51
|
Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I. MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. THE PLANT CELL 2017; 29:3030-3050. [PMID: 29167320 PMCID: PMC5757277 DOI: 10.1105/tpc.17.00543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 11/18/2017] [Indexed: 05/19/2023]
Abstract
An apical plasma membrane domain enriched in the regulatory phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is critical for polar tip growth of pollen tubes. How the biosynthesis of PtdIns(4,5)P2 by phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) is controlled by upstream signaling is currently unknown. The pollen-expressed PI4P 5-kinase PIP5K6 is required for clathrin-mediated endocytosis and polar tip growth in pollen tubes. Here, we identify PIP5K6 as a target of the pollen-expressed mitogen-activated protein kinase MPK6 and characterize the regulatory effects. Based on an untargeted mass spectrometry approach, phosphorylation of purified recombinant PIP5K6 by pollen tube extracts could be attributed to MPK6. Recombinant MPK6 phosphorylated residues T590 and T597 in the variable insert of the catalytic domain of PIP5K6, and this modification inhibited PIP5K6 activity in vitro. PIP5K6 interacted with MPK6 in yeast two-hybrid tests, immuno-pull-down assays, and by bimolecular fluorescence complementation at the apical plasma membrane of pollen tubes. In vivo, MPK6 expression resulted in reduced plasma membrane association of a fluorescent PtdIns(4,5)P2 reporter and decreased endocytosis without impairing membrane association of PIP5K6. Effects of PIP5K6 expression on pollen tube growth and cell morphology were attenuated by coexpression of MPK6 in a phosphosite-dependent manner. Our data indicate that MPK6 controls PtdIns(4,5)P2 production and membrane trafficking in pollen tubes, possibly contributing to directional growth.
Collapse
Affiliation(s)
- Franziska Hempel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ralph Golbik
- Department of Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Helm
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sacha Baginsky
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
52
|
Zhang M, Wu H, Su J, Wang H, Zhu Q, Liu Y, Xu J, Lukowitz W, Zhang S. Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1005-1019. [PMID: 29024034 DOI: 10.1111/tpj.13737] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
In flowering plants, developing embryos reside in maternal sporophytes. It is known that maternal generation influences the development of next-generation embryos; however, little is known about the signaling components in the process. Previously, we demonstrated that Arabidopsis mitogen-activated protein kinase 6 (MPK6) and MPK3 play critical roles in plant reproduction. In addition, we noticed that a large fraction of seeds from mpk6 single-mutant plants showed a wrinkled seed coat or a burst-out embryo phenotype. Here, we report that these seed phenotypes can be traced back to defective embryogenesis. The defective embryos have shorter suspensors and reduced growth along the longitudinal axis. Furthermore, the cotyledons fail to bend over to progress to the bent-cotyledon stage. As a result of the uneven circumference along the axis, the seed coat wrinkles to develop raisin-like morphology after dehydration. In more severe cases, the embryo can be pushed out from the micropylar end, resulting in the burst-out embryo seed phenotype. Genetic analyses demonstrated that the defective embryogenesis of the mpk6 mutant is a maternal effect. Heterozygous or homozygous mpk6 embryos have defects only in mpk6 homozygous maternal plants, but not in wild-type or heterozygous maternal plants. The loss of function of MKK4/MKK5 also results in the same phenotypes, suggesting that MKK4/MKK5 might act upstream of MPK6 in this pathway. The maternal-mediated embryo defects are associated with changes in auxin activity maxima and PIN localization. In summary, this research demonstrates that the Arabidopsis MKK4/MKK5-MPK6 cascade is an important player in the maternal control of embryogenesis.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianbin Su
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Huachun Wang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Qiankun Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
53
|
