51
|
Adams E, Miyazaki T, Saito S, Uozumi N, Shin R. Cesium Inhibits Plant Growth Primarily Through Reduction of Potassium Influx and Accumulation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:63-76. [PMID: 30219884 DOI: 10.1093/pcp/pcy188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 05/17/2023]
Abstract
Cesium (Cs+) is known to compete with the macronutrient potassium (K+) inside and outside of plants and to inhibit plant growth at high concentrations. However, the detailed molecular mechanisms of how Cs+ exerts its deleterious effects on K+ accumulation in plants are not fully elucidated. Here, we show that mutation in a member of the major K+ channel AKT1-KC1 complex renders Arabidopsis thaliana hypersensitive to Cs+. Higher severity of the phenotype and K+ loss were observed for these mutants in response to Cs+ than to K+ deficiency. Electrophysiological analysis demonstrated that Cs+, but not sodium, rubidium or ammonium, specifically inhibited K+ influx through the AKT1-KC1 complex. In contrast, Cs+ did not inhibit K+ efflux through the homomeric AKT1 channel that occurs in the absence of KC1, leading to a vast loss of K+. Our observation suggests that reduced K+ accumulation due to blockage/competition in AKT1 and other K+ transporters/channels by Cs+ plays a major role in plant growth retardation. This report describes the mechanical role of Cs+ in K+ accumulation, and in turn in plant performance, providing actual evidence at the plant level for what has long been believed, i.e. K+ channels are, therefore AKT1 is, 'blocked' by Cs+.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takae Miyazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
52
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
53
|
Al-Younis I, Wong A, Lemtiri-Chlieh F, Schmöckel S, Tester M, Gehring C, Donaldson L. The Arabidopsis thaliana K +-Uptake Permease 5 (AtKUP5) Contains a Functional Cytosolic Adenylate Cyclase Essential for K + Transport. FRONTIERS IN PLANT SCIENCE 2018; 9:1645. [PMID: 30483296 PMCID: PMC6243130 DOI: 10.3389/fpls.2018.01645] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the most abundant cation in plants, and its uptake and transport are key to growth, development and responses to the environment. Here, we report that Arabidopsis thaliana K+ uptake permease 5 (AtKUP5) contains an adenylate cyclase (AC) catalytic center embedded in its N-terminal cytosolic domain. The purified recombinant AC domain generates cAMP in vitro; and when expressed in Escherichia coli, increases cAMP levels in vivo. Both the AC domain and full length AtKUP5 rescue an AC-deficient E. coli mutant, cyaA, and together these data provide evidence that AtKUP5 functions as an AC. Furthermore, full length AtKUP5 complements the Saccharomyces cerevisiae K+ transport impaired mutant, trk1 trk2, demonstrating its function as a K+ transporter. Surprisingly, a point mutation in the AC center that impairs AC activity, also abolishes complementation of trk1 trk2, suggesting that a functional catalytic AC domain is essential for K+ uptake. AtKUP5-mediated K+ uptake is not affected by cAMP, the catalytic product of the AC, but, interestingly, causes cytosolic cAMP accumulation. These findings are consistent with a role for AtKUP5 as K+ flux sensor, where the flux-dependent cAMP increases modulate downstream components essential for K+ homeostasis, such as cyclic nucleotide gated channels.
Collapse
Affiliation(s)
- Inas Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Fouad Lemtiri-Chlieh
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sandra Schmöckel
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
54
|
Hao L, Qiao X. Genome-wide identification and analysis of the CNGC gene family in maize. PeerJ 2018; 6:e5816. [PMID: 30356996 PMCID: PMC6195792 DOI: 10.7717/peerj.5816] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023] Open
Abstract
As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.
Collapse
Affiliation(s)
- Lidong Hao
- College of Agriculture and Hydraulic Engineering, Suihua University, Suihua, HeiLongjiang province, China
| | - Xiuli Qiao
- College of Food and Pharmaceutical Engineering, Suihua University, Suihua, HeiLongjiang province, China
| |
Collapse
|
55
|
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. THE NEW PHYTOLOGIST 2018; 220:49-69. [PMID: 29916203 DOI: 10.1111/nph.15266] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/21/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professora Popova Street, St Petersburg, 197376, Russia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Stanislav Isayenkov
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, 2a Osipovskogo Street, Kyiv, 04123, Ukraine
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colima, 28045, Mexico
| |
Collapse
|
56
|
Ding W, Wu J, Ye J, Zheng W, Wang S, Zhu X, Zhou J, Pan Z, Zhang B, Zhu S. A Pelota-like gene regulates root development and defence responses in rice. ANNALS OF BOTANY 2018; 122:359-371. [PMID: 29771278 PMCID: PMC6110353 DOI: 10.1093/aob/mcy075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/19/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Pelota (Pelo) are evolutionarily conserved genes reported to be involved in ribosome rescue, cell cycle control and meiotic cell division. However, there is little known about their function in plants. The aim of this study was to elucidate the function of an ethylmethane sulphonate (EMS)-derived mutation of a Pelo-like gene in rice (named Ospelo). METHODS A dysfunctional mutant was used to characterize the function of OsPelo. Analyses of its expression and sub-cellular localization were performed. The whole-genome transcriptomic change in leaves of Ospelo was also investigated by RNA sequencing. KEY RESULTS The Ospelo mutant showed defects in root system development and spotted leaves at early seedling stages. Map-based cloning revealed that the mutation occurred in the putative Pelo gene. OsPelo was found to be expressed in various tissues throughout the plant, and the protein was located in mitochondria. Defence responses were induced in the Ospelo mutant, as shown by enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae, coupled with upregulation of three pathogenesis-related marker genes. In addition, whole-genome transcriptome analysis showed that OsPelo was significantly associated with a number of biological processes, including translation, metabolism and biotic stress response. Detailed analysis showed that activation of a number of innate immunity-related genes might be responsible for the enhanced disease resistance in the Ospelo mutant. CONCLUSIONS These results demonstrate that OsPelo positively regulates root development while its loss of function enhances pathogen resistance by pre-activation of defence responses in rice.
