51
|
Sumida S, Ito M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y, Kiba A. Phosphoinositide 3-kinase participates in l-methionine sulfoximine-induced cell death via salicylic acid mediated signaling in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:167-170. [PMID: 28866325 DOI: 10.1016/j.jplph.2017.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas syringae pv. tabaci causes wildfire disease by the action of tabtoxinine-β-lactam (TβL), a non-specific bacterial toxin. To better understand the molecular mechanisms of wildfire disease and its development, we focused on the phosphoinositide 3-kinase in Nicotiana benthamiana (NbPI3K) and its potential role in the disease outbreak, using l-methionine sulfoximine (MSX) as an easily accessible mimic of the TβL action. The NbPI3K-silenced plants showed accelerated induction of cell death and necrotic lesion formation by MSX, and the expression of hin1, marker gene for the programmed cell death, was strongly induced in the plants. However, the accumulation of ammonium ions, caused by MSX inhibition of glutamine sythetase activity, was not affected by the NbPI3K-silencing. Interestingly, the expression of PR-1a, a marker gene for salicylic acid (SA) innate immunity signaling, and accumulation of SA were both enhanced in the NbPI3K-silenced plants. Accordingly, the acceleration of MSX-induced cell death by NbPI3K-silencing was reduced in NahG plants, and by double silencing of NbPI3K together with the NbICS1 encoding a SA-biosynthetic enzyme. As silencing of NbPI3K accelerated the TβL-induced necrotic lesions, and lesions of wildfire disease caused by P. syringae pv. tabaci, these results suggest that the NbPI3K-related pathway might act as a negative regulator of cell death during development of wildfire disease that involves SA-dependent signaling pathway downstream of TβL action in N. benthamiana.
Collapse
Affiliation(s)
- Sayuri Sumida
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Makoto Ito
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan.
| |
Collapse
|
52
|
Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, Gan S, Liu CJ, Zhang K. S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis. PLANT PHYSIOLOGY 2017; 175:1082-1093. [PMID: 28899963 PMCID: PMC5664462 DOI: 10.1104/pp.17.00695] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant6; At5g24530) has been proven essential in plant immunity of Arabidopsis (Arabidopsis thaliana), but its biochemical properties are not well understood. Here, we report the discovery and functional characterization of DMR6 as a salicylic acid 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBA by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (Kcat/Km = 4.96 × 104 m-1 s-1) than the previously reported S3H (Kcat/Km = 6.09 × 103 m-1 s-1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant overaccumulate SA and display phenotypes such as a smaller growth size, early senescence, and a loss of susceptibility to Pseudomonas syringae pv tomato DC3000. S5H/DMR6 is sensitively induced by SA/pathogen treatment and is expressed widely from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.
Collapse
Affiliation(s)
- Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Li Zhao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jiangzhe Zhao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yujia Li
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jinbin Wang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Rong Guo
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Susheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Chang-Jun Liu
- Department of Biosciences, Brookhaven National Laboratory, Upton, New York 11973
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
53
|
Ashwin NMR, Barnabas EL, Ramesh Sundar A, Muthumeena M, Malathi P, Viswanathan R. Disease suppressive effects of resistance-inducing agents against red rot of sugarcane. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2017; 149:285-297. [DOI: 10.1007/s10658-017-1181-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
54
|
Sutipatanasomboon A, Herberth S, Alwood EG, Häweker H, Müller B, Shahriari M, Zienert AY, Marin B, Robatzek S, Praefcke GJK, Ayscough KR, Hülskamp M, Schellmann S. Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. Sci Rep 2017; 7:8677. [PMID: 28819237 PMCID: PMC5561093 DOI: 10.1038/s41598-017-08577-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022] Open
Abstract
Cell death, autophagy and endosomal sorting contribute to many physiological, developmental and immunological processes in plants. They are mechanistically interconnected and interdependent, but the molecular basis of their mutual regulation has only begun to emerge in plants. Here, we describe the identification and molecular characterization of CELL DEATH RELATED ENDOSOMAL FYVE/SYLF PROTEIN 1 (CFS1). The CFS1 protein interacts with the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT I (ESCRT-I) component ELCH (ELC) and is localized at ESCRT-I-positive late endosomes likely through its PI3P and actin binding SH3YL1 Ysc84/Lsb4p Lsb3p plant FYVE (SYLF) domain. Mutant alleles of cfs1 exhibit auto-immune phenotypes including spontaneous lesions that show characteristics of hypersensitive response (HR). Autoimmunity in cfs1 is dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-mediated effector-triggered immunity (ETI) but independent from salicylic acid. Additionally, cfs1 mutants accumulate the autophagy markers ATG8 and NBR1 independently from EDS1. We hypothesize that CFS1 acts at the intersection of autophagosomes and endosomes and contributes to cellular homeostasis by mediating autophagosome turnover.
Collapse
Affiliation(s)
| | - Stefanie Herberth
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Ellen G Alwood
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Heidrun Häweker
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Britta Müller
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Mojgan Shahriari
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
- Institut für Biologie II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg i. Br., Germany
| | - Anke Y Zienert
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Birger Marin
- Botanik I, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Gerrit J K Praefcke
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Division of Haematology/Transfusion Medicine, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Kathryn R Ayscough
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Martin Hülskamp
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| | - Swen Schellmann
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| |
Collapse
|
55
|
Belt K, Huang S, Thatcher LF, Casarotto H, Singh KB, Van Aken O, Millar AH. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. PLANT PHYSIOLOGY 2017; 173:2029-2040. [PMID: 28209841 PMCID: PMC5373042 DOI: 10.1104/pp.16.00060] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/14/2017] [Indexed: 05/19/2023]
Abstract
Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells.
Collapse
Affiliation(s)
- Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Louise F Thatcher
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Hayley Casarotto
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Karam B Singh
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia (K.B., S.H., O.V.A., A.H.M.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Wembley, Washington 6913, Australia (L.F.T., H.C., K.B.S.); and
- University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, Washington 6009, Australia (K.B.S.)
| |
Collapse
|
56
|
Lee IH, Lee IC, Kim J, Kim JH, Chung EH, Kim HJ, Park SJ, Kim YM, Kang SK, Nam HG, Woo HR, Lim PO. NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 158:180-99. [PMID: 26910207 DOI: 10.1111/ppl.12434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - In Chul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yong Min Kim
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sin Kyu Kang
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea.
