51
|
Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S, Shaw J, Taliansky ME, Pfannstiel J, Chichkova NV, Stintzi A, Schaller A, Vartapetian AB. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. THE NEW PHYTOLOGIST 2018; 218:1167-1178. [PMID: 28407256 DOI: 10.1111/nph.14568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 05/24/2023]
Abstract
Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.
Collapse
Affiliation(s)
- Roman E Beloshistov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Konrad Dreizler
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Raisa A Galiullina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Alexander I Tuzhikov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Sven Reichardt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jane Shaw
- The James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Stuttgart, 70593, Germany
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
52
|
De Ollas C, Arbona V, Gómez-Cadenas A, Dodd IC. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2103-2116. [PMID: 29432619 PMCID: PMC6018964 DOI: 10.1093/jxb/ery045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/31/2017] [Indexed: 05/23/2023]
Abstract
To determine whether drought-induced root jasmonate [jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile)] accumulation affected shoot responses to drying soil, near-isogenic wild-type (WT) tomato (Solanum lycopersicum cv. Castlemart) and the def-1 mutant (which fails to accumulate jasmonates during water deficit) were self- and reciprocally grafted. Rootstock hydraulic conductance was entirely rootstock dependent and significantly lower in def-1, yet def-1 scions maintained a higher leaf water potential as the soil dried due to their lower stomatal conductance (gs). Stomatal sensitivity to drying soil (the slope of gsversus soil water content) was low in def-1 self-grafts but was normalized by grafting onto WT rootstocks. Although soil drying increased 12-oxo-phytodienoic acid (OPDA; a JA precursor and putative antitranspirant) concentrations in def-1 scions, foliar JA accumulation was negligible and foliar ABA accumulation reduced compared with WT scions. A WT rootstock increased drought-induced ABA and JA accumulation in def-1 scions, but decreased OPDA accumulation. Xylem-borne jasmonates were biologically active, since supplying exogenous JA via the transpiration stream to detached leaves decreased transpiration of WT seedlings but had the opposite effect in def-1. Thus foliar accumulation of both ABA and JA at WT levels is required for both maximum (well-watered) gs and stomatal sensitivity to drying soil.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Vicent Arbona
- Departamento de Ciencias Agrarias del Medio Natural. Universitat Jaume I, Spain
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
53
|
Li J, Avila CA, Tieman DM, Klee HJ, Goggin FL. A Comparison of the Effects of FATTY ACID DESATURASE 7 and HYDROPEROXIDE LYASE on Plant-Aphid Interactions. Int J Mol Sci 2018; 19:ijms19041077. [PMID: 29617299 PMCID: PMC5979546 DOI: 10.3390/ijms19041077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 11/16/2022] Open
Abstract
The spr2 mutation in tomato (Solanum lycopersicum), which disrupts function of FATTY ACID DESATURASE 7 (FAD7), confers resistance to the potato aphid (Macrosiphum euphorbiae) and modifies the plant’s C6 volatile profiles. To investigate whether C6 volatiles play a role in resistance, HYDROPEROXIDE LYASE (HPL), which encodes a critical enzyme in C6 volatile synthesis, was silenced in wild-type tomato plants and spr2 mutants. Silencing HPL in wild-type tomato increased potato aphid host preference and reproduction on 5-week old plants but had no influence on 3-week old plants. The spr2 mutation, in contrast, conferred strong aphid resistance at both 3 and 5 weeks, and silencing HPL in spr2 did not compromise this aphid resistance. Moreover, a mutation in the FAD7 gene in Arabidopsis thaliana also conferred resistance to the green peach aphid (Myzus persicae) in a genetic background that carries a null mutation in HPL. These results indicate that HPL contributes to certain forms of aphid resistance in tomato, but that the effects of FAD7 on aphids in tomato and Arabidopsis are distinct from and independent of HPL.
Collapse
Affiliation(s)
- Jiamei Li
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Carlos A Avila
- Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX 78596, USA.
| | - Denise M Tieman
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Harry J Klee
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Fiona L Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
54
|
Zhao W, Zhou X, Lei H, Fan J, Yang R, Li Z, Hu C, Li M, Zhao F, Wang S. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Physiol Genomics 2018; 50:197-207. [PMID: 29341868 DOI: 10.1152/physiolgenomics.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaoxuan Zhou
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hui Lei
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyan Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fukuan Zhao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
55
|
MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun 2018; 9:822. [PMID: 29483511 PMCID: PMC5826930 DOI: 10.1038/s41467-018-03238-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/26/2018] [Indexed: 01/08/2023] Open
Abstract
Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development. Inflorescence architecture affects crop grain yield. Here, the authors deploy whole-genome sequencing-based bulk segregant analysis to identify the causal gene of a sorghum multi-seeded (msd) mutant and suggest MSD1 regulating the fertility of the pedicellate spikelets through jasmonic acid pathway.
Collapse
|
56
|
Ewas M, Khames E, Ziaf K, Shahzad R, Nishawy E, Ali F, Subthain H, Amar MH, Ayaad M, Ghaly O, Luo J. The Tomato DOF Daily Fluctuations 1, TDDF1 acts as flowering accelerator and protector against various stresses. Sci Rep 2017; 7:10299. [PMID: 28860556 PMCID: PMC5578996 DOI: 10.1038/s41598-017-10399-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Adaptation to environmental changes is an important fitness trait for crop development. Photoperiod is an essential factor in seasonal control of flowering time. Sensing of day-length requires an interaction between the Photoperiod and the endogenous rhythms that is controlled by plant circadian clock. Thus, circadian clock is a critical regulator and internal molecular time-keeping mechanism, controlling key agricultural traits in crop plants such as the ability to adjust their growth and physiology to anticipate diurnal environmental changes. Here, we describe the gene Tomato Dof Daily Fluctuations 1 (TDDF1), which is involved in circadian regulation and stress resistance. Large daily oscillations in TDDF1 expression were retained after transferring to continuous dark (DD) or light (LL) conditions. Interestingly, overexpressing TDDF1 induce early flowering in tomato through up-regulation of the flowering-time control genes, moreover, by protein-protein interaction with the floral inducer SFT gene. Notably, overexpressing TDDF1 in tomato was associated with chlorophyll overaccumulation by up-regulating the related biosynthetic genes. TDDF1 expression results in improved drought, salt, various hormones stress tolerance alongwith resistance to late blight caused by Phytophthora infestans. This study can be a distinctive strategy to improve other economically important crops.
