51
|
Zhu C, Yang J, Box MS, Kellogg EA, Eveland AL. A Dynamic Co-expression Map of Early Inflorescence Development in Setaria viridis Provides a Resource for Gene Discovery and Comparative Genomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1309. [PMID: 30258452 PMCID: PMC6143762 DOI: 10.3389/fpls.2018.01309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/20/2018] [Indexed: 05/29/2023]
Abstract
The morphological and functional diversity of plant form is governed by dynamic gene regulatory networks. In cereal crops, grain and/or pollen-bearing inflorescences exhibit vast architectural diversity and developmental complexity, yet the underlying genetic framework is only partly known. Setaria viridis is a small, rapidly growing grass species in the subfamily Panicoideae, a group that includes economically important cereal crops such as maize and sorghum. The S. viridis inflorescence displays complex branching patterns, but its early development is similar to that of other panicoid grasses, and thus is an ideal model for studying inflorescence architecture. Here we report a detailed transcriptional resource that captures dynamic transitions across six sequential stages of S. viridis inflorescence development, from reproductive onset to floral organ differentiation. Co-expression analyses identified stage-specific signatures of development, which include homologs of previously known developmental genes from maize and rice, suites of transcription factors and gene family members, and genes of unknown function. This spatiotemporal co-expression map and associated analyses provide a foundation for gene discovery in S. viridis inflorescence development, and a comparative model for exploring related architectural features in agronomically important cereals.
Collapse
|
52
|
Song S, Wang G, Hu Y, Liu H, Bai X, Qin R, Xing Y. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4283-4293. [PMID: 30124949 PMCID: PMC6093437 DOI: 10.1093/jxb/ery232] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 05/04/2023]
Abstract
Heading date and panicle architecture are important agronomic traits in rice. Here, we identified a gene MOTHER OF FT AND TFL1 (OsMFT1) that regulates rice heading and panicle architecture. Overexpressing OsMFT1 delayed heading date by over 7 d and greatly increased spikelets per panicle and the number of branches. In contrast, OsMFT1 knockout mutants had an advanced heading date and reduced spikelets per panicle. Overexpression of OsMFT1 significantly suppressed Ehd1 expression, and Ghd7 up-regulated OsMFT1 expression. Double mutants showed that OsMFT1 acted downstream of Ghd7. In addition, transcription factor OsLFL1 was verified to directly bind to the promoter of OsMFT1 via an RY motif and activate the expression of OsMFT1 in vivo and in vitro. RNA-seq and RNA in situ hybridization analysis confirmed that OsMFT1 repressed expression of FZP and five SEPALLATA-like genes, indicating that the transition from branch meristem to spikelet meristem was delayed and thus more panicle branches were produced. Therefore, OsMFT1 is a suppressor of flowering acting downstream of Ghd7 and upstream of Ehd1, and a positive regulator of panicle architecture.
Collapse
Affiliation(s)
- Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guanfeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Rui Qin
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
53
|
Minow MAA, Ávila LM, Turner K, Ponzoni E, Mascheretti I, Dussault FM, Lukens L, Rossi V, Colasanti J. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2937-2952. [PMID: 29688423 PMCID: PMC5972621 DOI: 10.1093/jxb/ery110] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Luis M Ávila
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Katie Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena Ponzoni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Iride Mascheretti
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Forest M Dussault
- Research and Development, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Lewis Lukens
- Plant Agriculture Department, University of Guelph, Guelph, Ontario, Canada
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
54
|
Zhao W, Gu R, Che G, Cheng Z, Zhang X. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem Biophys Res Commun 2018; 499:307-313. [PMID: 29574158 DOI: 10.1016/j.bbrc.2018.03.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/22/2023]
Abstract
Cucumber is an important vegetable with indeterminate growth habit which is beneficial to its yield. In this study, we cloned the TFL1 homolog CsTFL1b in cucumber. CsTFL1b shares highly sequence similarity to TFL1 from Arabidopsis and has conservative histidine amino acid residue which is necessary for TFL1 function. However, phylogenetic analysis suggested that cucurbits TFL1s (CsTFL1b of cucumber and CmTFL1 of melon) formed a subclade which is far from the AtTFL1 in Arabidopsis or CEN in Antirrhinum. CsTFL1b was highest expressed in male flower but barely expressed in SAM which was different from TFL1 in Arabidopsis with highly transcription accumulation in SAM and CsTFL1b was located in nucleus and cytoplasm. Upon ectopic expression of CsTFL1b in Arabidopsis, the flowering time of transgenic plants was significantly delayed in both wild type and tfl1-11 mutant background but the terminal flower phenotype of tfl1-11 mutant was partially rescued. These results may underlie the discrepant function of CsTFL1b in cucumber from that in Arabidopsis.
