51
|
The Ubiquitin–Proteasome System (UPS) and Viral Infection in Plants. PLANTS 2022; 11:plants11192476. [PMID: 36235343 PMCID: PMC9572368 DOI: 10.3390/plants11192476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
The ubiquitin–proteasome system (UPS) is crucial in maintaining cellular physiological balance. The UPS performs quality control and degrades proteins that have already fulfilled their regulatory purpose. The UPS is essential for cellular and organic homeostasis, and its functions regulate DNA repair, gene transcription, protein activation, and receptor trafficking. Besides that, the UPS protects cellular immunity and acts on the host’s defense system. In order to produce successful infections, viruses frequently need to manipulate the UPS to maintain the proper level of viral proteins and hijack defense mechanisms. This review highlights and updates the mechanisms and strategies used by plant viruses to subvert the defenses of their hosts. Proteins involved in these mechanisms are important clues for biotechnological approaches in viral resistance.
Collapse
|
52
|
Fan G, Xia X, Yao W, Cheng Z, Zhang X, Jiang J, Zhou B, Jiang T. Genome-Wide Identification and Expression Patterns of the F-box Family in Poplar under Salt Stress. Int J Mol Sci 2022; 23:ijms231810934. [PMID: 36142847 PMCID: PMC9505895 DOI: 10.3390/ijms231810934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The F-box family exists in a wide variety of plants and plays an extremely important role in plant growth, development and stress responses. However, systematic studies of F-box family have not been reported in populus trichocarpa. In the present study, 245 PtrFBX proteins in total were identified, and a phylogenetic tree was constructed on the basis of their C-terminal conserved domains, which was divided into 16 groups (A–P). F-box proteins were located in 19 chromosomes and six scaffolds, and segmental duplication was main force for the evolution of the F-box family in poplar. Collinearity analysis was conducted between poplar and other species including Arabidopsis thaliana, Glycine max, Anemone vitifolia Buch, Oryza sativa and Zea mays, which indicated that poplar has a relatively close relationship with G. max. The promoter regions of PtrFBX genes mainly contain two kinds of cis-elements, including hormone-responsive elements and stress-related elements. Transcriptome analysis indicated that there were 82 differentially expressed PtrFBX genes (DEGs), among which 64 DEGs were in the roots, 17 in the leaves and 26 in the stems. In addition, a co-expression network analysis of four representative PtrFBX genes indicated that their co-expression gene sets were mainly involved in abiotic stress responses and complex physiological processes. Using bioinformatic methods, we explored the structure, evolution and expression pattern of F-box genes in poplar, which provided clues to the molecular function of F-box family members and the screening of salt-tolerant PtrFBX genes.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinhui Xia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence: (B.Z.); (T.J.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence: (B.Z.); (T.J.)
| |
Collapse
|
53
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
54
|
Fragoso RR, Arraes FBM, Lourenço-Tessutti IT, Miranda VJ, Basso MF, Ferreira AVJ, Viana AAB, Lins CBJ, Lins PC, Moura SM, Batista JAN, Silva MCM, Engler G, Morgante CV, Lisei-de-Sa ME, Vasques RM, de Almeida-Engler J, Grossi-de-Sa MF. Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. PLANTA 2022; 256:69. [PMID: 36066773 DOI: 10.1007/s00425-022-03980-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The pUceS8.3 is a constitutive gene promoter with potential for ectopic and strong genes overexpression or active biomolecules in plant tissues attacked by pests, including nematode-induced giant cells or galls. Soybean (Glycine max) is one of the most important agricultural commodities worldwide and a major protein and oil source. Herein, we identified the soybean ubiquitin-conjugating (E2) enzyme gene (GmUBC4; Glyma.18G216000), which is significantly upregulated in response to Anticarsia gemmatalis attack and Meloidogyne incognita-induced galls during plant parasitism by plant nematode. The GmUBC4 promoter sequence and its different modules were functionally characterized in silico and in planta using transgenic Arabidopsis thaliana and G. max lines. Its full-length transcriptional regulatory region (promoter and 5´-UTR sequences, named pUceS8.3 promoter) was able to drive higher levels of uidA (β-glucuronidase) gene expression in different tissues of transgenic A. thaliana lines compared to its three shortened modules and the p35SdAMV promoter. Notably, higher β-glucuronidase (GUS) enzymatic activity was shown in M. incognita-induced giant cells when the full pUceS8.3 promoter drove the expression of this reporter gene. Furthermore, nematode-specific dsRNA molecules were successfully overexpressed under the control of the pUceS8.3 promoter in transgenic soybean lines. The RNAi gene construct used here was designed to post-transcriptionally downregulate the previously characterized pre-mRNA splicing factor genes from Heterodera glycines and M. incognita. A total of six transgenic soybean lines containing RNAi gene construct were selected for molecular characterization after infection with M. incognita pre-parasitic second-stage (ppJ2) nematodes. A strong reduction in the egg number produced by M. incognita after parasitism was observed in those transgenic soybean lines, ranging from 71 to 92% compared to wild-type control plants. The present data demonstrated that pUceS8.3 is a gene promoter capable of effectively driving dsRNA overexpression in nematode-induced giant cells of transgenic soybean lines and can be successfully applied as an important biotechnological asset to generate transgenic crops with improved resistance to root-knot nematodes as well as other pests.
