse
Affiliation(s)
- Thomas Rauhut
- Lehrstuhl für Genetik, Technische Universität München, Freising, Germany
| | | |
Collapse
|
99
|
Butcher RA, Ragains JR, Clardy J. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 2009; 11:3100-3. [PMID: 19545143 DOI: 10.1021/ol901011c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Caenorhabditis elegans, the dauer pheromone, which consists of a number of derivatives of the 3,6-dideoxysugar ascarylose, is the primary cue for entry into the stress-resistant, "nonaging" dauer larval stage. Here, using activity-guided fractionation and NMR-based structure elucidation, a structurally novel, indole-3-carboxyl-modified ascaroside is identified that promotes dauer formation at low nanomolar concentrations but inhibits dauer formation at higher concentrations.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
100
|
Oliver JP, Castro A, Gaggero C, Cascón T, Schmelz EA, Castresana C, Ponce de León I. Pythium infection activates conserved plant defense responses in mosses. PLANTA 2009; 230:569-79. [PMID: 19551405 DOI: 10.1007/s00425-009-0969-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/04/2009] [Indexed: 05/03/2023]
Abstract
The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, very little is known about the defense mechanisms activated in this moss after pathogen assault. In this study, we show that P. patens activated multiple and similar responses against Pythium irregulare and Pythium debaryanum, including the reinforcement of the cell wall, induction of the defense genes CHS, LOX and PAL, and accumulation of the signaling molecules jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). However, theses responses were not sufficient and infection could not be prevented leading to hyphae colonization of moss tissues and plant decay. Pythium infection induced reactive oxygen species production and caused cell death of moss tissues. Taken together, these data indicate that Pythium infection activates in P. patens common responses to those previously characterized in flowering plants. Microscopic analysis also revealed intracellular relocation of chloroplasts in Pythium-infected tissues toward the infection site. In addition, OPDA, JA and its methyl ester methyl jasmonate induced the expression of PAL. Our results show for the first time JA and OPDA accumulation in a moss and suggest that this defense pathway is functional and has been maintained during the evolution of plants.
Collapse
Affiliation(s)
- Juan Pablo Oliver
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|