51
|
Fang X, Zhang L, Shangguan L, Wang L. MdMYB110a, directly and indirectly, activates the structural genes for the ALA-induced accumulation of anthocyanin in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111511. [PMID: 36377142 DOI: 10.1016/j.plantsci.2022.111511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
5-Aminolevulinic acid (ALA), an essential biosynthetic precursor of tetrapyrrole compounds, promotes the anthocyanin accumulation in many plant species. However, the underlying mechanism of ALA-induced accumulation is not yet fully understood. In this study, we identified an important regulator of the anthocyanin accumulation, MdMYB110a, which plays an important role in the ALA-induced anthocyanin accumulation. MdMYB110a activated the expression of MdGSTF12 by binding to its promoter. Additionally, two interacting MdMYB110a proteins, MdWD40-280 and MdHsfB3a, were isolated and confirmed as positive regulators of the ALA-induced anthocyanin accumulation. Both MdWD40-280 and MdHsfB3a enhanced the ability of MdMYB110a to transcribe MdGSTF12. A yeast one-hybrid assay revealed that MdWD40-280 did not bind to most structural genes in the anthocyanin biosynthetic and transport pathways, thus promoting anthocyanin accumulation by MdWD40-280 to depend on MdMYB110a. However, MdHsfB3a could bind to both the MdDFR and MdANS promoters, thereby directly regulating anthocyanin biosynthesis. Collectively, these results provide new insight into the mechanism of ALA-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
52
|
New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232416073. [PMID: 36555711 PMCID: PMC9782777 DOI: 10.3390/ijms232416073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nitrogen nutrition participates in many physiological processes and understanding the physiological and molecular mechanisms of apple responses to nitrogen is very significant for improving apple quality. This study excavated crucial genes that regulates sugar metabolism in response to nitrogen in apples through physiology and transcriptome analysis, so as to lay a theoretical foundation for improving fruit quality. In this paper, the content of sugar and organic acid in apple fruit at different developmental periods under different nitrogen levels (0, 150, 300, and 600 kg·hm-2) were determined. Then, the transcriptomic analysis was performed in 120 days after bloom (DAB) and 150 DAB. The results showed that the fructose and glucose content were the highest at 120 DAB under 600 kg·hm-2 nitrogen level. Meanwhile, different nitrogen treatments decreased malate content in 30 and 60 DAB. RNA-seq analysis revealed a total of 4537 UniGenes were identified as differentially expressed genes (DEGs) under nitrogen treatments. Among these DEGs, 2362 (52.06%) were up-regulated and 2175 (47.94%) were down-regulated. The gene co-expression clusters revealed that most DEGs were significantly annotated in the photosynthesis, glycolysis/gluconeogenesis, pyruvate metabolism, carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction pathways. The key transcription factor genes (ERF, NAC, WRKY, and C2H2 genes) were differentially expressed in apple fruit. Sugar and acid metabolism-related genes (e.g., HXK1, SPS4, SS2, PPC16-2, and MDH2 genes) exhibited significantly up-regulated expression at 120 DAB, whereas they were down-regulated at 150 DAB. Furthermore, the MdSPS4 gene overexpression positively promoted sucrose accumulation in apple callus and fruit. In conclusion, the combinational analysis of transcriptome and the functional validation of the MdSPS4 gene provides new insights into apple responses to different nitrogen levels.
Collapse
|
53
|
Yang X, Wu B, Liu J, Zhang Z, Wang X, Zhang H, Ren X, Zhang X, Wang Y, Wu T, Xu X, Han Z, Zhang X. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. PLANT CELL REPORTS 2022; 41:2379-2391. [PMID: 36208306 DOI: 10.1007/s00299-022-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.
Collapse
Affiliation(s)
- Xianglong Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Zhongyan Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Haie Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xuejun Ren
- Testing and Analysis Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
54
|
Su L, Lv A, Wen W, Fan N, Li J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:756-771. [PMID: 36097968 DOI: 10.1111/tpj.15977] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity severely restricts plant growth in acidic soils (pH < 5.0). In this study, an R2R3-MYB transcription factor (TF) gene, MsMYB741, was cloned from alfalfa. Its function and gene regulatory pathways were studied via overexpression and RNA interference of MsMYB741 in alfalfa seedlings. Results showed that root elongation increased as a result of MsMYB741 overexpression (MsMYB741-OE) and decreased with MsMYB741 RNA interference (MsMYB741-RNAi) in alfalfa seedlings compared with the wild-type under Al stress. These were attributed to the reduced Al content in MsMYB741-OE lines, and increased Al content in MsMYB741-RNAi lines. MsMYB741 positively activated the expression of phenylalanine ammonia-lyase 1 (MsPAL1) and chalcone isomerase (MsCHI) by binding to MYB and ABRE elements in their promoters, respectively, which directly affected flavonoid accumulation in roots and secretion from root tips in plants under Al stress, eventually affecting Al accumulation in alfalfa. Additionally, MsABF2 TF directly activated the expression of MsMYB741 by binding to the ABRE element in its promoter. Taken together, our results indicate that MsMYB741 transcriptionally activates MsPAL1 and MsCHI expression to increase flavonoid accumulation in roots and secretion from root tips, leading to increased resistance of alfalfa to Al stress.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
55
|
Unraveling the malate biosynthesis during development of Torreya grandis nuts. Curr Res Food Sci 2022; 5:2309-2315. [DOI: 10.1016/j.crfs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
|
56
|
Gani U, Nautiyal AK, Kundan M, Rout B, Pandey A, Misra P. Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6186-6206. [PMID: 35662335 DOI: 10.1093/jxb/erac249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The β-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
57
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
58
|
Liu Y, Zhu L, Yang M, Xie X, Sun P, Fang C, Zhao J. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153789. [PMID: 35995002 DOI: 10.1016/j.jplph.2022.153789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/01/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The citrate content of strawberry fruits affects their organoleptic quality. However, little is known about the transcriptional regulatory mechanisms of citric acid metabolism in strawberry fruits. In this study, the R2R3-MYB transcription factor FaMYB5 was identified and placed in the R2R3-MYB subfamily. FaMYB5 is found in the nucleus and shows tissue- and stage-specific expression levels. Citric acid content was positively correlated with FaMYB5 transcript levels. Upregulated FaMYB5 increased citric acid accumulation in transient FaMYB5-overexpressing strawberry fruits, whereas transient RNA silencing of FaMYB5 in strawberry fruits resulted in a reduction of citric acid content. The role of FaMYB5 was verified using stable transgenic NC89 tobacco. Furthermore, a yeast one-hybrid assay revealed that FaMYB5 influences citric acid accumulation by binding to the FaACO (aconitase), FaGAD (glutamate decarboxylase), and FaCS2 (citrate synthase) promoters. Dual-luciferase assays were used to demonstrate that FaMYB5 could activate FaCS2 expression and repress the transcription levels of FaACO and FaGAD. This study identified important roles of FaMYB5 in the regulation of citric acid metabolism and provided a potential target for improving strawberry fruit taste in horticultural crops.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mingjun Yang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
59
|
Zhou S, Ma Y, Shang Y, Qi X, Huang S, Li J. Functional diversity and metabolic engineering of plant-specialized metabolites. LIFE METABOLISM 2022; 1:109-121. [PMID: 39872355 PMCID: PMC11749740 DOI: 10.1093/lifemeta/loac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2025]
Abstract
Plants are talented biochemists that produce a broad diversity of small molecules. These so-called specialized metabolites (SMs) play critical roles in the adaptive evolution of plants to defend against biotic and abiotic stresses, attract pollinators, and modulate soil microbiota for their own benefits. Many plant SMs have been used as nutrition and flavor compounds in our daily food, as well as drugs for treatment of human diseases. Current multi-omics tools have significantly accelerated the process of biosynthetic pathway elucidation in plants through correlation analyses, genetic mapping, and de novo biosynthetic gene cluster predictions. Understanding the biosynthesis of plant SMs has enabled reconstitution of naturally occurring specialized metabolic pathways in microbial hosts, providing a sustainable supply of these high-value molecules. In this review, we illustrate the general functions of several typical plant SMs in natural ecosystems and for human societies. We then provide an overview of current methods elucidating the biosynthetic pathways of plant SMs, and synthetic biology strategies that optimize the efficiency of heterologous biosynthetic pathways in microbial hosts. Moving forward, dissection of the functions and application of plant SMs by using current multidiscipline approaches would be greatly benefit to the scientific community and human societies.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yongshuo Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunan 650500, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