Collapse
Affiliation(s)
- Mohamed Ewas
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
- Genetic Resources Department, Deserts Research Center (DRC), Cairo, Egypt
| | - Eman Khames
- College of Pharmacy, Tanta University, Tanta, Egypt
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Raheel Shahzad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Elsayed Nishawy
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
- Genetic Resources Department, Deserts Research Center (DRC), Cairo, Egypt
| | - Farhan Ali
- Cereal Crops Research Institute (CCRI), Nowshera, Pakistan
| | - Hizar Subthain
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China
| | - Mohamed H Amar
- Genetic Resources Department, Deserts Research Center (DRC), Cairo, Egypt
| | - Mohamed Ayaad
- Egyptian Atomic Energy Nuclear Research Center, Inshas, Egypt
| | - Omran Ghaly
- Genetic Resources Department, Deserts Research Center (DRC), Cairo, Egypt
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan Hubei, 430070, China.
| |
Collapse
|
57
|
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. THE PLANT CELL 2017; 29:1883-1906. [PMID: 28733419 PMCID: PMC5590496 DOI: 10.1105/tpc.16.00953] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.
Collapse
Affiliation(s)
- Minmin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - David T W Tzeng
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Zhong
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chuanyou Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
58
|
Bozorov TA, Dinh ST, Baldwin IT. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:552-571. [PMID: 28422432 DOI: 10.1111/jipb.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The whole-plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell-nonautonomous as compared to the rapid cell-autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting-experiments were used with plants silenced for the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA-O-methyltransferase (ovJMT). JA-impaired irAOC plants were defective in the cell-nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft-transmissible JA signal. Both genotypes displayed unaltered cell-autonomous signaling. Defense responses (17-hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft-transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA-Ile, either directly functions as a long-distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray, Tashkent Region, Uzbekistan
| | - Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Department of Plant Biotechnology, Faculty of Biotechnology - Vietnam National University of Agriculture, Ngo Xuan Quang Street, 100000, Hanoi, Vietnam
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| |
Collapse
|
59
|
Bauchet G, Grenier S, Samson N, Segura V, Kende A, Beekwilder J, Cankar K, Gallois JL, Gricourt J, Bonnet J, Baxter C, Grivet L, Causse M. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. THE NEW PHYTOLOGIST 2017; 215:624-641. [PMID: 28585324 DOI: 10.1111/nph.14615] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/09/2017] [Indexed: 05/21/2023]
Abstract
Plant metabolites are important to world food security due to their roles in crop yield and nutritional quality. Here we report the metabolic profile of 300 tomato accessions (Solanum lycopersicum and related wild species) by quantifying 60 primary and secondary metabolites, including volatile organic compounds, over a period of 2 yr. Metabolite content and genetic inheritance of metabolites varied broadly, both within and between different genetic groups. Using genotype information gained from 10 000 single nucleotide polymorphism markers, we performed a metabolite genome-wide association mapping (GWAS) study. We identified 79 associations influencing 13 primary and 19 secondary metabolites with large effects at high resolution. Four genome regions were detected, highlighting clusters of associations controlling the variation of several metabolites. Local linkage disequilibrium analysis and allele mining identified possible candidate genes which may modulate the content of metabolites that are of significant importance for human diet and fruit consumption. We precisely characterized two associations involved in fruit acidity and phenylpropanoid volatile production. Taken together, this study reveals complex and distinct metabolite regulation in tomato subspecies and demonstrates that GWAS is a powerful tool for gene-metabolite annotation and identification, pathways elucidation, and further crop improvement.
Collapse
Affiliation(s)
- Guillaume Bauchet
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | | | - Nicolas Samson
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | | | - Aniko Kende
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Jules Beekwilder
- Plant Research International, 6700 AA, Wageningen, the Netherlands
| | - Katarina Cankar
- Plant Research International, 6700 AA, Wageningen, the Netherlands
| | - Jean-Luc Gallois
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| | - Justine Gricourt
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| | - Julien Bonnet
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | - Charles Baxter
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Laurent Grivet
- Syngenta, 12 Chemin de l'Hobit, Saint Sauveur, 31790, France
| | - Mathilde Causse
- INRA, UR1052, GAFL, 67 Allée des Chênes Domaine Saint Maurice - CS60094, Montfavet Cedex, 84143, France
| |
Collapse
|
60
|
Liu B, Preisser EL, Shi X, Wu H, Li C, Xie W, Wang S, Wu Q, Zhang Y. Plant defence negates pathogen manipulation of vector behaviour. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Baiming Liu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
- Tianjin Institute of Plant Protection Tianjin Academy of Agricultural Sciences Tianjin300384 China
| | - Evan L. Preisser
- Biological Sciences Department University of Rhode Island Kingston RI02881 USA
| | - Xiaobin Shi
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| | - Huaitong Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences Beijing100101 China
| | - Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| | - Shaoli Wang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| | - Qingjun Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing100081 China
| |
Collapse
|
61
|
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1361-1369. [PMID: 28201612 DOI: 10.1093/jxb/erx004] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
62
|
Cui H, Wei J, Su J, Li C, Ge F. Elevated O 3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:243-250. [PMID: 27968993 DOI: 10.1016/j.plantsci.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The elevated atmospheric O3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O3 and O3+ herbivory treatments. Our results suggest that under elevated O3, the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted.