Collapse
Affiliation(s)
- Rodrigo Rocha Fragoso
- Embrapa Savannah, Planaltina, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Fabricio Barbosa Monteiro Arraes
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Vívian Jesus Miranda
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Marcos Fernando Basso
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | | | | | - Camila Barrozo Jesus Lins
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Philippe Castro Lins
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - João Aguiar Nogueira Batista
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
- Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Maria Cristina Mattar Silva
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Gilbert Engler
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- INRAE, Université Côte d'Azur, CNRS, Sophia-Antipolis, France
| | - Carolina Vianna Morgante
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
- Embrapa Semiarid, Petrolina-PE, Brazil
| | - Maria Eugênia Lisei-de-Sa
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba-MG, Brazil
| | - Raquel Medeiros Vasques
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- INRAE, Université Côte d'Azur, CNRS, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil.
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, Brasília DF, CEP 70.770-900, Brazil.
- Catholic University of Brasilia, Brasília-DF, Brazil.
| |
Collapse
|
55
|
Varshney V, Majee M. Emerging roles of the ubiquitin-proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. PLANT CELL REPORTS 2022; 41:1805-1826. [PMID: 35678849 DOI: 10.1007/s00299-022-02884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitin-proteasome pathway has the potential to modulate crop productivity by influencing agronomic traits. Being sessile, the plant often uses the ubiquitin-proteasome pathway to maintain the stability of different regulatory proteins to survive in an ever-changing environment. The ubiquitin system influences plant reproduction, growth, development, responses to the environment, and processes that control critical agronomic traits. E3 ligases are the major players in this pathway, and they are responsible for recognizing and tagging the targets/substrates. Plants have a variety of E3 ubiquitin ligases, whose functions have been studied extensively, ranging from plant growth to defense strategies. Here we summarize three agronomic traits influenced by ubiquitination: seed size and weight, seed germination, and accessory plant agronomic traits particularly panicle architecture, tillering in rice, and tassels branch number in maize. This review article highlights some recent progress on how the ubiquitin system influences the stability/modification of proteins that determine seed agronomic properties like size, weight, germination and filling, and ultimately agricultural productivity and quality. Further research into the molecular basis of the aforementioned processes might lead to the identification of genes that could be modified or selected for crop development. Likewise, we also propose advances and future perspectives in this regard.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
56
|
Hand KA, Shabek N. The Role of E3 Ubiquitin Ligases in Chloroplast Function. Int J Mol Sci 2022; 23:9613. [PMID: 36077009 PMCID: PMC9455731 DOI: 10.3390/ijms23179613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function.
