51
|
Yang Y, Matsuzaki M, Takahashi F, Qu L, Nozaki H. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLoS One 2014; 9:e101158. [PMID: 24972019 PMCID: PMC4074131 DOI: 10.1371/journal.pone.0101158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022] Open
Abstract
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the “green” lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of “red” genes in their nuclear genomes. To elucidate the origin of such “red” genes in chlorarachniophyte nuclear genomes, we carried out exhaustive single-gene phylogenetic analyses, including two operational taxonomic units (OTUs) that represent two divergent sister lineages of the Chlorarachniophyta, Amorphochlora amoeboformis ( = Lotharella amoeboformis; based on RNA sequences newly determined here) and Bigelowiella natans (based on the published genome sequence). We identified 10 genes of cyanobacterial origin, phylogenetic analysis of which showed the chlorarachniophytes to branch with the red lineage (red algae and/or red algal secondary or tertiary plastid-containing eukaryotes). Of the 10 genes, 7 demonstrated robust monophyly of the two chlorarachniophyte OTUs. Thus, the common ancestor of the extant chlorarachniophytes likely experienced multiple horizontal gene transfers from the red lineage. Because 4 of the 10 genes are obviously photosynthesis- and/or plastid-related, and almost all of the eukaryotic OTUs in the 10 trees possess plastids, such red genes most likely originated directly from photosynthetic eukaryotes. This situation could be explained by a possible cryptic endosymbiosis of a red algal plastid before the secondary endosymbiosis of the green algal plastid, or a long-term feeding on a single (or multiple closely related) red algal plastid-containing eukaryote(s) after the green secondary endosymbiosis.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Lei Qu
- School of Computer Science, Fudan University, Shanghai, P. R. China
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
52
|
Chen D, Chen H, Zhang L, Shi X, Chen X. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress. PLANTA 2014; 239:1351-62. [PMID: 24691571 DOI: 10.1007/s00425-014-2064-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/11/2014] [Indexed: 05/05/2023]
Abstract
Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.
Collapse
Affiliation(s)
- Defu Chen
- Laboratory of Molecular Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | |
Collapse
|
53
|
Wang P, Li C, Wang Y, Huang R, Sun C, Xu Z, Zhu J, Gao X, Deng X, Wang P. Identification of a Geranylgeranyl reductase gene for chlorophyll synthesis in rice. SPRINGERPLUS 2014; 3:201. [PMID: 24809003 PMCID: PMC4008729 DOI: 10.1186/2193-1801-3-201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022]
Abstract
Geranylgeranyl reductase (CHL P) catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate, and provides phytol for both Chlorophyll (Chl) and tocopherol synthesis. In this study, we isolated a yellow-green leaf mutant, 502ys, in rice (Oryza sativa). The mutant exhibited reduced level of Chls, arrested development of chloroplasts, and retarded growth rate. The phenotype of the 502ys mutant was controlled by by a recessive mutation in a nuclear gene on the long arm of rice chromosome 2. Map-based cloning of the mutant resulted in the identification of an OsChl P gene (LOC_Os02g51080). In the 502ys mutant, a single base pair mutation was detected at residue 1279 in DNA sequence of the gene, resulting in an amino acid change (Gly-206 to Ser) in the encoded protein. HPLC analysis of Chls indicated that the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain, in addition to small amount of normal Chls in the mutant. Furthermore, the mutant phenotype was complemented by transformation with the wild-type gene. Therefore, this study has confirmed the 502ys mutant resulted from a single base pair mutation in OsChl P gene.
Collapse
Affiliation(s)
- Pingyu Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Rui Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xiaoling Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| |
Collapse
|
54
|
Takahashi K, Takabayashi A, Tanaka A, Tanaka R. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J Biol Chem 2013; 289:987-99. [PMID: 24275650 DOI: 10.1074/jbc.m113.525428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25-30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction.
Collapse
Affiliation(s)
- Kaori Takahashi
- From the Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan and
| | | | | | | |
Collapse
|
55
|
Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, Yuan F, Wu S, Wang Z, Yi C, Xu T, Ryom M, Gu M, Liang G. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 2013; 8:e75299. [PMID: 24058671 PMCID: PMC3769248 DOI: 10.1371/journal.pone.0075299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 01/28/2023] Open
Abstract
Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (Chl(GG)) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (Chl(Phy)) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinyan Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Man Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuhai Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shujun Wu
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuandeng Yi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tinghua Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - MyongChol Ryom
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
56
|
Shpilyov AV, Zinchenko VV, Grimm B, Lokstein H. Chlorophyll a phytylation is required for the stability of photosystems I and II in the cyanobacterium Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:336-346. [PMID: 23039123 DOI: 10.1111/tpj.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
In oxygenic phototrophic organisms, the phytyl 'tail' of chlorophyll a is formed from a geranylgeranyl residue by the enzyme geranylgeranyl reductase. Additionally, in oxygenic phototrophs, phytyl residues are the tail moieties of tocopherols and phylloquinone. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking geranylgeranyl reductase, ΔchlP, was compared to strains with specific deficiencies in either tocopherols or phylloquinone to assess the role of chlorophyll a phytylatation (versus geranylgeranylation). The tocopherol-less Δhpt strain grows indistinguishably from the wild-type under 'standard' light photoautotrophic conditions, and exhibited only a slightly enhanced rate of photosystem I degradation under strong irradiation. The phylloquinone-less ΔmenA mutant also grows photoautotrophically, albeit rather slowly and only at low light intensities. Under strong irradiation, ΔmenA retained its chlorophyll content, indicative of stable photosystems. ΔchlP may only be cultured photomixotrophically (due to the instability of both photosystems I and II). The increased accumulation of myxoxanthophyll in ΔchlP cells indicates photo-oxidative stress even under moderate illumination. Under high-light conditions, ΔchlP exhibited rapid degradation of photosystems I and II. In conclusion, the results demonstrate that chlorophyll a phytylation is important for the (photo)stability of photosystems I and II, which, in turn, is necessary for photoautotrophic growth and tolerance of high light in an oxygenic environment.
Collapse
Affiliation(s)
- Alexey V Shpilyov
- Biology Division, Genetics Department, Lomonosov Moscow State University, Moscow, 119899, Russia
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany
| | - Vladislav V Zinchenko
- Biology Division, Genetics Department, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Bernhard Grimm
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany
| | - Heiko Lokstein
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099, Berlin, Germany
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| |
Collapse
|
57
|
Phylogenomic investigation of phospholipid synthesis in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:630910. [PMID: 23304072 PMCID: PMC3533463 DOI: 10.1155/2012/630910] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/03/2012] [Indexed: 12/22/2022]
Abstract
Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate linked by ether bonds to isoprenoid lateral chains. Since these phospholipids strongly differ from those of bacteria and eukaryotes, the origin of the archaeal membranes (and by extension, of all cellular membranes) was enigmatic and called for accurate evolutionary studies. In this paper we review some recent phylogenomic studies that have revealed a modified mevalonate pathway for the synthesis of isoprenoid precursors in archaea and suggested that this domain uses an atypical pathway of synthesis of fatty acids devoid of any acyl carrier protein, which is essential for this activity in bacteria and eukaryotes. In addition, we show new or updated phylogenetic analyses of enzymes likely responsible for the isoprenoid chain synthesis from their precursors and the phospholipid synthesis from glycerol phosphate, isoprenoids, and polar head groups. These results support that most of these enzymes can be traced back to the last archaeal common ancestor and, in many cases, even to the last common ancestor of all living organisms.