60
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
61
|
Guo C, Wang P, Zhang J, Guo X, Mu X, Du J. Organic acid metabolism in Chinese dwarf cherry [ Cerasus humilis (Bge.) Sok.] is controlled by a complex gene regulatory network. FRONTIERS IN PLANT SCIENCE 2022; 13:982112. [PMID: 36160985 PMCID: PMC9491322 DOI: 10.3389/fpls.2022.982112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The acidity of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] fruits is a key factor affecting the sensory quality of fruits, and it undergoes great changes during development. The molecular mechanisms of these changes are still unclear. In this study, fruits of high-acid 'Nongda4' and low-acid 'DS-1' varieties of Chinese dwarf cherry were used to determine the acid content at different developmental stages. We used transcriptome profiles to identify key genes related to organic acid metabolism and construct their co-expression networks, and we studied the expression patterns of key genes in 36 Chinese dwarf cherry accessions. The titratable acid content of both 'DS-1' and 'Nongda4' fruits first increased and then decreased during fruit development; however, the titratable acid content of 'DS-1' fruits changed to a minor extent. The organic acid content of 'Nongda4' was significantly higher than that of 'DS-1'. The organic acids in mature fruits were mainly malic acid and citric acid. Analysis of the differentially expressed genes related to organic acid metabolism revealed six key genes, including two MDH genes, one tDT gene, one ME gene, one PEPCK gene, and one VHA gene. Weighted gene co-expression network association analysis revealed four modules that were significantly correlated with organic acid content, and 10 key genes with high connectivity among these four modules were screened, including two PK genes, two MDH genes, two ME genes, one PEPCK gene, one VHA gene, one PEPC gene, and one tDT gene. According to the expression patterns of genes in different Chinese dwarf cherry accessions, seven genes were confirmed to represent key genes related to the regulation of organic acids during Chinese dwarf cherry fruit development. These results provide a foundation for further studies on the molecular mechanism of organic acid accumulation in Chinese dwarf cherry fruit.
Collapse
Affiliation(s)
- Caizhen Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Department of Life Sciences, Luliang University, Luliang, China
| | - Pengfei Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Jiancheng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Xiwen Guo
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaopeng Mu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Junjie Du
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
62
|
Zhang Y, Tan Q, Wang N, Meng X, He H, Wen B, Xiao W, Chen X, Li D, Fu X, Li L. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. FRONTIERS IN PLANT SCIENCE 2022; 13:971482. [PMID: 36035719 PMCID: PMC9413399 DOI: 10.3389/fpls.2022.971482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy, which enables damage from cold temperatures to be avoided during winter and early spring, is an important adaptive mechanism of deciduous fruit trees to cope with seasonal environmental changes and temperate climates. Understanding the regulatory mechanism of bud break in fruit trees is highly important for the artificial control of bud break and the prevention of spring frost damage. However, the molecular mechanism underlying the involvement of MYB TFs during the bud break of peach is still unclear. In this study, we isolated and identified the PpMYB52 (Prupe.5G240000.1) gene from peach; this gene is downregulated in the process of bud break, upregulated in response to ABA and downregulated in response to GA. Overexpression of PpMYB52 suppresses the germination of transgenic tomato seeds. In addition, Y2H, Bimolecular fluorescence complementation (BiFC) assays verified that PpMYB52 interacts with a RING-type E3 ubiquitin ligase, PpMIEL1, which is upregulated during bud break may positively regulate peach bud break by ubiquitination-mediated degradation of PpMYB52. Our findings are the first to characterize the molecular mechanisms underlying the involvement of MYB TFs in peach bud break, increasing awareness of dormancy-related molecules to avoid bud damage in perennial deciduous fruit trees.
Collapse
Affiliation(s)
- Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
63
|
Lu Z, Huang Y, Mao S, Wu F, Liu Y, Mao X, Adhikari PB, Xu Y, Wang L, Zuo H, Rao MJ, Xu Q. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. HORTICULTURE RESEARCH 2022; 9:uhac175. [PMID: 36238347 PMCID: PMC9552194 DOI: 10.1093/hr/uhac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Citric acid and anthocyanin contents were co-selected during Citrus domestication. Pummelo is a founding species in the Citrus genus, but the domestication of pummelo has not been well studied. Here, we compared the citric acid and anthocyanin contents of a low citric acid pummelo (Citrus maxima LCA) and its high citric acid variety (HCA) from the same cultivation area in China. Our study revealed that, unlike the LCA type, the HCA variety accumulated anthocyanin in the pericarp early in fruit development. To investigate the genetic basis of acid and anthocyanin enrichment in HCA pulp and pericarp, respectively, we generated a chromosome-scale HCA genome using long-read sequence reads and Hi-C sequencing data. Transcriptome analysis and transient overexpression assays showed that the accumulation of citric acid and anthocyanin was associated with high expression of CgANTHOCYANIN1 (CgAN1), and two different MYBs transcription factors (CgPH4 and CgRuby1), respectively. Moreover, the CgAN1 promoter was more methylated in the LCA pulp than in the HCA pulp. Treatment with a DNA methylation inhibitor, 5-azacytidine, alleviated the CgAN1 promoter hypermethylation in the LCA pulp, leading to increased CgAN1 expression and citric acid content. This study provides a new high-quality pummelo genome and insight into the molecular mechanism behind the change in tissue-specific citric acid and anthocyanin accumulation during pummelo domestication and provides a conceptual basis for precise genetic manipulation in fruit flavor breeding.
Collapse
Affiliation(s)
- Zhihao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sangyin Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Yong Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiangqing Mao
- Service Center for Agriculture and Rural Area, Guangfeng, Shangrao, Jiangxi 334000, China
| | - Prakash Babu Adhikari
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zuo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | |
Collapse
|
64
|
Jiang H, Zhou LJ, Gao HN, Wang XF, Li ZW, Li YY. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. PLANT PHYSIOLOGY 2022; 189:2044-2060. [PMID: 35522008 PMCID: PMC9342976 DOI: 10.1093/plphys/kiac211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 05/08/2023]
Abstract
Conjugation of the small ubiquitin-like modifier (SUMO) peptide to target proteins is an important post-translational modification. SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (MdSIZ1) is an apple (Malus domestica Borkh). SUMO E3 ligase that mediates sumoylation of its targets during plant growth and development under adverse environmental conditions. However, it is unclear how MdSIZ1 senses the various environmental signals and whether sumoylation is regulated at the transcriptional level. In this study, we analyzed the MdSIZ1 promoter and found that it contained an MYB binding site (MBS) motif that was essential for the response of MdSIZ1 to low temperature (LT) and drought. Subsequently, we used yeast one-hybridization screening to demonstrate that a MYB transcription factor, MdMYB2, directly bound to the MBS motif in the MdSIZ1 promoter. Phenotypic characterization of MdMYB2 and MdSIZ1 suggested that the expression of both MdMYB2 and MdSIZ1 substantially improved cold tolerance in plants. MdMYB2 was induced by LT and further activated the expression of MdSIZ1, thereby promoting the sumoylation of MdMYB1, a key regulator of anthocyanin biosynthesis in apple. MdMYB2 promoted anthocyanin accumulation in apple fruits, apple calli, and Arabidopsis (Arabidopsis thaliana) in an MdSIZ1-dependent manner. In addition, the interaction of MdMYB2 and the MdSIZ1 promoter substantially improved plant tolerance to cold stress. Taken together, our findings reveal an important role for transcriptional regulation of sumoylation and provide insights into plant anthocyanin biosynthesis regulation mechanisms and stress response.