Collapse
Affiliation(s)
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
57
|
Zhao J, Shi X, Chen L, Chen Q, Tian X, Ai L, Zhao H, Yang C, Yan L, Zhang M. Genetic and transcriptome analyses reveal the candidate genes and pathways involved in the inactive shade-avoidance response enabling high-density planting of soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:973643. [PMID: 35991396 PMCID: PMC9382032 DOI: 10.3389/fpls.2022.973643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
High-density planting is a major way to improve crop yields. However, shade-avoidance syndrome (SAS) is a major factor limiting increased planting density. First Green Revolution addressed grass lodging problem by using dwarf/semi-dwarf genes. However, it is not suitable for soybean, which bear seeds on stalk and whose seed yield depends on plant height. Hence, mining shade-tolerant germplasms and elucidating the underlying mechanism could provide meaningful resources and information for high-yield breeding. Here, we report a high-plant density-tolerant soybean cultivar, JiDou 17, which exhibited an inactive SAS (iSAS) phenotype under high-plant density or low-light conditions at the seedling stage. A quantitative trait locus (QTL) mapping analysis using a recombinant inbred line (RIL) population showed that this iSAS phenotype is related to a major QTL, named shade-avoidance response 1 (qSAR1), which was detected. The mapping region was narrowed by a haplotype analysis into a 554 kb interval harboring 44 genes, including 4 known to be key regulators of the SAS network and 4 with a variance response to low-light conditions between near isogenic line (NIL) stems. Via RNA-seq, we identified iSAS-specific genes based on one pair of near isogenic lines (NILs) and their parents. The iSAS-specific genes expressed in the stems were significantly enriched in the "proteasomal protein catabolic" process and the proteasome pathway, which were recently suggested to promote the shade-avoidance response by enhancing PIF7 stability. Most iSAS-specific proteasome-related genes were downregulated under low-light conditions. The expression of genes related to ABA, CK, and GA significantly varied between the low- and normal-light conditions. This finding is meaningful for the cloning of genes that harbor beneficial variation(s) conferring the iSAS phenotype fixed in domestication and breeding practice.
Collapse
Affiliation(s)
- Jing Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Lei Chen
- School of Life Sciences, Yantai University, Yantai, China
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xuan Tian
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Lijuan Ai
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Hongtao Zhao
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
58
|
Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B, Li J. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro. MOLECULAR PLANT 2022; 15:1285-1299. [PMID: 35751381 DOI: 10.1016/j.molp.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Multisubunit SKP1/Cullin1/F-box (SCF) E3 ligases play essential roles in regulating the stability of crucial regulatory factors and controlling growth and development in eukaryotes. Detecting E3 ligase activity in vitro is important for exploring the molecular mechanism of protein ubiquitination. However, in vitro ubiquitination assay systems for multisubunit E3 ligases remain difficult to achieve, especially in plants, mainly owing to difficulties in achieving active components of multisubunit E3 ligases with high purity and characterizing specific E2 and E3 pairs. In this study, we characterized components of the rice SCFDWARF3 (SCFD3) E3 ligase, screened the coordinated E2, and reconstituted active SCFD3 E3 ligase in vitro. We further engineered SCFD3 E3 ligase using a fused SKP1-Cullin1-RBX1 (eSCR) protein and found that both the wild-type SCFD3 E3 ligase and the engineered SCFD3 E3 ligase catalyzed ubiquitination of the substrate D53, which is the key transcriptional repressor in strigolactone signaling. Finally, we replaced D3 with other F-box proteins from rice and humans and reconstituted active eSCF E3 ligases, including eSCFGID2, eSCFFBXL18, and eSCFCDC4 E3 ligases. Our work reconstitutes functional SCF E3 ligases in vitro and generates an engineered system with interchangeable F-box proteins, providing a powerful platform for studying the mechanisms of multisubunit SCF E3 ligases in eukaryotes.
Collapse
Affiliation(s)
- Huihui Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Jiang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
59
|
Ren H, Rao J, Tang M, Li Y, Dang X, Lin D. PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1514-1530. [PMID: 35587570 DOI: 10.1111/jipb.13281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Collapse
Affiliation(s)
- Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiu Rao
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Tang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Sciences and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