Collapse
Affiliation(s)
- Hongying Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianwei Su
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
63
|
Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O₃ and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Int J Mol Sci 2016; 17:E1964. [PMID: 27916792 PMCID: PMC5187764 DOI: 10.3390/ijms17121964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of elevated atmospheric ozone (O₃) levels on herbivorous insects have been well studied, but little is known about the combined effects of elevated O₃ and virus infection on herbivorous insect performance. Using open-top chambers in the field, we determined the effects of elevated O₃ and Tomato yellow leaf curl virus (TYLCV) infection on wild-type (Wt) tomato and 35S tomato (jasmonic acid (JA) defense-enhanced genotype) in association with whitefly, Bemisia tabaci Gennadius biotype B. Elevated O₃ and TYLCV infection, alone and in combination, significantly reduced the contents of soluble sugars and free amino acids, increased the contents of total phenolics and condensed tannins, and increased salicylic acid (SA) content and the expression of SA-related genes in leaves. The JA signaling pathway was upregulated by elevated O₃, but downregulated by TYLCV infection and O₃ + TYLCV infection. Regardless of plant genotype, elevated O₃, TYLCV infection, or O₃ + TYLCV infection significantly decreased B. tabaci fecundity and abundance. These results suggest that elevated O₃ and TYLCV infection, alone and in combination, reduce the nutrients available for B. tabaci, increase SA content and SA-related gene expression, and increase secondary metabolites, resulting in decreases in fecundity and abundance of B. tabaci in both tomato genotypes.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
64
|
RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 2016; 6:36463. [PMID: 27819341 PMCID: PMC5098223 DOI: 10.1038/srep36463] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of 'Jiangxue', a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants.
Collapse
|
65
|
Chen C, Zhang Y, Qiakefu K, Zhang X, Han LM, Hua WP, Yan YP, Wang ZZ. Overexpression of Tomato Prosystemin (LePS) Enhances Pest Resistance and the Production of Tanshinones in Salvia miltiorrhiza Bunge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7760-7769. [PMID: 27690419 DOI: 10.1021/acs.jafc.6b02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tanshinones are a group of active diterpenes with pharmacological properties that are widely used in the treatment of cardiovascular diseases. Jasmonate (JA) acts as an elicitor to enhance tanshinone biosynthesis in Salvia miltiorrhiza. However, because of high labor costs and undesirable chemical characteristics, the use of JA elicitation is still in the experimental stage. In our experiments, the overexpression of Lycopersicon esculentum (tomato) Prosystemin (LePS) in transgenic plants of S. miltiorrhiza increased their JA concentrations, significantly enhanced the production of tanshinone, and activated the expression of key genes in the tanshinone biosynthesis pathway. Meanwhile, the relative levels of metabolites related to defense such as sterols, terpenes, and phenolic acids were also increased in our OEP lines. In addition, when the larvae of cotton bollworms (Heliothis armigera) were fed with leaves from transgenic lines, their mortality rates rose by nearly 4-fold when compared to that of larvae exposed to leaves from the nontransformed wild type. Our study provides a new strategy for genetic engineering by which tanshinone production and pest resistance can be improved in S. miltiorrhiza. This is accomplished by simulating the wounding signal that increases the endogenous levels of JA.
Collapse
Affiliation(s)
- Chen Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Kuliman Qiakefu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Xuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Li-Min Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University , 710110, Xi'an, P. R. China
| | - Wen-Ping Hua
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University , 710110, Xi'an, P. R. China
| | - Ya-Ping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University , 710119, Xi'an, P. R. China
| |
Collapse
|
66
|
Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, Telewski FW, Brandizzi F, Howe GA. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5313-5324. [PMID: 27481446 PMCID: PMC5049383 DOI: 10.1093/jxb/erw292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290 The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Starla Zemelis-Durfee
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jameel M Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
67
|
Li YC, Wan WL, Lin JS, Kuo YW, King YC, Chen YC, Jeng ST. Signal transduction and regulation of IbpreproHypSys in sweet potato. PLANT, CELL & ENVIRONMENT 2016; 39:1576-87. [PMID: 26924170 DOI: 10.1111/pce.12729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 05/28/2023]
Abstract
Hydroxyproline-rich glycopeptides (HypSys) are small signalling peptides containing 18-20 amino acids. The expression of IbpreproHypSys, encoding the precursor of IbHypSys, was induced in sweet potato (Ipomoea batatas cv. Tainung 57) through wounding and IbHypSys treatments by using jasmonate and H2 O2 . Transgenic sweet potatoes overexpressing (OE) and silencing [RNA interference (RNAi)] IbpreproHypSys were created. The expression of the wound-inducible gene for ipomoelin (IPO) in the local and systemic leaves of OE plants was stronger than the expression in wild-type (WT) and RNAi plants after wounding. Furthermore, grafting experiments indicated that IPO expression was considerably higher in WT stocks receiving wounding signals from OE than from RNAi scions. However, wounding WT scions highly induced IPO expression in OE stocks. These results indicated that IbpreproHypSys expression contributed towards sending and receiving the systemic signals that induced IPO expression. Analysing the genes involved in the phenylpropanoid pathway demonstrated that lignin biosynthesis was activated after synthetic IbHypSys treatment. IbpreproHypSys expression in sweet potato suppressed Spodoptera litura growth. In conclusion, wounding induced the expression of IbpreproHypSys, whose protein product was processed into IbHypSys. IbHypSys stimulated IbpreproHypSys and IPO expression and enhanced lignin biosynthesis, thus protecting plants from insects.