Collapse
Affiliation(s)
| | | | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zhi-Wen Li
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | | |
Collapse
|
65
|
Li Z, Pi Y, Fan J, Yang X, Zhai C, Chen H, Wang F, Ding J, Gu T, Li Y, Wu H. High mobility group A3 enhances transcription of the DNA demethylase gene SlDML2 to promote tomato fruit ripening. PLANT PHYSIOLOGY 2022; 189:315-328. [PMID: 35171288 PMCID: PMC9070846 DOI: 10.1093/plphys/kiac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
DNA methylation plays an important role in regulating tomato (Solanum lycopersicum) fruit ripening. Although SlDML2, a DNA demethylase (DML) gene, is critically involved in tomato fruit ripening, little is known about genes that regulate its expression. Using yeast one-hybrid screening, we identified a High Mobility Group A protein, named SlHMGA3, and demonstrated its binding activity to the AT-rich region of the SlDML2 promoter. We produced slhmga3 tomato mutants using CRISPR/Cas9 and observed that slhmga3 fruit reached the breaker stage much later than fruit from the wild-type. We further demonstrated that at the initiation stage of fruit ripening, the increased expression of SlDML2 and ethylene biosynthetic and signaling genes was significantly delayed in slhmga3 fruit, along with delays in ethylene production and demethylation and activation of ripening-associated transcription factor genes. Our results demonstrate that SlHMGA3 plays a role in enhancing SlDML2 expression, and its effects on tomato fruit ripening are largely through DNA demethylation of ripening-associated transcription factor genes.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Pi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changsheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Han Wu
- Author for correspondence:
| |
Collapse
|
66
|
Wang CK, Li XM, Dong F, Sun CH, Lu WL, Hu DG. Yang cycle enzyme DEP1: its moonlighting functions in PSI and ROS production during leaf senescence. MOLECULAR HORTICULTURE 2022; 2:10. [PMID: 37789483 PMCID: PMC10514949 DOI: 10.1186/s43897-022-00031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/25/2022] [Indexed: 10/05/2023]
Abstract
Ethylene-mediated leaf senescence and the compromise of photosynthesis are closely associated but the underlying molecular mechanism is a mystery. Here we reported that apple DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1 (MdDEP1), initially characterized to its enzymatic function in the recycling of the ethylene precursor SAM, plays a role in the regulation of photosystem I (PSI) activity, activating reactive oxygen species (ROS) homeostasis, and negatively regulating the leaf senescence. A series of Y2H, Pull-down, CO-IP and Cell-free degradation biochemical assays showed that MdDEP1 directly interacts with and dephosphorylates the nucleus-encoded thylakoid protein MdY3IP1, leading to the destabilization of MdY3IP1, reduction of the PSI activity, and the overproduction of ROS in plant cells. These findings elucidate a novel mechanism that the two pathways intersect at MdDEP1 due to its moonlighting role in destabilizing MdY3IP1, and synchronize ethylene-mediated leaf senescence and the compromise of photosynthesis.
Collapse
Affiliation(s)
- Chu-Kun Wang
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiu-Ming Li
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fang Dong
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, 271000, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen-Li Lu
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
67
|
Yu JQ, Gu KD, Zhang LL, Sun CH, Zhang QY, Wang JH, Wang CK, Wang WY, Du MC, Hu DG. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:884-900. [PMID: 35199464 DOI: 10.1111/jipb.13236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sugars are involved in plant growth, fruit quality, and signaling perception. Therefore, understanding the mechanisms involved in soluble sugar accumulation is essential to understand fruit development. Here, we report that MdPFPβ, a pyrophosphate-dependent phosphofructokinase gene, regulates soluble sugar accumulation by enhancing the photosynthetic performance and sugar-metabolizing enzyme activities in apple (Malus domestica Borkh.). Biochemical analysis revealed that a basic helix-loop-helix (bHLH) transcription factor, MdbHLH3, binds to the MdPFPβ promoter and activates its expression, thus promoting soluble sugar accumulation in apple fruit. In addition, MdPFPβ overexpression in tomato influenced photosynthesis and carbon metabolism in the plant. Furthermore, we determined that MdbHLH3 increases photosynthetic rates and soluble sugar accumulation in apple by activating MdPFPβ expression. Our results thus shed light on the mechanism of soluble sugar accumulation in apple leaves and fruit: MdbHLH3 regulates soluble sugar accumulation by activating MdPFPβ gene expression and coordinating carbohydrate allocation.
Collapse
Affiliation(s)
- Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Li Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Quan-Yan Zhang
- College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen-Yan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng-Chi Du
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Tai'an, 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, 271018, China
| |
Collapse
|
68
|
Liu S, Liu X, Gou B, Wang D, Liu C, Sun J, Yin X, Grierson D, Li S, Chen K. The Interaction Between CitMYB52 and CitbHLH2 Negatively Regulates Citrate Accumulation by Activating CitALMT in Citrus Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:848869. [PMID: 35386675 PMCID: PMC8978962 DOI: 10.3389/fpls.2022.848869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Citric acid plays significant roles in numerous physiological processes in plants, including carbon metabolism, signal transduction, and tolerance to environmental stress. For fruits, it has a major effect on fruit organoleptic quality by directly influencing consumer taste. Citric acid in citrus is mainly regulated by the balance between synthesis, degradation, and vacuolar storage. The genetic and molecular regulations of citric acid synthesis and degradation have been comprehensively elucidated. However, the transporters for citric acid in fruits are less well understood. Here, an aluminum-activated malate transporter, CitALMT, was characterized. Transient overexpression and stable transformation of CitALMT significantly reduced citrate concentration in citrus fruits and transgenic callus. Correspondingly, transient RNA interference-induced silencing of CitALMT and increased citrate significantly, indicating that CitALMT plays an important role in regulating citrate concentration in citrus fruits. In addition, dual-luciferase assays indicated that CitMYB52 and CitbHLH2 could trans-activate the promoter of CitALMT. EMSA analysis showed that CitbHLH2 could physically interact with the E-box motif in the CitALMT promoter. Bimolecular fluorescence complementation assays, yeast two-hybrid, coimmunoprecipitation and transient overexpression, and RNAi assay indicated that the interaction between CitMYB52 and CitbHLH2 could synergistically trans-activate CitALMT to negatively regulate citrate accumulation.
Collapse
Affiliation(s)
- Shengchao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xincheng Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bangrui Gou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | | | - Chunrong Liu
- Quzhou Academy of Agricultural Science, Quzhou, China
| | - Jun Sun
- Zhejiang Agricultural Technology Extension Center, Hangzhou, China
| | - Xueren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Zhao D, Zhao L, Liu Y, Zhang A, Xiao S, Dai X, Yuan R, Zhou Z, Cao Q. Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway for the Accumulation of Anthocyanins and Other Flavonoids in Sweetpotato Root Skin and Leaf Vein Base. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2574-2588. [PMID: 35175040 DOI: 10.1021/acs.jafc.1c05388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam.] is a major tuberous root crop that is rich in flavonoids. Here, we discovered a spontaneous mutation in the color of the leaf vein base (LVB) and root skin (RS) in the Zheshu 81 cultivar. The flavonoid and anthocyanin metabolites and molecular mechanism were analyzed using metabolome and transcriptome data. Compared to the wild type, 13 differentially accumulated metabolites (DAMs) in the LVB and 59 DAMs in the RS were all significantly downregulated. Moreover, all the anthocyanin metabolites decreased significantly. The differentially expressed genes (DEGs) encoding the key enzymes in the later enzymatic reaction of anthocyanin and flavonoid were significantly downregulated in the mutant. The expression trends of the transcription factor MYB were evidently related to the anthocyanin content. These results offer insights into the coloration in the LVB and RS and a theoretical basis for determining the regulation of flavonoid and anthocyanin synthesis in sweetpotato.