Collapse
Affiliation(s)
- Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ran Gu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gen Che
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
55
|
Jia H, Sun W, Li M, Zhang Z. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. J Proteome Res 2018; 17:822-833. [DOI: 10.1021/acs.jproteome.7b00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haitao Jia
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei Sun
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Manfei Li
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zuxin Zhang
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
56
|
Missaoui AM, Malinowski DP, Pinchak WE, Kigel J. Insights into the Drought and Heat Avoidance Mechanism in Summer-Dormant Mediterranean Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1971. [PMID: 29204152 PMCID: PMC5698279 DOI: 10.3389/fpls.2017.01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/01/2017] [Indexed: 05/11/2023]
Abstract
Summer dormancy is an evolutionary response that some perennial cool-season grasses adopted as an avoidance strategy to escape summer drought and heat. It is correlated with superior survival after severe summer droughts in many perennial grass species originating from Mediterranean environments. Understanding the genetic mechanism and environmental determinants of summer dormancy is important for interpreting the evolutionary history of seasonal dormancy and for the development of genomic tools to improve the efficiency of genetic selection for this important trait. The objectives of this research are to assess morphological and biochemical attributes that seem to be specific for the characterization of summer dormancy in tall fescue, and to validate the hypothesis that genes underlying stem determinacy might be involved in the mechanism of summer dormancy. Our results suggest that vernalization is an important requirement in the onset of summer dormancy in tall fescue. Non-vernalized tall fescue plants do not exhibit summer dormancy as vernalized plants do and behave more like summer-active types. This is manifested by continuation of shoot growth and high root activity in water uptake during summer months. Therefore, summer dormancy in tall fescue should be tested only in plants that underwent vernalization and are not subjected to water deficit during summer months. Total phenolic concentration in tiller bases (antioxidants) does not seem to be related to vernalization. It is most likely an environmental response to protect meristems from oxidative stress. Sequence analysis of the TFL1 homolog CEN gene from tall fescue genotypes belonging to summer-dormant and summer-active tall fescue types showed a unique deletion of three nucleotides specific to the dormant genotypes. Higher tiller bud numbers in dormant plants that were not allowed to flower and complete the reproductive cycle, confirmed that stem determinacy is a major component in the mechanism of summer dormancy. The number of variables identified in these studies as potential players in summer dormancy in tall fescue including vernalization, TFL1/CEN, water status, and protection from oxidative stress are a further confirmation that summer dormancy is a quantitative trait controlled by several genes with varying effects and prone to genotype by environment interactions.
Collapse
Affiliation(s)
- Ali M. Missaoui
- Institute of Plant Breeding Genetics and Genomics, The University of Georgia, Athens, GA, United States
| | | | | | - Jaime Kigel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
57
|
Bai S, Tuan PA, Saito T, Ito A, Ubi BE, Ban Y, Moriguchi T. Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4899-4914. [PMID: 28992213 PMCID: PMC5853822 DOI: 10.1093/jxb/erx296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Floral induction is an important event in the annual growth cycle of perennial fruit trees. For pear, this event directly affects fruit production in the following year. The flower buds in many species are induced by FLOWERING LOCUS T (FT), whose effect is repressed by the meristem-expressed gene TERMINAL FLOWER1 (TFL1). In this study, we investigated the functions of pear FT and TFL1 genes during floral development. Expression of pear FTs (PpFT1a and PpFT2a) in reproductive meristems was not obviously induced prior to floral initiation, while expression of TFL1s (PpTFL1-1a and PpTFL1-2a) rapidly decreased. The induction of the productive meristem identity MADS-box gene AP1 after repression of PpTFL1s suggested a primary role for PpTFL1 in floral induction. RNA-seq analysis suggested that plant hormone-related genes and several transcription factors that were coexpressed with PpTFL1 were potentially involved in the PpTFL1-mediated floral induction. Our data indicate the essential function of TFL1 in pear floral induction and add another species in the family Rosaceae in addition to strawberry and rose that shows a role for TFL1 in floral induction.
Collapse
Affiliation(s)
- Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo-shi, Chiba, Japan
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
| | - Benjamin Ewa Ubi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Department of Biotechnology, Ebonyi State University, Abakaliki, Nigeria
| | - Yusuke Ban
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Division of Lowland Crop Research, Fukuyama-shi, Hiroshima, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
- Institute of Fruit Tree and Tea Science, NARO, Division of Citrus Research, Okitsu-Nakacho Shimizu, Shizuoka, Japan
- Correspondence:
| |
Collapse
|
58
|
Meng Q, Li X, Zhu W, Yang L, Liang W, Dreni L, Zhang D. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:693-707. [PMID: 28843032 DOI: 10.1111/jipb.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Grasses display highly diversified inflorescence architectures that differ in the arrangement of spikelets and flowers and determine cereal yields. However, the molecular basis underlying grass inflorescence morphogenesis remains largely unknown. Here we investigate the role of a functionally diversified SEPALLATA MADS-box transcription factor, OsMADS34, in regulating rice (Oryza sativa L.) inflorescence and spikelet development. Microarray analysis showed that, at the very early stages of inflorescence formation, dysfunction of OsMADS34 caused altered expression of 379 genes that are associated with protein modification and degradation, transcriptional regulation, signaling and metabolism activity. Genetic analysis revealed that OsMADS34 controls different aspects of inflorescence structure, branching and meristem activity synergistically with LAX PANICLE1 (LAX1) and FLORAL ORGAN NUMBER4 (FON4), as evidenced by the enhanced phenotypes of osmads34 lax1 and osmads34 fon4 compared with the single mutants. Additionally, double mutant between osmads34 and the sterile lemma defective mutant elongated empty glume (ele) displayed an enhanced phenotype, that is, longer and wider sterile lemmas that were converted into lemma/palea-like organs, suggesting that ELE and OsMADS34 synergistically control the sterile lemma development. OsMADS34 may act together with OsMADS15 in controlling sterile lemma development. Collectively, these findings provide insights into the regulatory function of OsMADS34 in rice inflorescence and spikelet development.
Collapse
Affiliation(s)
- Qingcai Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
59
|
Cai H, Zhao L, Wang L, Zhang M, Su Z, Cheng Y, Zhao H, Qin Y. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. THE NEW PHYTOLOGIST 2017; 214:1579-1596. [PMID: 28295392 DOI: 10.1111/nph.14521] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 05/02/2023]
Abstract
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.