60
|
An JP, Zhang CL, Li HL, Wang GL, You CX. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:457-472. [PMID: 35560993 DOI: 10.1111/tpj.15808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Jasmonic acid (JA) induces chlorophyll degradation and leaf senescence. B-box (BBX) proteins play important roles in the modulation of leaf senescence, but the molecular mechanism of BBX protein-mediated leaf senescence remains to be further studied. Here, we identified the BBX protein MdBBX37 as a positive regulator of JA-induced leaf senescence in Malus domestica (apple). Further studies showed that MdBBX37 interacted with the senescence regulatory protein MdbHLH93 to enhance its transcriptional activation on the senescence-associated gene MdSAG18, thereby promoting leaf senescence. Moreover, the JA signaling repressor MdJAZ2 interacted with MdBBX37 and interfered with the interaction between MdBBX37 and MdbHLH93, thereby negatively mediating MdBBX37-promoted leaf senescence. In addition, the E3 ubiquitin ligase MdSINA3 delayed MdBBX37-promoted leaf senescence through targeting MdBBX37 for degradation. The MdJAZ2-MdBBX37-MdbHLH93-MdSAG18 and MdSINA3-MdBBX37 modules realized the precise modulation of JA on leaf senescence. In parallel, our data demonstrate that MdBBX37 was involved in abscisic acid (ABA)- and ethylene-mediated leaf senescence through interacting with the ABA signaling regulatory protein MdABI5 and ethylene signaling regulatory protein MdEIL1, respectively. Taken together, our results not only reveal the role of MdBBX37 as an integration node in JA-, ABA- and ethylene-mediated leaf senescence, but also provide new insights into the post-translational modification of BBX proteins.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
61
|
Wu Q, Liu Y, Xie Z, Yu B, Sun Y, Huang J. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. PLANT PHYSIOLOGY 2022; 189:1296-1313. [PMID: 35333328 PMCID: PMC9237679 DOI: 10.1093/plphys/kiac146] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
Ideal plant architecture and drought tolerance are important determinants of yield potential in rice (Oryza sativa). Here, we found that OsNAC016, a rice NAC (NAM, ATAF, and CUC) transcription factor, functions as a regulator in the crosslink between brassinosteroid (BR)-mediated plant architecture and abscisic acid (ABA)-regulated drought responses. The loss-of-function mutant osnac016 exhibited erect leaves and shortened internodes, but OsNAC016-overexpressing plants had opposite phenotypes. Further investigation revealed that OsNAC016 regulated the expression of the BR biosynthesis gene D2 by binding to its promoter. Moreover, OsNAC016 interacted with and was phosphorylated by GSK3/SHAGGY-LIKE KINASE2 (GSK2), a negative regulator in the BR pathway. Meanwhile, the mutant osnac016 had improved drought stress tolerance, supported by a decreased water loss rate and enhanced stomatal closure in response to exogenous ABA, but OsNAC016-overexpressing plants showed attenuated drought tolerance and reduced ABA sensitivity. Further, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE8 (SAPK8) phosphorylated OsNAC016 and reduced its stability. The ubiquitin/26S proteasome system is an important degradation pathway of OsNAC016 via the interaction with PLANT U-BOX PROTEIN43 (OsPUB43) that mediates the ubiquitination of OsNAC016. Notably, RNA-sequencing analysis revealed global roles of OsNAC016 in promoting BR-mediated gene expression and repressing ABA-dependent drought-responsive gene expression, which was confirmed by chromatin immunoprecipitation quantitative PCR analysis. Our findings establish that OsNAC016 is positively involved in BR-regulated rice architecture, negatively modulates ABA-mediated drought tolerance, and is regulated by GSK2, SAPK8, and OsPUB43 through posttranslational modification. Our data provide insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and response under abiotic stresses.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
62
|
Grain Size Associated Genes and the Molecular Regulatory Mechanism in Rice. Int J Mol Sci 2022; 23:ijms23063169. [PMID: 35328589 PMCID: PMC8953112 DOI: 10.3390/ijms23063169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Grain size is a quantitative trait that is controlled by multiple genes. It is not only a yield trait, but also an important appearance quality of rice. In addition, grain size is easy to be selected in evolution, which is also a significant trait for studying rice evolution. In recent years, many quantitative trait loci (QTL)/genes for rice grain size were isolated by map-based cloning or genome-wide association studies, which revealed the genetic and molecular mechanism of grain size regulation in part. Here, we summarized the QTL/genes cloned for grain size and the regulation mechanism with a view to provide the theoretical basis for improving rice yield and breeding superior varieties.
