51
|
Eder M, Tenhaken R, Driouich A, Lütz-Meindl U. OCCURRENCE AND CHARACTERIZATION OF ARABINOGALACTAN-LIKE PROTEINS AND HEMICELLULOSES IN MICRASTERIAS (STREPTOPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:1221-34. [PMID: 27041719 DOI: 10.1111/j.1529-8817.2008.00576.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The cell wall of the green alga Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zygnematophyceae, Streptophyta) was investigated to obtain information on the composition of component polysaccharides and proteoglycans to allow comparison with higher plants and to understand cell wall functions during development. Various epitopes currently assigned to arabinogalactan-proteins (AGPs) of higher plants could be detected in Micrasterias by immuno TEM and immunofluorescence methods, but the walls did not bind the β-d-glycosyl-Yariv (β-GlcY) reagent. Secretory vesicles and the primary wall were labeled by antibodies against AGPs (JIM8, JIM13, JIM14). Dot and Western blot experiments indicated a proteoglycan nature of the epitopes recognized, which consisted of galactose and xylose as major sugars by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Epitopes of alkali-soluble polysaccharides assigned to noncellulosic polysaccharides in higher plants could be detected and located in the wall during its formation. The polyclonal anti-xyloglucan (anti-XG) antibody labeled primary and secondary wall of Micrasterias, whereas the monoclonal antibody CCRC-M1, directed against the fucose/galactose side chain of xyloglucan (XyG), did not recognize any structures. Labeling by anti-XG antibody at the trans-sites of the dictyosomes and at wall material containing vesicles indicated that secretion of the epitopes occurred similar to higher plants. The presence of (1→3, 1→4)-β-glucan (mixed linked glucan) in the secondary cell wall but not in the primary cell wall of Micrasterias could be demonstrated by an antibody recognizing this glucan type, whereas (1→3)-β-glucan (callose) could not be detected. The analytical results revealed that alkali-soluble polysaccharides in the secondary wall of Micrasterias consist mostly of (1→3, 1→4)-β-d-glucan.
Collapse
Affiliation(s)
- Magdalena Eder
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, AustriaCentre National de la Recherche Scientifique Unité Mixte 6037, IFMP23, Centre Commun Microscopie Electronique, University of Rouen, 76821 Mont Saint Aignan, FranceCell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Raimund Tenhaken
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, AustriaCentre National de la Recherche Scientifique Unité Mixte 6037, IFMP23, Centre Commun Microscopie Electronique, University of Rouen, 76821 Mont Saint Aignan, FranceCell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Azeddine Driouich
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, AustriaCentre National de la Recherche Scientifique Unité Mixte 6037, IFMP23, Centre Commun Microscopie Electronique, University of Rouen, 76821 Mont Saint Aignan, FranceCell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Ursula Lütz-Meindl
- Cell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, AustriaCentre National de la Recherche Scientifique Unité Mixte 6037, IFMP23, Centre Commun Microscopie Electronique, University of Rouen, 76821 Mont Saint Aignan, FranceCell Biology Department, Plant Physiology Division, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| |
Collapse
|
52
|
Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV. Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:101-15. [PMID: 18557833 DOI: 10.1111/j.1365-313x.2008.03580.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan.
Collapse
Affiliation(s)
- Olga A Zabotina
- Institute for Integrative Genome Biology, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. THE PLANT CELL 2008; 20:1519-37. [PMID: 18544630 PMCID: PMC2483363 DOI: 10.1105/tpc.108.059873] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/09/2008] [Accepted: 05/21/2008] [Indexed: 05/17/2023]
Abstract
Xyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes. More interestingly, the xxt1 xxt2 double mutant had aberrant root hairs and lacked detectable xyloglucan. The reduction of xyloglucan in the xxt2 mutant and the lack of detectable xyloglucan in the xxt1 xxt2 double mutant resulted in significant changes in the mechanical properties of these plants. We conclude that XXT1 and XXT2 encode xylosyltransferases that are required for xyloglucan biosynthesis. Moreover, the lack of detectable xyloglucan in the xxt1 xxt2 double mutant challenges conventional models of the plant primary cell wall.