Collapse
Affiliation(s)
- Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Zhenxia Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| |
Collapse
|
60
|
Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1539-1553. [PMID: 28369532 PMCID: PMC5441913 DOI: 10.1093/jxb/erx044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Kiwifruit is a woody perennial horticultural crop, characterized by excessive vegetative vigor, prolonged juvenility, and low productivity. To understand the molecular factors controlling flowering and winter dormancy, here we identify and characterize the kiwifruit PEBP (phosphatidylethanolamine-binding protein) gene family. Five CEN-like and three BFT-like genes are differentially expressed and act as functionally conserved floral repressors, while two MFT-like genes have no impact on flowering time. FT-like genes are differentially expressed, with AcFT1 confined to shoot tip and AcFT2 to mature leaves. Both act as potent activators of flowering, but expression of AcFT2 in Arabidopsis resulted in a greater impact on plant morphology than that of AcFT1. Constitutive expression of either construct in kiwifruit promoted in vitro flowering, but AcFT2 displayed a greater flowering activation efficiency than AcFT1, leading to immediate floral transition and restriction of leaf development. Both leaf and flower differentiation were observed in AcFT1 kiwifruit lines. Sequential activation of specific PEBP genes in axillary shoot buds during growth and dormancy cycles indicated specific roles in regulation of kiwifruit vegetative and reproductive phenologies. AcCEN and AcCEN4 marked active growth, AcBFT2 was associated with suppression of latent bud growth during winter, and only AcFT was activated after cold accumulation and dormancy release.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
61
|
Li C, Fu Q, Niu L, Luo L, Chen J, Xu ZF. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Sci Rep 2017; 7:43090. [PMID: 28225036 PMCID: PMC5320528 DOI: 10.1038/srep43090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha.
Collapse
Affiliation(s)
- Chaoqiong Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.,College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, 466001, China
| | - Qiantang Fu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Li Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| |
Collapse
|
62
|
Lemmon ZH, Park SJ, Jiang K, Van Eck J, Schatz MC, Lippman ZB. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res 2016; 26:1676-1686. [PMID: 27821409 PMCID: PMC5131819 DOI: 10.1101/gr.207837.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
One of the most remarkable manifestations of plant evolution is the diversity for floral branching systems. These “inflorescences” arise from stem cell populations in shoot meristems that mature gradually to reproductive states in response to environmental and endogenous signals. The morphology of the shoot meristem maturation process is conserved across distantly related plants, raising the question of how diverse inflorescence architectures arise from seemingly common maturation programs. In tomato and related nightshades (Solanaceae), inflorescences range from solitary flowers to highly branched structures bearing hundreds of flowers. Since reproductive barriers between even closely related Solanaceae have precluded a genetic dissection, we captured and compared meristem maturation transcriptomes from five domesticated and wild species reflecting the evolutionary continuum of inflorescence complexity. We find these divergent species share hundreds of dynamically expressed genes, enriched for transcription factors. Meristem stages are defined by distinct molecular states and point to modified maturation schedules underlying architectural variation. These modified schedules are marked by a peak of transcriptome expression divergence during the reproductive transition, driven by heterochronic shifts of dynamic genes, including transcriptional regulators with known roles in flowering. Thus, evolutionary diversity in Solanaceae inflorescence complexity is determined by subtle modifications of transcriptional programs during a critical transitional window of meristem maturation, which we propose underlies similar cases of plant architectural variation. More broadly, our findings parallel the recently described transcriptome “inverse hourglass” model for animal embryogenesis, suggesting both plant and animal morphological variation is guided by a mid-development period of transcriptome divergence.
Collapse
Affiliation(s)
- Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Soon Ju Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ke Jiang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
63
|
McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. THE NEW PHYTOLOGIST 2016; 212:244-58. [PMID: 27292411 DOI: 10.1111/nph.14037] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/26/2016] [Indexed: 05/08/2023]
Abstract
Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.
Collapse
Affiliation(s)
- Roisin C McGarry
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Sarah F Prewitt
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Samantha Culpepper
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Yuval Eshed
- Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eliezer Lifschitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Brian G Ayre
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
64
|
Koskela EA, Sønsteby A, Flachowsky H, Heide OM, Hanke MV, Elomaa P, Hytönen T. TERMINAL FLOWER1 is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (Fragaria × ananassa Duch.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1852-61. [PMID: 26940366 PMCID: PMC5069601 DOI: 10.1111/pbi.12545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 05/18/2023]
Abstract
The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short-day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)-SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)-TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short-day cultivar 'Elsanta' is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1-FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars.
Collapse
Affiliation(s)
- Elli Aurora Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Henryk Flachowsky
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Ola Mikal Heide
- Department of Ecology and Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Magda-Viola Hanke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
65
|
Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schön CC. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 2016; 17:137. [PMID: 27387028 PMCID: PMC4937532 DOI: 10.1186/s13059-016-1009-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dent and Flint represent two major germplasm pools exploited in maize breeding. Several traits differentiate the two pools, like cold tolerance, early vigor, and flowering time. A comparative investigation of their genomic architecture relevant for quantitative trait expression has not been reported so far. Understanding the genomic differences between germplasm pools may contribute to a better understanding of the complementarity in heterotic patterns exploited in hybrid breeding and of mechanisms involved in adaptation to different environments. RESULTS We perform whole-genome screens for signatures of selection specific to temperate Dent and Flint maize by comparing high-density genotyping data of 70 American and European Dent and 66 European Flint inbred lines. We find 2.2 % and 1.4 % of the genes are under selective pressure, respectively, and identify candidate genes associated with agronomic traits known to differ between the two pools. Taking flowering time as an example for the differentiation between Dent and Flint, we investigate candidate genes involved in the flowering network by phenotypic analyses in a Dent-Flint introgression library and find that the Flint haplotypes of the candidates promote earlier flowering. Within the flowering network, the majority of Flint candidates are associated with endogenous pathways in contrast to Dent candidate genes, which are mainly involved in response to environmental factors like light and photoperiod. The diversity patterns of the candidates in a unique panel of more than 900 individuals from 38 European landraces indicate a major contribution of landraces from France, Germany, and Spain to the candidate gene diversity of the Flint elite lines. CONCLUSIONS In this study, we report the investigation of pool-specific differences between temperate Dent and Flint on a genome-wide scale. The identified candidate genes represent a promising source for the functional investigation of pool-specific haplotypes in different genetic backgrounds and for the evaluation of their potential for future crop improvement like the adaptation to specific environments.