Collapse
Affiliation(s)
- Wona Ding
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Jing Wu
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Jin Ye
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Wenjuan Zheng
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Shanshan Wang
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Xinni Zhu
- School of Marine Sciences, Ningbo University, Ningbo, PR China
| | - Jiaqin Zhou
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Zhichong Pan
- College of Science & Technology, Ningbo University, Ningbo, PR China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, PR China
- For correspondence. E-mail or
| | - Shihua Zhu
- College of Science & Technology, Ningbo University, Ningbo, PR China
- For correspondence. E-mail or
| |
Collapse
|
57
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
58
|
Zhang W, Dong C, Zhang Y, Zhu J, Dai H, Bai S. An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:94-105. [PMID: 29606221 DOI: 10.1016/j.plantsci.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 05/26/2023]
Abstract
Apple ring rot caused by the fungus Botryosphaeria dothidea is one of the devastating diseases. Up to date, the responsive mechanism of apple plant to this disease remains unclear. In the present study, an apple CNGC gene (designated as MdCNGC1) was found among highly expressed genes responding to B. dothidea infection. The expression of MdCNGC1 was different among apple cultivars with different resistance to B. dothidea. Intriguingly, MdCNGC1 expression was not induced by other two apple pathogens, Marssonina coronaria and Valsa ceratosperma. Ectopic overexpression of MdCNGC1 in Nicotiana benthamiana conferred elevated susceptibility to bacterial and fungal pathogens. Notably, overexpression of MdCNGC1 reduced salicylic acid (SA) accumulation induced by Alternaria alternata or Pseudomonas syringae. Decreased induction of pathogenesis-related (PR) genes and ROS accumulation were also observed in MdCNGC1-overexpressing plants. Up-regulated scavenging systems as indicated by enhanced expressions of CAT, APX, SOD genes and activities of antioxidative enzymes may in part contribute to reduced ROS accumulation. MdCNGC1 expression in N. benthamiana also decreased flg22 and chitosan-induced callose deposition and lowered the expression of NbPMR4, an ortholog of Arabidopsis callose synthase gene PMR4. These combined results suggested that MdCNGC1 might be a negative factor to plant resistance to bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaohua Dong
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongyi Dai
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Suhua Bai
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
59
|
Katano K, Kataoka R, Fujii M, Suzuki N. Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:288-296. [PMID: 29275210 DOI: 10.1016/j.plaphy.2017.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide gated channel 2 (CNGC2) in Arabidopsis has been identified as one of the putative heat sensors which might play a key role in the regulation of heat acclimation. However, it is still not understood how CNGC2 controls heat stress responses during different growth stages. This study aimed to characterize the differences in heat stress responses between seedlings and flowers of Arabidopsis plants deficient in CNGC2. Seedlings of Arabidopsis plants deficient in CNGC2 showed enhanced tolerance to heat stress accompanied by higher accumulation of heat response proteins such as multiprotein bridging factor 1c (MBF1c), ascorbate peroxidases (APXs) and heat shock proteins (HSPs). On the other hand, seed production of these knockout lines was more sensitive to heat stress. In contrast to seedlings, accumulation of MBF1c and APX proteins in flowers of these knockout lines was lower than or almost comparable with that in WT plants under heat stress. In addition, plants deficient in CNGC2 showed dramatically higher accumulation of H2O2 in flowers, but, only slightly higher accumulation in seedlings compared with WT plants. These results suggest that the stage-dependent differences in heat stress response of Arabidopsis regulated by CNGC2 might rely on regulatory mechanisms of APX1-and MBF1c-dependent pathways and H2O2 homeostasis.
Collapse
Affiliation(s)
- Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Ryo Kataoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Munetoshi Fujii
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan.
| |
Collapse
|
60
|
Guo J, Islam MA, Lin H, Ji C, Duan Y, Liu P, Zeng Q, Day B, Kang Z, Guo J. Genome-Wide Identification of Cyclic Nucleotide-Gated Ion Channel Gene Family in Wheat and Functional Analyses of TaCNGC14 and TaCNGC16. FRONTIERS IN PLANT SCIENCE 2018; 9:18. [PMID: 29403523 PMCID: PMC5786745 DOI: 10.3389/fpls.2018.00018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 05/18/2023]
Abstract
Cyclic nucleotide gated channels (CNGCs) play multifaceted roles in plants, particularly with respect to signaling processes associated with abiotic stress signaling and during host-pathogen interactions. Despite key roles during plant survival and response to environment, little is known about the activity and function of CNGC family in common wheat (Triticum aestivum L.), a key stable food around the globe. In this study, we performed a genome-wide identification of CNGC family in wheat and identified a total 47 TaCNGCs in wheat, classifying these genes into four major groups (I-IV) with two sub-groups (IVa and IVb). Sequence analysis revealed the presence of several conserved motifs, including a phosphate binding cassette (PBC) and a "hinge" region, both of which have been hypothesized to be critical for the function of wheat CNGCs. During wheat infection with Pst, the transcript levels of TaCNGC14 and TaCNGC16, both members of group IVb, showed significant induction during a compatible interaction, while a reduction in gene expression was observed in incompatible interactions. In addition, TaCNGC14 and TaCNGC16 mRNA accumulation was significantly influenced by exogenously applied hormones, including abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), suggesting a role in hormone signaling and/or perception. Silencing of TaCNGC14 and TaCNGC16 limited Pst growth and increased wheat resistance against Pst. The results presented herein contribute to our understanding of the wheat CNGC gene family and the mechanism of TaCNGCs signaling during wheat-Pst interaction.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Haocheng Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Changan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
61
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
62
|
Zhang XR, Xu YP, Cai XZ. SlCNGC1 and SlCNGC14 Suppress Xanthomonas oryzae pv. oryzicola-Induced Hypersensitive Response and Non-host Resistance in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:285. [PMID: 29559989 PMCID: PMC5845538 DOI: 10.3389/fpls.2018.00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/19/2018] [Indexed: 05/06/2023]
Abstract
Mechanisms underlying plant non-host resistance to Xanthomonas oryzae pv. oryzicola (Xoc), the pathogen causing rice leaf streak disease, are largely unknown. Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological processes including plant resistance. In this study, functions of two tomato CNGC genes SlCNGC1 and SlCNGC14 in non-host resistance to Xoc were analyzed. Silencing of SlCNGC1 and SlCNGC14 in tomato significantly enhanced Xoc-induced hypersensitive response (HR) and non-host resistance, demonstrating that both SlCNGC1 and SlCNGC14 negatively regulate non-host resistance related HR and non-host resistance to Xoc in tomato. Silencing of SlCNGC1 and SlCNGC14 strikingly increased Xoc-induced callose deposition and strongly promoted both Xoc-induced and flg22-elicited H2O2, indicating that these two SlCNGCs repress callose deposition and ROS accumulation to attenuate non-host resistance and PAMP-triggered immunity (PTI). Importantly, silencing of SlCNGC1 and SlCNGC14 apparently compromised cytosolic Ca2+ accumulation, implying that SlCNGC1 and SlCNGC14 function as Ca2+ channels and negatively regulate non-host resistance and PTI-related responses through modulating cytosolic Ca2+ accumulation. SlCNGC14 seemed to play a stronger regulatory role in the non-host resistance and PTI compared to SlCNGC1. Our results reveal the contribution of CNGCs and probably also Ca2+ signaling pathway to non-host resistance and PTI.