Collapse
Affiliation(s)
- David M Cavalier
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC PLANT BIOLOGY 2008; 8:60. [PMID: 18498625 DOI: 10.1093/jxb/37.8.1201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/22/2008] [Indexed: 05/24/2023]
Abstract
BACKGROUND Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. CONCLUSION These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.
Collapse
Affiliation(s)
- Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC PLANT BIOLOGY 2008; 8:60. [PMID: 18498625 PMCID: PMC2409341 DOI: 10.1186/1471-2229-8-60] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/22/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. CONCLUSION These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.
Collapse
Affiliation(s)
- Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yves Verhertbruggen
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Cécile Hervé
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - José J Ordaz-Ortiz
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Vladimir Farkas
- Slovak Academy of Sciences, Institute of Chemistry, Centre of Excellence GLYCOBIOS, Dubravska cesta 9, SK-84538 Bratislava, Slovakia
| | - Henriette L Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - William GT Willats
- Department of Biology, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
56
|
Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydr Res 2007; 343:67-72. [PMID: 18005949 DOI: 10.1016/j.carres.2007.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/08/2007] [Accepted: 10/24/2007] [Indexed: 01/22/2023]
Abstract
Isolated cell walls of Argania spinosa fruit pulp were fractionated into their polysaccharide constituents and the resulting fractions were analysed for monosaccharide composition and chemical structure. The data reveal the presence of homogalacturonan, rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) in the pectic fraction. RG-I is abundant and contains high amounts of Ara and Gal, indicative of an important branching in this polysaccharide. RG-II is less abundant than RG-I and exists as a dimer. Structural characterisation of xyloglucan using enzymatic hydrolysis, gas chromatography, MALDI-TOF-MS and methylation analysis shows that XXGG, XXXG, XXLG and XLLG are the major subunit oligosaccharides in the ratio of 0.6:1:1.2:1.6. This finding demonstrates that the major neutral hemicellulosic polysaccharide is a galacto-xyloglucan. In addition, Argania fruit xyloglucan has no XUFG, a novel xyloglucan motif recently discovered in Argania leaf cell walls. Finally, the isolation and analysis of arabinogalactan-proteins showed that Argania fruit pulp is rich in these proteoglycans.
Collapse
|
57
|
Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A. Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:240-51. [PMID: 17672840 DOI: 10.1111/j.1365-313x.2007.03224.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The cortical array of microtubules inside the cell and arabinogalactan proteins on the external surface of the cell are each implicated in plant morphogenesis. To determine whether the cortical array is influenced by arabinogalactan proteins, we first treated Arabidopsis roots with a Yariv reagent that binds arabinogalactan proteins. Cortical microtubules were markedly disorganized by 1 microM beta-D-glucosyl (active) Yariv but not by up to 10 microM beta-D-mannosyl (inactive) Yariv. This was observed for 24-h treatments in wild-type roots, fixed and stained with anti-tubulin antibodies, as well as in living roots expressing a green fluorescent protein (GFP) reporter for microtubules. Using the reporter line, microtubule disorganization was evident within 10 min of treatment with 5 microM active Yariv and extensive by 30 min. Active Yariv (5 microM) disorganized cortical microtubules after gadolinium pre-treatment, suggesting that this effect is independent of calcium influx across the plasma membrane. Similar effects on cortical microtubules, over a similar time scale, were induced by two anti-arabinogalactan-protein antibodies (JIM13 and JIM14) but not by antibodies recognizing pectin or xyloglucan epitopes. Active Yariv, JIM13, and JIM14 caused arabinogalactan proteins to aggregate rapidly, as assessed either in fixed wild-type roots or in the living cells of a line expressing a plasma membrane-anchored arabinogalactan protein from tomato fused to GFP. Finally, electron microscopy of roots prepared by high-pressure freezing showed that treatment with 5 microM active Yariv for 2 h significantly increased the distance between cortical microtubules and the plasma membrane. These findings demonstrate that cell surface arabinogalactan proteins influence the organization of cortical microtubules.