Collapse
|
58
|
Sun P, Song S, Zhou L, Zhang B, Qi J, Li X. Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa. Int J Mol Sci 2012. [PMID: 23202979 PMCID: PMC3509546 DOI: 10.3390/ijms131013748] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis.
Collapse
Affiliation(s)
- Peng Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; E-Mails: (P.S.); (L.Z.); (J.Q.)
| | - Shuhui Song
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; E-Mails: (S.S.); (B.Z.)
| | - Lili Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; E-Mails: (P.S.); (L.Z.); (J.Q.)
| | - Bing Zhang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; E-Mails: (S.S.); (B.Z.)
| | - Jianjun Qi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; E-Mails: (P.S.); (L.Z.); (J.Q.)
| | - Xianen Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; E-Mails: (P.S.); (L.Z.); (J.Q.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-10-6281-0019
| |
Collapse
|
59
|
Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee, Tripathy BC. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. PLANT PHYSIOLOGY 2012; 159:433-49. [PMID: 22419827 PMCID: PMC3375976 DOI: 10.1104/pp.112.195859] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/13/2012] [Indexed: 05/19/2023]
Abstract
Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.
Collapse
Affiliation(s)
| | | | - Shiv S. Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Sadhu Leelavathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Vanga S. Reddy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| |
Collapse
|
60
|
Duke SO. Why have no new herbicide modes of action appeared in recent years? PEST MANAGEMENT SCIENCE 2012; 68:505-12. [PMID: 22190296 DOI: 10.1002/ps.2333] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/21/2011] [Accepted: 10/12/2011] [Indexed: 05/04/2023]
Abstract
Herbicides with new modes of action are badly needed to manage the evolution of resistance of weeds to existing herbicides. Yet no major new mode of action has been introduced to the market place for about 20 years. There are probably several reasons for this. New potential products may have remained dormant owing to concerns that glyphosate-resistant (GR) crops have reduced the market for a new herbicide. The capture of a large fraction of the herbicide market by glyphosate with GR crops led to significantly diminished herbicide discovery efforts. Some of the reduced herbicide discovery research was also due to company consolidations and the availability of more generic herbicides. Another problem might be that the best herbicide molecular target sites may have already been discovered. However, target sites that are not utilized, for which there are inhibitors that are highly effective at killing plants, suggests that this is not true. Results of modern methods of target site discovery (e.g. gene knockout methods) are mostly not public, but there is no evidence of good herbicides with new target sites coming from these approaches. In summary, there are several reasons for a long dry period for new herbicide target sites; however, the relative magnitude of each is unclear. The economic stimulus to the herbicide industry caused by the evolution of herbicide-resistant weeds, especially GR weeds, may result in one or more new modes of action becoming available in the not too distant future.
Collapse
Affiliation(s)
- Stephen O Duke
- Agricultural Research Service, Natural Products Utilization Research Unit, United States Department of Agriculture, University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
61
|
|
62
|
Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. PLANT PHYSIOLOGY 2012; 158:299-312. [PMID: 22065419 PMCID: PMC3252072 DOI: 10.1104/pp.111.184333] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/06/2011] [Indexed: 05/12/2023]
Abstract
The availability of nitrogen varies greatly in the ocean and limits primary productivity over large areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent diatom genome projects have highlighted clues to the success of this group, very little is known about their adaptive response to changing environmental conditions. Here, we compare the proteome of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with that of nitrogen-replete cells using two-dimensional gel electrophoresis. In total, 3,310 protein spots were distinguishable, and we identified 42 proteins increasing and 23 decreasing in abundance (greater than 1.5-fold change; P < 0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins, and carbohydrates, photosynthesis, and chlorophyll biosynthesis were represented. Comparison of our proteomics data with the transcriptome response of this species under similar growth conditions showed good correlation and provided insight into different levels of response. The T. pseudonana response to nitrogen starvation was also compared with that of the higher plant Arabidopsis (Arabidopsis thaliana), the green alga Chlamydomonas reinhardtii, and the cyanobacterium Prochlorococcus marinus. We have found that the response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria.
Collapse
Affiliation(s)
| | | | | | | | - Gill Malin
- Laboratory for Global Marine and Atmospheric Chemistry, School of Environmental Sciences (N.L.H., G.M.), and School of Environmental Sciences (T.M.), University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom; John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom (N.L.H., S.K.); Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom (F.M.)
| |
Collapse
|
63
|
Ford KL, Cassin A, Bacic A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. FRONTIERS IN PLANT SCIENCE 2011; 2:44. [PMID: 22639595 PMCID: PMC3355674 DOI: 10.3389/fpls.2011.00044] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/13/2011] [Indexed: 05/18/2023]
Abstract
Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L.) in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant), Excalibur (tolerant), and RAC875 (tolerant), were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299) in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875) differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and reactive O(2) species (ROS) scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.
Collapse
Affiliation(s)
- Kristina L. Ford
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, VIC, Australia
| | - Andrew Cassin
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
| | - Antony Bacic
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville, VIC, Australia
- The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
64
|
Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. THE PLANT CELL 2011; 23:3442-53. [PMID: 21934147 PMCID: PMC3203437 DOI: 10.1105/tpc.111.089714] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/23/2011] [Accepted: 09/02/2011] [Indexed: 05/18/2023]
Abstract
The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation.
Collapse
Affiliation(s)
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
65
|
Structure and Mutation Analysis of Archaeal Geranylgeranyl Reductase. J Mol Biol 2011; 409:543-57. [DOI: 10.1016/j.jmb.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/26/2011] [Accepted: 04/01/2011] [Indexed: 11/19/2022]
|
66
|
Muzzalupo I, Stefanizzi F, Perri E, Chiappetta AA. Transcript levels of CHL P gene, antioxidants and chlorophylls contents in olive (Olea europaea L.) pericarps: a comparative study on eleven olive cultivars harvested in two ripening stages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:1-10. [PMID: 21253861 DOI: 10.1007/s11130-011-0208-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of ripening stage on the antioxidant content in olive pericarps were evaluated in eleven olive genotypes grown in the same bioagronomic conditions in Southern Italy. We examined the transcript levels of geranylgeranyl reductase (CHL P) gene and the content of tocopherols, phenolic compounds and chlorophylls in the pericarps. The examined genotypes showed an increase of CHL P transcripts during pericarps ripening. Significant differences were reported in the antioxidant proportions in the same cultivars at different pericarp ripening stage. We show an inverse correlation between phenols and tocopherols content. In particular, during the ripening phase, tocopherols increased rapidly in olive pericarps while phenolic compounds and chlorophyll levels declined significantly. The significant amounts of these antioxidants confirm the nutritional and medicinal value of olive drupes and its products (table olives and olive oil). We suggest, for the first time, a link between CHL P transcript levels and tocopherols content during the ripening of olive pericarps. Besides, we revealed that this trend of CHL P transcript levels during pericarps ripening is independent from the olive genotypes.