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
57
|
Tan B, Daim L, Ithnin N, Ooi T, Md-Noh N, Mohamed M, Mohd-Yusof H, Appleton D, Kulaveerasingam H. Expression of phenylpropanoid and flavonoid pathway genes in oil palm roots during infection by Ganoderma boninense. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P. Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 2016; 6:25562. [PMID: 27146059 PMCID: PMC4857139 DOI: 10.1038/srep25562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
Sterol glycosyltransferases (SGTs) catalyse transfer of glycon moiety to sterols and their related compounds to produce diverse glyco-conjugates or steryl glycosides with different biological and pharmacological activities. Functional studies of SGTs from Withania somnifera indicated their role in abiotic stresses but details about role under biotic stress are still unknown. Here, we have elucidated the function of SGTs by silencing SGTL1, SGTL2 and SGTL4 in Withania somnifera. Down-regulation of SGTs by artificial miRNAs led to the enhanced accumulation of withanolide A, withaferin A, sitosterol, stigmasterol and decreased content of withanoside V in Virus Induced Gene Silencing (VIGS) lines. This was further correlated with increased expression of WsHMGR, WsDXR, WsFPPS, WsCYP710A1, WsSTE1 and WsDWF5 genes, involved in withanolide biosynthesis. These variations of withanolide concentrations in silenced lines resulted in pathogen susceptibility as compared to control plants. The infection of Alternaria alternata causes increased salicylic acid, callose deposition, superoxide dismutase and H2O2 in aMIR-VIGS lines. The expression of biotic stress related genes, namely, WsPR1, WsDFS, WsSPI and WsPR10 were also enhanced in aMIR-VIGS lines in time dependent manner. Taken together, our observations revealed that a positive feedback regulation of withanolide biosynthesis occurred by silencing of SGTLs which resulted in reduced biotic tolerance.
Collapse
Affiliation(s)
- Gaurav Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India.,Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
59
|
Malinina L, Simanshu DK, Zhai X, Samygina VR, Kamlekar R, Kenoth R, Ochoa-Lizarralde B, Malakhova ML, Molotkovsky JG, Patel DJ, Brown RE. Sphingolipid transfer proteins defined by the GLTP-fold. Q Rev Biophys 2015; 48:281-322. [PMID: 25797198 PMCID: PMC4691851 DOI: 10.1017/s003358351400016x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | - Dhirendra K. Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Valeria R. Samygina
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Roopa Kenoth
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Borja Ochoa-Lizarralde
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Julian G. Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
60
|
Liu J, Xu Y, Zhang Z, Wei J. Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:337-346. [PMID: 32480678 DOI: 10.1071/fp14189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/07/2014] [Indexed: 06/11/2023]
Abstract
Aquilaria sinensis (Lour.) Gilg produces a highly valuable agarwood characterised by a diverse array of sesquiterpenes and chromone derivatives that can protect wounded trees against potential herbivores and pathogens. A defensive reaction on the part of the plant has been proposed as the key reason for agarwood formation, but the issue of whether programmed cell death (PCD), an important process of plant immune responding, is involved in agarwood formation, still needs to be clarified. In this study, treatment of cultured cell suspensions with hydrogen peroxide (H2O2) induced the production of sesquiterpenes due to endogenous accumulation of salicylic acid (SA) and elevations in the expression of sesquiterpene biosynthetic genes. Moreover, PCD was stimulated by H2O2 in cultured cell suspensions of A. sinensis due to the induction of caspase activity, upregulated expression of metacaspases and cytochrome c, and SA accumulation. Our findings demonstrate for the first time that H2O2 stimulates PCD, SA accumulation and sesquiterpene production in cultured cell suspensions of A. sinensis. Furthermore, results from this study provide a valuable insight into investigations of the potential interactions between sesquiterpene synthesis and PCD during agarwood formation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
61
|
Munch D, Teh OK, Malinovsky FG, Liu Q, Vetukuri RR, El Kasmi F, Brodersen P, Hara-Nishimura I, Dangl JL, Petersen M, Mundy J, Hofius D. Retromer contributes to immunity-associated cell death in Arabidopsis. THE PLANT CELL 2015; 27:463-79. [PMID: 25681156 PMCID: PMC4456924 DOI: 10.1105/tpc.114.132043] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Membrane trafficking is required during plant immune responses, but its contribution to the hypersensitive response (HR), a form of programmed cell death (PCD) associated with effector-triggered immunity, is not well understood. HR is induced by nucleotide binding-leucine-rich repeat (NB-LRR) immune receptors and can involve vacuole-mediated processes, including autophagy. We previously isolated lazarus (laz) suppressors of autoimmunity-triggered PCD in the Arabidopsis thaliana mutant accelerated cell death11 (acd11) and demonstrated that the cell death phenotype is due to ectopic activation of the LAZ5 NB-LRR. We report here that laz4 is mutated in one of three VACUOLAR PROTEIN SORTING35 (VPS35) genes. We verify that LAZ4/VPS35B is part of the retromer complex, which functions in endosomal protein sorting and vacuolar trafficking. We show that VPS35B acts in an endosomal trafficking pathway and plays a role in LAZ5-dependent acd11 cell death. Furthermore, we find that VPS35 homologs contribute to certain forms of NB-LRR protein-mediated autoimmunity as well as pathogen-triggered HR. Finally, we demonstrate that retromer deficiency causes defects in late endocytic/lytic compartments and impairs autophagy-associated vacuolar processes. Our findings indicate important roles of retromer-mediated trafficking during the HR; these may include endosomal sorting of immune components and targeting of vacuolar cargo.