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- UMR CNRS 6037, IFRMP 23, Plate Forme de Recherche en Imagerie Cellulaire, Université de Rouen, 76 821 Mont Saint Aignan, France
| | | | | | | | | |
Collapse
|
58
|
Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ. UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. THE PLANT CELL 2007; 19:1565-79. [PMID: 17496119 PMCID: PMC1913733 DOI: 10.1105/tpc.106.049619] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Five Arabidopsis thaliana genes that encode UDP-glucose 4-epimerase (UGE) and represent two ancient plant UGE clades might be involved in the regulation of cell wall carbohydrate biosynthesis. We tested this hypothesis in a genome-wide reverse genetic study. Despite significant contributions of each gene to total UGE activity, none was essential for normal growth on soil. uge2 uge4 displayed dramatic general growth defects, while other mutant combinations were partially aberrant. UGE2 together with UGE3 influenced pollen development. UGE2 and UGE4 synergistically influenced cell wall galactose content, which was correlated with shoot growth. UGE2 strongly and UGE1 and UGE5 lightly supported UGE4 in influencing root growth and cell wall galactose content by affecting galactan content. By contrast, only UGE4 influenced xyloglucan galactosylation in roots. Secondary hypocotyl thickening and arabinogalactan protein carbohydrate structure in xylem parenchyma depended on the combination of UGE2 and UGE4. As opposed to cell wall galactose content, tolerance to external galactose strictly paralleled total UGE activity. We suggest a gradual recruitment of individual UGE isoforms into specific roles. UGE2 and UGE4 influence growth and cell wall carbohydrate biosynthesis throughout the plant, UGE3 is specialized for pollen development, and UGE1 and UGE5 might act in stress situations.
Collapse
Affiliation(s)
- Johannes Rösti
- Department of Cell and Developmental Biology, John Ines Centre, NR4 7UH Norwich, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. PLANT PHYSIOLOGY 2007; 143:1220-30. [PMID: 17259288 PMCID: PMC1820921 DOI: 10.1104/pp.106.091546] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.
Collapse
Affiliation(s)
- Chul Min Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Arabinogalactan proteins is an umbrella term applied to a highly diverse class of cell surface glycoproteins, many of which contain glycosylphosphatidylinositol lipid anchors. The structures of protein and glycan moieties of arabinogalactan proteins are overwhelmingly diverse while the "hydroxproline contiguity hypothesis" predicts arabinogalactan modification of members of many families of extracellular proteins. Descriptive studies using monoclonal antibodies reacting with carbohydrate epitopes on arabinogalactan proteins and experimental work using beta-Yariv reagent implicate arabinogalactan proteins in many biological processes of cell proliferation and survival, pattern formation and growth, and in plant microbe interaction. Advanced structural understanding of arabinogalactan proteins and an emerging molecular genetic definition of biological roles of individual arabinogalactan protein species, in conjunction with potentially analogous extracellular matrix components of animals, stimulate hypotheses about their mode of action. Arabinogalactan proteins might be soluble signals, or might act as modulators and coreceptors of apoplastic morphogens; their amphiphilic molecular nature makes them prime candidates of mediators between the cell wall, the plasma membrane, and the cytoplasm.