Collapse
|
67
|
|
68
|
Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:206-17. [PMID: 21223386 DOI: 10.1111/j.1365-313x.2010.04417.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.
Collapse
Affiliation(s)
- Wenyu Yang
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W. De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:589-603. [PMID: 20822501 DOI: 10.1111/j.1365-313x.2010.04350.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Grain development of the maternal effect shrunken endosperm mutant seg8 was analysed by comprehensive molecular, biochemical and histological methods. The most obvious finding was de-regulation of ABA levels, which were lower compared to wild-type during the pre-storage phase but higher during the transition from cell division/differentiation to accumulation of storage products. Ploidy levels and ABA amounts were inversely correlated in the developing endosperms of both mutant and wild-type, suggesting an influence of ABA on cell-cycle regulation. The low ABA levels found in seg8 grains between anthesis and beginning endosperm cellularization may result from a gene dosage effect in the syncytial endosperm that causes impaired transfer of ABA synthesized in vegetative tissues into filial grain parts. Increased ABA levels during the transition phase are accompanied by higher chlorophyll and carotenoid/xanthophyll contents. The data suggest a disturbed ABA-releasing biosynthetic pathway. This is indicated by up-regulation of expression of the geranylgeranyl reductase (GGR) gene, which may be induced by ABA deficiency during the pre-storage phase. Abnormal cellularization/differentiation of the developing seg8 endosperm and reduced accumulation of starch are phenotypic characteristics that reflect these disturbances. The present study did not reveal the primary gene defect causing the seg8 phenotype, but presents new insights into the maternal/filial relationships regulating barley endosperm development.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc Natl Acad Sci U S A 2010; 107:16721-5. [PMID: 20823244 DOI: 10.1073/pnas.1004699107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting chlorophyll-binding (LHC) proteins are major constituents of eukaryotic photosynthetic machinery. In plants, six different groups of proteins, LHC-like proteins, share a conserved motif with LHC. Although the evolution of LHC and LHC-like proteins is proposed to be a key for the diversification of modern photosynthetic eukaryotes, our knowledge of the evolution and functions of LHC-like proteins is still limited. In this study, we aimed to understand specifically the function of one type of LHC-like proteins, LIL3 proteins, by analyzing Arabidopsis mutants lacking them. The Arabidopsis genome contains two gene copies for LIL3, LIL3:1 and LIL3:2. In the lil3:1/lil3:2 double mutant, the majority of chlorophyll molecules are conjugated with an unsaturated geranylgeraniol side chain. This mutant is also deficient in α-tocopherol. These results indicate that reduction of both the geranylgeraniol side chain of chlorophyll and geranylgeranyl pyrophosphate, which is also an essential intermediate of tocopherol biosynthesis, is compromised in the lil3 mutants. We found that the content of geranylgeranyl reductase responsible for these reactions was severely reduced in the lil3 double mutant, whereas the mRNA level for this enzyme was not significantly changed. We demonstrated an interaction of geranylgeranyl reductase with both LIL3 isoforms by using a split ubiquitin assay, bimolecular fluorescence complementation, and combined blue-native and SDS polyacrylamide gel electrophoresis. We propose that LIL3 is functionally involved in chlorophyll and tocopherol biosynthesis by stabilizing geranylgeranyl reductase.
Collapse
|
71
|
Falk J, Munné-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1549-66. [PMID: 20385544 DOI: 10.1093/jxb/erq030] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tocopherols and tocotrienols, collectively known as tocochromanols, are lipid-soluble molecules that belong to the group of vitamin E compounds and are essential in the human diet. Not surprisingly, most of what is known about the biological functions of tocochromanols comes from studies of mammalian systems, yet they have been shown to be synthesized only by photosynthetic organisms. The last decade has seen a radical change in the appreciation of the biological role of tocochromanols in plants thanks to a detailed characterization of mutant and transgenic plants, including several Arabidopsis thaliana mutants, the sucrose export defective1 (sxd1) maize mutant, and some transgenic potato and tobacco lines altered in tocochromanol biosynthesis. Recent findings indicate that tocopherols may play important roles in plants beyond their antioxidant function in photosynthetic membranes. Plants deficient in tocopherols show alterations in germination and export of photoassimilates, and growth, leaf senescence, and plant responses to abiotic stresses, thus suggesting that tocopherols may influence a number of physiological processes in plants. Thus, in this review not only the antioxidant function of tocochromanols in plants, but also these new emerging possible roles will be considered. Particular attention will be paid to specific roles attributed to different tocopherol homologues (particularly alpha- and gamma-tocopherol) and the possible functions of tocotrienols, which in contrast to tocopherols are only present in a range of unrelated plant groups and are almost exclusively found in seeds and fruits.
Collapse
Affiliation(s)
- Jon Falk
- Carlsberg Research Center, 10 Gamle Carlsberg Vej, DK-2500 Valby, Denmark
| | | |
Collapse
|
72
|
Zybailov B, Friso G, Kim J, Rudella A, Rodríguez VR, Asakura Y, Sun Q, van Wijk KJ. Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol Cell Proteomics 2010; 8:1789-1810. [PMID: 19423572 DOI: 10.1074/mcp.m900104-mcp200] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The clpr2-1 mutant is delayed in development due to reduction of the chloroplast ClpPR protease complex. To understand the role of Clp proteases in plastid biogenesis and homeostasis, leaf proteomes of young seedlings of clpr2-1 and wild type were compared using large scale mass spectrometry-based quantification using an LTQ-Orbitrap and spectral counting with significance determined by G-tests. Virtually only chloroplast-localized proteins were significantly affected, indicating that the molecular phenotype was confined to the chloroplast. A comparative chloroplast stromal proteome analysis of fully developed plants was used to complement the data set. Chloroplast unfoldase ClpB3 was strongly up-regulated in both young and mature leaves, suggesting widespread and persistent protein folding stress. The importance of ClpB3 in the clp2-1 mutant was demonstrated by the observation that a CLPR2 and CLPB3 double mutant was seedling-lethal. The observed up-regulation of chloroplast chaperones and protein sorting components further illustrated destabilization of protein homeostasis. Delayed rRNA processing and up-regulation of a chloroplast DEAD box RNA helicase and polynucleotide phosphorylase, but no significant change in accumulation of ribosomal subunits, suggested a bottleneck in ribosome assembly or RNA metabolism. Strong up-regulation of a chloroplast translational regulator TypA/BipA GTPase suggested a specific response in plastid gene expression to the distorted homeostasis. The stromal proteases PreP1,2 were up-regulated, likely constituting compensation for reduced Clp protease activity and possibly shared substrates between the ClpP and PreP protease systems. The thylakoid photosynthetic apparatus was decreased in the seedlings, whereas several structural thylakoid-associated plastoglobular proteins were strongly up-regulated. Two thylakoid-associated reductases involved in isoprenoid and chlorophyll synthesis were up-regulated reflecting feedback from rate-limiting photosynthetic electron transport. We discuss the quantitative proteomics data and the role of Clp proteolysis using a "systems view" of chloroplast homeostasis and metabolism and provide testable hypotheses and putative substrates to further determine the significance of Clp-driven proteolysis.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Kim C, Lemke C, Paterson AH. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. PLANT MOLECULAR BIOLOGY 2009; 70:1-16. [PMID: 19152115 DOI: 10.1007/s11103-009-9453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/05/2009] [Indexed: 05/08/2023]
Abstract
Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.