Genome-wide identification and analysis of MAPK and MAPKK gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 2017; 18:855. [PMID: 29121856 PMCID: PMC5680602 DOI: 10.1186/s12864-017-4259-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Background Chinese jujube (Ziziphus jujuba Mill.) is one of the most important members in the Rhamnaceae family. The whole genome sequence and more than 30,000 proteins of Chinese jujube have been obtained in 2014. Mitogen-activated protein kinase cascades are universal signal transduction modules in plants, which is rapidly activated under various biotic and abiotic stresses. To date, there has been no comprehensive analysis of the MAPK and MAPKK gene family in Chinese jujube at the whole genome level. Results By performing a series of bioinformatics analysis, ten MAPK and five MAPKK genes were identified from the genome database of Chinese jujube, and then compared with the homologous genes from Arabidopsis. Phylogenetic analysis showed that ZjMAPKs was classified into four known groups, including A, B, C and D. ZjMAPKs contains five members of the TEY phosphorylation site and five members with the TDY motif. The ZjMAPKK family was subsequently divided into three groups, A, B and D. The gene structure, conserved motifs, functional annotation and chromosome distribution of ZjMAPKs and ZjMAPKKs were also predicted. ZjMAPKs and ZjMAPKKs were distributed on nine pseudo-chromosomes of Chinese jujube. Subsequently, expression analysis of ZjMAPK and ZjMAPKK genes using reverse transcription PCR and quantitative real-time PCR was carried out. The majority of ZjMAPK and ZjMAPKK genes were expressed in all tested organs/tissues with considerable differences in transcript levels indicating that they might be constitutively expressed. Moreover, ZjMKK5 was specific expressed in early development stage of jujube flower bud, indicating it plays some roles in reproductive organs development. The transcript expression of most ZjMAPK and ZjMAPKK genes was down-regulated in response to plant growth regulators, darkness treatment and phytoplasma infection. Conclusions We identified ten ZjMAPK and five ZjMAPKK genes from the genome database of Chinese jujube, the research results shown that ZjMPKs and ZjMKKs have the different expression patterns, indicating that they might play different roles in response to various treatments. The results provide valuable information for the further elucidation of physiological functions and biological roles of jujube MAPKs and MAPKKs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4259-4) contains supplementary material, which is available to authorized users.
Collapse
|
54
|
Guan X, Zhao Z, Yang M, Chen H, Chen W, Liu Z, Jiang Z, Chen Y, Wang G, Wang X. Whether partial colectomy is oncologically safe for patients with transverse colon cancer: a large population-based study. Oncotarget 2017; 8:93236-93244. [PMID: 29190993 PMCID: PMC5696259 DOI: 10.18632/oncotarget.21275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 09/09/2017] [Indexed: 12/14/2022] Open
Abstract
Due to special tumor location and technical difficulty of transverse colon cancer (TCC), partial colectomy (PC) is being widely applied in selected TCC patients, instead of extended hemicolectomy (HC). However, the oncological safety of this less aggressive surgical approach is not well studied. Here, we identified 10344 TCC patients from Surveillance, Epidemiology, and End-Results (SEER) database. The surgical treatment for those patients included PC and HC. Firstly, we compared lymph nodes evaluations between patients treated with HC and PC, including median number of nodes, the rate of nodes ≥ 12 and the rate of node positivity. Then, 5-year cancer specific survival (CSS) was obtained. Kaplan-Meier methods and Cox regression models were performed to assess the correlations between prognostic factors and long-term survival. Despite of less node examined by PC, the rate of node positivity was equal between PC and HC, suggesting node retrieval under PC was adequate to tumor stage. In addition, the 5-year CSS for patients who underwent PC were 67.5%, which was similar to patients who received HC (66.5%). The result after propensity score matching also confirmed the equivalent survival outcome between HC and PC. However, subgroup analyses showed that patients with tumor size ≥ 5 cm could not obtain survival benefit from PC. Furthermore, surgical approach was not considered as independent prognostic factor for TCC patients. Therefore, although PC is a less aggressive surgical approach, it should be a safe and feasible option for selected TCC patients.