Collapse
Affiliation(s)
- Xuan-Rui Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xin-Zhong Cai,
| |
Collapse
|
63
|
Zhou Q, Zhang Z, Liu T, Gao B, Xiong X. Identification and Map-Based Cloning of the Light-Induced Lesion Mimic Mutant 1 ( LIL1) Gene in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2122. [PMID: 29312386 PMCID: PMC5742160 DOI: 10.3389/fpls.2017.02122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 11/29/2017] [Indexed: 05/20/2023]
Abstract
The hypersensitive response (HR) is a mechanism by which plants prevent the spread of pathogen. Despite extensive study, the molecular mechanisms underlying HR remain poorly understood. Lesion mimic mutants (LMMs), such as LIL1 that was identified in an ethylmethane sulfonate mutagenized population of Indica rice (Oryza sativa L. ssp. Indica) 93-11, can be used to study the HR. Under natural field conditions, the leaves of LIL1 mutant plants exhibited light-induced, small, rust-red lesions that first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. Histochemical staining indicated that LIL1 lesions displayed an abnormal accumulation of reactive oxygen species (ROS) and resulted from programmed cell death (PCD). The LIL1 mutants also displayed increased expression of defense-related genes and enhanced resistance to rice blast fungus (Magnaporthe grisea). Genetic analysis showed that mutation of LIL1 created a semi-dominant allele. Using 1,758 individuals in the F2 population, LIL1 was mapped in a 222.3 kb region on the long arm of chromosome 7. That contains 12 predicted open reading frames (ORFs). Sequence analysis of these 12 candidate genes revealed a G to A base substitution in the fourth exon of LOC_Os07g30510, a putative cysteine-rich receptor-like kinase (CRK), which led to an amino acid change (Val 429 to Ile) in the LIL1 protein. Comparison of the transcript accumulation of the 12 candidate genes between LIL1 and 93-11 revealed that LOC_Os07g30510 was up-regulated significantly in LIL1. Overexpression of the LOC_Os07g30510 gene from LIL1 induced a LIL1-like lesion phenotype in Nipponbare. Thus, LIL1 is a novel LMM in rice that will facilitate the further study of the molecular mechanisms of HR and the rice blast resistance.
Collapse
Affiliation(s)
- Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| | - Zhifei Zhang
- Agricultural College, Hunan Agricultural University, Changsha, China
| | - Tiantian Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bida Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha, China
| |
Collapse
|
64
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
65
|
Tang RJ, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:97-105. [PMID: 28709026 DOI: 10.1016/j.pbi.2017.06.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Calcium (Ca2+) and magnesium (Mg2+) are the most abundant divalent cations in plants. As a nutrient and a signaling ion, Ca2+ levels in the cell are tightly controlled by an array of channels and carriers that provide mechanistic basis for Ca2+ homeostasis and the generation of Ca2+ signals. Although a family of CorA-type Mg2+ transporters plays a key role in controlling Mg2+ homeostasis in plants, more components are yet to be identified. Ca2+ and Mg2+ appear to have antagonistic interactions in plant cells, and therefore plants depend on a homeostatic balance between Ca2+ and Mg2+ for optimal growth and development. Maintenance of such a balance in response to changing nutrient status in the soil emerges as a critical feature of plant mineral nutrition. Studies have uncovered signaling mechanisms that perceive nutrient status as a signal and regulate transport activities as adaptive responses. This 'nutrient sensing' network is exemplified by the Ca2+-dependent CBL (calcineurin B-like)-CIPK (CBL-interacting protein kinase) pathway that serves as a major link between environmental nutrient status and transport activities. In this review, we analyze the recent literature on Ca2+ and Mg2+ transport systems and their regulation and provide our perspectives on future research.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
66
|
Chai Q, Shang X, Wu S, Zhu G, Cheng C, Cai C, Wang X, Guo W. 5-Aminolevulinic Acid Dehydratase Gene Dosage Affects Programmed Cell Death and Immunity. PLANT PHYSIOLOGY 2017; 175:511-528. [PMID: 28751313 PMCID: PMC5580774 DOI: 10.1104/pp.17.00816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is an important form to protect plants from pathogen attack. However, plants must precisely control the PCD process under microbe attacks to avoid detrimental effects. The complexity of how plants balance the defense activation and PCD requires further clarification. Lesion mimic mutants constitute an excellent material to study the crosstalk between them. Here, we identified a Gossypium hirsutum (cotton) lesion mimic mutant (Ghlmm), which exhibits necrotic leaf damage and enhanced disease resistance. Map-based cloning demonstrated that GhLMMD, encoding 5-aminolevulinic acid dehydratase and located on chromosome D5, was responsible for the phenotype. The mutant was resulted from a nonsense mutation within the coding region of GhLMMD It exhibited an overaccumulation of the 5-aminolevulinic acid, elevated levels of reactive oxygen species and salicylic acid, along with constitutive expression of pathogenesis-related genes and enhanced resistance to the Verticillium dahliae infection. Interestingly, GhLMM plays a dosage-dependent role in regulating PCD of cotton leaves and resistance to V. dahliae infection. This study provides a new strategy on the modulation of plant immunity, particularly in polyploidy plants.