Collapse
Affiliation(s)
- Donglan Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Lingxiao Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Yang Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - An Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Shizhuo Xiao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Xibin Dai
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Rui Yuan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China
| |
Collapse
|
70
|
Wang Z, Ma B, Yang N, Jin L, Wang L, Ma S, Ruan YL, Ma F, Li M. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1183-1198. [PMID: 34888978 DOI: 10.1111/tpj.15624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Fructose (Fru) content is a key determinant of fruit sweetness and quality. An F1 hybrid population of the apple cultivars 'Honeycrisp' × 'Qinguan' was used to investigate the quantitative trait locus (QTL) regions and genes controlling Fru content in fruit. A stable QTL on linkage group (LG) 01 in 'Honeycrisp' was detected on the single nucleotide polymorphism (SNP) genetic linkage maps. In this region, a sorbitol dehydrogenase (SDH) gene, MdSDH2, was detected and showed promoter variations and differential expression patterns between 'Honeycrisp' and 'Qinguan' fruits as well as their hybrids. A SNP variant (A/G) in the MdSDH2 promoter region (SDH2p-491) affected the binding ability of the transcription factor MdABI3, which can affect the expression of MdSDH2. Promoter sequences with an A nucleotide at SDH2p-491 had stronger binding affinity for MdABI3 than those with a G. Among 27 domesticated apple cultivars and wild relatives, this SNP (A/G) was associated with Fru content. Our results indicate that MdSDH2 can alter Fru content as the major regulatory gene and that ABA signaling might be involved in Fru content accumulation in apple fruit.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ling Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songya Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
71
|
Liu X, Liu HF, Li HL, An XH, Song LQ, You CX, Zhao LL, Tian Y, Wang XF. MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2.4-1 in the red flesh apple. HORTICULTURE RESEARCH 2022; 9:uhac016. [PMID: 35184189 PMCID: PMC9016894 DOI: 10.1093/hr/uhac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrate is the major nitrogen sources for higher plants. In addition to serving not only as a nutrient, it is also a signaling molecule that regulates plant growth and development. Although membrane-bound nitrate transporter/peptide transporters (NRT/PTR) have been extensively studied and shown to regulate nitrate uptake and movement, little is known about how these factors are regulated by the external nitrogen environment. Red flesh apple, the coloration of which is determined by the transcription factor MdMYB10, had higher nitrate uptake efficiency than non-red flesh apple. Nitrate assimilation and utilization were increased in red flesh apple cultivar, and comparative transcriptome analysis showed that the expression of genes encoding the NRT2s was increased in red flesh apple. In vitro and in vivo experiments showed that MdMYB10 directly bound to the MdNRT2.4-1 promoter to transcriptionally activate its expression, resulting in enhanced nitrate uptake. MdMYB10 also controlled nitrate reallocation from old leaves to new leaves through MdNRT2.4-1. Overall, our findings provide novel insights into the mechanism by which MdMYB10 controls nitrate uptake and reallocation in apple, which facilitates adaptation to low nitrogen environment.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hao-Feng Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiu-Hong An
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Yi Tian
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
72
|
Wang Q, Cao K, Cheng L, Li Y, Guo J, Yang X, Wang J, Khan IA, Zhu G, Fang W, Chen C, Wang X, Wu J, Xu Q, Wang L. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. HORTICULTURE RESEARCH 2022; 9:uhac026. [PMID: 35184194 PMCID: PMC9171119 DOI: 10.1093/hr/uhac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.
Collapse
Affiliation(s)
- Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
73
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
74
|
Qin J, Zhao C, Wang S, Gao N, Wang X, Na X, Wang X, Bi Y. PIF4-PAP1 interaction affects MYB-bHLH-WD40 complex formation and anthocyanin accumulation in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153558. [PMID: 34798465 DOI: 10.1016/j.jplph.2021.153558] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
Abstract
Anthocyanin accumulation is a marked phenotype of plants under environmental stresses. PHYTOCHROME-INTERACTING FACTORs (PIFs) are involved in environment-induced anthocyanin biosynthesis through interacting with the MYB-bHLH-WD40 (MBW) complex. However, the molecular mechanism of this interaction remains unclear. The present study demonstrated that PIF3 and PIF5 can slightly repress anthocyanin accumulation under NaCl, low nitrogen (-N), or 6-BA treatments; in contrast, PIF4 can significantly repress anthocyanin accumulation. Bimolecular fluorescence complementation and yeast two-hybrid assays showed that PIF4 directly interacts with PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1), a MYB transcription factor in the MBW complex. Further analysis revealed that the active phytochrome binding (APB) domain in the N terminus of PIF4 is necessary for the interaction between PIF4 and PAP1. Yeast three-hybrid analysis showed that PIF4 competes with TRANSPARENT TESTA 8 (TT8) to bind PAP1, thereby interfering with the regulation of the MBW protein complex in anthocyanin synthesis. Consistently, the anthocyanin content in pap1-D/35S::PIF4 and 35S::PAP1/35S::PIF4 seedlings was markedly lower than that in pap1-D and 35S::PAP1 under 6-BA, MeJA, -N, and NaCl stresses, implying that overexpression of PIF4 suppresses anthocyanin accumulation in pap1-D and 35S::PAP1. Thus, PIF4 is genetically epistatic to PAP1. Taken together, PIF4 plays a negative role in modulating anthocyanin biosynthesis in Arabidopsis under different stress environments, and PIF4 interacts with PAP1 to affect the integrity of the MBW complex.
Collapse
Affiliation(s)
- Juan Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Chengzhou Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Shengwang Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Na Gao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Xiangxiang Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Xiaofan Na
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
75
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
76
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
77
|
Zhao YW, Wang CK, Huang XY, Hu DG. Genome-Wide Analysis of the Glutathione S-Transferase (GST) Genes and Functional Identification of MdGSTU12 Reveals the Involvement in the Regulation of Anthocyanin Accumulation in Apple. Genes (Basel) 2021; 12:1733. [PMID: 34828339 PMCID: PMC8619396 DOI: 10.3390/genes12111733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Anthocyanins have essential biological functions, affecting the development of horticultural production. They are synthesized in the cytoplasm through flavonoid metabolic pathways and finally transported into vacuoles for storage. Plant glutathione S-transferases (GSTs) are multifunctional enzymes involved in anthocyanin transportation. In this study, we identified 38 GSTs from the apple (Malus domestica) genome (HFTH1 Whole Genome v1.0) based on the sequence similarity with the GST family proteins of Arabidopsis. These MdGST genes could be grouped into nine chief subclasses: U, F, L, Z, T, GHR, EF1Bγ, TCHQD, and DHAR. The structures, motifs, three-dimensional models, and chromosomal distribution of MdGST genes were further analyzed. Elements which are responsive for some hormones and stress, and others that involve genes related to flavonoid biosynthesis were forecast in the promoter of MdGST. In addition, we identified 32 orthologous gene pairs between apple and Arabidopsis. These genes indicated that numerous apple and Arabidopsis counterparts appeared to be derived from a common ancestor. Amongst the 38 MdGST genes, MdGSTU12 was considerably correlated with anthocyanin variation in terms of extracting expression profiles from reported. Finally, further functional identification in apple transgenic calli and subcellular localization confirmed that MdGSTU12 was of great significance in anthocyanin accumulation in apple.