Collapse
Affiliation(s)
- Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Lin Wan
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
68
|
Nosenko T, Böndel KB, Kumpfmüller G, Stephan W. Adaptation to low temperatures in the wild tomato species Solanum chilense. Mol Ecol 2016; 25:2853-69. [PMID: 27037798 DOI: 10.1111/mec.13637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
Molecular adaptation to abiotic stresses in plants is a complex process based mainly on the modifications of gene transcriptional activity and the alteration of protein-protein interactions. We used a combination of population genetic, comparative transcriptomic and plant physiology approaches to investigate the mechanisms of adaptation to low temperatures in Solanum chilense populations distributed along Andean altitudinal gradients. We found that plants from all populations have high chilling tolerance, which does not correlate with temperatures in their native habitats. In contrast, tolerance to freezing shows a significant association with altitude and temperature variables. We also observed the differences in expression patterns of cold-response genes between plants from high- and low-altitude populations. These results suggest that genetic adaptations to low temperatures evolved in high-altitude populations of S. chilense. At the transcriptional level, these adaptations may include high levels of constitutive expression of the genes encoding ICE1, the key transcription factor of the cold signalling pathway, and chloroplast ω-3 fatty acid desaturase FAD7. At the sequence level, a signature of selection associated with the adaptation to high altitudes was detected at the C-terminal part of ICE1 encoding the ACT regulatory domain.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Katharina B Böndel
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9, 3FL, UK
| | - Gabriele Kumpfmüller
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Museum für Naturkunde Berlin, Invalidenstr. 4, Berlin, 10115, Germany
| |
Collapse
|
69
|
Su Q, Mescher MC, Wang S, Chen G, Xie W, Wu Q, Wang W, Zhang Y. Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. PLANT, CELL & ENVIRONMENT 2016; 39:597-607. [PMID: 26436779 DOI: 10.1111/pce.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Plants frequently engage in simultaneous interactions with diverse classes of biotic antagonists. Differential induction of plant defence pathways by these antagonists, and interactions between pathways, can have important ecological implications; however, these effects are currently not well understood. We explored how Tomato yellow leaf curl virus (TYLCV) influenced the performance of its vector (Bemisia tabaci) and a non-vector herbivore (Tetranychus urticae) occurring separately or together on tomato plants (Solanum lycopersicum). TYLCV enhanced the performance of B. tabaci, although this effect was statistically significant only in the absence of T. urticae, which adversely affected B. tabaci performance regardless of infection status. In contrast, the performance of T. urticae was enhanced (only) by the combined presence of TYLCV and B. tabaci. Analyses of phytohormone levels and defence gene expression in wild-type tomatoes and various plant-defence mutants indicate that the enhancement of herbivore performance (for each species) entails the disruption of downstream defences in the jasmonic acid (JA) pathway. For T. urticae, this disruption appears to involve antagonistic effects of salicylic acid (SA), which is cumulatively induced to high levels by B. tabaci and TYLCV. In contrast, TYLCV was found to suppress JA-mediated responses to B. tabaci via mechanisms independent of SA.
Collapse
Affiliation(s)
- Qi Su
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
70
|
Nakamura S, Hondo K, Kawara T, Okazaki Y, Saito K, Kobayashi K, Yaeno T, Yamaoka N, Nishiguchi M. Conferring high-temperature tolerance to nontransgenic tomato scions using graft transmission of RNA silencing of the fatty acid desaturase gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:783-90. [PMID: 26132723 PMCID: PMC11389092 DOI: 10.1111/pbi.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
We investigated graft transmission of high-temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA-silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high-temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high-temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks.
Collapse
Affiliation(s)
| | - Kana Hondo
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | | | - Yozo Okazaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Japan
| | | | - Takashi Yaeno
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
71
|
Morcillo RJL, Navarrete MIT, Bote JAO, Monguio SP, García-Garrido JM. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:15-25. [PMID: 26629611 DOI: 10.1016/j.jplph.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/29/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization.
Collapse
Affiliation(s)
- Rafael Jorge León Morcillo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n°1, 18008 Granada, Spain
| | - María Isabel Tamayo Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n°1, 18008 Granada, Spain
| | - Juan Antonio Ocampo Bote
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n°1, 18008 Granada, Spain
| | - Salomé Prat Monguio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin n° 3, 28049 Madrid, Spain
| | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n°1, 18008 Granada, Spain.
| |
Collapse
|
72
|
Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, Xia X, Shi K, Yu J, Zhou Y. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. PLANT PHYSIOLOGY 2016; 170:459-71. [PMID: 26527654 PMCID: PMC4704577 DOI: 10.1104/pp.15.01171] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 05/18/2023]
Abstract
Light signaling and phytohormones both influence plant growth, development, and stress responses; however, cross talk between these two signaling pathways in response to cold remains underexplored. Here, we report that far-red light (FR) and red light (R) perceived by phytochrome A (phyA) and phyB positively and negatively regulated cold tolerance, respectively, in tomato (Solanum lycopersicum), which were associated with the regulation of levels of phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and transcript levels of ABA- and JA-related genes and the C-REPEAT BINDING FACTOR (CBF) stress signaling pathway genes. A reduction in the R/FR ratio did not alter cold tolerance, ABA and JA accumulation, and transcript levels of ABA- and JA-related genes and the CBF pathway genes in phyA mutant plants; however, those were significantly increased in wild-type and phyB plants with the reduction in the R/FR ratio. Even though low R/FR treatments did not confer cold tolerance in ABA-deficient (notabilis [not]) and JA-deficient (prosystemin-mediated responses2 [spr2]) mutants, it up-regulated ABA accumulation and signaling in the spr2 mutant, with no effect on JA levels and signaling in the not mutant. Foliar application of ABA and JA further confirmed that JA functioned downstream of ABA to activate the CBF pathway in light quality-mediated cold tolerance. It is concluded that phyA and phyB function antagonistically to regulate cold tolerance that essentially involves FR light-induced activation of phyA to induce ABA signaling and, subsequently, JA signaling, leading to an activation of the CBF pathway and a cold response in tomato plants.