Collapse
Affiliation(s)
- David Munch
- Department of Biology, Copenhagen University, Copenhagen 2200, Denmark
| | - Ooi-Kock Teh
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| | | | - Qinsong Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| | - Farid El Kasmi
- Howard Hughes Medical Institute, Department of Biology, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Peter Brodersen
- Department of Biology, Copenhagen University, Copenhagen 2200, Denmark
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, Department of Biology, and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Morten Petersen
- Department of Biology, Copenhagen University, Copenhagen 2200, Denmark
| | - John Mundy
- Department of Biology, Copenhagen University, Copenhagen 2200, Denmark
| | - Daniel Hofius
- Department of Biology, Copenhagen University, Copenhagen 2200, Denmark Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
62
|
Sánchez-Rangel D, Rivas-San Vicente M, de la Torre-Hernández ME, Nájera-Martínez M, Plasencia J. Deciphering the link between salicylic acid signaling and sphingolipid metabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:125. [PMID: 25806037 PMCID: PMC4353297 DOI: 10.3389/fpls.2015.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host-pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules - MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide - could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Javier Plasencia
- *Correspondence: Javier Plasencia, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, México
| |
Collapse
|
63
|
Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen HT, Lee IJ. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:714. [PMID: 26442028 PMCID: PMC4585003 DOI: 10.3389/fpls.2015.00714] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/26/2015] [Indexed: 05/20/2023]
Abstract
Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL.
Collapse
Affiliation(s)
- Yoon-Ha Kim
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - Sun-Joo Hwang
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Waqas
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Department of Agriculture, Government of Khyber PakhtunkhwaPakistan
| | - Abdul L. Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Joon-Hee Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Jeong-Dong Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- *Correspondence: In-Jung Lee, Crop Physiology Laboratory, Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
64
|
Xu E, Brosché M. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC PLANT BIOLOGY 2014; 14:155. [PMID: 24898702 PMCID: PMC4057906 DOI: 10.1186/1471-2229-14-155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. RESULTS In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. CONCLUSIONS Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
65
|
Kazan K, Lyons R. Intervention of Phytohormone Pathways by Pathogen Effectors. THE PLANT CELL 2014; 26:2285-2309. [PMID: 24920334 PMCID: PMC4114936 DOI: 10.1105/tpc.114.125419] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/16/2014] [Accepted: 05/24/2014] [Indexed: 05/18/2023]
Abstract
The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| | - Rebecca Lyons
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct, Brisbane 4069, Queensland, Australia
| |
Collapse
|
66
|
The root hair assay facilitates the use of genetic and pharmacological tools in order to dissect multiple signalling pathways that lead to programmed cell death. PLoS One 2014; 9:e94898. [PMID: 24755572 PMCID: PMC3995694 DOI: 10.1371/journal.pone.0094898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/21/2014] [Indexed: 11/21/2022] Open
Abstract
The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of PCD.
Collapse
|
67
|
Simanshu DK, Zhai X, Munch D, Hofius D, Markham JE, Bielawski J, Bielawska A, Malinina L, Molotkovsky JG, Mundy JW, Patel DJ, Brown RE. Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels. Cell Rep 2014; 6:388-99. [PMID: 24412362 PMCID: PMC3931444 DOI: 10.1016/j.celrep.2013.12.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/21/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022] Open
Abstract
The accelerated cell death 11 (acd11) mutant of Arabidopsis provides a genetic model for studying immune response activation and localized cellular suicide that halt pathogen spread during infection in plants. Here, we elucidate ACD11 structure and function and show that acd11 disruption dramatically alters the in vivo balance of sphingolipid mediators that regulate eukaryotic-programmed cell death. In acd11 mutants, normally low ceramide-1-phosphate (C1P) levels become elevated, but the relatively abundant cell death inducer phytoceramide rises acutely. ACD11 exhibits selective intermembrane transfer of C1P and phyto-C1P. Crystal structures establish C1P binding via a surface-localized, phosphate headgroup recognition center connected to an interior hydrophobic pocket that adaptively ensheaths lipid chains via a cleft-like gating mechanism. Point mutation mapping confirms functional involvement of binding site residues. A π helix (π bulge) near the lipid binding cleft distinguishes apo-ACD11 from other GLTP folds. The global two-layer, α-helically dominated, "sandwich" topology displaying C1P-selective binding identifies ACD11 as the plant prototype of a GLTP fold subfamily.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuhong Zhai
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - David Munch
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel Hofius
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jennifer E Markham
- Department of Biochemistry, University of Nebraska, N146 Beadle Center, Lincoln, NE 68588, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resource Mass Spectrometry Lab, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resource Mass Spectrometry Lab, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lucy Malinina
- Structural Biology Unit, CIC bioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | - Julian G Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - John W Mundy
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
68
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24575102 DOI: 10.3389/fpls.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M Rojas
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; National Institute of Plant Genome Research, Jawaharlal Nehru University Campus New Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; Boyce Thompson Institute for Plant Research Ithaca, NY, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| |
Collapse
|
69
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014; 5:17. [PMID: 24575102 PMCID: PMC3919437 DOI: 10.3389/fpls.2014.00017] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/15/2014] [Indexed: 05/18/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M. Rojas
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Kirankumar S. Mysore, Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA e-mail:
| |
Collapse
|
70
|
Wang X, Sager R, Cui W, Zhang C, Lu H, Lee JY. Salicylic acid regulates Plasmodesmata closure during innate immune responses in Arabidopsis. THE PLANT CELL 2013; 25:2315-29. [PMID: 23749844 PMCID: PMC3723628 DOI: 10.1105/tpc.113.110676] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell-cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell-cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell-cell coupling requires an enhanced desease resistance1- and nonexpressor of pathogenesis-related genes1-dependent SA pathway in conjunction with the regulator of plasmodesmal gating Plasmodesmata-located protein5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop.
Collapse
Affiliation(s)
- Xu Wang
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Weier Cui
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Chong Zhang
- University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Hua Lu
- University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
- Address correspondence to
| |
Collapse
|
71
|
Lin H, Gudmestad NC. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip. PHYTOPATHOLOGY 2013; 103:524-537. [PMID: 23268582 DOI: 10.1094/phyto-09-12-0238-rvw] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit 9611, S. Riverbend Avenue, Parlier, CA 93648, USA.
| | | |
Collapse
|
72
|
Mortimer JC, Yu X, Albrecht S, Sicilia F, Huichalaf M, Ampuero D, Michaelson LV, Murphy AM, Matsunaga T, Kurz S, Stephens E, Baldwin TC, Ishii T, Napier JA, Weber AP, Handford MG, Dupree P. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. THE PLANT CELL 2013; 25:1881-94. [PMID: 23695979 PMCID: PMC3694712 DOI: 10.1105/tpc.113.111500] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi.