Collapse
|
63
|
Xu Y, Zhang Q, Zhang X, Wang J, Ayup M, Yang B, Guo C, Gong P, Dong W. The proteome reveals the involvement of serine/threonine kinase in the recognition of self- incompatibility in almond. J Proteomics 2022; 256:104505. [PMID: 35123051 DOI: 10.1016/j.jprot.2022.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
The self-incompatibility recognition mechanism determines whether the gametophyte is successfully fertilized between pollen tube SCF (SKP1-CUL1-F-box-RBX1) protein and pistil S-RNase protein during fertilization is unclear. In this study, the pistils of two almond cultivars 'Wanfeng' and 'Nonpareil' were used as the experimental materials after self- and nonself/cross-pollination, and pistils from the stamen-removed flowers were used as controls. We used fluorescence microscopy to observe the development of pollen tubes after pollination and 4D-LFQ to detect the protein expression profiles of 'Wanfeng' and 'Nonpareil' pistils and in controls. The results showed that it took 24-36 h for the development of the pollen tube to 1/3 of the pistil, and a total of 7684 differentially accumulated proteins (DAPs) were identified in the pistil after pollinating for 36 h, of which 7022 were quantifiable. Bioinformatics analysis based on the function of DAPs, identified RNA polymerases (4 DAPs), autophagy (3 DAPs), oxidative phosphorylation (3 DAPs), and homologous recombination (2 DAPs) pathways associated with the self-incompatibility process. These results were confirmed by parallel reaction monitoring (PRM), protein interaction and bioinformatics analysis. Taken together, these results provide the involvement of serine/threonine kinase protein in the reaction of pollen tube recognition the nonself- and the self-S-RNase protein. SIGNIFICANCE: Gametophytic self-incompatibility (GSI) is controlled by the highly polymorphic S locus or S haplotype, with two linked self-incompatibility genes, one encoding the S-RNase protein of the pistil S-determinant and the other encoding the F-box/SLF/SFB (S haplotype-specific F-box protein) protein of the pollen S-determinant. The recognition mechanism between pollen tube SCF protein and pistil S-RNase protein is divided into nonself- and self-recognition hypothesis mechanisms. At present, two hypothetical mechanisms cannot explain the recognition between pollen and pistil well, so the mechanism of gametophytic self-incompatibility recognition is still not fully revealed. In this experiment, we investigated the molecular mechanism of pollen-pistil recognition in self-incompatibility using self- and nonself-pollinated pistils of almond cultivars 'Wanfeng' and 'Nonpareil'. Based on our results, we proposed a potential involvement of the MARK2 (serine/threonine kinase) protein in the reaction of pollen tube recognition of the nonself- and the self-S-RNase protein. It provides a new way to reveal how almond pollen tubes recognize the self and nonself S-RNase enzyme protein.
Collapse
Affiliation(s)
- Yeting Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China; Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Qiuping Zhang
- Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China
| | - Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China
| | - Mubarek Ayup
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Bo Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Chunmiao Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China
| | - Peng Gong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830091, China.
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 11086, Liaoning, China.
| |
Collapse
|
64
|
Pande A, Mun BG, Khan M, Rahim W, Lee DS, Lee GM, Al Azawi TNI, Hussain A, Yun BW. Nitric Oxide Signaling and Its Association with Ubiquitin-Mediated Proteasomal Degradation in Plants. Int J Mol Sci 2022; 23:ijms23031657. [PMID: 35163578 PMCID: PMC8835921 DOI: 10.3390/ijms23031657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a versatile signaling molecule with diverse roles in plant biology. The NO-mediated signaling mechanism includes post-translational modifications (PTMs) of target proteins. There exists a close link between NO-mediated PTMs and the proteasomal degradation of proteins via ubiquitylation. In some cases, ubiquitin-mediated proteasomal degradation of target proteins is followed by an NO-mediated post-translational modification on them, while in other cases NO-mediated PTMs can regulate the ubiquitylation of the components of ubiquitin-mediated proteasomal machinery for promoting their activity. Another pathway that links NO signaling with the ubiquitin-mediated degradation of proteins is the N-degron pathway. Overall, these mechanisms reflect an important mechanism of NO signal perception and transduction that reflect a close association of NO signaling with proteasomal degradation via ubiquitylation. Therefore, this review provides insight into those pathways that link NO-PTMs with ubiquitylation.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Tiba Nazar Ibrahim Al Azawi
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Adil Hussain
- Laboratory of Cell Biology, Department of Entomology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| |
Collapse
|
65
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
66
|
Zhang Y, Zhang HZ, Fu JY, Du YY, Qu J, Song Y, Wang PW. The GmXTH1 gene improves drought stress resistance of soybean seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:3. [PMID: 37309483 PMCID: PMC10248595 DOI: 10.1007/s11032-021-01258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