Collapse
Affiliation(s)
| | | | | | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-W.Z.); (C.-K.W.); (X.-Y.H.)
| |
Collapse
|
78
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. Mechanisms and regulation of organic acid accumulation in plant vacuoles. HORTICULTURE RESEARCH 2021; 8:227. [PMID: 34697291 PMCID: PMC8546024 DOI: 10.1038/s41438-021-00702-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
79
|
Li X, Li Y, Zhao M, Hu Y, Meng F, Song X, Tigabu M, Chiang VL, Sederoff R, Ma W, Zhao X. Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Leaf Color Change in Chokecherry ( Padus virginiana). Int J Mol Sci 2021; 22:ijms221910697. [PMID: 34639038 PMCID: PMC8509056 DOI: 10.3390/ijms221910697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| |
Collapse
|
80
|
Wang X, Xu L, Liu X, Xin L, Wu S, Chen X. Development of potent promoters that drive the efficient expression of genes in apple protoplasts. HORTICULTURE RESEARCH 2021; 8:211. [PMID: 34593780 PMCID: PMC8484340 DOI: 10.1038/s41438-021-00646-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 05/24/2023]
Abstract
Protoplast transient expression is a powerful strategy for gene functional characterization, especially in biochemical mechanism studies. We herein developed a highly efficient transient expression system for apple protoplasts. The abilities of the Arabidopsis thaliana and Malus domestica ubiquitin-10 (AtUBQ10 and MdUBQ10) promoters to drive the expression of multiple genes were compared with that of the CaMV 35S promoter, and the results revealed that the AtUBQ10 and MdUBQ10 promoters were more efficient in apple protoplasts. With this system, we demonstrated that active AtMKK7ac could activate MAPK6/3/4 signaling cascades, which further regulated MdWRKY33 phosphorylation and stability in apple. Furthermore, the ligand-induced interaction between the immune receptor AtFLS2 and the coreceptor AtBAK1 was reconstituted in apple protoplasts. We also found that the stability of the bacterial effector AvrRpt2 was regulated by feedback involving auxin and the immune regulator RIN4. The system established herein will serve as a useful tool for the molecular and biochemical analyses of apple genes.
Collapse
Affiliation(s)
- Xianpu Wang
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Lili Xu
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Xiuxia Liu
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Li Xin
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Shujing Wu
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China.
| | - Xuesen Chen
- College of Horticultural Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, PR China.
| |
Collapse
|
81
|
Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits. Foods 2021; 10:foods10092198. [PMID: 34574306 PMCID: PMC8467953 DOI: 10.3390/foods10092198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.
Collapse
|
82
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng CH, Ma B, Zheng B, You CX, Hu DG, Espley R, Lin-Wang K, Yao JL, Allan AC, Khan A, Korban SS, Fei Z, Ming R, Hao YJ, Li L, Han Y. Unraveling a genetic roadmap for improved taste in the domesticated apple. MOLECULAR PLANT 2021; 14:1454-1471. [PMID: 34022440 DOI: 10.1016/j.molp.2021.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.
Collapse
Affiliation(s)
- Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Nie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanyan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yiran Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jianqiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chukun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Baiquan Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Da-Gang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Li Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
83
|
Liu J, Wang J, Wang M, Zhao J, Zheng Y, Zhang T, Xue L, Lei J. Genome-Wide Analysis of the R2R3-MYB Gene Family in Fragaria × ananassa and Its Function Identification During Anthocyanins Biosynthesis in Pink-Flowered Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:702160. [PMID: 34527006 PMCID: PMC8435842 DOI: 10.3389/fpls.2021.702160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 05/14/2023]
Abstract
The strawberry (Fragaria × ananassa) is an economically important fruit throughout the world. The large R2R3-MYB gene family participates in a variety of plant functions, including anthocyanin biosynthesis. The present study is the first genome-wide analysis of the MYB gene family in the octoploid strawberry and describes the identification and characterization of the family members using the recently sequenced F. × ananassa genome. Specifically, we aimed to identify the key MYBs involved in petal coloration in the pink-flowered strawberry, which increases its ornamental value. A comprehensive, genome-wide analysis of F. × ananassa R2R3-FaMYBs was performed, investigating gene structures, phylogenic relationships, promoter regions, chromosomal locations, and collinearity. A total of 393 R2R3-FaMYB genes were identified in the F. × ananassa genome and divided into 36 subgroups based on phylogenetic analysis. Most genes with similar functions in the same subgroup exhibited similar exon-intron structures and motif compositions. These R2R3-FaMYBs were unevenly distributed over 28 chromosomes. The expansion of the R2R3-FaMYB gene family in the F. × ananassa genome was found to be caused mainly by segmental duplication. The Ka/Ks analysis indicated that duplicated R2R3-FaMYBs mostly experienced purifying selection and showed limited functional divergence after the duplication events. To elucidate which R2R3-FaMYB genes were associated with anthocyanin biosynthesis in the petals of the pink-flowered strawberry, we compared transcriptional changes in different flower developmental stages using RNA-seq. There were 131 differentially expressed R2R3-FaMYB genes identified in the petals, of which three genes, FaMYB28, FaMYB54, and FaMYB576, appeared likely, based on the phylogenetic analysis, to regulate anthocyanin biosynthesis. The qRT-PCR showed that these three genes were more highly expressed in petals than in other tissues (fruit, leaf, petiole and stolon) and their expressions were higher in red compared to pink and white petals. These results facilitate the clarification on the roles of the R2R3-FaMYB genes in petal coloration in the pink-flowered strawberry. This work provides useful information for further functional analysis on the R2R3-FaMYB gene family in F. × ananassa.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Mingqian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jun Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yang Zheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tian Zhang
- Genepioneer Biotechnologies Co. Ltd, Nanjing, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
84
|
Wang F, Wu Y, Wu W, Huang Y, Zhu C, Zhang R, Chen J, Zeng J. Integrative analysis of metabolome and transcriptome profiles provides insight into the fruit pericarp pigmentation disorder caused by 'Candidatus Liberibacter asiaticus' infection. BMC PLANT BIOLOGY 2021; 21:397. [PMID: 34433413 PMCID: PMC8385863 DOI: 10.1186/s12870-021-03167-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mandarin 'Shatangju' is susceptible to Huanglongbing (HLB) and the HLB-infected fruits are small, off-flavor, and stay-green at the maturity period. To understand the relationship between pericarp color and HLB pathogen and the effect mechanism of HLB on fruit pericarp coloration, quantitative analyses of HLB bacterial pathogens and carotenoids and also the integrative analysis of metabolome and transcriptome profiles were performed in the mandarin 'Shatangju' variety with four different color fruits, whole green fruits (WGF), top-yellow and base-green fruits (TYBGF), whole light-yellow fruits (WLYF), and whole dark-yellow fruits (WDYF) that were infected with HLB. RESULTS the HLB bacterial population followed the order WGF > TYBGF > WLYF > WDYF. And there were significant differences between each group of samples. Regarding the accumulation of chlorophyll and carotenoid, the chlorophyll-a content in WGF was the highest and in WDYF was the lowest. The content of chlorophyll-b in WGF was significantly higher than that in other three pericarps. There were significant differences in the total content of carotenoid between each group. WGF and TYBGF pericarps were low in phytoene, γ-carotene, β-cryptoxanthin and apocarotenal, while other kinds of carotenoids were significantly higher than those in WDYF. And WLYF was only short of apocarotenal. We comprehensively compared the transcriptome and metabolite profiles of abnormal (WGF, TYBGF and WLYF) and normal (WDYF, control) pericarps. In total, 2,880, 2,782 and 1,053 differentially expressed genes (DEGs), including 121, 117 and 43 transcription factors were identified in the three comparisons, respectively. The qRT-PCR confirmed the expression levels of genes selected from transcriptome. Additionally, a total of 77 flavonoids and other phenylpropanoid-derived metabolites were identified in the three comparisons. Most (76.65 %) showed markedly lower abundances in the three comparisons. The phenylpropanoid biosynthesis pathway was the major enrichment pathway in the integrative analysis of metabolome and transcriptome profiles. CONCLUSIONS Synthesizing the above analytical results, this study indicated that different color pericarps were associated with the reduced levels of some carotenoids and phenylpropanoids derivatives products and the down-regulation of proteins in flavonoids, phenylpropanoids derivatives biosynthesis pathway and the photosynthesis-antenna proteins.