Collapse
Affiliation(s)
- Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
74
|
Bruno L, Chiappetta A, Muzzalupo I, Gagliardi C, Iaria D, Bruno A, Greco M, Giannino D, Perri E, Bitonti MB. Role of geranylgeranyl reductase gene in organ development and stress response in olive (Olea europaea) plants. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:370-381. [PMID: 32688654 DOI: 10.1071/fp08219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 01/29/2009] [Indexed: 06/11/2023]
Abstract
The NADPH-dependent geranylgeranyl reductase gene (OeCHLP) was characterised in olive (Olea europaea L.). OeCHLP catalyses the formation of carbon double bonds in the phytolic side chain of chlorophyll, tocopherols and plastoquinones and, therefore, is involved in metabolic pathways related to plant productivity and stress response, besides to nutritional value of its products. The nuclear OeCHLP encodes a deduced product of 51 kDa, which harbours a transit peptide for cytoplasm-to-chloroplast transport and a nicotinamide binding domain. Two estimated identical copies of gene are harboured per haploid genome of the cv. 'Carolea' used in the present study. Levels and cytological pattern of OeCHLP transcription were investigated by quantitative RT-PCR and in situ hybridisation. In line with the presence of ubiquitous tocopherols and/or chlorophyll, OeCHLP transcripts were present in various organs of plants. In leaves and fruits at different developmental stages, OeCHLP was differentially expressed in relation to their morpho-physiological features. An early and transient enhancement of gene transcription was detected in leaves of different age exposed to cold treatment (4°C), as well as in fruits mechanically wounded. Moreover, OeCHLP transcripts locally increased in specific cell domains of fruits severely damaged by the pathogen Bactrocera olea. Combined, these data show that OeCHLP expression early responds to biotic and abiotic stressful factors. Levels of tocopherols also increased in leaves exposed to cold conditions and fruits severely damaged by pathogen. We suggest that gene activity under stress condition could be related to tocopherol action.
Collapse
Affiliation(s)
- Leonardo Bruno
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Adriana Chiappetta
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Innocenzo Muzzalupo
- CRA - Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), C.da Li Rocchi, 87036 Rende (CS), Italy
| | - Cinzia Gagliardi
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Domenico Iaria
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Alessandro Bruno
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Maria Greco
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Donato Giannino
- Institute of Biology and Agricultural Biotechnology, National Research Council of Italy (CNR), via Salaria km 29300, 00015 Monterotondo Scalo, Rome, Italy
| | - Enzo Perri
- CRA - Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), C.da Li Rocchi, 87036 Rende (CS), Italy
| | - Maria Beatrice Bitonti
- Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
75
|
Natural variation in gene expression between wild and weedy populations of Helianthus annuus. Genetics 2008; 179:1881-90. [PMID: 18689879 DOI: 10.1534/genetics.108.091041] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular genetic changes underlying the transformation of wild plants into agricultural weeds are poorly understood. Here we use a sunflower cDNA microarray to detect variation in gene expression between two wild (non-weedy) Helianthus annuus populations from Utah and Kansas and four weedy H. annuus populations collected from agricultural fields in Utah, Kansas, Indiana, and California. When grown in a common growth chamber environment, populations differed substantially in their gene expression patterns, indicating extensive genetic differentiation. Overall, 165 uni-genes, representing approximately 5% of total genes on the array, showed significant differential expression in one or more weedy populations when compared to both wild populations. This subset of genes is enriched for abiotic/biotic stimulus and stress response proteins, which may underlie niche transitions from the natural sites to agricultural fields for H. annuus. However, only a small proportion of the differentially expressed genes overlapped in multiple wild vs. weedy comparisons, indicating that most of the observed expression changes are due to local adaptation or neutral processes, as opposed to parallel genotypic adaptation to agricultural fields. These results are consistent with an earlier phylogeographic study suggesting that weedy sunflowers have evolved multiple times in different regions of the United States and further indicate that the evolution of weedy sunflowers has been accompanied by substantial gene expression divergence in different weedy populations.
Collapse
|
76
|
Alós E, Roca M, Iglesias DJ, Mínguez-Mosquera MI, Damasceno CMB, Thannhauser TW, Rose JKC, Talón M, Cercós M. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. PLANT PHYSIOLOGY 2008; 147:1300-15. [PMID: 18467459 PMCID: PMC2442528 DOI: 10.1104/pp.108.119917] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/05/2008] [Indexed: 05/20/2023]
Abstract
A Citrus sinensis spontaneous mutant, navel negra (nan), produces fruit with an abnormal brown-colored flavedo during ripening. Analysis of pigment composition in the wild-type and nan flavedo suggested that typical ripening-related chlorophyll (Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay-green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR (for STAY-GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay-green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis-related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress.
Collapse
Affiliation(s)
- Enriqueta Alós
- Instituto Valenciano de Investigaciones Agrarias, Centro de Genómica, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lein W, Usadel B, Stitt M, Reindl A, Ehrhardt T, Sonnewald U, Börnke F. Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:246-63. [PMID: 18086234 DOI: 10.1111/j.1467-7652.2007.00313.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two of the major challenges in functional genomics are to identify genes that play a key role in biological processes, and to elucidate the biological role of the large numbers of genes whose function is poorly characterized or still completely unknown. In this study, a combination of large-scale expressed sequence tag sequencing, high-throughput gene silencing and visual phenotyping was used to identify genes in which partial inhibition of expression leads to marked phenotypic changes, mostly on leaves. Three normalized tobacco (Nicotiana tabacum) cDNA libraries were prepared directly in a binary vector using different tissues of tobacco as an RNA source, randomly sequenced and clustered. The Agrobacterium-tobacco leaf disc transformation system was used to generate sets of antisense or co-suppression transgenic tobacco plants for over 20 000 randomly chosen clones, each representing an independent cluster. After transfer to the glasshouse, transgenic plants were scored visually after 10-14 days for changes in growth, leaf form and chlorosis or necrosis. Putative hits were validated by repeating the transformation. This procedure is more stringent than the analysis of knockout mutants, because it requires that even a partial decrease in expression generates a phenotype. This procedure identified 88 validated gene/phenotype relations. These included several previously characterized gene/phenotype relationships, demonstrating the validity of the approach. For about one-third, a function could be inferred, but a loss-of-function phenotype had not been described previously. Strikingly, almost one-half of the validated genes were poorly annotated, or had no known function. For 77 of these tobacco sequences, a single or small number of potential orthologues were identified in Arabidopsis. The genes for which orthologues were identified in Arabidopsis included about one-half of the genes whose function was completely unknown. Comparison with published gene/phenotype relations for Arabidopsis knockout mutants revealed surprisingly little overlap with the present study. Our results indicate that partial gene silencing identifies novel gene/phenotype relationships, which are distinct from those uncovered by knockout screens. They also show that it is possible to perform these analyses in a crop species in which full genome sequence information is lacking, and subsequently to transfer the information to a reference species in which functional studies can be performed more effectively.