Collapse
Affiliation(s)
- Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Huizi Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Mengmeng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Eugen Onac
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| |
Collapse
|
73
|
Garcia-Abellan JO, Fernandez-Garcia N, Lopez-Berenguer C, Egea I, Flores FB, Angosto T, Capel J, Lozano R, Pineda B, Moreno V, Olmos E, Bolarin MC. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity. PHYSIOLOGIA PLANTARUM 2015; 155:296-314. [PMID: 25582191 DOI: 10.1111/ppl.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.
Collapse
Affiliation(s)
- José O Garcia-Abellan
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Nieves Fernandez-Garcia
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Carmen Lopez-Berenguer
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Trinidad Angosto
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Juan Capel
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Rafael Lozano
- Agro-Food Biotechnology Research Centre (BITAL), University of Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - Benito Pineda
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vicente Moreno
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Camino de Vera s/n, 46022, Valencia, Spain
| | - Enrique Olmos
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Maria C Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| |
Collapse
|
74
|
Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:44-51. [PMID: 26125498 DOI: 10.1016/j.pbi.2015.05.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development.
Collapse
Affiliation(s)
- Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China.
| |
Collapse
|
75
|
Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. FRONTIERS IN PLANT SCIENCE 2015; 6:786. [PMID: 26442091 PMCID: PMC4585261 DOI: 10.3389/fpls.2015.00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/11/2015] [Indexed: 05/18/2023]
Abstract
Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza-primed disease resistance.
Collapse
Affiliation(s)
- Yuanyuan Song
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| | - Dongmei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhongxiang Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
| | - Rensen Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, FuzhouChina
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, GuangzhouChina
| |
Collapse
|
76
|
Coppola M, Corrado G, Coppola V, Cascone P, Martinelli R, Digilio MC, Pennacchio F, Rao R. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1270-1285. [PMID: 26339120 PMCID: PMC4551541 DOI: 10.1007/s11105-014-0834-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 503 differentially expressed genes indicated that several biological functions were affected. Systemin promotes the expression of an array of defense genes that are dependent on different signaling pathways and it downregulates genes connected with carbon fixation and carbohydrate metabolism. These alterations present a degree of overlap with the response programs that are classically associated to pathogen defense or abiotic stress protection, implying that end products of the systemin signaling pathway may be more diverse than expected. We show also that the observed transcriptional modifications have a relevant functional outcome, since transgenic lines were more resistant against very different biotic stressors such as aphids (Macrosiphum euphorbiae), phytopathogenic fungi (Botrytis cinerea and Alternaria alternata) and phytophagous larvae (Spodoptera littoralis). Our work demonstrated that in tomato the modulation of a single gene is sufficient to provide a wide resistance against stress by boosting endogenous defense pathways. Overall, the data provided evidence that the systemin peptide might serve as DAMP signal in tomato, acting as a broad indicator of tissue integrity.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Valentina Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | | | | | - Maria Cristina Digilio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, NA Italy
| |
Collapse
|
77
|
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4653-67. [PMID: 26002970 PMCID: PMC4507771 DOI: 10.1093/jxb/erv238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are important transcriptional and post-transcriptional modulators of gene expression that play crucial roles in the responses to diverse stresses. To explore jasmonic acid (JA)-dependent miRNA-mediated regulatory networks that are responsive to root-knot nematode (RKN), two small RNA libraries were constructed from wild-type (WT) and JA mutant (spr2) plants. A total of 263 known miRNAs and 441 novel miRNAs were significantly regulated under RKN stress in the two libraries. The spatio-temporal expression of candidate miRNAs and their corresponding targets were analysed by qRT-PCR under RKN stress. A clear negative correlation was observed between miR319 and its target TEOSINTE BRANCHED1/CYCLOIDEA/PRO-LIFERATING CELL FACTOR 4 (TCP4) in leaf, stem, and root under RKN stress, implying that the miR319/TCP4 module is involved in the systemic defensive response. Reverse genetics demonstrated that the miR319/TCP4 module affected JA synthetic genes and the endogenous JA level in leaves, thereby mediating RKN resistance. These results suggested that the action of miR319 in serving as a systemic signal responder and regulator that modulated the RKN systemic defensive response was mediated via JA. The potential cross-talk between miR319/TCP4 and miR396/GRF (GROWTH RESPONDING FACTOR) in roots under RKN invasion is discussed, and a predictive model regarding miR319/TCP4-mediated RKN resistance is proposed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xin Qi
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fukuan Zhao
- Biological Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
78
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
79
|
Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. PLANT PHYSIOLOGY 2015; 167:1100-16. [PMID: 25627217 PMCID: PMC4348761 DOI: 10.1104/pp.114.252700] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/24/2015] [Indexed: 05/18/2023]
Abstract
Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth.