Collapse
Affiliation(s)
- Qichao Chai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
67
|
Xu Y, Yang J, Wang Y, Wang J, Yu Y, Long Y, Wang Y, Zhang H, Ren Y, Chen J, Wang Y, Zhang X, Guo X, Wu F, Zhu S, Lin Q, Jiang L, Wu C, Wang H, Wan J. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet 2017; 13:e1006906. [PMID: 28708858 PMCID: PMC5533464 DOI: 10.1371/journal.pgen.1006906] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/28/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
Seed-setting rate is a critical determinant of grain yield in rice (Oryza sativa L.). Rapid and healthy pollen tube growth in the style is required for high seed-setting rate. The molecular mechanisms governing this process remain largely unknown. In this study, we isolate a dominant low seed-setting rate rice mutant, sss1-D. Cellular examination results show that pollen tube growth is blocked in about half of the mutant styles. Molecular cloning and functional assays reveals that SSS1-D encodes OsCNGC13, a member of the cyclic nucleotide-gated channel family. OsCNGC13 is preferentially expressed in the pistils and its expression is dramatically reduced in the heterozygous plant, suggesting a haploinsufficiency nature for the dominant mutant phenotype. We show that OsCNGC13 is permeable to Ca2+. Consistent with this, accumulation of cytoplasmic calcium concentration ([Ca2+]cyt) is defective in the sss1-D mutant style after pollination. Further, the sss1-D mutant has altered extracellular matrix (ECM) components and delayed cell death in the style transmission tract (STT). Based on these results, we propose that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, ECM components modification and STT cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice. Rice is not only the staple food for more than half of the world’s population, but also a model species for plant developmental and genetic studies. After pollination, rice pollen grains adhere and hydrate at the surface of stigmatic papilla cells. Then, the germinated pollen tubes invade the stigma and navigate through the style transmission tract to reach the micropyle of the embryo sac for fertilization. During this long and arduous process, pollen tube requires abundant communication with the surrounding sporophytic maternal tissues. However, how the growth of pollen tube is regulated by maternal tissue remains largely elusive. This work identifies a typical cyclic nucleotide-gated channel protein in rice, OsCNGC13, which can mediate Ca2+ inward current. Our results suggest that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, extracellular matrix components modification and style cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice. These findings provide new insights into the molecular genetic control mechanisms of seed-setting rate/grain yield in rice and expand our knowledge on the cyclic nucleotide-gated channel proteins in plant sexual reproduction.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yang Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
68
|
Khafif M, Balagué C, Huard-Chauveau C, Roby D. An essential role for the VASt domain of the Arabidopsis VAD1 protein in the regulation of defense and cell death in response to pathogens. PLoS One 2017; 12:e0179782. [PMID: 28683084 PMCID: PMC5500287 DOI: 10.1371/journal.pone.0179782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
Several regulators of programmed cell death (PCD) have been identified in plants which encode proteins with putative lipid-binding domains. Among them, VAD1 (Vascular Associated Death) contains a novel protein domain called VASt (VAD1 analog StAR-related lipid transfer) still uncharacterized. The Arabidopsis mutant vad1-1 has been shown to exhibit a lesion mimic phenotype with light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, associated with defense gene expression and increased resistance to Pseudomonas strains. To test the potential of ectopic expression of VAD1 to influence HR cell death and to elucidate the role of the VASt domain in this function, we performed a structure-function analysis of VAD1 by transient over-expression in Nicotiana benthamiana and by complementation of the mutant vad1-1. We found that (i) overexpression of VAD1 controls negatively the HR cell death and defense expression either transiently in Nicotiana benthamania or in Arabidopsis plants in response to avirulent strains of Pseudomonas syringae, (ii) VAD1 is expressed in multiple subcellular compartments, including the nucleus, and (iii) while the GRAM domain does not modify neither the subcellular localization of VAD1 nor its immunorepressor activity, the domain VASt plays an essential role in both processes. In conclusion, VAD1 acts as a negative regulator of cell death associated with the plant immune response and the VASt domain of this unknown protein plays an essential role in this function, opening the way for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.
Collapse
Affiliation(s)
- Mehdi Khafif
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
69
|
A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 2017; 7:3557. [PMID: 28620210 PMCID: PMC5472582 DOI: 10.1038/s41598-017-03704-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.
Collapse
|
70
|
Zhao J, Liu P, Li C, Wang Y, Guo L, Jiang G, Zhai W. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics 2016; 44:107-118. [PMID: 28162958 DOI: 10.1016/j.jgg.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/19/2022]
Abstract
Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.