Collapse
Affiliation(s)
- Wolfgang Lein
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
78
|
Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM. Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC PLANT BIOLOGY 2008; 8:13. [PMID: 18230142 PMCID: PMC2253524 DOI: 10.1186/1471-2229-8-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 01/29/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Light and temperature are the key abiotic modulators of plant gene expression. In the present work the effect of light under low temperature treatment was analyzed by using microarrays. Specific attention was paid to the up and down regulated genes by using promoter analysis. This approach revealed putative regulatory networks of transcription factors behind the induction or repression of the genes. RESULTS Induction of a few oxidative stress related genes occurred only under the Cold/Light treatment including genes encoding iron superoxide dismutase (FeSOD) and glutathione-dependent hydrogen peroxide peroxidases (GPX). The ascorbate dependent water-water cycle genes showed no response to Cold/Light or Cold/Dark treatments. Cold/Light specifically induced genes encoding protective molecules like phenylpropanoids and photosynthesis-related carotenoids also involved in the biosynthesis of hormone abscisic acid (ABA) crucial for cold acclimation. The enhanced/repressed transcript levels were not always reflected on the respective protein levels as demonstrated by dehydrin proteins. CONCLUSION Cold/Light up regulated twice as many genes as the Cold/Dark treatment and only the combination of light and low temperature enhanced the expression of several genes earlier described as cold-responsive genes. Cold/Light-induced genes included both cold-responsive transcription factors and several novel ones containing zinc-finger, MYB, NAC and AP2 domains. These are likely to function in concert in enhancing gene expression. Similar response elements were found in the promoter regions of both the transcription factors and their target genes implying a possible parallel regulation or amplification of the environmental signals according to the metabolic/redox state in the cells.
Collapse
Affiliation(s)
- Arto J Soitamo
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Mirva Piippo
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Yagut Allahverdiyeva
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Natalia Battchikova
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| | - Eva-Mari Aro
- University of Turku, Department of Biology, Plant Physiology and Molecular Biology, Tykistokatu 6, BioCity A, 6floor, FIN-20520 Turku, Finland
| |
Collapse
|
79
|
Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. PLANT PHYSIOLOGY 2007; 145:1161-1170. [PMID: 17932306 DOI: 10.2307/40065758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Virus-induced gene silencing (VIGS) is a widely used, powerful technique for reverse genetics. VIGS vectors derived from the Tobacco rattle virus (TRV) are among the most popular for VIGS. We have developed a TRV RNA2 vector that allows the insertion of gene silencing fragments by ligation-independent cloning (LIC). This new vector has several advantages over previous vectors, particularly for applications involving the analysis of large numbers of sequences, since TRV-LIC vectors containing the desired insert are obtained with 100% efficiency. Importantly, this vector allows the high-throughput cloning of silencing fragments without the use of costly enzymes required for recombination, as is the case with GATEWAY-based vectors. We generated a collection of silencing vectors based on 400 tomato (Solanum lycopersicum) expressed sequence tags in this TRV-LIC background. We have used this vector to identify roles for SlMADS1 and its Nicotiana benthamiana homologs, NbMADS4-1 and -2 in flowering. We find that NbMADS4-1 and -2 act nonredundantly in floral development and silencing of either gene results in loss of organ identity. This TRV-LIC vector should be a valuable resource to the plant community.
Collapse
Affiliation(s)
- Yiyu Dong
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
80
|
Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. PLANT PHYSIOLOGY 2007; 145:1161-70. [PMID: 17932306 PMCID: PMC2151726 DOI: 10.1104/pp.107.107391] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is a widely used, powerful technique for reverse genetics. VIGS vectors derived from the Tobacco rattle virus (TRV) are among the most popular for VIGS. We have developed a TRV RNA2 vector that allows the insertion of gene silencing fragments by ligation-independent cloning (LIC). This new vector has several advantages over previous vectors, particularly for applications involving the analysis of large numbers of sequences, since TRV-LIC vectors containing the desired insert are obtained with 100% efficiency. Importantly, this vector allows the high-throughput cloning of silencing fragments without the use of costly enzymes required for recombination, as is the case with GATEWAY-based vectors. We generated a collection of silencing vectors based on 400 tomato (Solanum lycopersicum) expressed sequence tags in this TRV-LIC background. We have used this vector to identify roles for SlMADS1 and its Nicotiana benthamiana homologs, NbMADS4-1 and -2 in flowering. We find that NbMADS4-1 and -2 act nonredundantly in floral development and silencing of either gene results in loss of organ identity. This TRV-LIC vector should be a valuable resource to the plant community.
Collapse
Affiliation(s)
- Yiyu Dong
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
81
|
Chew AGM, Bryant DA. Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity. Annu Rev Microbiol 2007; 61:113-29. [PMID: 17506685 DOI: 10.1146/annurev.micro.61.080706.093242] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of photochemical reaction centers to convert light energy into chemical energy, chlorophototrophy, occurs in organisms belonging to only five eubacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, and Firmicutes. All chlorophototrophs synthesize two types of pigments: (a) chlorophylls and bacteriochlorophylls, which function in both light harvesting and uniquely in photochemistry; and (b) carotenoids, which function primarily as photoprotective pigments but can also participate in light harvesting. Although hundreds of carotenoids have been identified, only 12 types of chlorophylls (Chl a, b, d; divinyl-Chl a and b; and 8(1)-hydroxy-Chl a) and bacteriochlorophylls (BChl a, b, c, d, e, and g) are currently known to occur in bacteria. This review summarizes recent progress in the identification of genes and enzymes in the biosynthetic pathways leading to Chls and BChls, the essential tetrapyrrole cofactors of photosynthesis, and addresses the mechanisms for generating functional diversity for solar energy capture and conversion in chlorophototrophs.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
82
|
Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organisms. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:260-5. [PMID: 17434792 DOI: 10.1016/j.pbi.2007.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/03/2007] [Indexed: 05/14/2023]
Abstract
During the past decade, the genes required for tocopherol (vitamin E) synthesis in plants and cyanobacteria have been identified. A series of mutants in which specific pathway steps are disrupted have been generated, providing new insights into tocopherol functions in photosynthetic organisms. Tocopherols are essential for controlling non-enzymatic lipid peroxidation during seed dormancy and seedling germination. Their absence results in elevated levels of malondialdehyde and phytoprostanes, and in inappropriate activation of plant defense responses. Surprisingly, tocopherol deficiency in mature leaves has limited consequences under most abiotic stresses, including high intensity light stress. The cell wall development of phloem transfer cells under cold conditions is, however, severely impaired in mature leaves of tocopherol-deficient mutants, indicating that tocopherols are required for proper adaptation of phloem loading at low temperatures.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
83
|
Murakami M, Shibuya K, Nakayama T, Nishino T, Yoshimura T, Hemmi H. Geranylgeranyl reductase involved in the biosynthesis of archaeal membrane lipids in the hyperthermophilic archaeon Archaeoglobus fulgidus. FEBS J 2007; 274:805-14. [PMID: 17288560 DOI: 10.1111/j.1742-4658.2006.05625.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete saturation of the geranylgeranyl groups of biosynthetic intermediates of archaeal membrane lipids is an important reaction that confers chemical stability on the lipids of archaea, which generally inhabit extreme conditions. An enzyme encoded by the AF0464 gene of a hyperthermophilic archaeon, Archaeoglobus fulgidus, which is a distant homologue of plant geranylgeranyl reductases and an A. fulgidus menaquinone-specific prenyl reductase [Hemmi H, Yoshihiro T, Shibuya K, Nakayama T, & Nishino T (2005) J Bacteriol187, 1937-1944], was recombinantly expressed and purified, and its geranylgeranyl reductase activity was examined. The radio HPLC analysis indicated that the flavoenzyme, which binds FAD noncovalently, showed activity towards lipid-biosynthetic intermediates containing one or two geranylgeranyl groups under anaerobic conditions. It showed a preference for 2,3-di-O-geranylgeranylglyceryl phosphate over 3-O-geranylgeranylglyceryl phosphate and geranylgeranyl diphosphate in vitro, and did not reduce the prenyl group of respiratory quinones in Escherichia coli cells. The substrate specificity strongly suggests that the enzyme is involved in the biosynthesis of archaeal membrane lipids. GC-MS analysis of the reaction product from 2,3-di-O-geranylgeranylglyceryl phosphate proved that the substrate was converted to archaetidic acid (2,3-di-O-phytanylglyceryl phosphate). The archaeal enzyme required sodium dithionite as the electron donor for activity in vitro, similarly to the menaquinone-specific prenyl reductase from the same anaerobic archaeon. On the other hand, in the presence of NADPH (the preferred electron donor for plant homologues), the enzyme reaction did not proceed.