In order to study the role of GmXTH1 gene in alleviating drought stress, soybean seeds with GmXTH1 gene were transferred by T4 treated with PEG6000 concentration of 0%, 5%, 10%, and 15% respectively. The germination potential, germination rate, germination index, and other indicators were measured. The results showed that the germination potential, germination rate, and germination index of OEA1 and OEA2 strains overexpressed in T4 generation were significantly higher than those of the control material M18. After 0-day, 7-day, and 15-day drought stress, the analysis of seedling phenotypes and root-shoot of different T4 generation transgenic soybean lines showed that under stress conditions, the growth of GmXTH1 overexpression material was generally better than that of the control material M18. The growth of GmXTH1 interference expression material was generally worse than that of the control material M18, with significant differences in plant phenotypes. The root system of GmXTH1 overexpressed material was significantly developed compared with that of the control material M18. The analysis of physiological and biochemical indexes showed that the relative water content and the activity of antioxidant enzymes (superoxide dismutase and peroxidase) of GmXTH1 transgenic soybean material were significantly higher than those of the control material M18, and the accumulation of malondialdehyde was lower under the same stress conditions at seedling stage. Fluorescence quantitative PCR assay showed that the relative expression of GmXTH1 gene in transgenic soybean was significantly increased after drought stress. The results showed that the overexpression of GmXTH1 could increase the total root length, surface area, total projection area, root volume, average diameter, total cross number, and total root tip number, thereby increasing the water intake and reducing the transpiration of water content in leaves, thus reducing the accumulation of MDA and producing more protective enzymes in a more effective and prompt way, reducing cell membrane damage to improve drought resistance of soybean.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Han-zhu Zhang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Jia-yu Fu
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Ye-yao Du
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Jing Qu
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Yang Song
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Pi-wu Wang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| |
Collapse
|
67
|
Zhang C, Gao H, Sun Y, Jiang L, He S, Song B, Liu S, Zhao M, Wang L, Liu Y, Wu J, Xu P, Zhang S. The BTB/POZ domain protein GmBTB/POZ promotes the ubiquitination and degradation of the soybean AP2/ERF-like transcription factor GmAP2 to regulate the defense response to Phytophthora sojae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7891-7908. [PMID: 34338731 DOI: 10.1093/jxb/erab363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/30/2021] [Indexed: 05/20/2023]
Abstract
Phytophthora root and stem rot in soybean (Glycine max) is a destructive disease worldwide, and hence improving crop resistance to the causal pathogen, P. sojae, is a major target for breeders. However, it remains largely unclear how the pathogen regulates the various affected signaling pathways in the host, which consist of complex networks including key transcription factors and their targets. We have previously demonstrated that GmBTB/POZ enhances soybean resistance to P. sojae and the associated defense response. Here, we demonstrate that GmBTB/POZ interacts with the transcription factor GmAP2 and promotes its ubiquitination. GmAP2-RNAi transgenic soybean hairy roots exhibited enhanced resistance to P. sojae, whereas roots overexpressing GmAP2 showed hypersensitivity. GmWRKY33 was identified as a target of GmAP2, which represses its expression by directly binding to the promoter. GmWRKY33 acts as a positive regulator in the response of soybean to P. sojae. Overexpression of GmBTB/POZ released the GmAP2-regulated suppression of GmWRKY33 in hairy roots overexpressing GmAP2 and increased their resistance to P. sojae. Taken together, our results indicate that GmBTB/POZ-GmAP2 modulation of the P. sojae resistance response forms a novel regulatory mechanism, which putatively regulates the downstream target gene GmWRKY33 in soybean.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Hong Gao
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Yan Sun
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Liangyu Jiang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Bo Song
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Shanshan Liu
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Le Wang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Yaguang Liu
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin, China
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| |
Collapse
|
68
|
Meng X, Liu J, Zhao M. Genome-wide identification of RING finger genes in flax ( Linum usitatissimum) and analyses of their evolution. PeerJ 2021; 9:e12491. [PMID: 34820204 PMCID: PMC8601054 DOI: 10.7717/peerj.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background Flax (Linum usitatissimum) is an important crop for its seed oil and stem fiber. Really Interesting New Gene (RING) finger genes play essential roles in growth, development, and biotic and abiotic stress responses in plants. However, little is known about these genes in flax. Methods Here, we performed a systematic genome-wide analysis to identify RING finger genes in flax. Results We identified 587 RING domains in 574 proteins and classified them into RING-H2 (292), RING-HCa (181), RING-HCb (23), RING-v (53), RING-C2 (31), RING-D (2), RING-S/T (3), and RING-G (2). These proteins were further divided into 45 groups according to domain organization. These genes were located in 15 chromosomes and clustered into three clades according to their phylogenetic relationships. A total of 312 segmental duplicated gene pairs were inferred from 411 RING finger genes, indicating a major contribution of segmental duplications to the RING finger gene family expansion. The non-synonymous/synonymous substitution ratio of the segmentally duplicated gene pairs was less than 1, suggesting that the gene family was under negative selection since duplication. Further, most RING genes in flax were differentially expressed during seed development or in the shoot apex. This study provides useful information for further functional analysis of RING finger genes in flax and to develop gene-derived molecular markers in flax breeding.