Collapse
Affiliation(s)
- Jenny C. Mortimer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sandra Albrecht
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Francesca Sicilia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Mariela Huichalaf
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Diego Ampuero
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Louise V. Michaelson
- Biological Chemistry Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Toshiro Matsunaga
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
- National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8666, Japan
| | - Samantha Kurz
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | - Elaine Stephens
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Timothy C. Baldwin
- School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1SB, United Kingdom
| | - Tadashi Ishii
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Johnathan A. Napier
- Biological Chemistry Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Andreas P.M. Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | - Michael G. Handford
- Department of Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Address correspondence to
| |
Collapse
|
73
|
Rivas-San Vicente M, Larios-Zarate G, Plasencia J. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. PLANTA 2013; 237:121-36. [PMID: 22990908 DOI: 10.1007/s00425-012-1758-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 05/08/2023]
Abstract
Sphingolipids play an important role in signal transduction pathways that regulate physiological functions and stress responses in eukaryotes. In plants, recent evidence suggests that their metabolic precursors, the long-chain bases (LCBs) act as bioactive molecules in the immune response. Interestingly, the virulence of two unrelated necrotrophic fungi, Fusarium verticillioides and Alternaria alternata, which are pathogens of maize and tomato plants, respectively, depends on the production of sphinganine-analog mycotoxins (SAMs). These metabolites inhibit de novo synthesis of sphingolipids in their hosts causing accumulation of LCBs, which are key regulators of programmed cell death. Therefore, to gain more insight into the role of sphingolipids in plant immunity against SAM-producing necrotrophic fungi, we disrupted sphingolipid metabolism in Nicotiana benthamiana through virus-induced gene silencing (VIGS) of the serine palmitoyltransfersase (SPT). This enzyme catalyzes the first reaction in LCB synthesis. VIGS of SPT profoundly affected N. benthamiana development as well as LCB composition of sphingolipids. While total levels of phytosphingosine decreased, sphinganine and sphingosine levels increased in SPT-silenced plants, compared with control plants. Plant immunity was also affected as silenced plants accumulated salicylic acid (SA), constitutively expressed the SA-inducible NbPR-1 gene and showed increased susceptibility to the necrotroph A. alternata f. sp. lycopersici. In contrast, expression of NbPR-2 and NbPR-3 genes was delayed in silenced plants upon fungal infection. Our results strongly suggest that LCBs modulate the SA-dependent responses and provide a working model of the potential role of SAMs from necrotrophic fungi to disrupt the plant host response to foster colonization.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | |
Collapse
|
74
|
Senthilkumar P, Thirugnanasambantham K, Mandal AKA. Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection. Appl Biochem Biotechnol 2012; 168:1917-27. [PMID: 23065401 DOI: 10.1007/s12010-012-9907-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) is an economically important plant cultivated for its leaves. Infection of Pestalotiopsis theae in leaves causes gray blight disease and enormous loss to the tea industry. We used suppressive subtractive hybridization (SSH) technique to unravel the differential gene expression pattern during gray blight disease development in tea. Complementary DNA from P. theae-infected and uninfected leaves of disease tolerant cultivar UPASI-10 was used as tester and driver populations respectively. Subtraction efficiency was confirmed by comparing abundance of β-actin gene. A total of 377 and 720 clones with insert size >250 bp from forward and reverse library respectively were sequenced and analyzed. Basic Local Alignment Search Tool analysis revealed 17 sequences in forward SSH library have high degree of similarity with disease and hypersensitive response related genes and 20 sequences with hypothetical proteins while in reverse SSH library, 23 sequences have high degree of similarity with disease and stress response-related genes and 15 sequences with hypothetical proteins. Functional analysis indicated unknown (61 and 59 %) or hypothetical functions (23 and 18 %) for most of the differentially regulated genes in forward and reverse SSH library, respectively, while others have important role in different cellular activities. Majority of the upregulated genes are related to hypersensitive response and reactive oxygen species production. Based on these expressed sequence tag data, putative role of differentially expressed genes were discussed in relation to disease. We also demonstrated the efficiency of SSH as a tool in enriching gray blight disease related up- and downregulated genes in tea. The present study revealed that many genes related to disease resistance were suppressed during P. theae infection and enhancing these genes by the application of inducers may impart better disease tolerance to the plants.
Collapse
Affiliation(s)
- Palanisamy Senthilkumar
- Plant Physiology and Biotechnology Division, UPASI Tea Research Institute, Valparai, Tamil Nadu, India
| | | | | |
Collapse
|
75
|
Díaz-Tielas C, Graña E, Sotelo T, Reigosa MJ, Sánchez-Moreiras AM. The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. PLANT, CELL & ENVIRONMENT 2012; 35:1500-17. [PMID: 22428920 DOI: 10.1111/j.1365-3040.2012.02506.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chalcone (1,3-diphenyl-2-propen-1-one) is an aromatic ketone precursor of important molecules in plants such as flavonoids or anthocyanins. Its phytotoxicity has been demonstrated on different plant species, but to date little is known about the mechanisms of action of this secondary metabolite at plant cellular level. Detailed analysis by light and transmission electron microscopy (TEM) was conducted to examine the root meristems' ultrastructure of control and chalcone-treated Arabidopsis seedlings. Mitochondrial dysfunction was analysed by measuring mitochondrial membrane potential with JC-1 fluorochrome. Finally, acridine orange/ethidium bromide staining was used for the detection of programmed cell death. Microscopy revealed tissue alterations, inhibition of root hair formation and important changes after 7 and 14 d at the chalcone IC(50) value. Chalcone-treated cells showed signs of programmed cell death such as mitochondrial condensation, disruption of organelles and chromatin fragmentation. Acridine orange/ethidium bromide staining confirmed the programmed cell death, which could be induced by the reduction of mitochondrial transmembrane potential (ΔΨ(m)) that was detected after chalcone treatment. These results confirm the phytotoxic activity of chalcone on Arabidopsis seedlings, the alteration of mitochondrial membrane potential and the induction of programmed cell death.