Collapse
Affiliation(s)
- Sandra Unterseer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Saurabh D Pophaly
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Regina Peis
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Peter Westermeier
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.,Present Address: Institute for Crop Science and Plant Breeding, Bavarian State Research Center, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Michael A Seidel
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Georg Haberer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Hubert Pausch
- Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
66
|
Liu X, Zhang J, Abuahmad A, Franks RG, Xie DY, Xiang QY. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. PLANTA 2016; 243:1129-41. [PMID: 26825444 DOI: 10.1007/s00425-016-2466-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/04/2016] [Indexed: 05/27/2023]
Abstract
Two TFL1 -like genes, CorfloTFL1 and CorcanTFL1 cloned from Cornus florida and C. canadensis, function in regulating the transition to reproductive development in Arabidopsis. TERMINAL FLOWER 1 (TFL1) is known to regulate inflorescence development in Arabidopsis thaliana and to inhibit the transition from a vegetative to reproductive phase within the shoot apical meristem. Despite the importance, TFL1 homologs have been functionally characterized in only a handful eudicots. Here we report the role of TFL1 homologs of Cornus L. in asterid clade of eudicots. Two TFL1-like genes, CorfloTFL1 and CorcanTFL1, were cloned from Cornus florida (a tree) and C. canadensis (a subshrub), respectively. Both are deduced to encode proteins of 175 amino acids. The amino acid sequences of these two Cornus TFL1 homologs share a high similarity to Arabidopsis TFL1 and phylogenetically more close to TFL1 paralogous copy ATC (Arabidopsis thaliana CENTRORADIALIS homologue). Two genes are overexpressed in wild-type and tfl1 mutant plants of A. thaliana. The over-expression of each gene in wild-type Arabidopsis plants results in delaying flowering time, increase of plant height and cauline and rosette leaf numbers, excessive shoot buds, and secondary inflorescence branches. The over-expression of each gene in the tfl1 mutant rescued developmental defects, such as the early determinate inflorescence development, early flowering time, and other vegetative growth defects, to normal phenotypes of wild-type plants. These transgenic phenotypes are inherited in progenies. All data indicate that CorfloTFL1 and CorcanTFL1 have conserved the ancestral function of TFL1 and CEN regulating flowering time and inflorescence determinacy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ahmad Abuahmad
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | - Qiu-Yun Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| |
Collapse
|
67
|
Kebrom TH, Mullet JE. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum. PLANT PHYSIOLOGY 2016; 170:2232-50. [PMID: 26893475 PMCID: PMC4824614 DOI: 10.1104/pp.16.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/13/2016] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants.
Collapse
Affiliation(s)
- Tesfamichael H Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (T.H.K., J.E.M.)
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (T.H.K., J.E.M.)
| |
Collapse
|
68
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|
69
|
Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. MOLECULAR PLANT 2015; 8:983-97. [PMID: 25598141 DOI: 10.1016/j.molp.2015.01.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 05/18/2023]
Abstract
In plant development, the flowering transition and inflorescence architecture are modulated by two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehensively survey the conserved and diverse functions of the FT/TFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins.
Collapse
Affiliation(s)
- Daniel P Wickland
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshie Hanzawa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
70
|
Sussmilch FC, Berbel A, Hecht V, Vander Schoor JK, Ferrándiz C, Madueño F, Weller JL. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development. THE PLANT CELL 2015; 27:1046-60. [PMID: 25804541 PMCID: PMC4558695 DOI: 10.1105/tpc.115.136150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/10/2015] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Valérie Hecht
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
71
|
Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD. N-Acylethanolamines: lipid metabolites with functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:568-583. [PMID: 24397856 DOI: 10.1111/tpj.12427] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Twenty years ago, N-acylethanolamines (NAEs) were considered by many lipid chemists to be biological 'artifacts' of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N-arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross-kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | | | | | | | | |
Collapse
|
72
|
Randoux M, Davière JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, Perrotte J, Reynoird JP, Jammes MJ, Hibrand-Saint Oyant L, Foucher F. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. THE NEW PHYTOLOGIST 2014; 202:161-173. [PMID: 24308826 DOI: 10.1111/nph.12625] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/03/2013] [Indexed: 05/18/2023]
Abstract
FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.
Collapse
Affiliation(s)
- Marie Randoux
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-OUEST, Université d'Angers), SFR 4207 QUASAV, 2 rue Le Nôtre, 49045, Angers, France
- Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), Université d'Angers, SFR 4207 QUASAV, PRES LUNAM, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Michel Davière
- Unité Propre de Recherche 2357, CNRS, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Julien Jeauffre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Tatiana Thouroude
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Sandrine Pierre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Youness Toualbia
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Justine Perrotte
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Paul Reynoird
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- DNM Plant Breeding, Institut Polytechnique - LaSalle Beauvais, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Marie-José Jammes
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Laurence Hibrand-Saint Oyant
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Fabrice Foucher
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| |
Collapse
|
73
|
Teo ZWN, Song S, Wang YQ, Liu J, Yu H. New insights into the regulation of inflorescence architecture. TRENDS IN PLANT SCIENCE 2014; 19:158-65. [PMID: 24315403 DOI: 10.1016/j.tplants.2013.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/27/2013] [Accepted: 11/03/2013] [Indexed: 05/05/2023]
Abstract
The architecture of inflorescences displays the spatiotemporal arrangement of flowers and determines plant reproductive success through affecting fruit set and plant interaction with biotic or abiotic factors. Flowering plants have evolved a remarkable diversity of inflorescence branching patterns, which is largely governed by developmental decisions in inflorescence meristems and their derived meristems between maintenance of indeterminacy and commitment to the floral fate. Recent findings suggest that regulation of inflorescence architecture is mediated by flowering time genes, Arabidopsis LSH1 and Oryza G1 (ALOG) family genes, and the interaction between the auxin pathway and floral meristem regulators. In this review, we discuss how the relevant new players and mechanisms account for the development of appropriate inflorescence structures in flowering plants in response to environmental and developmental signals.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Shiyong Song
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Yong-Qiang Wang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Jie Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore.