Collapse
Affiliation(s)
- Motomichi Murakami
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lübberstedt T. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. PLANT MOLECULAR BIOLOGY 2007; 63:21-34. [PMID: 17006594 DOI: 10.1007/s11103-006-9069-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 07/30/2006] [Indexed: 05/12/2023]
Abstract
Heterosis, the superior performance of hybrids as compared to their parental mean is an agronomically important phenomenon well-described morphologically. However, little is known about its molecular basis. We investigated four genetically unrelated maize (Zea mays L.) inbred lines and their F(1) crosses both at the phenotype and transcriptome level, focusing on plant height (PHT) component traits. Substantial mid-parent heterosis (MPH) was found for all parent-hybrid triplets for PHT in the range of 37.9-56.4% in the field and 11.1-39.5% under controlled greenhouse conditions. Analyses of heterosis for number and length of internodes showed two to three times higher MPH in the field as compared to the greenhouse. All three traits exhibited high heritabilities, highest for PHT 95-98%. Two methods for gene expression quantification were applied. High-density cDNA uni-gene microarrays containing 11,827 ESTs were utilized for the selection of differentially expressed genes related to heterosis for PHT. For the four triplets with eight possible parent-hybrid comparisons we identified 434 consistently differentially expressed genes with a p < or = 0.05. Microarray results were used to verify the dominance/overdominance hypothesis. In our study, more than 50% genes showed overdominance, 26% partial dominance, 12.6% complete dominance and 10.2% additive gene action. Moreover, more consistently differentially expressed genes were detected in related triplets, sharing one parent, than in unrelated triplets. Quantitative RT-PCR was applied in order to validate microarray results. The role of the differentially expressed genes in relation to heterosis for PHT is discussed.
Collapse
Affiliation(s)
- Anna Uzarowska
- Department of Plant Breeding, Technical University of Munich, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
86
|
Kalituho L, Rech J, Jahns P. The roles of specific xanthophylls in light utilization. PLANTA 2007; 225:423-39. [PMID: 16896791 DOI: 10.1007/s00425-006-0356-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/07/2006] [Indexed: 05/11/2023]
Abstract
To evaluate the role of specific xanthophylls in light utilization, wild-type and xanthophyll mutant plants (npq1, npq2, lut2, lut2npq1 and lut2npq2) from Arabidopsis thaliana were grown under three different light regimes: 30 (low light, LL), 150 (medium light, ML) and 450 (high light, HL) mumol photons m(-2) s(-1). We studied the pigment content, growth rate, xanthophyll cycle activity, chlorophyll fluorescence parameters and the response to photoinhibition. All genotypes differed strongly in the growth rates and the resistance against photoinhibition. In particular, replacement of lutein (Lut) by violaxanthin (Vx) in the lut2npq1 mutant did not affect the growth at non-saturating light intensities (LL and ML), but led to a pronounced reduction of growth under HL conditions, indicating an important photoprotective role of Lut. This was further supported by a much higher sensitivity of all Lut-deficient plants to photoinhibition in comparison with the wild type. In contrast, replacement of Lut by zeaxanthin (Zx) in lut2npq2 led to a pronounced reduction of growth under all light regimes, most likely related to the permanent non-photochemical dissipation of excitation energy by Zx at Vx-binding sites and the destabilization of antenna proteins by binding of Zx to Lut-binding sites. The high susceptibility of lut2npq2 to photoinhibition in comparison with npq2 further indicated that the photoprotective function of Zx is abolished in the absence of Lut. Thus, it can be concluded from our work that neither Vx nor Zx is able to fulfil the essential photoprotective function at Lut-binding sites under in vivo conditions.
Collapse
Affiliation(s)
- Ljudmila Kalituho
- Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225, Dusseldorf, Germany
| | | | | |
Collapse
|
87
|
Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:499-510. [PMID: 17059408 DOI: 10.1111/j.1365-313x.2006.02894.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
Collapse
Affiliation(s)
- Inna Lermontova
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
88
|
Abstract
The importance of chlorophyll (Chl) to the process of photosynthesis is obvious, and there is clear evidence that the regulation of Chl biosynthesis has a significant role in the regulation of assembly of the photosynthetic apparatus. The understanding of Chl biosynthesis has rapidly advanced in recent years. The identification of genetic loci associated with each of the biochemical steps has been accompanied by a greater appreciation of the role of Chl biosynthesis intermediates in intracellular signaling. The purpose of this review is to provide a source of information for all the steps in Chl and bacteriochlorophyll a biosynthesis, with an emphasis on steps that are believed to be key regulation points.