Collapse
Affiliation(s)
- Feiyan Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Yunli Wu
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Wen Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Yongjing Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Congyi Zhu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Ruimin Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Jiezhong Chen
- College of Horticulture, South China Agricultural University, 510642 Guangzhou, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| |
Collapse
|
85
|
Hu Y, Cheng H, Zhang Y, Zhang J, Niu S, Wang X, Li W, Zhang J, Yao Y. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. THE NEW PHYTOLOGIST 2021; 231:1105-1122. [PMID: 33908060 DOI: 10.1111/nph.17431] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 05/22/2023]
Abstract
Light induces anthocyanin accumulation and hence decides the coloration of apple fruit. It also plays a key role in regulating the biosynthesis of other secondary metabolites. However, the crosstalk between anthocyanin and lignin metabolism during light induction, which affects the edible quality and visual quality of apple fruit, respectively, have rarely been characterized. In this study, we identified and functionally elucidated the roles of miR7125 and its target, cinnamoyl-coenzyme A reductase gene (CCR), in regulating the homeostasis between anthocyanin and lignin biosynthesis during light induction. Overexpressing miR7125 or inhibiting CCR transiently in apple fruit promoted anthocyanin biosynthesis but reduced lignin production under light-induced conditions. Consistently, opposite results were observed under the background of repressed miR7125 or overexpressed CCR. We found that the repressor MdMYB16 and the activator MdMYB1 bound to the miR7125 promoter. Transient repression of MdMYB16 upregulated miR7125 expression significantly, accompanied by decreased levels of MdCCR transcript, resulting in a reduction in the lignin biosynthesis and an increase in anthocyanin accumulation. However, transient overexpression of MdMYB16 produced the opposite effects to MdMYB16-RNAi. The results reveal a novel mechanism by which the MdMYB16/MdMYB1-miR7125-MdCCR module collaboratively regulates homeostasis between anthocyanin and lignin biosynthesis under light induction in apple.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Hao Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Shuqing Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Wenjing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| |
Collapse
|
86
|
Ding R, Che X, Shen Z, Zhang Y. Metabolome and transcriptome profiling provide insights into green apple peel reveals light- and UV-B-responsive pathway in anthocyanins accumulation. BMC PLANT BIOLOGY 2021; 21:351. [PMID: 34303342 PMCID: PMC8305501 DOI: 10.1186/s12870-021-03121-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND In nature, green apple are associated with the accumulation of chlorophyll, while red apple varieties are associated with anthocyanins accumulation. Notably, in this study, the green skin color apple variety 'white winter pearmain' treated with ultraviolet-B (UV-B) exhibited red skins and marked anthocyanin accumulation, while visible light could not. But there are few reports on the biosynthesis difference of anthocyanins in green apple by visible light and UV-B-treatment. Here, we explored the difference of metabolites and genes expression level in green apple by transcriptomic and metabolic. RESULTS The metabolic analysis revealed that there were 152 and 178 significantly changed metabolites in the visible light and UV-B-treated green apple, respectively, compared to the control, and flavone, flavonol, and anthocyanin were the most significantly increased; and transcriptomic analysis showed that 37,110 and 37,709 differentially expressed genes, including 382 and 475 transcription factors (TFs) were detected in light and UV-B-treatment fruit, respectively. Quantitative reverse transcription PCR (qRT-PCR) results confirmed changes in the expression levels of genes encoding metabolites involved in the flavonoid synthesis pathways. The flavonoid metabolic flux in the UV-B treatment increased the accumulation of cyanidin 3-glucoside and cyanidin 3, 5-diglucoside compared to under the light-treatment. Furthermore, we performed qRT-PCR analysis of anthocyanin biosynthesis genes and predicted the gene of MD00G1134400 (a UDP glucose-flavonoid 3-0-glucosyltransferase) may be a candidate gene for anthocyanins accumulation and highly expressed in UV-B-treatment fruit. Expression profiles of several transcription factors of the families MYB, bHLH, NAC were highly correlated with the content of the anthocyanin. CONCLUSIONS The composition and contents of anthocyanins in green apple in UV-B-treatment very greatly. A series of metabolites and candidate genes were revealed through combined analysis of metabolome and transcriptome. These results provide an important data for dissecting candidate genes and molecular basis governing green apple color formation in response to visible light and UV-B light.
Collapse
Affiliation(s)
- Ruirui Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xingkai Che
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhen Shen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
87
|
Huang H, Abid M, Lin M, Wang R, Gu H, Li Y, Qi X. Comparative Transcriptome Analysis of Different Actinidia arguta Fruit Parts Reveals Difference of Light Response during Fruit Coloration. BIOLOGY 2021; 10:biology10070648. [PMID: 34356503 PMCID: PMC8301191 DOI: 10.3390/biology10070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Kiwifruit coloration is an important agronomic trait used to determine fruit quality, and light plays a vital role in the coloration process. The effect of light on fruit coloration has been studied in many species, but differences in the photoresponse of different fruit parts during fruit coloration is unclear in kiwifruit (Actinidia arguta). In this study, peel and core with bagging and non-bagging treatment at two stages were selected to perform high throughput RNA sequencing. A total of 100,417 unigenes (25,186 unigenes with length beyond 1000 bp) were obtained, of which 37,519 unigenes were annotated in functional databases. GO and KEGG enrichment results showed that 'plant hormone signal transduction' and 'carbon metabolism' were the key pathways in peel and core coloration, respectively. A total of 27 MYB-related TFs (transcription factors) were differentially expressed in peel and core. An R2R3-MYB typed TF, AaMYB308like, possibly served as a candidate objective, which played a vital role in light-inducible fruit coloration based on bioinformatics analysis. Transient overexpression of AaMYB308like suggested overexpression of AaMYB308like elevated transcription level of NtCHI in Nicotiana tabacum leaves. Integration of all these results imply that AaMYB308like might be served as a light-responsive transcription factor to regulate anthocyanin biosynthesis in A. arguta. Moreover, our study provided important insights into photoreponse mechanisms in A. arguta coloration.
Collapse
|
88
|
Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). PHYSIOLOGIA PLANTARUM 2021; 172:1739-1749. [PMID: 33665852 DOI: 10.1111/ppl.13383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Light regulates anthocyanins synthesis in plants. Upon exposure to visible light, the inhibition of photosynthetic electron transfer significantly lowered the contents of anthocyanins and the expression levels of key genes involved in anthocyanins synthesis in plum fruit peel. Meanwhile, the expression levels of PsmMDH2 (encoding the malate dehydrogenase in mitochondria) and PschMDH (encoding the malate dehydrogenase in chloroplasts) decreased significantly. The contents of anthocyanins and the levels of the key genes involved in anthocyanin synthesis decreased significantly with the treatment of 1-MCP (an inhibitor of ethylene perception) but were enhanced by the exogenous application of ethylene. The ethylene treatment could also recover the anthocyanin synthesis capacity lowered by the photosynthetic electron transfer inhibition. Silencing PsmMDH2 and PschMDH significantly lowered the contents of anthocyanins in plum fruit. At low temperature, visible light irradiation induced anthocyanin accumulation in Arabidopsis leaves. However, the mmdh, chmdh, and etr1-1 mutants had significantly lower anthocyanins content and expressions of the key genes involved in anthocyanins synthesis compared to wild type. Overall, the present study demonstrates that both photosynthesis and respiration were involved in the regulation of anthocyanin synthesis in visible light. The visible light regulates anthocyanin synthesis by controlling the malate metabolism via MDHs and the ethylene signaling pathway.