Collapse
Affiliation(s)
- Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
76
|
Bonardi V, Cherkis K, Nishimura MT, Dangl JL. A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 2012; 24:41-50. [PMID: 22305607 DOI: 10.1016/j.coi.2011.12.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat proteins (NLRs) represent the major class of intracellular innate immune receptors in plants and animals. Understanding their functions is a major challenge in immunology. This review highlights recent efforts toward elucidating NLR functions in human and plants. We compare unconventional aspects of NLR proteins across the two kingdoms. We review recent advances describing P-loop independent activation, nuclear-cytoplasmic trafficking, oligomerization and multimerization requirements for signaling, and for expanded functions beyond pathogen recognition by several NLR proteins.
Collapse
Affiliation(s)
- Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
77
|
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3321-38. [PMID: 21357767 DOI: 10.1093/jxb/err031] [Citation(s) in RCA: 627] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, 04510, México, DF, México
| | | |
Collapse
|
78
|
Thamatrakoln K, Korenovska O, Niheu AK, Bidle KD. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ Microbiol 2011; 14:67-81. [DOI: 10.1111/j.1462-2920.2011.02468.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
79
|
Basnayake BMVS, Li D, Zhang H, Li G, Virk N, Song F. Arabidopsis DAL1 and DAL2, two RING finger proteins homologous to Drosophila DIAP1, are involved in regulation of programmed cell death. PLANT CELL REPORTS 2011; 30:37-48. [PMID: 20972793 DOI: 10.1007/s00299-010-0941-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/03/2010] [Accepted: 10/12/2010] [Indexed: 05/12/2023]
Abstract
Programmed cell death (PCD) is a precise, genetically controlled cellular process with important roles in plant growth, development, and response to biotic and abiotic stress. However, the genetic mechanisms that control PCD in plants are unclear. Two Arabidopsis genes, DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), encoding RING finger proteins with homology to DIAP1 were identified, and a series of experiments were performed to elucidate their roles in the regulation of PCD and disease resistance. Expression of DAL1 and DAL2 genes was induced in Arabidopsis plants after inoculation with virulent and avirulent strains of Pseudomonas syrinage pv. tomato (Pst) DC3000 or after infiltration with fumonisin B1 (FB1). Plants with mutations in the DAL1 and DAL2 genes displayed more severe disease after inoculation with an avirulent strain of Pst DC3000, but they showed similar disease severity as the wild-type plant after inoculation with a virulent strain of Pst DC3000. Significant accumulations of reactive oxygen species (ROS) and increased cell death were observed in the dal1 and dal2 mutant plants after inoculation with the avirulent strain of Pst DC3000. The dal mutant plants underwent extensive PCD upon infiltration of FB1 and displayed higher levels of ROS accumulation, callose deposition, and autofluorescence than the wild-type plants. Our data suggest that DAL1 and DAL2 may act as negative regulators of PCD in Arabidopsis.
Collapse
Affiliation(s)
- B M Vindhya S Basnayake
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
80
|
Lazarus1, a DUF300 protein, contributes to programmed cell death associated with Arabidopsis acd11 and the hypersensitive response. PLoS One 2010; 5:e12586. [PMID: 20830211 PMCID: PMC2935358 DOI: 10.1371/journal.pone.0012586] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/16/2010] [Indexed: 02/01/2023] Open
Abstract
Background Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins. Methodology/Principal Findings To identify genes required for this PCD pathway, we conducted a genetic screen for suppressors of acd11, here called lazarus (laz) mutants. In addition to known suppressors of R protein-mediated HR, we isolated 13 novel complementation groups of dominant and recessive laz mutants. Here we describe laz1, which encodes a protein with a domain of unknown function (DUF300), and demonstrate that LAZ1 contributes to HR PCD conditioned by the Toll/interleukin-1 (TIR)-type R protein RPS4 and by the coiled-coil (CC)-type R protein RPM1. Using a yeast-based topology assay, we also provide evidence that LAZ1 is a six transmembrane protein with structural similarities to the human tumor suppressor TMEM34. Finally, we demonstrate by transient expression of reporter fusions in protoplasts that localization of LAZ1 is distributed between the cytosol, the plasma membrane and FM4–64 stained vesicles. Conclusions/Significance Our findings indicate that LAZ1 functions as a regulator or effector of plant PCD associated with the HR, in addition to its role in acd11-related death. Furthermore, the similar topology of a plant and human DUF300 proteins suggests similar functions in PCD across the eukaryotic kingdoms, although a direct role for TMEM34 in cell death control remains to be established. Finally, the subcellular localization pattern of LAZ1 suggests that it may have transport functions for yet unknown, death-related signaling molecules at the plasma membrane and/or endosomal compartments. In summary, our results validate the utility of the large-scale suppressor screen to identify novel components with functions in plant PCD, which may also have implications for deciphering cell death mechanisms in other organisms.
Collapse
|
81
|
Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, Van Breusegem F, Saindrenan P, Noctor G. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. PLANT PHYSIOLOGY 2010; 153:1692-705. [PMID: 20543092 PMCID: PMC2923881 DOI: 10.1104/pp.110.153957] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/11/2010] [Indexed: 05/20/2023]
Abstract
While it is well established that reactive oxygen species can induce cell death, intracellularly generated oxidative stress does not induce lesions in the Arabidopsis (Arabidopsis thaliana) photorespiratory mutant cat2 when plants are grown in short days (SD). One interpretation of this observation is that a function necessary to couple peroxisomal hydrogen peroxide (H(2)O(2))-triggered oxidative stress to cell death is only operative in long days (LD). Like lesion formation, pathogenesis-related genes and camalexin were only induced in cat2 in LD, despite less severe intracellular redox perturbation compared with SD. Lesion formation triggered by peroxisomal H(2)O(2) was modified by introducing secondary mutations into the cat2 background and was completely absent in cat2 sid2 double mutants, in which ISOCHORISMATE SYNTHASE1 (ICS1) activity is defective. In addition to H(2)O(2)-induced salicylic acid (SA) accumulation, the sid2 mutation in ICS1 abolished a range of LD-dependent pathogen responses in cat2, while supplementation of cat2 with SA in SD activated these responses. Nontargeted transcript and metabolite profiling identified clusters of genes and small molecules associated with the daylength-dependent ICS1-mediated relay of H(2)O(2) signaling. The effect of oxidative stress in cat2 on resistance to biotic challenge was dependent on both growth daylength and ICS1. We conclude that (1) lesions induced by intracellular oxidative stress originating in the peroxisomes can be genetically reverted; (2) the isochorismate pathway of SA synthesis couples intracellular oxidative stress to cell death and associated disease resistance responses; and (3) camalexin accumulation was strictly dependent on the simultaneous presence of both H(2)O(2) and SA signals.