Collapse
Affiliation(s)
- Jing Lu
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Christelle Aurélie Maud Robert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Michael Riemann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Marco Cosme
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Laurent Mène-Saffrané
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Josep Massana
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Michael Joseph Stout
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Yonggen Lou
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| | - Matthias Erb
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (J.L., C.A.M.R., J.G., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (C.A.M.R., M.E.);Karlsruhe Institute of Technology, Botanical Institute-Molecular Cell Biology, 76131 Karlsruhe, Germany (M.R.);Functional Biodiversity, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany (M.C.);Department of Plant Biology, University of Fribourg, 1700 Fribourg, Switzerland (L.M.-S., J.M.);Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803 (M.J.S.); andInstitute of Insect Science, Zijingang Campus, Zhejiang University, Hangzhou 310058, China (Y.L.)
| |
Collapse
|
80
|
Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R. The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC PLANT BIOLOGY 2015; 15:58. [PMID: 25849363 PMCID: PMC4384353 DOI: 10.1186/s12870-015-0419-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. RESULTS We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the number and expression level of defense/stress-related genes decreases. CONCLUSIONS We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the down-regulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance.
Collapse
Affiliation(s)
- Khabat Vahabi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Irena Sherameti
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Madhunita Bakshi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anna Mrozinska
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anatoli Ludwig
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- />Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ralf Oelmüller
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
81
|
Wu C, Avila CA, Goggin FL. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:559-70. [PMID: 25504643 PMCID: PMC4286409 DOI: 10.1093/jxb/eru472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Carlos A Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX 78596, USA
| | - Fiona L Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
82
|
Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, García-Agustín P, Vicedo B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:304-15. [PMID: 25407262 DOI: 10.1111/tpj.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 05/21/2023]
Abstract
Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departament de Ciències Agràries i del Medi Natural, ESTCE, Universitat Jaume I, Castellón, 12071, Spain
| | | | | | | | | | | | | |
Collapse
|
83
|
Muñoz-Espinoza VA, López-Climent MF, Casaretto JA, Gómez-Cadenas A. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:997. [PMID: 26635826 PMCID: PMC4649032 DOI: 10.3389/fpls.2015.00997] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/30/2015] [Indexed: 05/02/2023]
Abstract
To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress.
Collapse
Affiliation(s)
| | - María F. López-Climent
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume ICastelló de la Plana, Spain
| | - José A. Casaretto
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume ICastelló de la Plana, Spain
- *Correspondence: Aurelio Gómez-Cadenas
| |
Collapse
|
84
|
Liu L, Shao Z, Zhang M, Wang Q. Regulation of carotenoid metabolism in tomato. MOLECULAR PLANT 2015; 8:28-39. [PMID: 25578270 DOI: 10.1016/j.molp.2014.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/14/2014] [Indexed: 05/20/2023]
Abstract
Carotenoids serve diverse functions in vastly different organisms that both produce and consume them. Enhanced carotenoid accumulation is of great importance in the visual and functional properties of fruits and vegetables. Significant progress has been achieved in recent years in our understanding of carotenoid biosynthesis in tomato (Solanum lycopersicum) using biochemical and genetics approaches. The carotenoid metabolic network is temporally and spatially controlled, and plants have evolved strategic tactics to regulate carotenoid metabolism in response to various developmental and environmental factors. In this review, we summarize the current status of studies on transcription factors and phytohormones that regulate carotenoid biosynthesis, catabolism, and storage capacity in plastids, as well as the responses of carotenoid metabolism to environmental cues in tomato fruits. Transcription factors function either in cooperation with or independently of phytohormone signaling to regulate carotenoid metabolism, providing novel approaches for metabolic engineering of carotenoid composition and content in tomato.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
85
|
Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. THE PLANT CELL 2014; 26:4135-48. [PMID: 25361956 PMCID: PMC4247587 DOI: 10.1105/tpc.114.131185] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Many important cell-to-cell communication events in multicellular organisms are mediated by peptides, but only a few peptides have been identified in plants. In an attempt to address the difficulties in identifying plant signaling peptides, we developed a novel peptidomics approach and used this approach to discover defense signaling peptides in plants. In addition to the canonical peptide systemin, several novel peptides were confidently identified in tomato (Solanum lycopersicum) and quantified to be induced by both wounding and methyl jasmonate (MeJA). A wounding or wounding plus MeJA-induced peptide derived from the pathogenesis-related protein 1 (PR-1) family was found to induce significant antipathogen and minor antiherbivore responses in tomato. This study highlights a role for PR-1 in immune signaling and suggests the potential application of plant endogenous peptides in efforts to defeat biological threats in crop production. As PR-1 is highly conserved across many organisms and the putative peptide from At-PR1 was also found to be bioactive in Arabidopsis thaliana, our results suggest that this peptide may be useful for enhancing resistance to stress in other plant species.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Ying Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Tan Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Republic of Korea Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
86
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
87
|
Bai Y, Chang C, Du F, Tan Z, Bai Y, Liu H. Combination of dynamic pH junction with capillary electrophoresis-mass spectrometry for the determination of systemins in plant samples. Electrophoresis 2014; 35:1984-8. [PMID: 24668451 DOI: 10.1002/elps.201300434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2023]
Abstract
Systemin is an important group of plant peptide hormones participating in the regulation of plant defensive responses. An improved method, based on dynamic pH junction and capillary electrophoresis-quadrupole time-of-flight mass spectrometry, was developed for online enrichment and sensitive determination of trace systemins in plants. After optimization, the online enrichment factors for six target systemins ranged from 90- to 127-fold. The detection limits reached lower than 0.5 nM, which were comparable with the sensitivity of LC-MS method. Satisfactory quantitative results were obtained in terms of linearity (R(2) ≥ 0.993), dynamic range (3-120 ng/mL), and reproducibility (≤6.7%). For the analysis of real plant samples, a rapid sample preparation method was developed, using two steps of SPE purification with different retention and separation mechanisms. Finally, this method realized the successful detection of tomato systemin and tobacco hydroxyproline-rich systemin I from plant leaves with shorter analysis time.