Collapse
Affiliation(s)
- Xu Guan
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixun Zhao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haipeng Chen
- Department of Surgical Oncology, The First Affiliated Clinical Hospital of Qiqihaer Medical University, Qiqihaer, China
| | - Wei Chen
- Follow Up Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinggang Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
55
|
Tremblay RR, Bourassa S, Nehmé B, Calvo EL. Daylily protein constituents of the pollen and stigma a proteomics approach. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:1-12. [PMID: 28242413 DOI: 10.1016/j.jplph.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
This study was aimed at the identification and quantification of the protein components of the pollen grains in parallel with the distal stigmatic tissue of tetraploid cultivars. Proteomes were analyzed using iTRAQ 4plex labeling, peptides separation by online RP-nano-LC and analysis by ESI-MS/MS. Protein identification and quantification were made using the Asparagales database as a reference. A total of 524,037 MS/MS spectra were produced from pollen and stigma samples. From these, a total of 8368 peptides wereidentified corresponding to 994 unique peptides and 432 protein groups. Among them, 128 differentially expressed proteins were retained for further analysis. In absence of the daylily genome availability, we exploited numerous databases and bioinformatics resources to exploring the putative biological functions of these proteins. The profile of differentially expressed proteins suggests an important representation of functions associated to the signalling and response against endogenous and environmental stresses, including several enzymes implicated in the biosynthesis of antibiotics. The abundance in stigma of several structural proteins of the ribosomal sub-units as well as of the core histones suggest that the translation processes and the regulation of gene expression in stigma is a more active mechanism than in pollen. In addition, pollen prioritizes the synthesis of fructose and glucose as opposed to sucrose in stigma as a source of energy. Finally, the modulated proteins in Hemerocallis point to several pathways that give potential clues concerning the molecular mechanisms underlying the functions of the pollen and the stigmatic fluid in daylily reproduction.
Collapse
Affiliation(s)
- Roland R Tremblay
- CHUL Research Center in Reproduction, Centre de Recherche du CHU de Québec,2705 Boulevard Laurier, Suite T3-67, Quebec City, QC, G1 V 4G2, Canada.
| | - Sylvie Bourassa
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Benjamin Nehmé
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Ezequiel L Calvo
- Scientific Consultant in Genomics, 701 Leonard, Quebec City, QC, G1X 4C9, Canada.
| |
Collapse
|
56
|
Zhao F, Zheng YF, Zeng T, Sun R, Yang JY, Li Y, Ren DT, Ma H, Xu ZH, Bai SN. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase Is Required for Anther Development. PLANT PHYSIOLOGY 2017; 173:2265-2277. [PMID: 28209842 PMCID: PMC5373039 DOI: 10.1104/pp.16.01765] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 05/18/2023]
Abstract
Germ cells are indispensable carriers of genetic information from one generation to the next. In contrast to the well-understood process in animals, information on the mechanism of germ cell initiation in plants is very limited. SPOROCYTELESS/NOZZLE was previously identified as an essential regulator of diploid germ cell (archesporial cell) differentiation in the stamens and ovules of Arabidopsis (Arabidopsis thaliana). Although SPOROCYTELESS (SPL) transcription is activated by the floral organ identity regulator AGAMOUS and epigenetically regulated by SET DOMAIN GROUP2, little is known about the regulation of the SPL protein. Here, we report that the protein kinases MPK3 and MPK6 can both interact with SPL in vitro and in vivo and can phosphorylate the SPL protein in vitro. In addition, phosphorylation of the SPL protein by MPK3/6 is required for SPL function in the Arabidopsis anther, as measured by its effect on archesporial cell differentiation. We further demonstrate that phosphorylation enhances SPL protein stability. This work not only uncovers the importance of SPL phosphorylation for its regulatory role in Arabidopsis anther development, but also supports the hypothesis that the regulation of precise spatiotemporal patterning of germ cell initiation and that differentiation is achieved progressively through multiple levels of regulation, including transcriptional and posttranslational modification.
Collapse
Affiliation(s)
- Feng Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Ya-Feng Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Ting Zeng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Rui Sun
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Ji-Yuan Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Yuan Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Dong-Tao Ren
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Hong Ma
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.)
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.)
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China (F.Z., Y.-F.Z., T.Z., R.S., J.-Y.Y., Z.-H.X., S.-N.B.);
- The National Center of Plant Gene Research, Beijing 100871, China (F.Z., S.-N.B.);
- College of Biological Sciences, China Agricultural University, Beijing 100081, China (Y.L., D.-T.R.); and
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China (H.M.)
| |
Collapse
|
57
|
Bayer M, Slane D, Jürgens G. Early plant embryogenesis-dark ages or dark matter? CURRENT OPINION IN PLANT BIOLOGY 2017; 35:30-36. [PMID: 27810634 DOI: 10.1016/j.pbi.2016.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/11/2023]
Abstract
In nearly all flowering plants, the basic body plan is laid down during embryogenesis. In Arabidopsis, the crucial cell types are established extremely early as reflected in the stereotypic sequence of oriented cell divisions in the developing young embryo. Research into early embryogenesis was especially focused on the role of the infamous tryptophan derivative auxin in establishing embryo polarity and generating the main body axis. However, it is becoming obvious that the mere link to auxin does not provide any mechanistic understanding of early embryo patterning. Taking recent research into account, we discuss mechanisms underlying early embryonic patterning from an evolutionary perspective.