Collapse
Affiliation(s)
- David W Bollivar
- Department of Biology, Illinois Wesleyan University, Bloomington, IL 61702-2900, USA.
| |
Collapse
|
89
|
Alós E, Cercós M, Rodrigo MJ, Zacarías L, Talón M. Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:4888-95. [PMID: 16787044 DOI: 10.1021/jf0606712] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Citrus clementina fruits were repeatedly treated on-tree from mature green until breaker stages with either nitrate or gibberellin, two retardants of external ripening. The natural color break was characterized by a reduction in chlorophyll concentration, a decrease in beta,epsilon-carotenoids, beta-carotene, neoxanthin, and all-E-violaxanthin, and an increase in beta,beta-xanthophylls [mainly (9Z)-violaxanthin and beta-cryptoxanthin]. The two retardants delayed both chlorophyll depletion and total carotenoid accumulation and in addition altered carotenoid composition. Treated fruits maintained longer the typical carotenoid composition of green fruits and reduced beta,beta-xanthophyll accumulation. Natural degreening was accompanied by a marked decrease in transcript levels of 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and geranylgeranyl reductase (CHL P) while, conversely, pheophorbide a oxygenase (PaO) and phytoene synthase (PSY) gene expression increased. Gibberellin and nitrate delayed the reduction of DXS expression and the induction of PaO and PSY transcript accumulation, while no differences in CHL P were observed. The data indicate that both ripening retardants repressed natural PaO and PSY expression, suggesting a mechanistic basis for the elevated levels of chlorophyll and lower carotenoid concentration resulting from the gibberellin and nitrogen treatments and the consequent color break delay in citrus fruit peels.
Collapse
Affiliation(s)
- Enriqueta Alós
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain
| | | | | | | | | |
Collapse
|
90
|
Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. THE PLANT CELL 2006; 18:212-24. [PMID: 16361393 PMCID: PMC1323494 DOI: 10.1105/tpc.105.037077] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/03/2005] [Accepted: 11/14/2005] [Indexed: 05/05/2023]
Abstract
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.
Collapse
Affiliation(s)
| | - Kim Lincoln
- Cereon Genomics, Cambridge, Massachusetts 02492
| | | | | | - Qungang Qi
- Monsanto Company, Chesterfield, Missouri 63017
| | | | | | | | | | - Beth Savidge
- Monsanto Company, Calgene Campus, Davis, California 95616
| | | | | |
Collapse
|
91
|
DellaPenna D, Pogson BJ. Vitamin synthesis in plants: tocopherols and carotenoids. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:711-38. [PMID: 16669779 DOI: 10.1146/annurev.arplant.56.032604.144301] [Citation(s) in RCA: 464] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carotenoids and tocopherols are the two most abundant groups of lipid-soluble antioxidants in chloroplasts. In addition to their many functional roles in photosynthetic organisms, these compounds are also essential components of animal diets, including humans. During the past decade, a near complete set of genes required for the synthesis of both classes of compounds in photosynthetic tissues has been identified, primarily as a result of molecular genetic and biochemical genomics-based approaches in the model organisms Arabidopsis thaliana and Synechocystis sp. PCC6803. Mutant analysis and transgenic studies in these and other systems have provided important insight into the regulation, activities, integration, and evolution of individual enzymes and are already providing a knowledge base for breeding and transgenic approaches to modify the types and levels of these important compounds in agricultural crops.
Collapse
Affiliation(s)
- Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
92
|
Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. THE PLANT CELL 2005; 17:3451-69. [PMID: 16258032 PMCID: PMC1315381 DOI: 10.1105/tpc.105.037036] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vitamin E is considered a major antioxidant in biomembranes, but little evidence exists for this function in plants under photooxidative stress. Leaf discs of two vitamin E mutants, a tocopherol cyclase mutant (vte1) and a homogentisate phytyl transferase mutant (vte2), were exposed to high light stress at low temperature, which resulted in bleaching and lipid photodestruction. However, this was not observed in whole plants exposed to long-term high light stress, unless the stress conditions were extreme (very low temperature and very high light), suggesting compensatory mechanisms for vitamin E deficiency under physiological conditions. We identified two such mechanisms: nonphotochemical energy dissipation (NPQ) in photosystem II (PSII) and synthesis of zeaxanthin. Inhibition of NPQ in the double mutant vte1 npq4 led to a marked photoinhibition of PSII, suggesting protection of PSII by tocopherols. vte1 plants accumulated more zeaxanthin in high light than the wild type, and inhibiting zeaxanthin synthesis in the vte1 npq1 double mutant resulted in PSII photoinhibition accompanied by extensive oxidation of lipids and pigments. The single mutants npq1, npq4, vte2, and vte1 showed little sensitivity to the stress treatments. We conclude that, in cooperation with the xanthophyll cycle, vitamin E fulfills at least two different functions in chloroplasts at the two major sites of singlet oxygen production: preserving PSII from photoinactivation and protecting membrane lipids from photooxidation.
Collapse
Affiliation(s)
- Michel Havaux
- Commissariat à l'Energie Atomique/Cadarache, Direction des Sciences du Vivant, Département d'Ecophysiologie Végétale et de Microbiologie, Laboratoire d'Ecophysiologie de la Photosynthèse,Saint-Paul-lez-Durance, France.
| | | | | | | | | |
Collapse
|
93
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
94
|
Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YHH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD, Valentin HE. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 2005; 7:384-400. [PMID: 16125431 DOI: 10.1016/j.ymben.2005.05.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 05/08/2005] [Accepted: 05/18/2005] [Indexed: 11/15/2022]
Abstract
Tocochromanols (tocopherols and tocotrienols) are important lipid soluble antioxidants and are an essential part of the mammalian diet. Oilseeds are particularly rich in tocochromanols with an average concentration 10-fold higher than other plant tissues. Here we describe a systematic approach to identify rate-limiting reactions in the tocochromanol biosynthetic pathway, and the application of this knowledge to engineer tocochromanol biosynthesis in oilseed crops. Seed-specific expression of genes encoding limiting tocochromanol pathway enzymes in soybean increased total tocochromanols up to 15-fold from 320 ng/mg in WT seed to 4800 ng/mg in seed from the best performing event. Although WT soybean seed contain only traces of tocotrienols, these transgenic soybean accumulated up to 94% of their tocochromanols as tocotrienols. Upon crossing transgenic high tocochromanol soybean with transgenic high alpha-tocopherol soybean, the vitamin E activity in the best performing F2-seed was calculated to be 11-fold higher than the average WT soybean seed vitamin E activity.