Collapse
Affiliation(s)
- Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China; Analytical & Characterization, Experiment Management Center, National Institute of Clean-and-Low-Carbon Energy (NICE), Beijing, P. R. China
| | | | | | | | | | | |
Collapse
|
88
|
Cui H, Su J, Wei J, Hu Y, Ge F. Elevated O₃ enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Sci Rep 2014; 4:5350. [PMID: 24939561 PMCID: PMC4061550 DOI: 10.1038/srep05350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/02/2014] [Indexed: 01/17/2023] Open
Abstract
We experimentally examined the effects of elevated O₃ and whitefly herbivory on tomato volatiles, feeding and oviposition preferences of whiteflies and behavioural responses of Encarsia formosa to these emissions on two tomato genotypes, a wild-type (Wt) and a jasmonic acid (JA) defence-enhanced genotype (JA-OE, 35S). The O₃ level and whitefly herbivory significantly increased the total amount of volatile organic compounds (VOCs), monoterpenes, green leaf volatiles (GLVs), and aldehyde volatiles produced by tomato plants. The 35S plants released higher amount of total VOCs and monoterpene volatiles than Wt plants under O₃+herbivory treatments. The feeding and oviposition bioassays showed that control plants were preferred by adult whiteflies whereas the 35S plants were not preferred by whiteflies. In the Y-tube tests, O₃+herbivory treatment genotypes were preferred by adult E. Formosa. The 35S plants were preferred by adult E. formosa under O₃, herbivory and O₃+herbivory treatments. Our results demonstrated that elevated O₃ and whitefly herbivory significantly increased tomato volatiles, which attracted E. formosa and reduced whitefly feeding. The 35S plants had a higher resistance to B. tabaci than Wt plant. Such changes suggest that the direct and indirect defences of resistant genotypes, such as 35S, could strengthen as the atmospheric O₃ concentration increases.
Collapse
Affiliation(s)
- Hongying Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR of China
- College of Life Science, Yangtze University, Hubei 434023, PR of China
| | - Jianwei Su
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR of China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR of China
| | - Yongjian Hu
- Henan Academy of Agricultural Sciences, Henan 450002, PR of China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR of China
| |
Collapse
|
89
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|
90
|
Cao Y, Hu S, Dai Q, Liu Y. Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits. Biotechnol Lett 2014; 36:1717-25. [DOI: 10.1007/s10529-014-1533-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
|
91
|
Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 2014; 39:1036-44. [PMID: 23797931 DOI: 10.1007/s10886-013-0312-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 01/14/2023]
Abstract
Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.
Collapse
Affiliation(s)
- Yuan Yuan Song
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Wushan, Guangzhou 510642, China
| | | | | | | | | | | | | |
Collapse
|
92
|
Kang JH, McRoberts J, Shi F, Moreno JE, Jones AD, Howe GA. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. PLANT PHYSIOLOGY 2014; 164:1161-74. [PMID: 24424324 PMCID: PMC3938611 DOI: 10.1104/pp.113.233395] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/13/2014] [Indexed: 05/20/2023]
Abstract
Flavonoids and terpenoids are derived from distinct metabolic pathways but nevertheless serve complementary roles in mediating plant interactions with the environment. Here, we show that glandular trichomes of the anthocyanin free (af) mutant of cultivated tomato (Solanum lycopersicum) fail to accumulate both flavonoids and terpenoids. This pleiotropic metabolic deficiency was associated with loss of resistance to native populations of coleopteran herbivores under field conditions. We demonstrate that Af encodes an isoform (SlCHI1) of the flavonoid biosynthetic enzyme chalcone isomerase (CHI), which catalyzes the conversion of naringenin chalcone to naringenin and is strictly required for flavonoid production in multiple tissues of tomato. Expression of the wild-type SlCHI1 gene from its native promoter complemented the anthocyanin deficiency in af. Unexpectedly, the SlCHI1 transgene also complemented the defect in terpenoid production in glandular trichomes. Our results establish a key role for SlCHI1 in flavonoid production in tomato and reveal a link between CHI1 and terpenoid production. Metabolic coordination of the flavonoid and terpenoid pathways may serve to optimize the function of trichome glands in dynamic environments.
Collapse
|
93
|
Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci Rep 2014; 4:3915. [PMID: 24468912 PMCID: PMC3904153 DOI: 10.1038/srep03915] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/13/2014] [Indexed: 11/08/2022] Open
Abstract
Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a 'donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected 'receiver' plants. After CMN establishment caterpillar infestation on 'donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the 'receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as 'donor' plants resulted in no induction of defence responses and no change in insect resistance in 'receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication.
Collapse
|
94
|
Karabudak T, Bor M, Özdemir F, Türkan İ. Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Rep 2014; 41:1401-10. [PMID: 24390244 DOI: 10.1007/s11033-013-2984-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/24/2013] [Indexed: 02/01/2023]
Abstract
Cold stress is among the environmental stressors limiting productivity, yield and quality of agricultural plants. Tolerance to cold stress is associated with the increased unsaturated fatty acids ratio in the plant membranes which are also known to be substrates of octadecanoid pathway for jasmonate and other oxylipins biosynthesis. Accumulation of osmoprotectant, glycine betaine (GB) is well known to be effective in the protecting membranes and mitigating cold stress effects but, the mode of action is poorly understood. We studied the role of GB in cold stress responses of two tomato cultivated varieties; Gerry (cold stress sensitive) and T47657 (moderately cold stress tolerant) and compared the differences in lypoxygenase-13 (TomLOXF) and fatty acid desaturase 7 (FAD7) gene expression profiles and physiological parameters including relative growth rates, relative water content, osmotic potential, photosynthetic efficiency, membrane leakage, lipid peroxidation levels. Our results indicated that GB might have a role in inducing FAD7 and LOX expressions for providing protection against cold stress in tomato plants which could be related to the desaturation process of lipids leading to increased membrane stability and/or induction of other genes related to stress defense mechanisms via octadecanoid pathway or lipid peroxidation products.