Collapse
Affiliation(s)
- Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Kaifeng Institute for Food and Drug Control, Kaifeng 475000, China
| | - Pengcheng Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
71
|
Li L, Shi X, Zheng F, Li C, Wu D, Bai G, Gao D, Wu J, Li T. A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2075-2084. [PMID: 27460590 DOI: 10.1007/s00122-016-2758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/22/2016] [Indexed: 05/24/2023]
Abstract
Using bulk segregant analysis (BSA) coupling with RNA-seq and DNA markers identified a potentially novel nitrogen-dependent lesion mimic gene Ndhrl1 on 2BS in wheat. Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) traits that appear on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-responsive and N dosage dependent. Using BSA strategy together with RNA-seq and DNA markers, we identified an N-dependent LM gene (Ndhrl1) and mapped it to the short arm of chromosome 2B using an F5 recombinant inbred population developed from the cross of P7001 × P216. The putative gene was delimited into an interval of 8.1 cM flanked by the CAPS/dCAPS markers 7hrC9 and 7hr2dc14, and co-segregated with the dCAPS marker 7hrdc2. This gene is most likely a novel gene for LM in wheat based on its chromosomal location. Further analysis of RNA-seq data showed that plant-pathogen interaction, nitrogen metabolism, zeatin biosynthesis and plant hormone signal transduction pathways were significantly differentially expressed between LM and non-LM lines.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Shi
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fei Zheng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Changcheng Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Di Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guihua Bai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225000, China
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Derong Gao
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Jincai Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Tao Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
72
|
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 2016; 26:2399-2411. [DOI: 10.1016/j.cub.2016.06.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
|
73
|
Jha SK, Sharma M, Pandey GK. Role of Cyclic Nucleotide Gated Channels in Stress Management in Plants. Curr Genomics 2016; 17:315-29. [PMID: 27499681 PMCID: PMC4955031 DOI: 10.2174/1389202917666160331202125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
Tolerance of plants to a number of biotic and abiotic stresses such as pathogen and herbivore attack, drought, salinity, cold and nutritional limitations is ensued by complex multimodule signaling pathways. The outcome of this complex signaling pathways results in adaptive responses by restoring the cellular homeostasis and thus promoting survival. Functions of many plant cation transporter and channel protein families such as glutamate receptor homologs (GLRs), cyclic nucleotide-gated ion channel (CNGC) have been implicated in providing biotic and abiotic stress tolerance. Ion homeostasis regulated by several transporters and channels is one of the crucial parameters for the optimal growth, development and survival of all living organisms. The CNGC family members are known to be involved in the uptake of cations such as Na(+), K(+) and Ca(2+) and regulate plant growth and development. Detail functional genomics approaches have given an emerging picture of CNGCs wherein these protein are believed to play crucial role in pathways related to cellular ion homeostasis, development and as a 'guard' in defense against biotic and abiotic challenges. Here, we discuss the current knowledge of role of CNGCs in mediating stress management and how they aid plants in survival under adverse conditions.
Collapse
Affiliation(s)
- Saroj K. Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
74
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
75
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
76
|
Wang F, Wu W, Wang D, Yang W, Sun J, Liu D, Zhang A. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat. PLoS One 2016; 11:e0155358. [PMID: 27175509 PMCID: PMC4866716 DOI: 10.1371/journal.pone.0155358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
Lesion mimics (LMs) that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3–1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD) and abnormal accumulation of reactive oxygen species (ROS). The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt) infection, which was consistent with the increased expression of seven pathogenesis-related (PR) and two wheat chemically induced (WCI) genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine-mapping and cloning of the gene to understand the mechanism underlying LM initiation and disease resistance in common wheat.
Collapse
Affiliation(s)
- Fang Wang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Wenying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail: (DL); (AZ)
| | - Aimin Zhang
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- * E-mail: (DL); (AZ)
| |
Collapse
|
77
|
Fu S, Shao J, Zhou C, Hartung JS. Transcriptome analysis of sweet orange trees infected with 'Candidatus Liberibacter asiaticus' and two strains of Citrus Tristeza Virus. BMC Genomics 2016; 17:349. [PMID: 27169471 PMCID: PMC4865098 DOI: 10.1186/s12864-016-2663-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/26/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, 'Candidatus Liberibacter asiaticus' (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn't induce significant symptoms or damage to plants. RESULTS Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. CONCLUSIONS The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).
Collapse
Affiliation(s)
- Shimin Fu
- College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
- Lingnan Normal University, Zhanjian, China
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Changyong Zhou
- College of Plant Protection/Citrus Research Institute, Southwest University, Chongqing, China.
| | - John S Hartung
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA.
| |
Collapse
|
78
|
Donaldson L, Meier S, Gehring C. The arabidopsis cyclic nucleotide interactome. Cell Commun Signal 2016; 14:10. [PMID: 27170143 PMCID: PMC4865018 DOI: 10.1186/s12964-016-0133-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. METHODS An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. RESULTS A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. CONCLUSIONS We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.
Collapse
Affiliation(s)
- Lara Donaldson
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag × 3, Rondebosch, 7701, South Africa.
| | - Stuart Meier
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Christoph Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
79
|
Chou H, Zhu Y, Ma Y, Berkowitz GA. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:494-506. [PMID: 26756833 DOI: 10.1111/tpj.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non-cell-autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca(2+) elevations, cyclic nucleotide (cGMP)-activated Ca(2+) channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca(2+) elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca(2+) and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP-activated Ca(2+) channel. In wild-type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca(2+) channel blocker or a guanylyl cyclase inhibitor. When CLV3-dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca(2+) channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca(2+), and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM.