Collapse
|
95
|
Tanaka R, Tanaka A. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2005; 85:327-40. [PMID: 16170635 DOI: 10.1007/s11120-005-6807-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/28/2005] [Indexed: 05/04/2023]
Abstract
Land plants change the compositions of light-harvesting complexes (LHC) and chlorophyll (Chl) a/b ratios in response to the variable light environments which they encounter. In this study, we attempted to determine the mechanism which regulates Chl a/b ratios and whether the changes in Chl a/b ratios are essential in regulation of LHC accumulation during light acclimation. We hypothesized that changes in the mRNA levels for chlorophyll a oxygenase (CAO) involved in Chl b biosynthesis are an essential part of light response of Chl a/b ratios and LHC accumulation. We also examined the light-intensity dependent response of CAO-overexpression and wild-type Arabidopsis thaliana plants. When wild-type plants were acclimated from low-light (LL) to high-light (HL) conditions, CAO mRNA levels decreased and the Chl a/b ratio increased. In transgenic plants overexpressing CAO, the Chl a/b ratio remained low under HL conditions; thereby suggesting that changes in the CAO mRNA levels are necessary for those in Chl a/b ratios upon light acclimation. Under HL conditions, the accumulation of Lhcb1, Lhcb3 and Lhcb6 was enhanced in plants overexpressing CAO. On the contrary, in a CAO-deficient mutant, chlorina 1-1, theaccumulation of Lhcb1, Lhcb2, Lhcb3, Lhcb6 and Lhca4 was reduced. In comparison to wild-type, beta-carotene levels were reduced in CAO-overexpressing plants, while they were elevated in chlorina 1-1 mutants. These results imply that the transcriptional control of CAO is a part of the regulatory mechanism for the accumulation of a distinct set of LHC proteins upon light acclimation.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, CREST, Hokkaido University, Japan Science and Technology Corporation, N19 W8, 060-0819 Sapporo, Kita-ku, Japan.
| | | |
Collapse
|
96
|
Shpilyov AV, Zinchenko VV, Shestakov SV, Grimm B, Lokstein H. Inactivation of the geranylgeranyl reductase (ChlP) gene in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:195-203. [PMID: 15694347 DOI: 10.1016/j.bbabio.2004.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/03/2004] [Accepted: 11/05/2004] [Indexed: 11/22/2022]
Abstract
Geranylgeranyl reductase catalyses the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate required for synthesis of chlorophylls, phylloquinone and tocopherols. The gene chlP (ORF sll1091) encoding the enzyme has been inactivated in the cyanobacterium Synechocystis sp. PCC 6803. The resulting DeltachlP mutant accumulates exclusively geranylgeranylated chlorophyll a instead of its phytylated analogue as well as low amounts of alpha-tocotrienol instead of alpha-tocopherol. Whereas the contents of chlorophyll and total carotenoids are decreased, abundance of phycobilisomes is increased in DeltachlP cells. The mutant assembles functional photosystems I and II as judged from 77 K fluorescence and electron transport measurements. However, the mutant is unable to grow photoautotrophically due to instability and rapid degradation of the photosystems in the absence of added glucose. We suggest that instability of the photosystems in DeltachlP is directly related to accumulation of geranylgeranylated chlorophyll a. Increased rigidity of the chlorophyll isoprenoid tail moiety due to three additional CC bonds is the likely cause of photooxidative stress and reduced stability of photosynthetic pigment-protein complexes assembled with geranylgeranylated chlorophyll a in the DeltachlP mutant.
Collapse
Affiliation(s)
- Alexey V Shpilyov
- Department of Genetics, Biology Division, Moscow State University, Moscow 119899, Russia
| | | | | | | | | |
Collapse
|
97
|
Hemmi H, Takahashi Y, Shibuya K, Nakayama T, Nishino T. Menaquinone-specific prenyl reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Bacteriol 2005; 187:1937-44. [PMID: 15743940 PMCID: PMC1064032 DOI: 10.1128/jb.187.6.1937-1944.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four genes that encode the homologues of plant geranylgeranyl reductase were isolated from a hyperthermophilic archaeon Archaeoglobus fulgidus, which produces menaquinone with a fully saturated heptaprenyl side chain, menaquinone-7(14H). The recombinant expression of one of the homologues in Escherichia coli led to a distinct change in the quinone profile of the host cells, although the homologue is the most distantly related to the geranylgeranyl reductase. The new compounds found in the profile had successively longer elution times than those of ordinary quinones from E. coli, i.e., menaquinone-8 and ubiquinone-8, in high-performance liquid chromatography on a reversed-phase column. Structural analyses of the new compounds by electron impact-mass spectrometry indicated that their molecular masses progressively increase relative to the ordinary quinones at a rate of 2 U but that they still contain quinone head structures, strongly suggesting that the compounds are quinones with partially saturated prenyl side chains. In vitro assays with dithionite as the reducing agent showed that the prenyl reductase is highly specific for menaquinone-7, rather than ubiquinone-8 and prenyl diphosphates. This novel enzyme noncovalently binds flavin adenine dinucleotide, similar to geranylgeranyl reductase, but was not able to utilize NAD(P)H as the electron donor, unlike the plant homologue.
Collapse
Affiliation(s)
- Hisashi Hemmi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | | | | | | | | |
Collapse
|
98
|
Eckhardt U, Grimm B, Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. PLANT MOLECULAR BIOLOGY 2004; 56:1-14. [PMID: 15604725 DOI: 10.1007/s11103-004-2331-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis , genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.
Collapse
Affiliation(s)
- Ulrich Eckhardt
- Institut für Biologie, Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstr 13, Haus 12, Berlin, D-10115, Germany
| | | | | |
Collapse
|
99
|
Shidoji Y, Ogawa H. Natural occurrence of cancer-preventive geranylgeranoic acid in medicinal herbs. J Lipid Res 2004; 45:1092-103. [PMID: 15060084 DOI: 10.1194/jlr.m300502-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geranylgeranoic acid (GGA; all-trans 3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenoic acid) has been shown to induce apoptosis in a human hepatoma-derived cell line, HuH-7. We aimed not only to confirm the apoptogenic properties of GGA and its derivatives, but also to search for natural GGA in medicinal herbs. GGA induced apoptosis in human hepatoma-derived cell lines, HuH-7, PLC/PRF-5, and mouse transformed hepatocyte-derived cell line, MLE-10, in a dose- and time-dependent manner, but failed to induce cell death in human hepatoblastoma-derived HepG-2 and mouse primary hepatocytes in the same condition. Besides GGA, 4,5-didehydro GGA, 14,15-dihydro GGA, and 2,3-dihydro GGA were also active to induce cell death in HuH-7 cells, while 4,5-didehydro-10,11, 14,15-tetrahydro GGA, 4,5,8,9-tetrahydro GGA, farnesoic acid, and geranylgeraniol were inert. By using liquid chromatography/mass spectrometry, we found natural GGA as a negative ion of m/z 303.4 in a Chinese herb, Schisandra chinensis, and Schisandra GGA was identified by derivatization with both mild methylation and catalytic hydrogenation. Some other GGAs hydrogenated in the different degrees, including phytanic acid (perhydro GGA), were also found in S. chinensis. GGA and phytanic acid were detected in 24 out of 25 herbs tested. The present study is the first report of natural GGA in medicinal herbs.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Laboratory of Cellular Biochemistry, Graduate School of Human Health Sciences, Siebold University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan.
| | | |
Collapse
|
100
|
Rippert P, Scimemi C, Dubald M, Matringe M. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. PLANT PHYSIOLOGY 2004; 134:92-100. [PMID: 14684842 PMCID: PMC316290 DOI: 10.1104/pp.103.032441] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 09/16/2003] [Accepted: 10/20/2003] [Indexed: 05/18/2023]
Abstract
Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.
Collapse
Affiliation(s)
- Pascal Rippert
- Laboratoire Mixte Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Bayer CropScience (Unité Mixte de Recherche 1932), 14-20 rue Pierre Baizet, Boite Postale 9163, 69263 Lyon 09, France
| | | | | | | |
Collapse
|