Collapse
Affiliation(s)
- Georg J Seifert
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom.
| | | |
Collapse
|
61
|
Driouich A, Durand C, Vicré-Gibouin M. Formation and separation of root border cells. TRENDS IN PLANT SCIENCE 2007; 12:14-9. [PMID: 17157548 DOI: 10.1016/j.tplants.2006.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/18/2006] [Accepted: 11/24/2006] [Indexed: 05/12/2023]
Abstract
Plant roots release a large number of border cells into the rhizosphere, which are believed to play a key role in root development and health. The formation and loss of these cells from the root cap region is a developmentally regulated process that is also controlled by phytohormones and environmental factors. The separation of border cells involves the complete dissociation of individual cells from each other and from root tissue. This process requires the activity of cell wall-degrading enzymes that solubilize the cell wall connections between cells. We present and discuss the solubilization process with an emphasis on pectin-degrading enzymes as well as the recently discovered root border-like cells of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Azeddine Driouich
- UMR CNRS 6037, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute-Normandie, Université de Rouen, F-76821 Mont-Saint-Aignan, Cedex, France.
| | | | | |
Collapse
|
62
|
Sardar HS, Yang J, Showalter AM. Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cells. PLANT PHYSIOLOGY 2006; 142:1469-79. [PMID: 17056757 PMCID: PMC1676048 DOI: 10.1104/pp.106.088716] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/13/2006] [Indexed: 05/12/2023]
Abstract
Arabinogalactan proteins (AGPs), a superfamily of plant hydroxyproline-rich glycoproteins, are present at cell surfaces. Although precise functions of AGPs remain elusive, they are widely implicated in plant growth and development. A well-characterized classical tomato (Lycopersicon esculentum) AGP containing a glycosylphosphatidylinositol plasma membrane anchor sequence was used here to elucidate functional roles of AGPs. Transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells stably expressing green fluorescent protein (GFP)-LeAGP-1 were plasmolysed and used to localize LeAGP-1 on the plasma membrane and in Hechtian strands. Cytoskeleton disruptors and beta-Yariv reagent (which binds and perturbs AGPs) were used to examine the role of LeAGP-1 as a candidate linker protein between the plasma membrane and cytoskeleton. This study used a two-pronged approach. First, BY-2 cells, either wild type or expressing GFP-microtubule (MT)-binding domain, were treated with beta-Yariv reagent, and effects on MTs and F-actin were observed. Second, BY-2 cells expressing GFP-LeAGP-1 were treated with amiprophosmethyl and cytochalasin-D to disrupt MTs and F-actin, and effects on LeAGP-1 localization were observed. beta-Yariv treatment resulted in terminal cell bulging, puncta formation, and depolymerization/disorganization of MTs, indicating a likely role for AGPs in cortical MT organization. beta-Yariv treatment also resulted in the formation of thicker actin filaments, indicating a role for AGPs in actin polymerization. Similarly, amiprophosmethyl and cytochalasin-D treatments resulted in relocalization of LeAGP-1 on Hechtian strands and indicate roles for MTs and F-actin in AGP organization at the cell surface and in Hechtian strands. Collectively, these studies indicate that glycosylphosphatidylinositol-anchored AGPs function to link the plasma membrane to the cytoskeleton.
Collapse
Affiliation(s)
- Harjinder Singh Sardar
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701-2979, USA
| | | | | |
Collapse
|
63
|
Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides - a complex process. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:621-30. [PMID: 17011813 DOI: 10.1016/j.pbi.2006.09.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
Cellulose, a major component of plant cell walls, is made by dynamic complexes that move within the plasma membrane while depositing cellulose directly into the wall. On the other hand, matrix polysaccharides are made in the Golgi and delivered to the wall via secretory vesicles. Several Golgi proteins that are involved in glucomannan and xyloglucan biosynthesis have been identified, including some glycan synthases that show sequence similarity to the cellulose synthase proteins and several glycosytransferases that add sidechains to the polysaccharide backbones. Recent progress in identifying the proteins needed for polysaccharide biosynthesis should lead to an improved understanding of the molecular details of these complex processes, and eventually to an ability to manipulate them in an effort to generate plants that have improved properties for human uses.
Collapse
Affiliation(s)
- Olivier Lerouxel
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|