| |
Collapse
|
74
|
Park SJ, Eshed Y, Lippman ZB. Meristem maturation and inflorescence architecture--lessons from the Solanaceae. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:70-7. [PMID: 24507497 DOI: 10.1016/j.pbi.2013.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 05/22/2023]
Abstract
Plant apical meristems (AMs) grow continuously by delicately balancing cells leaving at the periphery to form lateral organs with slowly dividing central domain cells that replenish reservoirs of pluripotent cells. This balance can be modified by signals originating from within and outside the meristem, and their integration results in a gradual maturation process that often culminates with the meristem differentiating into a flower. Accompanying this 'meristem maturation' are changes in spacing and size of lateral organs and in rates at which lateral meristems are released from apical dominance. Modulation of distinct meristem maturation parameters through environmental and genetic changes underlies the remarkable diversity of shoot architectures. Here, we discuss recent studies relating the dynamics of meristem maturation with organization of floral branching systems--inflorescences--in the nightshades. From this context, we suggest general principles on how factors coordinating meristem maturation impact shoot organization more broadly.
Collapse
Affiliation(s)
- Soon Ju Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yuval Eshed
- Weizmann Institute of Science, Department of Plant Sciences, Rehovot, Israel.
| | | |
Collapse
|
75
|
Abstract
The grass family is one of the largest families in angiosperms and has evolved a characteristic inflorescence morphology, with complex branches and specialized spikelets. The origin and development of the highly divergent inflorescence architecture in grasses have recently received much attention. Increasing evidence has revealed that numerous factors, such as transcription factors and plant hormones, play key roles in determining reproductive meristem fate and inflorescence patterning in grasses. Moreover, some molecular switches that have been implicated in specifying inflorescence shapes contribute significantly to grain yields in cereals. Here, we review key genetic and molecular switches recently identified from two model grass species, rice (Oryza sativa) and maize (Zea mays), that regulate inflorescence morphology specification, including meristem identity, meristem size and maintenance, initiation and outgrowth of axillary meristems, and organogenesis. Furthermore, we summarize emerging networks of genes and pathways in grass inflorescence morphogenesis and emphasize their evolutionary divergence in comparison with the model eudicot Arabidopsis thaliana. We also discuss the agricultural application of genes controlling grass inflorescence development.
Collapse
Affiliation(s)
- Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | | |
Collapse
|
76
|
Coelho CP, Minow MAA, Chalfun-Júnior A, Colasanti J. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:221. [PMID: 24904616 PMCID: PMC4033272 DOI: 10.3389/fpls.2014.00221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/03/2014] [Indexed: 05/05/2023]
Abstract
Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.
Collapse
Affiliation(s)
- Carla P. Coelho
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de LavrasLavras, Brazil
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Mark A. A. Minow
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Antonio Chalfun-Júnior
- Setor de Fisiologia Vegetal, Departamento de Biologia, Universidade Federal de LavrasLavras, Brazil
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- *Correspondence: Joseph Colasanti, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada e-mail:
| |
Collapse
|
77
|
Kurokura T, Mimida N, Battey NH, Hytönen T. The regulation of seasonal flowering in the Rosaceae. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4131-41. [PMID: 23929655 DOI: 10.1093/jxb/ert233] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Molecular mechanisms regulating the flowering process have been extensively studied in model annual plants; in perennials, however, understanding of the molecular mechanisms controlling flowering has just started to emerge. Here we review the current state of flowering research in perennial plants of the rose family (Rosaceae), which is one of the most economically important families of horticultural plants. Strawberry (Fragaria spp.), raspberry (Rubus spp.), rose (Rosa spp.), and apple (Malus spp.) are used to illustrate how photoperiod and temperature control seasonal flowering in rosaceous crops. We highlight recent molecular studies which have revealed homologues of terminal flower1 (TFL1) to be major regulators of both the juvenile to adult, and the vegetative to reproductive transitions in various rosaceous species. Additionally, recent advances in understanding of the regulation of TFL1 are discussed.
Collapse
Affiliation(s)
- Takeshi Kurokura
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | | | | | | |
Collapse
|
78
|
Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. PLANT PHYSIOLOGY 2013; 163:792-803. [PMID: 23958861 PMCID: PMC3793058 DOI: 10.1104/pp.113.224139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce.