Collapse
Affiliation(s)
- Hsuan Chou
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
| | - Yingfang Zhu
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
| | - Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
| | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269-4163, USA
| |
Collapse
|
80
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
81
|
Wang SH, Lim JH, Kim SS, Cho SH, Yoo SC, Koh HJ, Sakuraba Y, Paek NC. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7045-59. [PMID: 26276867 PMCID: PMC4765782 DOI: 10.1093/jxb/erv401] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant spotted leaf3 (spl3) was examined. When grown under a light/dark cycle, the spl3 mutant appeared similar to wild-type at early developmental stages, but lesions gradually appeared in the mature leaves close to heading stage. By contrast, in spl3 mutants grown under continuous light, severe cell death lesions formed in developing leaves, even at the seedling stage. Histochemical analysis showed that hydrogen peroxide accumulated in the mutant, likely causing the cell death phenotype. By map-based cloning and complementation, it was shown that a 1-bp deletion in the first exon of Oryza sativa Mitogen-Activated Protein Kinase Kinase Kinase1 (OsMAPKKK1)/OsEDR1/OsACDR1 causes the spl3 mutant phenotype. The spl3 mutant was found to be insensitive to abscisic acid (ABA), showing normal root growth in ABA-containing media and delayed leaf yellowing during dark-induced and natural senescence. Expression of ABA signalling-associated genes was also less responsive to ABA treatment in the mutant. Furthermore, the spl3 mutant had lower transcript levels and activities of catalases, which scavenge hydrogen peroxide, probably due to impairment of ABA-responsive signalling. Finally, a possible molecular mechanism of lesion formation in the mature leaves of spl3 mutant is discussed.
Collapse
Affiliation(s)
- Seung-Hyun Wang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jung-Hyun Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sang-Sook Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Ansung 456-749, Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Korea
| |
Collapse
|
82
|
Saand MA, Xu YP, Munyampundu JP, Li W, Zhang XR, Cai XZ. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Res 2015; 22:471-83. [PMID: 26546226 PMCID: PMC4675716 DOI: 10.1093/dnares/dsv029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/12/2015] [Indexed: 01/27/2023] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs.
Collapse
Affiliation(s)
- Mumtaz Ali Saand
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Jean-Pierre Munyampundu
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuan-Rui Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
83
|
The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana. Curr Biol 2015; 25:3119-25. [PMID: 26752079 DOI: 10.1016/j.cub.2015.10.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/01/2015] [Accepted: 10/09/2015] [Indexed: 01/19/2023]
Abstract
In plant roots, auxin inhibits cell expansion, and an increase in cellular auxin levels on the lower flanks of gravistimulated roots suppresses growth and thereby causes downward bending. These fundamental features of root growth responses to auxin were first described over 80 years ago, but our understanding of the underlying molecular mechanisms has remained scant. Here, we report that CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14) is essential for the earliest phase of auxin-induced ion signaling and growth inhibition in Arabidopsis roots. Using a fluorescence-imaging-based genetic screen, we found that cngc14 mutants exhibit a complete loss of rapid Ca(2+) and pH signaling in response to auxin treatment. Similarly impaired ion signaling was observed upon gravistimulation. We further developed a kinematic analysis approach to study dynamic root growth responses to auxin at high spatiotemporal resolution. These analyses revealed that auxin-induced growth inhibition and gravitropic bending are significantly delayed in cngc14 compared to wild-type roots, where auxin suppresses cell expansion within 1 min of treatment. Finally, we demonstrate that auxin-induced cytosolic Ca(2+) changes are required for rapid growth inhibition. Our results support a direct role for CNGC14-dependent Ca(2+) signaling in regulating the early posttranscriptional phase of auxin growth responses in Arabidopsis roots.
Collapse
|
84
|
Khan MS, Ahmad D, Khan MA. Trends in genetic engineering of plants with (Na+/H+) antiporters for salt stress tolerance. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1060868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
85
|
Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M. Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. THE PLANT CELL 2015; 27:1718-29. [PMID: 26071421 PMCID: PMC4498212 DOI: 10.1105/tpc.15.00306] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 05/17/2023]
Abstract
Phytosulfokine (PSK) is perceived by the leucine-rich repeat receptor kinase PSKR1 and promotes growth in Arabidopsis thaliana. PSKR1 is coexpressed with the CYCLIC NUCLEOTIDE-GATED CHANNEL gene CNGC17. PSK promotes protoplast expansion in the wild type but not in cngc17. Protoplast expansion is likewise promoted by cGMP in a CNGC17-dependent manner. Furthermore, PSKR1-deficient protoplasts do not expand in response to PSK but are still responsive to cGMP, suggesting that cGMP acts downstream of PSKR1. Mutating the guanylate cyclase center of PSKR1 impairs seedling growth, supporting a role for PSKR1 signaling via cGMP in planta. While PSKR1 does not interact directly with CNGC17, it interacts with the plasma membrane-localized H(+)-ATPases AHA1 and AHA2 and with the BRI-associated receptor kinase 1 (BAK1). CNGC17 likewise interacts with AHA1, AHA2, and BAK1, suggesting that PSKR1, BAK1, CNGC17, and AHA assemble in a functional complex. Roots of deetiolated bak1-3 and bak1-4 seedlings were unresponsive to PSK, and bak1-3 and bak1-4 protoplasts expanded less in response to PSK but were fully responsive to cGMP, indicating that BAK1 acts in the PSK signal pathway upstream of cGMP. We hypothesize that CNGC17 and AHAs form a functional cation-translocating unit that is activated by PSKR1/BAK1 and possibly other BAK1/RLK complexes.
Collapse
Affiliation(s)
- Friederike Ladwig
- Universität Tübingen, ZMBP, Plant Physiology, D-72076 Tübingen, Germany
| | - Renate I Dahlke
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Nils Stührwohldt
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Jens Hartmann
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| | - Klaus Harter
- Universität Tübingen, ZMBP, Plant Physiology, D-72076 Tübingen, Germany
| | - Margret Sauter
- Entwicklungsbiologie und Physiologie der Pflanzen, Universität Kiel, D-24118 Kiel, Germany
| |
Collapse
|
86
|
McGrann GRD, Steed A, Burt C, Nicholson P, Brown JKM. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3417-28. [PMID: 25873675 PMCID: PMC4449554 DOI: 10.1093/jxb/erv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens.