Collapse
Affiliation(s)
- T Karabudak
- Department of Biology, Science Faculty, Ege University, Bornova, 35100, Izmir, Turkey
| | | | | | | |
Collapse
|
95
|
Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:273-98. [DOI: 10.1007/978-94-007-7347-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
96
|
Yan Y, Huang PC, Borrego E, Kolomiets M. New perspectives into jasmonate roles in maize. PLANT SIGNALING & BEHAVIOR 2014; 9:e970442. [PMID: 25482807 PMCID: PMC4623489 DOI: 10.4161/15592316.2014.970442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
It is well-known from the model dicotyledonous plants, Arabidopsis and tomato, that jasmonates (JAs) act as defense hormones in planta due to their potent ability to mediate defensive responses against insect/pathogen attacks or harsh environmental conditions. JA is also required for various developmental processes such as male fertility, seed maturation, root extension, and leaf senescence. In our recently published Plant Cell paper, the multiple roles of JA in the monocotyledonous agro-economically important model plant, maize, were investigated by comprehensive analysis of JA-deficient double mutant disrupted in the two oxophytodienoate reductase genes, OPR7 and OPR8. These two genes are the closest orthologs of the Arabidopsis JA-producing OPR3 and are the only maize OPRs required for JA biosynthesis. With this mutant, we previously showed that JA is essential for both male and female reproductive development, and required for the regulation of brace root pigmentation, leaf senescence, and defense against oomycete Pythium aristosporum, and beet armyworm (Spodoptera exigua). In this addendum, we expanded the investigation into the function of JA in elongation of sheaths, leaves, and roots, and its involvement in photomorphogenesis of seedlings.
Collapse
Affiliation(s)
- Yuanxin Yan
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, China
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
- Correspondence to: Michael V Kolomiets;
| |
Collapse
|
97
|
Hann CT, Bequette CJ, Dombrowski JE, Stratmann JW. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns. FRONTIERS IN PLANT SCIENCE 2014; 5:550. [PMID: 25360141 PMCID: PMC4197774 DOI: 10.3389/fpls.2014.00550] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 05/15/2023]
Abstract
Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs.
Collapse
Affiliation(s)
- Claire T. Hann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - Carlton J. Bequette
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - James E. Dombrowski
- National Forage Seed Production Research Center, United States Department of Agriculture – Agricultural Research ServiceCorvallis, OR, USA
| | - Johannes W. Stratmann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
- *Correspondence: Johannes W. Stratmann, Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
98
|
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li CB, Li C. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 2013; 9:e1003964. [PMID: 24348260 PMCID: PMC3861047 DOI: 10.1371/journal.pgen.1003964] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/29/2013] [Indexed: 01/20/2023] Open
Abstract
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.
Collapse
Affiliation(s)
- Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
99
|
Abe H, Tateishi K, Seo S, Kugimiya S, Hirai MY, Sawada Y, Murata Y, Yara K, Shimoda T, Kobayashi M. Disarming the jasmonate-dependent plant defense makes nonhost Arabidopsis plants accessible to the American serpentine leafminer. PLANT PHYSIOLOGY 2013; 163:1242-53. [PMID: 24022267 PMCID: PMC3813647 DOI: 10.1104/pp.113.222802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we analyzed the interaction between Arabidopsis (Arabidopsis thaliana) and the American serpentine leafminer (Liriomyza trifolii), an important and intractable herbivore of many cultivated plants. We examined the role of the immunity-related plant hormone jasmonate (JA) in the plant response and resistance to leafminer feeding to determine whether JA affects host suitability for leafminers. The expression of marker genes for the JA-dependent plant defense was induced by leafminer feeding on Arabidopsis wild-type plants. Analyses of JA-insensitive coi1-1 mutants suggested the importance of JA in the plant response to leafminer feeding. The JA content of wild-type plants significantly increased after leafminer feeding. Moreover, coi1-1 mutants showed lower feeding resistance against leafminer attack than did wild-type plants. The number of feeding scars caused by inoculated adult leafminers in JA-insensitive coi1-1 mutants was higher than that in wild-type plants. In addition, adults of the following generation appeared only from coi1-1 mutants and not from wild-type plants, suggesting that the loss of the JA-dependent plant defense converted nonhost plants to accessible host plants. Interestingly, the glucosinolate-myrosinase defense system may play at most a minor role in this conversion, indicating that this major antiherbivore defense of Brassica species plants probably does not have a major function in plant resistance to leafminer. Application of JA to wild-type plants before leafminer feeding enhanced feeding resistance in Chinese cabbage (Brassica rapa), tomato (Solanum lycopersicum), and garland chrysanthemum (Chrysanthemum coronarium). Our results indicate that JA plays an important role in the plant response and resistance to leafminers and, in so doing, affects host plant suitability for leafminers.
Collapse
|
100
|
Scranton MA, Fowler JH, Girke T, Walling LL. Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A. PLoS One 2013; 8:e77889. [PMID: 24205013 PMCID: PMC3812031 DOI: 10.1371/journal.pone.0077889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022] Open
Abstract
Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.
Collapse
Affiliation(s)
- Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Jonathan H. Fowler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Thomas Girke
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|