Collapse
|
82
|
Straus MR, Rietz S, Ver Loren van Themaat E, Bartsch M, Parker JE. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:628-40. [PMID: 20163553 DOI: 10.1111/j.1365-313x.2010.04178.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.
Collapse
Affiliation(s)
- Marco R Straus
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | | | | | | | | |
Collapse
|
83
|
Zäuner S, Ternes P, Warnecke D. Biosynthesis of Sphingolipids in Plants (and Some of Their Functions). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:249-63. [DOI: 10.1007/978-1-4419-6741-1_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
84
|
Lachaud C, Da Silva D, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Brière C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium 2010; 47:92-100. [PMID: 20022633 DOI: 10.1016/j.ceca.2009.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 01/02/2023]
Abstract
Studies performed in animals have highlighted the major role of sphingolipids in regulating the balance between cell proliferation and cell death. Sphingolipids have also been shown to induce cell death in plants via calcium-based signalling pathways but the contribution of free cytosolic and/or nuclear calcium in the overall process has never been evaluated. Here, we show that increase in tobacco BY-2 cells of the endogenous content of Long Chain Bases (LCBs) caused by external application of d-erythro-sphinganine (DHS) is followed by immediate dose-dependent elevations of cellular free calcium concentration within the first minute in the cytosol and 10min later in the nucleus. Cells challenged with DHS enter a death process through apoptotic-like mechanisms. Lanthanum chloride, a general blocker of calcium entry, suppresses the cellular calcium variations and the PCD induced by DHS. Interestingly, dl-2-amino-5-phosphopentanoic acid (AP5) and [(+)-dizocilpine] (MK801), two inhibitors of animal and plant ionotropic glutamate receptors, suppress DHS-induced cell death symptoms by selectively inhibiting the variations of nuclear calcium concentration. The selective action of these compounds demonstrates the crucial role of nuclear calcium signature in controlling DHS-induced cell death in tobacco cells.
Collapse
Affiliation(s)
- Christophe Lachaud
- Université de Toulouse, UPS, UMR CNRS-UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, Auzeville, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Maeda K, Houjyou Y, Komatsu T, Hori H, Kodaira T, Ishikawa A. AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1331-40. [PMID: 19810803 DOI: 10.1094/mpmi-22-11-1331] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a devastating disease of rice (Oryza sativa). The mechanisms involved in resistance of rice to blast have been studied extensively and the rice-M. oryzae pathosystem has become a model for plant-microbe interaction studies. However, the mechanisms involved in nonhost resistance (NHR) of other plants to rice blast are still poorly understood. Here, we investigated interactions between Arabidopsis thaliana and M. oryzae to identify the genetic basis of NHR. In A. thaliana accessions, preinvasion resistance to M. oryzae in Col-0 was stronger than that of Ler. To examine the genetic basis underlying the natural variation in the responses, we used a well-established set of recombinant inbred lines (RIL) derived from a Col x Ler cross and identified three quantitative trait loci that govern the expression of NHR in A. thaliana against M. oryzae. Among the penetration (pen) mutants, only the pen2 mutant allowed increased penetration into epidermal cells by M. oryzae. Double mutant analysis indicated that AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to M. oryzae in A. thaliana, suggesting a complex genetic network regulating the resistance. Our results demonstrate that A. thaliana can be used to study mechanisms of NHR to M. oryzae.
Collapse
Affiliation(s)
- Kana Maeda
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Yoon J, Chung WI, Choi D. NbHB1, Nicotiana benthamiana homeobox 1, is a jasmonic acid-dependent positive regulator of pathogen-induced plant cell death. THE NEW PHYTOLOGIST 2009; 184:71-84. [PMID: 19645736 DOI: 10.1111/j.1469-8137.2009.02967.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Induction of cell death is an important component of plant defense against pathogens. There have been many reports on the role of phytohormones in pathogen-induced cell death, but jasmonic acid (JA) has not been implicated as a regulator of the response. Here, we report the function of NbHB1, Nicotiana benthamiana homeobox1, in pathogen-induced cell death in connection with JA signaling. Involvement of NbHB1 in cell death was analysed by gain- and loss-of-function studies using Agrobacterium-mediated transient overexpression and virus-induced gene silencing, respectively. Expression of NbHB1 following pathogen inoculations and various treatments was monitored by reverse transcription polymerase chain reaction. Transcript levels of NbHB1 were upregulated by infection with virulent and avirulent bacterial pathogens. Ectopic expression of NbHB1 accelerated cell death following treatment with darkness, methyl jasmonate, or pathogen inoculation. Conversely, when NbHB1 was silenced, pathogen-induced cell death was delayed. NbHB1-induced cell death was also delayed by silencing of NbCOI1, indicating a requirement for JA-mediated signaling. Overexpression of the domain-deleted proteins of NbHB1 revealed that the homeodomain, leucine zipper, and part of the variable N-terminal region were necessary for NbHB1 functionality. These results strongly suggest the role of NbHB1 in pathogen-induced plant cell death via the JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Joonseon Yoon
- Department of Biological Sciences, KAIST, Daejeon, 305-701, Republic of Korea
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Won-Il Chung
- Department of Biological Sciences, KAIST, Daejeon, 305-701, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
87
|
Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b₅. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:122-134. [PMID: 19054355 DOI: 10.1111/j.1365-313x.2008.03765.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome b(5) (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.
Collapse
Affiliation(s)
- Minoru Nagano
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1360] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
89
|
Love AJ, Milner JJ, Sadanandom A. Timing is everything: regulatory overlap in plant cell death. TRENDS IN PLANT SCIENCE 2008; 13:589-95. [PMID: 18824399 DOI: 10.1016/j.tplants.2008.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/22/2008] [Accepted: 08/28/2008] [Indexed: 05/21/2023]
Abstract
Plant development and defence are intimately connected to programmed cell death (PCD). PCD can occur after environmental cues such as pathogen infection, mechanical damage or abiotic stress. However, PCD also constitutes an essential feature of various aspects of growth and development. Despite the differences in stimuli, the subsequent steps leading to programmed cellular death show considerable commonality, reflecting the essential and overlapping roles of individual regulatory components in these processes. These components can function as positive or negative regulators and can have contrasting functions depending on the form of cell death.