Collapse
Affiliation(s)
- Graham R D McGrann
- Present address: Crop Protection Team, Crop and Soil Systems Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK Present address: Crop Protection Team, Crop and Soil Systems Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK Present address: RAGT Seeds Ltd., Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - Christopher Burt
- Present address: RAGT Seeds Ltd., Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK Present address: Crop Protection Team, Crop and Soil Systems Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK Present address: RAGT Seeds Ltd., Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - James K M Brown
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK Present address: Crop Protection Team, Crop and Soil Systems Group, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK Present address: RAGT Seeds Ltd., Grange Road, Ickleton, Essex, CB10 1TA, UK
| |
Collapse
|
87
|
Saand MA, Xu YP, Li W, Wang JP, Cai XZ. Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:303. [PMID: 25999969 PMCID: PMC4419669 DOI: 10.3389/fpls.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/15/2015] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide gated channel (CNGC) is suggested to be one of the important calcium conducting channels. Nevertheless, genome-wide identification and systemic functional analysis of CNGC gene family in crop plant species have not yet been conducted. In this study, we performed genome-wide identification of CNGC gene family in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of the group IVb SlCNGC genes in disease resistance. Eighteen CNGC genes were identified in tomato genome, and four CNGC loci that were misannotated at database were corrected by cloning and sequencing. Detailed bioinformatics analyses on gene structure, domain composition and phylogenetic relationship of the SlCNGC gene family were conducted and the group-specific feature was revealed. Comprehensive expression analyses demonstrated that SlCNGC genes were highly, widely but differently responsive to diverse stimuli. Pharmacological assays showed that the putative CNGC activators cGMP and cAMP enhanced resistance against Sclerotinia sclerotiorum. Silencing of group IVb SlCNGC genes significantly enhanced resistance to fungal pathogens Pythium aphanidermatum and S. sclerotiorum, strongly reduced resistance to viral pathogen Tobacco rattle virus, while attenuated PAMP- and DAMP-triggered immunity as shown by obvious decrease of the flg22- and AtPep1-elicited hydrogen peroxide accumulation in SlCNGC-silenced plants. Additionally, silencing of these SlCNGC genes significantly altered expression of a set of Ca(2+) signaling genes including SlCaMs, SlCDPKs, and SlCAMTA3. Collectively, our results reveal that group IV SlCNGC genes regulate a wide range of resistance in tomato probably by affecting Ca(2+) signaling.
Collapse
Affiliation(s)
- Mumtaz A. Saand
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Wen Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Ji-Peng Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
88
|
Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear ( Pyrus bretchneideri Rehd.). Genomics 2015; 105:39-52. [DOI: 10.1016/j.ygeno.2014.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
|
89
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
90
|
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 2014; 57:231-46. [PMID: 25477139 DOI: 10.1016/j.ceca.2014.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany; College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
91
|
Nawaz Z, Kakar KU, Saand MA, Shu QY. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics 2014; 15:853. [PMID: 25280591 PMCID: PMC4197254 DOI: 10.1186/1471-2164-15-853] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable cation transport channels, which are present in both animal and plant systems. They have been implicated in the uptake of both essential and toxic cations, Ca2+ signaling, pathogen defense, and thermotolerance in plants. To date there has not been a genome-wide overview of the CNGC gene family in any economically important crop, including rice (Oryza sativa L.). There is an urgent need for a thorough genome-wide analysis and experimental verification of this gene family in rice. RESULTS In this study, a total of 16 full length rice CNGC genes distributed on chromosomes 1-6, 9 and 12, were identified by employing comprehensive bioinformatics analyses. Based on phylogeny, the family of OsCNGCs was classified into four major groups (I-IV) and two sub-groups (IV-A and IV- B). Likewise, the CNGCs from all plant lineages clustered into four groups (I-IV), where group II was conserved in all land plants. Gene duplication analysis revealed that both chromosomal segmentation (OsCNGC1 and 2, 10 and 11, 15 and 16) and tandem duplications (OsCNGC1 and 2) significantly contributed to the expansion of this gene family. Motif composition and protein sequence analysis revealed that the CNGC specific domain "cyclic nucleotide-binding domain (CNBD)" comprises a "phosphate binding cassette" (PBC) and a "hinge" region that is highly conserved among the OsCNGCs. In addition, OsCNGC proteins also contain various other functional motifs and post-translational modification sites. We successively built a stringent motif: (LI-X(2)-[GS]-X-[FV]-X-G-[1]-ELL-X-W-X(12,22)-SA-X(2)-T-X(7)-[EQ]-AF-X-L) that recognizes the rice CNGCs specifically. Prediction of cis-acting regulatory elements in 5' upstream sequences and expression analyses through quantitative qPCR demonstrated that OsCNGC genes were highly responsive to multiple stimuli including hormonal (abscisic acid, indoleacetic acid, kinetin and ethylene), biotic (Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae) and abiotic (cold) stress. CONCLUSIONS There are 16 CNGC genes in rice, which were probably expanded through chromosomal segmentation and tandem duplications and comprise a PBC and a "hinge" region in the CNBD domain, featured by a stringent motif. The various cis-acting regulatory elements in the upstream sequences may be responsible for responding to multiple stimuli, including hormonal, biotic and abiotic stresses.