Collapse
Affiliation(s)
- Guojing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaohui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Junping Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
89
|
Jiang G, Zhang D, Li Z, Liang H, Deng R, Su X, Jiang Y, Duan X. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1341-1352. [PMID: 33656245 DOI: 10.1111/jipb.13088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The alternative splicing of select genes is an important mechanism to regulate responses to endogenous and environmental signals in plants. However, the role of alternative splicing in regulating fruit ripening remains unclear. Here, we discovered that MaMYB16L, an R1-type MYB transcription factor, undergoes alternative splicing and generates two transcripts, the full-length isoform MaMYB16L and a truncated form MaMYB16S, in banana fruit. During banana fruit ripening, the alternative splicing process intensifies with downregulated MaMYB16L and upregulated MaMYB16S. Moreover, MaMYB16L is a transcriptional repressor that directly binds with the promoters of many genes associated with starch degradation and MaDREB2, a positive ripening regulator, and represses their expression. In contrast, MaMBY16S lacks a DNA-binding domain but competitively combines and forms non-functional heterodimers with functional MaMYB16L. MaMYB16L-MaMYB16S heterodimers decrease the binding capacity and transrepression activity of MaMYB16L. The downregulation of MaMYB16L and the upregulation of MaMYB16S, that is, a decreased ratio of active to non-active isoforms, facilitates the activation of ripening-related genes and thereby promotes fruit ripening. Furthermore, the transient overexpression of MaMYB16S promotes banana fruit ripening, whereas the overexpression of MaMYB16L delays this process. Therefore, the alternative splicing of MaMYB16L might generate a self-controlled regulatory loop to regulate banana fruit ripening.
Collapse
Affiliation(s)
- Guoxiang Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhi Liang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rufang Deng
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou, 510507, China
| | - Yueming Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
90
|
Luo D, Xiong C, Lin A, Zhang C, Sun W, Zhang J, Yang C, Lu Y, Li H, Ye Z, He P, Wang T. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. HORTICULTURE RESEARCH 2021; 8:163. [PMID: 34193855 PMCID: PMC8245592 DOI: 10.1038/s41438-021-00595-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins play vital roles in plant stress tolerance and growth regulation. Previously, we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato. However, the underlying mechanism remains unclear. Here, we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR, suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes. Furthermore, we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2, and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots, and SlCSN5-2 overexpression decreased anthocyanin accumulation, suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo. Consistently, silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein. Since SlBBX20 is a vital regulator of photomorphogenesis, the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Cheng Xiong
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Aihua Lin
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Chunli Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Yongen Lu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China.
| |
Collapse
|
91
|
Gao JJ, Wang B, Peng RH, Li ZJ, Xu J, Tian YS, Yao QH. Phytoremediation of multiple persistent pollutants co-contaminated soil by HhSSB transformed plant. ENVIRONMENTAL RESEARCH 2021; 197:110959. [PMID: 33722526 DOI: 10.1016/j.envres.2021.110959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The high toxicity of persistent pollutants limits the phytoremediation of pollutants-contaminated soil. In this study, heterologous expressing Halorhodospira halophila single-stranded DNA binding protein gene (HhSSB) improves tolerance to 2,4,6-trinitrotoluene (TNT), 2,4,6-trichlorophenol (2,4,6-TCP), and thiocyanate (SCN-) in A. thaliana and tall fescue (Festuca arundinacea). The HhSSB transformed Arabidopsis, and tall fescue also exhibited enhanced phytoremediation of TNT, 2,4,6-TCP, and SCN- separately contaminated soil and co-contaminated soil compared to control plants. TNT assay was selected to explore the mechanism of how HhSSB enhances the phytoremediation of persistent pollutants. Our result indicates that HhSSB enhances the phytoremediation of TNT by enhancing the transformation of TNT in Arabidopsis. Moreover, transcriptomics and comet analysis revealed that HhSSB improves TNT tolerance through three pathways: strengthening the defense system, enhancing the ROS scavenging system, and reducing DNA damage. These results presented here would be particularly useful for further studies in the remediation of soil contaminated by organic and inorganic pollutants.
Collapse
Affiliation(s)
- Jian-Jie Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Bo Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhen-Jun Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
92
|
Jia D, Wu P, Shen F, Li W, Zheng X, Wang Y, Yuan Y, Zhang X, Han Z. Genetic variation in the promoter of an R2R3-MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). PLANT PHYSIOLOGY 2021; 186:549-568. [PMID: 33624810 PMCID: PMC8154052 DOI: 10.1093/plphys/kiab098] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/13/2021] [Indexed: 05/25/2023]
Abstract
Deciphering the mechanism of malate accumulation in apple (Malus domestica Borkh.) fruits can help to improve their flavor quality and enhance their benefits for human health. Here, we analyzed malate content as a quantitative trait that is determined mainly by genetic effects. In a previous study, we identified an R2R3-MYB transcription factor named MdMYB44 that was a candidate gene in qtl08.1 (quantitative trait locus mapped to chromosome 8) of fruit malate content. In the present study, we established that MdMYB44 negatively regulates fruit malate accumulation by repressing the promoter activity of the malate-associated genes Ma1 (Al-Activated Malate Transporter 9), Ma10 (P-type ATPase 10), MdVHA-A3 (V-type ATPase A3), and MdVHA-D2 (V-type ATPase D2). Two single-nucleotide polymorphisms (SNPs) in the MdMYB44 promoter, SNP A/G and SNP T/-, were experimentally shown to associate with fruit malate content. The TATA-box in the MdMYB44 promoter in the presence of SNP A enhances the basal activity of the MdMYB44 promoter. The binding of a basic-helix-loop-helix transcription factor MdbHLH49 to the MdMYB44 promoter was enhanced by the presence of SNP T, leading to increased MdMYB44 transcript levels and reduced malate accumulation. Furthermore, MdbHLH49 interacts with MdMYB44 and enhances MdMYB44 activity. The two SNPs could be used in combination to select for sour or non-sour apples, providing a valuable tool for the selection of fruit acidity by the apple breeding industry. This research is important for understanding the complex molecular mechanisms of fruit malate accumulation and accelerating the development of germplasm innovation in apple species and cultivars.
Collapse
Affiliation(s)
- Dongjie Jia
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Wu
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Li
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Xiaodong Zheng
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongzhang Wang
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongbing Yuan
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinzhong Zhang
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, Institute for Horticultural Plants, China Agricultural University, Beijing 100193, China
| |
Collapse
|
93
|
Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Mol Genet Genomics 2021; 296:953-970. [PMID: 34009475 DOI: 10.1007/s00438-021-01790-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023]
Abstract
Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.
Collapse
|
94
|
Chen Z, Yu L, Liu W, Zhang J, Wang N, Chen X. Research progress of fruit color development in apple (Malus domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:267-279. [PMID: 33711720 DOI: 10.1016/j.plaphy.2021.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Apple (Malus domestica Borkh.) is one of the most widely produced and economically important fruits in temperate regions. Fruit color development in apple is a major focus for both breeders and researchers as consumers associate brightly colored red apples with ripeness and a good flavor. In recent years, great progress has been made in the research of apple fruit color development, but its development mechanism has not been systematic dissected from the aspects of genetics, transcription or environmental factors. Here, we summarize research on the coloration of apple fruit, including the development of important genomic databases to identify important genomic regions and genes, genetic and transcriptional factors that regulate pigment accumulation, environmental factors that affect anthocyanin synthesis, and the current breeding progress of red-skinned and red-fleshed apples. We describe key transcription factors, such as MYB, bHLH, and WD40, which are involved in the regulation of anthocyanin synthesis and fruit color development in apple. We also discuss the regulation of apple color by external environmental factors such as light, temperature, and water. The aim of this review is to provide insights into the molecular mechanisms underlying anthocyanin biosynthesis in apple. This information will provide significant guidance for the breeding of high-quality red-skinned and red-fleshed apple varieties.
Collapse
Affiliation(s)
- Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China.
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, 271000, China.
| |
Collapse
|
95
|
Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, Garg M. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. PHYSIOLOGIA PLANTARUM 2021; 171:868-881. [PMID: 33639001 DOI: 10.1111/ppl.13378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 05/27/2023]
Abstract
Secondary metabolites are produced by plants and are classified based on their chemical structure or the biosynthetic routes through which they are synthesized. Among them, flavonoids, including anthocyanins and pro-anthocyanidins (PAs), are abundant in leaves, flowers, fruits, and seed coats in plants. The anthocyanin biosynthetic pathway has been intensively studied, but the molecular mechanism of anthocyanin transport from the synthesis site to the storage site needs attention. Although the major transporters are well defined yet, the redundancy of these transporters for structurally similar or dis-similar anthocyanins motivates additional research. Herein, we reviewed the role of membrane transporters involved in anthocyanin transport, including ATP-binding cassette, multidrug and toxic compound extrusion (MATE), Bilitranslocase-homolog (BTL), and vesicle-mediated transport. We also highlight the ability of transporters to cater distinct anthocyanins or their chemically-modified forms with overlapping transport mechanisms and sequestration into the vacuoles. Our understanding of the anthocyanin transporters could provide anthocyanin-rich crops and fruits with a benefit on human health at a large scale.