Collapse
Affiliation(s)
- Andrew J Love
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
90
|
Petersen NHT, McKinney LV, Pike H, Hofius D, Zakaria A, Brodersen P, Petersen M, Brown RE, Mundy J. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant. FEBS J 2008; 275:4378-88. [PMID: 18657186 PMCID: PMC2585820 DOI: 10.1111/j.1742-4658.2008.06584.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 null mutant, resulting in delayed programmed cell death development and plant survival. Surprisingly, a GLTP mutant form impaired in glycolipid transfer activity also complemented the acd11 mutants. To understand the relationship between functional complementarity and transfer activity, we generated site-specific mutants in ACD11 based on homologous GLTP residues required for glycolipid transfer. We show that these ACD11 mutant forms are impaired in their in vitro transfer activity of sphingolipids. However, transgenic expression of these mutant forms fully complemented acd11 mutant cell death, and transgenic plants showed normal induction of hypersensitive cell death upon infection with avirulent strains of Pseudomonas syringae. The significance of these findings with respect to the function(s) of ACD11 in sphingolipid transport and cell death regulation is discussed.
Collapse
Affiliation(s)
- Nikolaj H. T. Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Lea Vig McKinney
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Helen Pike
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Daniel Hofius
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Asif Zakaria
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Peter Brodersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
- Present address: Institut de Biologie Moléculaire des Plantes CNRS UPR 2357, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Morten Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Rhoderick E. Brown
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - John Mundy
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
91
|
García-Heredia JM, Hervás M, De la Rosa MA, Navarro JA. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. PLANTA 2008; 228:89-97. [PMID: 18335236 DOI: 10.1007/s00425-008-0721-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/26/2008] [Indexed: 05/09/2023]
Abstract
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.
Collapse
Affiliation(s)
- José M García-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | | | | |
Collapse
|
92
|
Zhang Z, Lenk A, Andersson MX, Gjetting T, Pedersen C, Nielsen ME, Newman MA, Hou BH, Somerville SC, Thordal-Christensen H. A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. MOLECULAR PLANT 2008; 1:510-27. [PMID: 19825557 DOI: 10.1093/mp/ssn011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildew-induced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPR1-dependent. These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.
Collapse
Affiliation(s)
- Ziguo Zhang
- Plant and Soil Science, Dept of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Xiong TC, Coursol S, Grat S, Ranjeva R, Mazars C. Sphingolipid metabolites selectively elicit increases in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco. Cell Calcium 2008; 43:29-37. [PMID: 17570488 DOI: 10.1016/j.ceca.2007.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/07/2007] [Accepted: 02/13/2007] [Indexed: 11/29/2022]
Abstract
Sphingolipids are known to interfere with calcium-based signalling pathways. Here we report that these compounds modulate nuclear calcium signalling in tobacco BY-2 cells. Nuclear protein kinase activity phosphorylated endogenous sphingoid long-chain bases (LCBs), suggesting that LCBs are actively metabolized in the nucleus of tobacco BY-2 cells. The Delta4-unsaturated LCB D-erythro-sphingosine and the saturated LCB D-ribo-phytosphingosine elicited increases in free calcium in the nucleus in a dose-dependent and structure-related manner. However, neither sphingosine-1-phosphate nor C2-ceramide was able to stimulate nuclear calcium changes. N-,N-Dimethyl-D-erythro-sphingosine, a structural analogue of D-erythro-sphingosine, was the most efficient LCB so far tested in eliciting nuclear calcium changes both in intact tobacco BY-2 cells and in isolated nuclei. TRP channel inhibitors prevent the effect of DMS, suggesting that LCBs may activate TRP-like channels located on the inner nuclear membrane Collectively, the obtained data show that nuclei respond to LCBs on their own independently of the cytosolic compartment.
Collapse
Affiliation(s)
- Tou Cheu Xiong
- UMR CNRS/UPS 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, 24 Chemin de Borde Rouge, BP 42617 Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
94
|
Bouchez O, Huard C, Lorrain S, Roby D, Balagué C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. PLANT PHYSIOLOGY 2007; 145:465-77. [PMID: 17720753 PMCID: PMC2048732 DOI: 10.1104/pp.107.106302] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.
Collapse
Affiliation(s)
- Olivier Bouchez
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA/CNRS 441/2594, 31320 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
95
|
Kilaru A, Bailey BA, Hasenstein KH. Moniliophthora perniciosaproduces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett 2007; 274:238-44. [PMID: 17610511 DOI: 10.1111/j.1574-6968.2007.00837.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Moniliophthora perniciosa is the causative agent of witches' broom disease in Theobroma cacao. Exogenously provided abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) promoted mycelial growth, suggesting the ability of the pathogen to metabolize plant hormones. ABA, IAA, JA, and SA were found endogenously in the mycelium and in the fruiting body of the pathogen. The pathogen contained high amounts of SA in the mycelium (0.5+/-0.04 microg g(-1) DW) and IAA (2+/-0.6 microg g(-1) DW) in the basidiocarps. Growth of the mycelium in the presence of host leaves for 10 days did not affect ABA or JA content of the leaves but IAA and SA increased 2.5- and 11-fold, respectively. The amounts of IAA and SA in infected leaves increased beyond the levels of the uninfected leaves and suggest a synergistic response to host-pathogen interaction. The ability of M. perniciosa to produce and sustain growth in the presence of elevated endogenous IAA and SA levels during colonization indicates that these phytohormones contribute to its pathogenicity.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biology, University of Louisiana, Lafayette, LA, USA
| | | | | |
Collapse
|
96
|
Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC. Arabidopsis Isochorismate Synthase Functional in Pathogen-induced Salicylate Biosynthesis Exhibits Properties Consistent with a Role in Diverse Stress Responses. J Biol Chem 2007; 282:5919-33. [PMID: 17190832 DOI: 10.1074/jbc.m605193200] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone best known for its role in plant defense. It is synthesized in response to diverse pathogens and responsible for the large scale transcriptional induction of defense-related genes and the establishment of systemic acquired resistance. Surprisingly, given its importance in plant defense, an understanding of the underlying enzymology is lacking. In Arabidopsis thaliana, the pathogen-induced accumulation of SA requires isochorismate synthase (AtICS1). Here, we show that AtICS1 is a plastid-localized, stromal protein using chloroplast import assays and immunolocalization. AtICS1 acts as a monofunctional isochorismate synthase (ICS), catalyzing the conversion of chorismate to isochorismate (IC) in a reaction that operates near equilibrium (K(eq) = 0.89). It does not convert chorismate directly to SA (via an IC intermediate) as does Yersinia enterocolitica Irp9. Using an irreversible coupled spectrophotometric assay, we found that AtICS1 exhibits an apparent K(m) of 41.5 mum and k(cat) = 38.7 min(-1) for chorismate. This affinity for chorismate would allow it to successfully compete with other pathogen-induced, chorismate-utilizing enzymes. Furthermore, the biochemical properties of AtICS1 indicate its activity is not regulated by light-dependent changes in stromal pH, Mg(2+), or redox and that it is remarkably active at 4 degrees C consistent with a role for SA in cold-tolerant growth. Finally, our analyses support plastidic synthesis of stress-induced SA with the requirement for one or more additional enzymes responsible for the conversion of IC to SA, because non-enzymatic conversion of IC to SA under physiological conditions was negligible.