Collapse
Affiliation(s)
- Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Department of Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
58
|
Merchante C, Stepanova AN. The Triple Response Assay and Its Use to Characterize Ethylene Mutants in Arabidopsis. Methods Mol Biol 2017; 1573:163-209. [PMID: 28293847 DOI: 10.1007/978-1-4939-6854-1_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure of plants to ethylene results in drastic morphological changes. Seedlings germinated in the dark in the presence of saturating concentrations of ethylene display a characteristic phenotype known as the triple response. This phenotype is robust and easy to score. In Arabidopsis the triple response is usually evaluated at 3 days post germination in seedlings grown in the dark in rich media supplemented with 10 μM of the ethylene precursor ACC in air or in unsupplemented media in the presence of 10 ppm ethylene. The triple response in Arabidopsis consists of shortening and thickening of hypocotyls and roots and exaggeration of the curvature of apical hooks. The search for Arabidopsis mutants that fail to show this phenotype in ethylene or, vice versa, display the triple response in the absence of exogenously supplied hormone has allowed the identification of the key components of the ethylene biosynthesis and signaling pathways. Herein, we describe a simple protocol for assaying the triple response in Arabidopsis. The method can also be employed in many other dicot species, with minor modifications to account for species-specific differences in germination. We also compiled a comprehensive table of ethylene-related mutants of Arabidopsis, including many lines with auxin-related defects, as wild-type levels of auxin biosynthesis, transport, signaling, and response are necessary for the normal response of plants to ethylene.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea (IHSM)-UMA-CSIC, Universidad de Málaga, 29071, Málaga, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA. .,Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
59
|
Higashiyama T, Yang WC. Gametophytic Pollen Tube Guidance: Attractant Peptides, Gametic Controls, and Receptors. PLANT PHYSIOLOGY 2017; 173:112-121. [PMID: 27920159 PMCID: PMC5210755 DOI: 10.1104/pp.16.01571] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Pollen tube guidance in flowering plants is a unique and critical process for successful sexual reproduction. The pollen tube that grows from pollen, which is the male gametophyte, precisely navigates to the embryo sac, which is the female gametophyte, within the pistil. Recent advances have clarified the molecular framework of gametophytic pollen tube guidance. Multiple species-specific attractant peptides are secreted from synergid cells, the proper development and function of which are regulated by female gametes. Multiple receptor-like kinases on the pollen tube tip are involved in sensing species-specific attractant peptides. In this Update article, recent progress in our understanding of the mechanism of gametophytic pollen tube guidance is reviewed, including attraction by synergid cells, control of pollen tube guidance by female gametes, and directional growth of the pollen tube by directional cue sensing. Future directions in the study of pollen tube guidance also are discussed.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| | - Wei-Cai Yang
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (T.H.);
- Division of Biological Science, Graduate School of Science, and JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (T.H.); and
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (W.Y.)
| |
Collapse
|
60
|
Pereira AM, Lopes AL, Coimbra S. Arabinogalactan Proteins as Interactors along the Crosstalk between the Pollen Tube and the Female Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:1895. [PMID: 28018417 PMCID: PMC5159419 DOI: 10.3389/fpls.2016.01895] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) have long been considered to be implicated in several steps of the reproductive process of flowering plants. Pollen tube growth along the pistil tissues requires a multiplicity of signaling pathways to be activated and turned off precisely, at crucial timepoints, to guarantee successful fertilization and seed production. In the recent years, an outstanding effort has been made by the plant reproduction scientific community in order to better understand this process. This resulted in the discovery of a fairly substantial number of new players essential for reproduction, as well as their modes of action and interactions. Besides all the indications of AGPs involvement in reproduction, there were no convincing evidences about it. Recently, several studies came out to prove what had long been suggested about this complex family of glycoproteins. AGPs consist of a large family of hydroxyproline-rich proteins, predicted to be anchored to the plasma membrane and extremely rich in sugars. These two last characteristics always made them perfect candidates to be involved in signaling mechanisms, in several plant developmental processes. New findings finally relate AGPs to concrete functions in plant reproduction. In this review, it is intended not only to describe how different molecules and signaling pathways are functioning to achieve fertilization, but also to integrate the recent discoveries about AGPs along this process.