Collapse
|
79
|
Liu C, Teo ZWN, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 2013; 24:612-22. [PMID: 23537632 DOI: 10.1016/j.devcel.2013.02.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/14/2012] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
The spatiotemporal architecture of inflorescences that bear flowers determines plant reproductive success by affecting fruit set and plant interaction with pollinators. The inflorescence architecture that displays great diversity across flowering plants depends on developmental decisions at inflorescence meristems. Here we report a key conserved genetic pathway determining inflorescence architecture in Arabidopsis thaliana and Oryza sativa (rice). In Arabidopsis, four MADS-box genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, SHORT VEGETATIVE PHASE, AGAMOUS-LIKE 24, and SEPALLATA 4 act redundantly and directly to suppress TERMINAL FLOWER1 (TFL1) in emerging floral meristems. This is indispensable for the well-known function of APETALA1 in specifying floral meristems and is coupled with a conformational change in chromosome looping at the TFL1 locus. Similarly, we demonstrate that the orthologs of these MADS-box genes in rice determine panicle branching by regulating TFL1-like genes. Our findings reveal a conserved regulatory pathway that determines inflorescence architecture in flowering plants.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, Hellens RP. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. THE NEW PHYTOLOGIST 2013; 198:732-746. [PMID: 23577598 DOI: 10.1111/nph.12162] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/01/2013] [Indexed: 05/08/2023]
Abstract
FLOWERING LOCUS T (FT) and CENTRORADIALIS (CEN) homologs have been implicated in regulation of growth, determinacy and flowering. The roles of kiwifruit FT and CEN were explored using a combination of expression analysis, protein interactions, response to temperature in high-chill and low-chill kiwifruit cultivars and ectopic expression in Arabidopsis and Actinidia. The expression and activity of FT was opposite from that of CEN and incorporated an interaction with a FLOWERING LOCUS D (FD)-like bZIP transcription factor. Accumulation of FT transcript was associated with plant maturity and particular stages of leaf, flower and fruit development, but could be detected irrespective of the flowering process and failed to induce precocious flowering in transgenic kiwifruit. Instead, transgenic plants demonstrated reduced growth and survival rate. Accumulation of FT transcript was detected in dormant buds and stem in response to winter chilling. In contrast, FD in buds was reduced by exposure to cold. CEN transcript accumulated in developing latent buds, but declined before the onset of dormancy and delayed flowering when ectopically expressed in kiwifruit. Our results suggest roles for FT, CEN and FD in integration of developmental and environmental cues that affect dormancy, budbreak and flowering in kiwifruit.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 92169, Auckland, 1142, New Zealand
| | - Sarah M A Moss
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 92169, Auckland, 1142, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 92169, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 92169, Auckland, 1142, New Zealand
| | - Joanna Putterill
- Flowering Laboratory, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
81
|
Coelho CP, Costa Netto AP, Colasanti J, Chalfun-Júnior A. A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control. GENETICS AND MOLECULAR RESEARCH 2013; 12:1347-59. [PMID: 23661458 DOI: 10.4238/2013.april.25.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.
Collapse
Affiliation(s)
- C P Coelho
- Departamento de Biologia, Setor de Fisiologia Vegetal, Laboratório de Fisiologia Molecular de Plantas, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | | | | | |
Collapse
|
82
|
Niwa M, Daimon Y, Kurotani KI, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. THE PLANT CELL 2013; 25:1228-42. [PMID: 23613197 PMCID: PMC3663264 DOI: 10.1105/tpc.112.109090] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/16/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Plant architecture shows a large degree of developmental plasticity. Some of the key determinants are the timing of the floral transition induced by a systemic flowering signal (florigen) and the branching pattern regulated by key factors such as BRANCHED1 (BRC1). Here, we report that BRC1 interacts with the florigen proteins FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) but not with TERMINAL FLOWER1, a floral repressor. FT protein induced in leaves moves into the subtended bud, suggesting that FT protein also plays a role in promotion of the floral transition in the axillary meristem (AM). The brc1-2 mutant shows an earlier floral transition in the axillary shoots compared with the wild type, suggesting that BRC1 plays a role in delaying the floral transition of the AMs. Genetic and gene expression analyses suggest that BRC1 interferes with florigen (FT and TSF) function in the AMs. Consistent with this, BRC1 ectopically expressed in the shoot apical meristem delays the floral transition in the main shoot. These results taken together suggest that BRC1 protein interacts with FT and TSF proteins and modulates florigen activity in the axillary buds to prevent premature floral transition of the AMs.
Collapse
Affiliation(s)
- Masaki Niwa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasufumi Daimon
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-ichi Kurotani
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Asuka Higo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - José L. Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Ghislain Breton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
| | - Steve A. Kay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama 338-8770, Japan
| | - Motomu Endo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Address correspondence to
| |
Collapse
|
83
|
Tanaka W, Pautler M, Jackson D, Hirano HY. Grass Meristems II: Inflorescence Architecture, Flower Development and Meristem Fate. ACTA ACUST UNITED AC 2013; 54:313-24. [DOI: 10.1093/pcp/pct016] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
84
|
Blackman BK. Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:421-431. [PMID: 23267017 DOI: 10.1093/jxb/ers359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Changes in flowering time and its regulation by environmental signals have played crucial roles in the evolutionary origin and spread of many cultivated plants. Recent investigations into the genetics of flowering time evolution in the common sunflower, Helianthus annuus, have provided insight into the historical and mechanistic dynamics of this process. Genetic mapping studies have confirmed phenotypic observations that selection on flowering time fluctuated in direction over sunflower's multistage history of early domestication and modern improvement. The FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1) gene family appears to have been a major contributor in these adaptive shifts. Evolutionary and functional investigations of this family in sunflower provide some of the first empirical evidence that new competitive interactions between recent gene duplications can contribute to evolutionary innovation. Notably, similar results in additional systems that validate this hypothesis are now being discovered. With a sunflower genome sequence now on its way, further research into the evolution of flowering time and its regulation by environmental signals during sunflower domestication is poised to lead to additional, equally important contributions.
Collapse
Affiliation(s)
- Benjamin K Blackman
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA 22904, USA.
| |
Collapse
|
85
|
Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One 2012; 7:e43450. [PMID: 22912876 PMCID: PMC3422250 DOI: 10.1371/journal.pone.0043450] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.
Collapse
Affiliation(s)
- Zhanshan Dong
- DuPont Pioneer, Johnston, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
86
|
Xu J, Liu Y, Liu J, Cao M, Wang J, Lan H, Xu Y, Lu Y, Pan G, Rong T. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:358-73. [PMID: 22583799 DOI: 10.1111/j.1744-7909.2012.01128.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The control of flowering is not only important for reproduction, but also plays a key role in the processes of domestication and adaptation. To reveal the genetic architecture for flowering time and photoperiod sensitivity, a comprehensive evaluation of the relevant literature was performed and followed by meta analysis. A total of 25 synthetic consensus quantitative trait loci (QTL) and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development. Besides, a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits. Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize (Zea mays L.). Our results suggest that the combination of literature review, meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering. Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection, such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation.