Collapse
Affiliation(s)
- Marcus A Strawn
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
97
|
Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:302-12. [PMID: 17241452 DOI: 10.1111/j.1365-313x.2006.02961.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Penetration resistance is often the first line of defence against fungal pathogens. Subsequently induced defences are mediated by the programmed cell death (PCD) reaction pathway and the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways. We previously demonstrated that full penetration resistance in Arabidopsis against the non-host barley powdery mildew fungus (Blumeria graminis f.sp. hordei) requires the syntaxin SYP121 (PEN1). Here we report that SYP121, together with SYP122, functions as a negative regulator of subsequently induced defence pathways. The SA level in the syntaxin double mutant syp121-1 syp122-1 is dramatically elevated, resulting in necrosis and dwarfism. This phenotype is partially rescued by introducing the SA-signalling mutations eds1-2, eds5-3, sid2-1 and npr1-1 as well as the NahG transgene. These partially rescued triple mutants have an unknown defence to Pseudomonas syringae pv. tomato, and have increased HR-like responses to non-host and host powdery mildew fungi. The HR-like responses cause efficient resistance to the latter. These defence pathways are SA-independent. Furthermore, the JA/ET signalling marker, PDF1.2, is highly upregulated in the triple mutants. Thus SYP121 and SYP122 are negative regulators of PCD, SA, JA and ET pathways through a molecular function distinct from that of SYP121 in penetration resistance. Our data suggest that individual cells preferentially express either penetration resistance or the subsequently induced defences.
Collapse
Affiliation(s)
- Ziguo Zhang
- Department of Agricultural Sciences, Plant and Soil Science Laboratory, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
98
|
Hofius D, Tsitsigiannis DI, Jones JDG, Mundy J. Inducible cell death in plant immunity. Semin Cancer Biol 2006; 17:166-87. [PMID: 17218111 DOI: 10.1016/j.semcancer.2006.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/02/2006] [Indexed: 01/06/2023]
Abstract
Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways and their molecular components in plants are reviewed here.
Collapse
Affiliation(s)
- Daniel Hofius
- Department of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
99
|
Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 2006; 580:3498-504. [PMID: 16730712 DOI: 10.1016/j.febslet.2006.05.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/15/2006] [Accepted: 05/04/2006] [Indexed: 11/20/2022]
Abstract
Salicylic acid (SA) plays a central role in resistance and defense induction in response to pathogen attack, but its role in the activation of the hypersensitive response (HR), a form of programmed cell death associated with resistance of plants, remains to be elucidated. AtMYB30, a R2R3-MYB transcriptional factor which acts as a positive regulator of the HR, is a good model for studying the role of SA in programmed cell death. Here, we demonstrate that AtMYB30 expression in response to an HR-inducing bacterial pathogen is dependent on SA accumulation, but NPR1-independent. Alterations of AtMYB30 expression (overexpression, depletion by antisense strategy, T-DNA insertion mutant) modulate SA levels and SA-associated gene expression. Additionally, mutants or transgenic lines altered in SA accumulation (nahG, sid1, sid2), but not those affected in SA signalling (npr1), abolish the accelerated cell death phenotype conferred by over-expression of AtMYB30. These results suggest that AtMYB30 is involved in an amplification loop or signalling cascade that modulates SA synthesis, which in turn modulates cell death.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS/INRA 2594, Castanet-Tolosan, France
| | | | | |
Collapse
|
100
|
Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 2006; 281:17189-17196. [PMID: 16617180 DOI: 10.1074/jbc.m601754200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria. The fact that homologous men genes reside as polycistronic units in eubacterial chromosomes and in plastomes of red algae strongly suggests that PHYLLO derived from a plastid operon during endosymbiosis. The principle architecture of the fused PHYLLO locus is conserved in the nuclear genomes of plants, green algae, and the diatom alga Thalassiosira pseudonana. The latter arose from secondary endosymbiosis of a red algae and a eukaryotic host indicating selective driving forces for maintenance and/or independent generation of the composite gene cluster within the nuclear genomes. Besides, individual menF genes, encoding active isochorismate synthases (ICS), have been established followed by splitting of the essential 3' region of the menF module of PHYLLO only in genomes of higher plants. This resulted in inactivation of the ICS activity encoded by PHYLLO and enabled a metabolic branch from the phylloquinone biosynthetic route to independently regulate the synthesis of salicylic acid required for plant defense. Therefore, gene fusion, duplication, and fission events adapted a eubacterial multienzymatic system to the metabolic requirements of plants.
Collapse
Affiliation(s)
- Jeferson Gross
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Won Kyong Cho
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Lina Lezhneva
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Jon Falk
- Institute of Botany, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Kazuo Shinozaki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Reinhold G Herrmann
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany
| | - Jörg Meurer
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany.
| |
Collapse
|