Collapse
Affiliation(s)
- Ana M. Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Ana L. Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| |
Collapse
|
61
|
Chen L, Chen Q, Zhu Y, Hou L, Mao P. Proteomic Identification of Differentially Expressed Proteins during Alfalfa ( Medicago sativa L.) Flower Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1502. [PMID: 27757120 PMCID: PMC5047909 DOI: 10.3389/fpls.2016.01502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/21/2016] [Indexed: 05/23/2023]
Abstract
Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and contributes to the understanding of the basic molecular mechanisms during the alfalfa flowering process. These results may offer insight into potential strategies for improving seed yield, quality, and stress tolerance in alfalfa.
Collapse
Affiliation(s)
- Lingling Chen
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
- Chifeng Academy of Agricultural and Animal SciencesChifeng, China
| | - Quanzhu Chen
- Chengdu Municipal Development and Reform CommissionChengdu, China
| | - Yanqiao Zhu
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| | - Longyu Hou
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| | - Peisheng Mao
- Beijing Key Laboratory of Grassland Science, Forage Seed Lab, China Agricultural UniversityBeijing, China
| |
Collapse
|
62
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
63
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
64
|
AtVPS41-mediated endocytic pathway is essential for pollen tube-stigma interaction in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:6307-12. [PMID: 27185920 DOI: 10.1073/pnas.1602757113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In flowering plants, extensive male-female interactions are required for successful fertilization in which various signaling cascades are involved. Prevacuolar compartments (PVC) and vacuoles are two types of subcellular compartments that terminate signal transduction by sequestrating signaling molecules in yeast and mammalian cells; however, the manner in which they might be involved in male-female interactions in plants is unknown. In this study, we identified Arabidopsis thaliana vacuolar protein sorting 41 (AtVPS41), encoded by a single-copy gene with sequence similarity to yeast Vps41p, as a new factor controlling pollen tube-stigma interaction. Loss of AtVPS41 function disrupted penetration of pollen tubes into the transmitting tissue and thus led to failed male transmission. In the pollen tubes, AtVPS41 protein is associated with PVCs and the tonoplast. We demonstrate that AtVPS41 is required for the late stage of the endocytic pathway (i.e., endomembrane trafficking from PVCs to vacuoles) because internalization of cell-surface molecules was normal in the vps41-deficient pollen tubes, whereas PVC-to-vacuole trafficking was impaired. We further show that the CHCR domain is required for subcellular localization and biological functioning of AtVPS41. These results indicate that the AtVPS41-mediated late stage of the endocytic pathway is essential for pollen tube-stigma interaction in Arabidopsis.
Collapse
|
65
|
Yanagawa Y, Yoda H, Osaki K, Amano Y, Aono M, Seo S, Kuchitsu K, Mitsuhara I. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3471-9. [PMID: 27126796 PMCID: PMC4892734 DOI: 10.1093/jxb/erw173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKK(EE)), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation.
Collapse
Affiliation(s)
- Yuki Yanagawa
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Yoda
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kohei Osaki
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuta Amano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mitsuko Aono
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shigemi Seo
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan Imaging Frontier Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
66
|
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:456. [PMID: 27148289 PMCID: PMC4830839 DOI: 10.3389/fpls.2016.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca(2+), ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca(2+), ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
67
|
Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:61. [PMID: 26870073 PMCID: PMC4740394 DOI: 10.3389/fpls.2016.00061] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/14/2016] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense.