Collapse
Affiliation(s)
- Xianwen Meng
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Tibet Alpine Wetland Restoration Engineering Technology Research Center, Qinghai Minzu University, Xining, China
| | - Jing Liu
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Tibet Alpine Wetland Restoration Engineering Technology Research Center, Qinghai Minzu University, Xining, China
| | - Mingde Zhao
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Tibet Alpine Wetland Restoration Engineering Technology Research Center, Qinghai Minzu University, Xining, China
| |
Collapse
|
69
|
Ubiquitin-specific proteases UBP12 and UBP13 promote shade avoidance response by enhancing PIF7 stability. Proc Natl Acad Sci U S A 2021; 118:2103633118. [PMID: 34732572 PMCID: PMC8609341 DOI: 10.1073/pnas.2103633118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
For plants grown in a crowded environment, PHYTOCHROME INTERACTING FACTOR 7 (PIF7) plays a critical role by initiating a series of adaptive growth responses. Here, we demonstrate that, in addition to transcription activity and subcellular localization, the PIF7 protein level, which is stringently regulated, is also important for shade avoidance responses. We identified two ubiquitin-specific proteases, UBP12 and UBP13, which positively regulate rapid plant growth in response to shade light. These two ubiquitin proteases directly interact with PIF7 and protect the latter from destruction by 26S proteasomes. The dynamic changes of PIF7 abundance regulated by UBP12 and UBP13 provide insight into the roles of posttranslational modifications of PIF7 in integrating environmental changes with endogenous responses. Changes in light quality caused by the presence of neighbor proximity regulate many growth and development processes of plants. PHYTOCHROME INTERACTING FACTOR 7 (PIF7), whose subcellular localization, DNA-binding properties, and protein abundance are regulated in a photoreversible manner, plays a central role in linking shade light perception and growth responses. How PIF7 activity is regulated during shade avoidance responses has been well studied, and many factors involved in this process have been identified. However, the detailed molecular mechanism by which shade light regulates the PIF7 protein level is still largely unknown. Here, we show that the PIF7 protein level regulation is important for shade-induced growth. Two ubiquitin-specific proteases, UBP12 and UBP13, were identified as positive regulators in shade avoidance responses by increasing the PIF7 protein level. The ubp12-2w/13–3 double mutant displayed significantly impaired sensitivity to shade-induced cell elongation and reproduction acceleration. Our genetic and biochemical analysis showed that UBP12 and UBP13 act downstream of phyB and directly interact with PIF7 to maintain PIF7 stability and abundance through deubiquitination.
Collapse
|
70
|
Ali B. Practical applications of jasmonates in the biosynthesis and accumulation of secondary metabolites in plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
71
|
Rigal A, Doyle SM, Ritter A, Raggi S, Vain T, O’Brien JA, Goossens A, Pauwels L, Robert S. A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. PLANT PHYSIOLOGY 2021; 187:430-445. [PMID: 34618142 PMCID: PMC8418399 DOI: 10.1093/plphys/kiab269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The plant hormone auxin, a master coordinator of development, regulates hypocotyl elongation during seedling growth. We previously identified the synthetic molecule RubNeddin 1 (RN1), which induces degradation of the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors INDOLE-3-ACETIC ACID-INDUCIBLE3 (IAA3) and IAA7 in planta and strongly promotes hypocotyl elongation. In the present study, we show that despite the structural similarity of RN1 to the synthetic auxin 2,4-dichlorophenoxyacetic-acid (2,4-D), direct treatments with these compounds in Arabidopsis (Arabidopsis thaliana) result in distinct effects, possibly due to enhanced uptake of RN1 and low-level, chronic release of 2,4-D from RN1 in planta. We confirm RN1-induced hypocotyl elongation occurs via specific TRANSPORT INHIBITOR RESISTANT1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) receptor-mediated auxin signaling involving TIR1, AFB2, and AFB5. Using a transcriptome profiling strategy and candidate gene approach, we identify the genes ZINC FINGER OF ARABIDOPSIS THALIANA10 (ZAT10), ARABIDOPSIS TOXICOS EN LEVADURA31 (ATL31), and WRKY DNA-BINDING PROTEIN33 (WRKY33) as being rapidly upregulated by RN1, despite being downregulated by 2,4-D treatment. RN1-induced expression of these genes also occurs via TIR1/AFB-mediated auxin signaling. Our results suggest both hypocotyl elongation and transcription of these genes are induced by RN1 via the promoted degradation of the AUX/IAA transcriptional repressor IAA7. Moreover, these three genes, which are known to be stress-related, act in an inter-dependent transcriptional regulatory network controlling hypocotyl elongation. Together, our results suggest ZAT10, ATL31, and WRKY33 take part in a common gene network regulating hypocotyl elongation in Arabidopsis downstream of a selective auxin perception module likely involving TIR1, AFB2, and AFB5 and inducing the degradation of IAA7.