Collapse
Affiliation(s)
- Satveer Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Natasha Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Ajay K Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
96
|
Wu B, Shen F, Chen CJ, Liu L, Wang X, Zheng WY, Deng Y, Wang T, Huang ZY, Xiao C, Zhou Q, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. THE PLANT GENOME 2021; 14:e20084. [PMID: 33605090 DOI: 10.1002/tpg2.20084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Room-temperature shelf life is a key factor in fresh market apple (Malus domestica Borkh.) quality and commercial value. To investigate the genetic and molecular mechanism underlying apple shelf life, quantitative trait loci (QTL) were identified using bulked segregant analysis via sequencing (BSA-seq). Ethylene emission, flesh firmness, or crispness of apple fruit from 1,273 F1 plants of M. asiatica Nakai 'Zisai Pearl' × M. domestica 'Golden Delicious' were phenotyped prior to and during 6 wk of room-temperature storage. Segregation of ethylene emission and the flesh firmness or crispness traits was detected in the population. Thirteen QTL, including three major ones, were identified on chromosome 03, 08, and 16. A candidate gene encoding pectin acetylesterase, MdPAE10, from the QTL Z16.1 negatively affected fruit shelf life. A 379-bp deletion in the coding sequence of MdPAE10 disrupted its function. A single nucleotide polymorphism (SNP) in the MdPAE10 promoter region reduced its transcription activity. These findings provided insight into the genetic control of fruit shelf life and can be potentially used in apple marker-assisted selection.
Collapse
Affiliation(s)
- Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chi Jie Chen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Li Liu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wen Yan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yang Deng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Yu Huang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qian Zhou
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xue Feng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Hai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xin Zhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
97
|
Sun CH, Wang JH, Gu KD, Zhang P, Zhang XY, Zheng CS, Hu DG, Ma F. New insights into the role of MADS-box transcription factor gene CmANR1 on root and shoot development in chrysanthemum (Chrysanthemum morifolium). BMC PLANT BIOLOGY 2021; 21:79. [PMID: 33549046 PMCID: PMC7866475 DOI: 10.1186/s12870-021-02860-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MADS-box transcription factors (TFs) are the key regulators of multiple developmental processes in plants; among them, a chrysanthemum MADS-box TF CmANR1 has been isolated and described as functioning in root development in response to high nitrate concentration signals. However, how CmANR1 affects root and shoot development remains unclear. RESULTS We report that CmANR1 plays a positive role in root system development in chrysanthemum throughout the developmental stages of in vitro tissue cultures. Metabolomics combined with transcriptomics assays show that CmANR1 promotes robust root system development by facilitating nitrate assimilation, and influencing the metabolic pathways of amino acid, glycolysis, and the tricarboxylic acid cycle (TCA) cycle. Also, we found that the expression levels of TFs associated with the nitrate signaling pathways, such as AGL8, AGL21, and LBD29, are significantly up-regulated in CmANR1-transgenic plants relative to the wild-type (WT) control; by contrast, the expression levels of RHD3-LIKE, LBD37, and GATA23 were significantly down-regulated. These results suggest that these nitrate signaling associated TFs are involved in CmANR1-modulated control of root development. In addition, CmANR1 also acts as a positive regulator to control shoot growth and development. CONCLUSIONS These findings provide potential mechanisms of MADS-box TF CmANR1 modulation of root and shoot development, which occurs by regulating a series of nitrate signaling associated TFs, and influencing the metabolic pathways of amino acid and glycolysis, as well as TCA cycle and nitrate assimilation.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin-Yi Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Fangfang Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
98
|
Yu J, Gu K, Sun C, Zhang Q, Wang J, Ma F, You C, Hu D, Hao Y. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:285-299. [PMID: 32757335 PMCID: PMC7868978 DOI: 10.1111/pbi.13461] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/26/2020] [Indexed: 05/21/2023]
Abstract
Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.
Collapse
Affiliation(s)
- Jian‐Qiang Yu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Kai‐Di Gu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Cui‐Hui Sun
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Quan‐Yan Zhang
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Jia‐Hui Wang
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Fang‐Fang Ma
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Chun‐Xiang You
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| | - Da‐Gang Hu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| | - Yu‐Jin Hao
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| |
Collapse
|
99
|
Gu KD, Zhang QY, Yu JQ, Wang JH, Zhang FJ, Wang CK, Zhao YW, Sun CH, You CX, Hu DG, Hao YJ. R2R3-MYB Transcription Factor MdMYB73 Confers Increased Resistance to the Fungal Pathogen Botryosphaeria dothidea in Apples via the Salicylic Acid Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:447-458. [PMID: 33347291 DOI: 10.1021/acs.jafc.0c06740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MYB transcription factors (TFs) participate in many biological processes. However, the molecular mechanisms by which MYB TFs affect plant resistance to apple ring rot remain poorly understood. Here, the R2R3-MYB gene MdMYB73 was cloned from "Royal Gala" apples and functionally characterized as a positive regulator of the defense response to Botryosphaeria dothidea. qRT-PCR and GUS staining demonstrated that MdMYB73 was strongly induced in apple fruits and transgenic calli after inoculation with B. dothidea. MdMYB73 overexpression improved resistance to B. dothidea in apple calli and fruits, while MdMYB73 suppression weakened. Increased resistance to B. dothidea was also observed in MdMYB73-expressing Arabidopsis thaliana. Interestingly, salicylic acid (SA) contents and the expression levels of genes related with SA synthesis and signaling were greater in MdMYB73-overexpressing plant materials compared to wild-type controls after inoculation, suggesting that MdMYB73 might enhance resistance to B. dothidea via the SA pathway. Finally, we discovered that MdMYB73 interacts with MdWRKY31, a positive regulator of B. dothidea. Together, MdWRKY31 and MdMYB73 enhanced B. dothidea resistance in apples. Our results clarify the mechanisms by which MdMYB73 improves resistance to B. dothidea and suggest that resistance may be affected by regulating the SA pathway.
Collapse
Affiliation(s)
- Kai-Di Gu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fu-Jun Zhang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
100
|
Liu M, Zhang Z, Xu Z, Wang L, Chen C, Ren Z. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. PLANT CELL REPORTS 2021; 40:43-58. [PMID: 32990799 DOI: 10.1007/s00299-020-02609-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
SlMYB75 increased the accumulation of JA and improved the scavenging of excess H2O2 to resist B. cinerea. Overexpression of SlMYB75 greatly prolongs tomato fruit storage life. Botrytis cinerea (B. cinerea) is a major threat to the production and storage life of tomato (Solanum lycopersicum) fruit around the world. SlMYB75 is an R2R3MYB transcription factor associated with the biosynthesis of anthocyanidin, but little is known about its function in the resistance of tomato to B. cinerea. In this study, we found that the overexpression of SlMYB75 regulated the accumulation of jasmonic acid (JA) and promoted the JA-mediated signaling pathway to resist B. cinerea infection. Moreover, the activities of peroxidase and superoxide dismutase, which were activated to scavenge hydrogen peroxide produced as a result of the B. cinerea infection, were enhanced in the transgenic tomato plants. Scanning electron microscopy images showed that the wax on the fruit skin surface was significantly decreased in the transgenic tomatoes compared with the wild type. However, SlMYB75 prolonged fruit storage life by both enhancing resistance to B. cinerea and directly downregulating the fruit shelf life-related gene SlFSR. Collectively, this study provides a good candidate gene for breeding high-quality tomatoes with a long storage life and high disease resistance.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhen Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhixuan Xu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|