Collapse
Affiliation(s)
- Arsheed H. Sheikh
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Pascal Pecher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Wolfgang Hoehenwarter
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Alok K. Sinha
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- *Correspondence: Justin Lee,
| |
Collapse
|
68
|
Zhou X, Groves NR, Meier I. SUN anchors pollen WIP-WIT complexes at the vegetative nuclear envelope and is necessary for pollen tube targeting and fertility. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7299-307. [PMID: 26409047 PMCID: PMC4765795 DOI: 10.1093/jxb/erv425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
LINC (linker of nucleoskeleton and cytoskeleton) complexes play an essential role in nuclear migration by connecting the nucleus to the cytoskeleton and/or motor proteins. Plant LINC complexes have recently been identified in Arabidopsis thaliana, with the inner nuclear membrane SUN and outer nuclear membrane WIP proteins comprising the first identified complex. A recent study identified a nuclear movement defect in Arabidopsis pollen vegetative nuclei linked to the outer nuclear envelope WIP and WIT proteins. However, the role that SUN proteins may play in pollen nuclear migration has yet to be addressed. To explore this question, a SUN2 lumenal domain that was targeted to the ER specifically in pollen was over-expressed. It is shown that the ER-targeted SUN2 lumenal domain was able to displace WIP and WIT proteins from the pollen vegetative nuclear envelope. Expression of this dominant-negative transgene led to impaired VN mobility, impaired pollen tube guidance, and defective pollen tube reception. The observed pollen defects are similar to phenotypes observed in a wip1-1 wip2-1 wip3-1 wit1-1 wit2-1 mutant. It is also shown that these defects were dependent on the KASH-binding function of the SUN2 lumenal domain. These data support a model where LINC complexes formed by SUN, WIP, and WIT at the VNE are responsible for VN migration and suggest an important function of SUN, WIP, and WIT in pollen tube guidance and reception.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
69
|
Kanaoka MM, Higashiyama T. Peptide signaling in pollen tube guidance. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:127-36. [PMID: 26580200 DOI: 10.1016/j.pbi.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Fertilization is an important life event for sexually reproductive plants. Part of this process involves precise regulation of a series of complicated cell-cell communications between male and female tissues. Through genetic and omics approaches, many genes and proteins involved in this process have been identified. Here we review our current understanding of signaling components during fertilization. We will especially focus on LURE peptides and related signaling events that are required for micropylar pollen tube guidance. We will also summarize signaling events required for termination of micropylar pollen tube guidance after fertilization.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
70
|
Liu Y, Joly V, Dorion S, Rivoal J, Matton DP. The Plant Ovule Secretome: A Different View toward Pollen-Pistil Interactions. J Proteome Res 2015; 14:4763-75. [PMID: 26387803 DOI: 10.1021/acs.jproteome.5b00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During plant sexual reproduction, continuous exchange of signals between the pollen and the pistil (stigma, style, and ovary) plays important roles in pollen recognition and selection, establishing breeding barriers and, ultimately, leading to optimal seed set. After navigating through the stigma and the style, pollen tubes (PTs) reach their final destination, the ovule. This ultimate step is also regulated by numerous signals emanating from the embryo sac (ES) of the ovule. These signals encompass a wide variety of molecules, but species-specificity of the pollen-ovule interaction relies mainly on secreted proteins and their receptors. Isolation of candidate genes involved in pollen-pistil interactions has mainly relied on transcriptomic approaches, overlooking potential post-transcriptional regulation. To address this issue, ovule exudates were collected from the wild potato species Solanum chacoense using a tissue-free gravity-extraction method (tf-GEM). Combined RNA-seq and mass spectrometry-based proteomics led to the identification of 305 secreted proteins, of which 58% were ovule-specific. Comparative analyses using mature ovules (attracting PTs) and immature ovules (not attracting PTs) revealed that the last maturation step of ES development affected almost half of the ovule secretome. Of 128 upregulated proteins in anthesis stage, 106 were not regulated at the mRNA level, emphasizing the importance of post-transcriptional regulation in reproductive development.
Collapse
Affiliation(s)
- Yang Liu
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal , 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Valentin Joly
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal , 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal , 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal , 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal , 4101 rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada
| |
Collapse
|
71
|
Qu LJ, Li L, Lan Z, Dresselhaus T. Peptide signalling during the pollen tube journey and double fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5139-50. [PMID: 26068467 DOI: 10.1093/jxb/erv275] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flowering seed plants (angiosperms) have evolved unique ways to protect their gametes from pathogen attack and from drying out. The female gametes (egg and central cell) are deeply embedded in the maternal tissues of the ovule inside the ovary, while the male gametes (sperm cells) are enclosed in the vegetative pollen tube cell. After germination of the pollen tube at the surface of papilla cells of the stigma the two immobile sperm cells are transported deep inside the sporophytic maternal tissues to be released inside the ovule for double fertilization. Angiosperms have evolved a number of hurdles along the pollen tube journey to prevent inbreeding and fertilization by alien sperm cells, and to maximize reproductive success. These pre-zygotic hybridization barriers require intensive communication between the male and female reproductive cells and the necessity to distinguish self from non-self interaction partners. General molecules such as nitric oxide (NO) or gamma-aminobutyric acid (GABA) therefore appear to play only a minor role in these species-specific communication events. The past 20 years have shown that highly polymorphic peptides play a leading role in all communication steps along the pollen tube pathway and fertilization. Here we review our current understanding of the role of peptides during reproduction with a focus on peptide signalling during self-incompatibility, pollen tube growth and guidance as well as sperm reception and gamete activation.