Collapse
Affiliation(s)
- Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
McGarry RC, Ayre BG. Manipulating plant architecture with members of the CETS gene family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:71-81. [PMID: 22525246 DOI: 10.1016/j.plantsci.2012.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 05/21/2023]
Abstract
The shape or architecture of a plant is specified through the activities of indeterminate and determinate meristems, and the sum of these events sharply impacts plant growth habit, productivity, and crop management. The CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) gene family shares homology to phosphatidylethanolamine binding protein (PEBP) genes and is prominent in controlling the timing and location of the developmental transition from indeterminate to determinate growth, with different family members balancing the activities of others through antagonistic functions. The CETS members FLOWERING LOCUS T (FT) of Arabidopsis and related genes (e.g. SINGLE FLOWER TRUSS, SFT, in tomato) are important in promoting the transition to determinate growth while TERMINAL FLOWER 1 (TFL1) and its homologs (e.g. tomato SELF PRUNING, SP) oppose this activity by maintaining meristems in an indeterminate state. FT orthologs, and perhaps other CETS family members, act as mobile proteinaceous hormones, and can amplify their impact by accumulating in recipient organs. A universal model is emerging for the timing and placement of determinate and indeterminate growth through a balance of FT-like and TFL1-like gene activities, and it is now clear that the domestication of many wild exotics into crops with desired growth habits resulted from selection of altered FT/TFL1 balances. Manipulating this ratio further, through transgenic or viral-based technologies, holds promise for improved agricultural sustainability.
Collapse
Affiliation(s)
- Roisin C McGarry
- University of North Texas, Department of Biological Sciences, 1155 Union Circle 305220, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
88
|
Crane O, Halaly T, Pang X, Lavee S, Perl A, Vankova R, Or E. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. PLANTA 2012; 235:181-192. [PMID: 21863250 DOI: 10.1007/s00425-011-1497-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Grapevine bud fruitfulness is determined by the differentiation of uncommitted meristem (UCM) into either tendril or inflorescence. Since tendril and inflorescence differentiation have long been considered sequential steps in inflorescence development, factors that control the progression of floral meristem development may regulate the final outcome of UCM differentiation, and thus affect fruitfulness. A comparison of the expression profiles of the master regulators of floral meristem identity (FMI) during development of fruitful and non-fruitful buds along the same cane allowed associating the expression of a homolog of terminal flower 1 (TFL1, a negative regulator of FMI) to fruitful buds, and the expression of positive FMI regulators to non-fruitful buds. Combined with (a) cytokinin-induced upregulation of VvTFL1A expression in cultured tendrils, which accompanied cytokinin-derived tendril transformation into branched, inflorescence-like structures, (b) positive regulation of VvTFL1A expression by cytokinin, which was demonstrated in transgenic embryonic culture expressing GUS reporter under the control of VvTFL1A promoter, and (c) a significantly higher level of active cytokinins in fruitful positions, the data may support the assumption of cytokinin-regulated VvTFL1A activity's involvement in the control of inflorescence development. Such activity may delay acquisition of FMI and allow an extended branching period for the UCM, resulting in the differentiation of inflorescence primordia.
Collapse
Affiliation(s)
- Omer Crane
- Department of Fruit Tree Sciences, Institute of Horticulture, Agricultural Research Organization, Volcani Center, 50250, Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
89
|
Teaster ND, Keereetaweep J, Kilaru A, Wang YS, Tang Y, Tran CNQ, Ayre BG, Chapman KD, Blancaflor EB. Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:32. [PMID: 22645580 PMCID: PMC3355813 DOI: 10.3389/fpls.2012.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/01/2012] [Indexed: 05/19/2023]
Abstract
N-acylethanolamines (NAEs) are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE). In animal systems this reaction is part of the "endocannabinoid" signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH), which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440) lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA), enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD) and inductive long day (LD) conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT) gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3), were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.
Collapse
Affiliation(s)
- Neal D. Teaster
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Jantana Keereetaweep
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State UniversityJohnson City, TN, USA
| | - Yuh-Shuh Wang
- Plant Signal Research Group, Institute of Technology, University of TartuTartu, Estonia
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Christopher N.-Q. Tran
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Brian G. Ayre
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Elison B. Blancaflor, Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA. e-mail:
| |
Collapse
|
90
|
Lazakis CM, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4833-42. [PMID: 21730358 PMCID: PMC3192997 DOI: 10.1093/jxb/err129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 05/18/2023]
Abstract
Higher plants use multiple perceptive measures to coordinate flowering time with environmental and endogenous cues. Physiological studies show that florigen is a mobile factor that transmits floral inductive signals from the leaf to the shoot apex. Arabidopsis FT protein is widely regarded as the archetype florigen found in diverse plant species, particularly in plants that use inductive photoperiods to flower. Recently, a large family of FT homologues in maize, the Zea CENTRORADIALIS (ZCN) genes, was described, suggesting that maize also contains FT-related proteins that act as a florigen. The product of one member of this large family, ZCN8, has several attributes that make it a good candidate as a maize florigen. Mechanisms underlying the floral transition in maize are less well understood than those of other species, partly because flowering in temperate maize is dependent largely on endogenous signals. The maize indeterminate1 (id1) gene is an important regulator of maize autonomous flowering that acts in leaves to mediate the transmission or production of florigenic signals. This study finds that id1 acts upstream of ZCN8 to control its expression, suggesting a possible new link to flowering in day-neutral maize. Moreover, in teosinte, a tropical progenitor of maize that requires short-day photoperiods to induce flowering, ZCN8 is highly up-regulated in leaves under inductive photoperiods. Finally, vascular-specific expression of ZCN8 in Arabidopsis complements the ft-1 mutation, demonstrating that leaf-specific expression of ZCN8 can induce flowering. These results suggest that ZCN8 may encode a florigen that integrates both endogenous and environmental signals in maize.