Collapse
Affiliation(s)
- Zarqa Nawaz
- />State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029 China
- />Institute of Biotechnology, Zhejiang University, Hangzhou, China
- />Institute of Crop Sciences, Zhejiang University, Hangzhou, 310029 China
| | | | - Mumtaz A Saand
- />Department of Botany, Shah Abdul Latif University, Khairpur mir’s, Sindh Pakistan
| | - Qing-Yao Shu
- />State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, 310029 China
- />Institute of Crop Sciences, Zhejiang University, Hangzhou, 310029 China
| |
Collapse
|
92
|
Abstract
SIGNIFICANCE Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs rapidly in response to attempted pathogen invasion of potential host plants. Such reduction-oxidation (redox) changes are sensed and transmitted to engage immune function, including the hypersensitive response, a programmed execution of challenged plant cells. RECENT ADVANCES Pathogen elicitors trigger changes in calcium that are sensed by calmodulin, calmodulin-like proteins, and calcium-dependent protein kinases, which activate ROS and RNS production. The ROS and RNS production is compartmentalized within the cell and occurs through multiple routes. Mitogen-activated protein kinase (MAPK) cascades are engaged upstream and downstream of ROS and nitric oxide (NO) production. NO is increasingly recognized as a key signaling molecule, regulating downstream protein function through S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol. CRITICAL ISSUES How multiple sources of ROS and RNS are coordinated is unclear. The putative protein sensors that detect and translate fluxes in ROS and RNS into differential gene expression are obscure. Protein tyrosine nitration following reaction of peroxynitrite with tyrosine residues has been proposed as another signaling mechanism or as a marker leading to protein degradation, but the reversibility remains to be established. FUTURE DIRECTIONS Research is needed to identify the full spectrum of NO-modified proteins with special emphasis on redox-activated transcription factors and their cognate target genes. A systems approach will be required to uncover the complexities integral to redox regulation of MAPK cascades, transcription factors, and defense genes through the combined effects of calcium, phosphorylation, S-nitrosylation, and protein tyrosine nitration.
Collapse
Affiliation(s)
- Debra E Frederickson Matika
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh , Edinburgh, United Kingdom
| | | |
Collapse
|
93
|
Pottosin I, Dobrovinskaya O. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:732-42. [PMID: 24560436 DOI: 10.1016/j.jplph.2013.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 05/25/2023]
Abstract
Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico.
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico
| |
Collapse
|
94
|
Gholizadeh A. Maltose-binding protein switches programmed cell death in Nicotiana glutinosa leaf cells. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
95
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
96
|
Maathuis FJM. Sodium in plants: perception, signalling, and regulation of sodium fluxes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:849-58. [PMID: 24151301 DOI: 10.1093/jxb/ert326] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although not essential for most plants, sodium (Na(+)) can be beneficial to plants in many conditions, particularly when potassium (K(+)) is deficient. As such it can be regarded a 'non-essential' or 'functional' nutrient. By contrast, the many salinized areas around the globe force plants to deal with toxicity from high levels of Na(+) in the environment and within tissues. Progress has been made in identifying the relevant membrane transporters involved in the uptake and distribution of Na(+). The latter is important in the context of mitigating salinity stress but also for the optimization of Na(+) as an abundantly available functional nutrient. In both cases plants are likely to require mechanism(s) to monitor Na(+) concentration, possibly in multiple compartments, to regulate gene expression and transport activities. Extremely little is known about whether such mechanisms are present and if so, how they operate, either at the cellular or the tissue level. This paper gives an overview of the regulatory and potential sensing mechanisms that pertain to Na(+), in both the context of salt stress and Na(+) as a nutrient.
Collapse
|
97
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
98
|
Zhou L, Lan W, Jiang Y, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. MOLECULAR PLANT 2014; 7:369-76. [PMID: 24121288 DOI: 10.1093/mp/sst125] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium, as a ubiquitous second messenger, plays essential roles in tip-growing cells, such as animal neurons, plant pollen tubes, and root hairs. However, little is known concerning the regulatory mechanisms that code and decode Ca(2+) signals in plants. The evidence presented here indicates that a calcium-dependent protein kinase, CPK32, controls polar growth of pollen tubes. Overexpression of CPK32 disrupted the polar growth along with excessive Ca(2+) accumulation in the tip. A search of downstream effector molecules for CPK32 led to identification of a cyclic nucleotide-gated channel, CNGC18, as an interacting partner for CPK32. Co-expression of CPK32 and CNGC18 resulted in activation of CNGC18 in Xenopus oocytes where expression of CNGC18 alone did not exhibit significant calcium channel activity. Overexpression of CNGC18 produced a growth arrest phenotype coupled with accumulation of calcium in the tip, similar to that induced by CPK32 overexpression. Co-expression of CPK32 and CNGC18 had a synergistic effect leading to more severe depolarization of pollen tube growth. These results provide a potential feed-forward mechanism in which calcium-activated CPK32 activates CNGC18, further promoting calcium entry during the elevation phase of Ca(2+) oscillations in the polar growth of pollen tubes.
Collapse
Affiliation(s)
- Liming Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
99
|
Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Francès V, Ma W, Berkowitz GA, Wendehenne D. There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. PLANT PHYSIOLOGY 2013; 163:459-70. [PMID: 23749853 PMCID: PMC3793028 DOI: 10.1104/pp.113.220624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca(2+) and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca(2+) fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca(2+) signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca(2+) and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and Ca(2+) sensors. Notably, we provide new evidence that calmodulin might be regulated at the posttranslational level by NO through S-nitrosylation. Furthermore, we report original transcriptomic data showing that NO produced in response to oligogalacturonide regulates the expression of genes related to Ca(2+) signaling. Deeper insight into the molecules involved in the interplay between Ca(2+) and NO not only permits a better characterization of the Ca(2+) signaling system but also allows us to further understand how plants respond to pathogen attack.
Collapse
|
100
|
Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI. Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. PLANT PHYSIOLOGY 2013; 163:578-90. [PMID: 24019428 PMCID: PMC3793039 DOI: 10.1104/pp.113.225045] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/28/2013] [Indexed: 05/08/2023]
Abstract
Cytosolic Ca(2+) in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca(2+) increases result from Ca(2+) influx through Ca(2+)-permeable channels in the plasma membrane and Ca(2+) release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca(2+)-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3',5'-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg(2+) as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba(2+), Ca(2+), and Na(+) ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca(2+)-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca(2+)-permeable cation channels in the plasma membrane of Arabidopsis guard cells.
Collapse
Affiliation(s)
| | - Shintaro Munemasa
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Nadia Robert
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Michelle Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Irina Puzõrjova
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Hannes Kollist
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Stephen Lee
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Izumi Mori
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | |
Collapse
|