Collapse
Affiliation(s)
- Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Zijun Lan
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
72
|
Zhan H, Zhong Y, Yang Z, Xia H. Enzyme activities of Arabidopsis inositol polyphosphate kinases AtIPK2α and AtIPK2β are involved in pollen development, pollen tube guidance and embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:758-71. [PMID: 25846941 DOI: 10.1111/tpj.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 05/27/2023]
Abstract
Inositol polyphosphate kinase (IPK2) is a key component of inositol polyphosphate signaling. There are two highly homologous inositol polyphosphate kinases (AtIPK2α and AtIPK2β) in Arabidopsis. Previous studies that overexpressed or reduced the expression of AtIPK2α and AtIPK2β revealed their roles in auxiliary shoot branching, abiotic stress responses and root growth. Here, we report that AtIPK2α and AtIPK2β act redundantly during pollen development, pollen tube guidance and embryogenesis. Single knock-out mutants of atipk2α and atipk2β were indistinguishable from the wild type, whereas the atipk2α atipk2β double mutant could not be obtained. Detailed genetic and cytological investigations showed that the mutation of AtIPK2α and AtIPK2β resulted in severely reduced transmission of male gametophyte as a result of abnormal pollen development and defective pollen tube guidance. In addition, the early embryo development of the atipk2α atipk2β double mutant was also aborted. Expressing either catalytically inactive or substrate specificity-altered variants of AtIPK2β could not rescue the male gametophyte and embryogenesis defects of the atipk2α atipk2β double mutant, implying that the kinase activity of AtIPK2 is required for pollen development, pollen tube guidance and embryogenesis. Taken together, our results provide genetic evidence for the requirement of inositol polyphosphate signaling in plant sexual reproduction.
Collapse
Affiliation(s)
- Huadong Zhan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yujiao Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huijun Xia
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
73
|
Lafleur E, Kapfer C, Joly V, Liu Y, Tebbji F, Daigle C, Gray-Mitsumune M, Cappadocia M, Nantel A, Matton DP. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1833-43. [PMID: 25576576 PMCID: PMC4378624 DOI: 10.1093/jxb/eru524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development.
Collapse
Affiliation(s)
- Edith Lafleur
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Christelle Kapfer
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Valentin Joly
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Yang Liu
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Faiza Tebbji
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada Institut de recherche en biotechnologie, Conseil national de recherches du Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada
| | - Caroline Daigle
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Madoka Gray-Mitsumune
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Mario Cappadocia
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - André Nantel
- Institut de recherche en biotechnologie, Conseil national de recherches du Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada
| | - Daniel P Matton
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
74
|
Higashiyama T, Takeuchi H. The mechanism and key molecules involved in pollen tube guidance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:393-413. [PMID: 25621518 DOI: 10.1146/annurev-arplant-043014-115635] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
Collapse
|
75
|
Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. TRENDS IN PLANT SCIENCE 2015; 20:56-64. [PMID: 25457109 DOI: 10.1016/j.tplants.2014.10.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/21/2014] [Accepted: 10/02/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
76
|
Proteomics Advances in the Understanding of Pollen-Pistil Interactions. Proteomes 2014; 2:468-484. [PMID: 28250391 PMCID: PMC5302694 DOI: 10.3390/proteomes2040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022] Open
Abstract
The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction.
Collapse
|
77
|
Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. FRONTIERS IN PLANT SCIENCE 2014; 5:452. [PMID: 25309552 PMCID: PMC4160995 DOI: 10.3389/fpls.2014.00452] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 05/20/2023]
Abstract
THE LAUNCH OF SEED DEVELOPMENT IN FLOWERING PLANTS (ANGIOSPERMS) IS INITIATED BY THE PROCESS OF DOUBLE FERTILIZATION: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube toward the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
| | - Svenja Alter
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
- *Correspondence: Thomas Dresselhaus, Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 18, 93053 Regensburg, Germany e-mail:
| |
Collapse
|