Collapse
|
91
|
Jarillo JA, Piñeiro M. Timing is everything in plant development. The central role of floral repressors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:364-78. [PMID: 21889042 DOI: 10.1016/j.plantsci.2011.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 05/07/2023]
Abstract
Progress in understanding the molecular basis of flowering time control has revealed that floral repressors play a central role in modulating the floral transition and are essential to prevent the precocious onset of flowering. A number of cellular processes including chromatin remodeling, selective protein degradation, and transcriptional regulation mediated by transcription factors are involved in repressing the initiation of flowering. Floral repressors interact at different levels with floral inductive pathways and prevent the premature onset of flowering that could impact negatively on the reproductive success of plants. Despite recent advances, further studies will be needed to understand how the interactions between floral repressors and the regulatory networks involved in the control of flowering time have evolved in different species. Recent data suggest that a diversity of regulatory proteins act as central floral repressors in different plants, and even in those species where regulatory modules are conserved new elements that modulate the function of these pathways have been recruited to mediate specific adaptive responses. The development of genomic tools and predictive models that can integrate large datasets related to the flowering behavior of plant species will facilitate the characterization of the repressor mechanisms underlying flowering responses, a trait with implications in the yield of crop species. In a scenario of global climate change, an in depth understanding of these gene circuits will be essential for the development of crop varieties with improved yield.
Collapse
Affiliation(s)
- Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Madrid, Spain
| | | |
Collapse
|
92
|
Danilevskaya ON, Meng X, McGonigle B, Muszynski MG. Beyond flowering time: pleiotropic function of the maize flowering hormone florigen. PLANT SIGNALING & BEHAVIOR 2011; 6:1267-70. [PMID: 21847027 PMCID: PMC3258048 DOI: 10.4161/psb.6.9.16423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The transition from vegetative to reproductive development is a critical turning point in a plant’s life cycle. It is now widely accepted that a leaf-borne signal, florigen, moves via the phloem from leaves to the shoot apical meristem to trigger its reprogramming to produce flowers. In part, the florigenic signal comprises a protein that belongs to the phosphatidylethanolamine-binding protein (PEBP) family that is present in all living organisms but displays diverse functions. The founding floral-promoting PEBP gene in Arabidopsis is FLOWERING LOCUS T (FT) whose functional homologs have been indentified in many flowering plants. We recently accumulated sufficient evidence to demonstrate the maize FT homolog ZCN8 has florigenic function. This task was particularly challenging due to the large number of FT-homologous genes in the maize genome. Here we show that ZCN8 function is more complex than simply regulating the floral transition. ZCN8 appears to play a pleiotropic role in the regulation of generalized growth of vegetative and reproductive tissues.
Collapse
|
93
|
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. PLANT PHYSIOLOGY 2011; 156:1967-77. [PMID: 21642442 PMCID: PMC3149940 DOI: 10.1104/pp.111.176206] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.
Collapse
|
94
|
Turnbull C. Long-distance regulation of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4399-413. [PMID: 21778182 DOI: 10.1093/jxb/err191] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
One of the great mysteries of plant science appears to have been resolved with the discovery that the protein FT can act as a phloem-mobile florigen hormone. The collective evidence from several laboratories, many from studies on photoperiod response, indicates that FT and its homologues are universal signalling molecules for flowering plants. Duplication and divergence of FT-like proteins reveals an increased complexity of function in certain taxonomic groups including grasses and legumes. There are additional components of long-distance flowering time control, such as a role for gibberellins in some species but probably not others. Cytokinins and sugars are further putative signals. Vernalization processes and responses are generally considered to occur in shoot meristems, but systemic responses to cold have been reported several times. Finally, there is increasing evidence that FT does not act purely to switch on flowering, but in addition, has broader roles in seasonal developmental switches such as bud dormancy and tuberization, and in the regulation of meristem determinacy and compound leaf development. This review seeks to highlight recent progress in systemic floral signalling, and to indicate areas in need of further research.
Collapse
Affiliation(s)
- Colin Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
95
|
Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize. THE PLANT CELL 2011; 23:942-60. [PMID: 21441432 PMCID: PMC3082274 DOI: 10.1105/tpc.110.081406] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Accepted: 03/04/2011] [Indexed: 05/18/2023]
Abstract
The mobile floral-promoting signal, florigen, is thought to consist of, in part, the FT protein named after the Arabidopsis thaliana gene FLOWERING LOCUS T. FT is transcribed and translated in leaves and its protein moves via the phloem to the shoot apical meristem where it promotes the transition from vegetative to reproductive development. In our search for a maize FT-like floral activator(s), seven Zea mays CENTRORADIALIS (ZCN) genes encoding FT homologous proteins were studied. ZCN8 stood out as the only ZCN having the requisite characteristics for possessing florigenic activity. In photoperiod sensitive tropical lines, ZCN8 transcripts were strongly upregulated in a diurnal manner under floral-inductive short days. In day-neutral temperate lines, ZCN8 mRNA level was independent of daylength and displayed only a weak cycling pattern. ZCN8 is normally expressed in leaf phloem, but ectopic expression of ZCN8 in vegetative stage shoot apices induced early flowering in transgenic plants. Silencing of ZCN8 by artificial microRNA resulted in late flowering. ZCN8 was placed downstream of indeterminate1 and upstream of delayed flowering1, two other floral activator genes. We propose a flowering model linking photoperiod sensitivity of tropical maize to diurnal regulation of ZCN8.
Collapse
Affiliation(s)
- Xin Meng
- Pioneer Hi-Bred International, a DuPont Business, Johnston, Iowa 50131-0552
| | - Michael G. Muszynski
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260
| | - Olga N. Danilevskaya
- Pioneer Hi-Bred International, a DuPont Business, Johnston, Iowa 50131-0552
- Address correspondence to
| |
Collapse
|