Collapse
Affiliation(s)
- Adeline Rigal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Siamsa M. Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sara Raggi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Thomas Vain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - José Antonio O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago, 8331150, Chile
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| |
Collapse
|
72
|
Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021; 118:2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Collapse
|
73
|
Sharma B, Saxena H, Negi H. Genome-wide analysis of HECT E3 ubiquitin ligase gene family in Solanum lycopersicum. Sci Rep 2021; 11:15891. [PMID: 34354159 PMCID: PMC8342558 DOI: 10.1038/s41598-021-95436-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The E3 ubiquitin ligases have been known to intrigue many researchers to date, due to their heterogenicity and substrate mediation for ubiquitin transfer to the protein. HECT (Homologous to the E6-AP Carboxyl Terminus) E3 ligases are spatially and temporally regulated for substrate specificity, E2 ubiquitin-conjugating enzyme interaction, and chain specificity during ubiquitylation. However, the role of the HECT E3 ubiquitin ligase in plant development and stress responses was rarely explored. We have conducted an in-silico genome-wide analysis to identify and predict the structural and functional aspects of HECT E3 ligase members in tomato. Fourteen members of HECT E3 ligases were identified and analyzed for the physicochemical parameters, phylogenetic relations, structural organizations, tissue-specific gene expression patterns, and protein interaction networks. Our comprehensive analysis revealed the HECT domain conservation throughout the gene family, close evolutionary relationship with different plant species, and active involvement of HECT E3 ubiquitin ligases in tomato plant development and stress responses. We speculate an indispensable biological significance of the HECT gene family through extensive participation in several plant cellular and molecular pathways.
Collapse
Affiliation(s)
- Bhaskar Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering, and Built Environment, Deakin University, Geelong, VIC, 3220, Australia.
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI School of Advanced Studies, New Delhi, 110070, India.
| | - Harshita Saxena
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI School of Advanced Studies, New Delhi, 110070, India
| | - Harshita Negi
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI School of Advanced Studies, New Delhi, 110070, India
| |
Collapse
|
74
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
75
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
76
|
Genome-wide analysis of RING-type E3 ligase family identifies potential candidates regulating high amylose starch biosynthesis in wheat (Triticum aestivum L.). Sci Rep 2021; 11:11461. [PMID: 34075092 PMCID: PMC8169666 DOI: 10.1038/s41598-021-90685-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
In ubiquitin-mediated post-translational modifications, RING finger families are emerged as important E3 ligases in regulating biological processes. Amylose and amylopectin are two major constituents of starch in wheat seed endosperm. Studies have been found the beneficial effects of high amylose or resistant starch on health. The ubiquitin-mediated post-translational regulation of key enzymes for amylose/amylopectin biosynthesis (GBSSI and SBEII) is still unknown. In this study, the genome-wide analysis identified 1272 RING domains in 1255 proteins in wheat, which is not reported earlier. The identified RING domains classified into four groups—RING-H2, RING-HC, RING-v, RING-G, based on the amino acid residues (Cys, His) at metal ligand positions and the number of residues between them with the predominance of RING-H2 type. A total of 1238 RING protein genes were found to be distributed across all 21 wheat chromosomes. Among them, 1080 RING protein genes were identified to show whole genome/segmental duplication within the hexaploid wheat genome. In silico expression analysis using transcriptome data revealed 698 RING protein genes, having a possible role in seed development. Based on differential gene expression and correlation analysis of 36 RING protein genes in diverse (high and low) amylose mutants and parent, 10 potential RING protein genes found to be involved in high amylose biosynthesis and significantly associated with two starch biosynthesis genes; GBSSI and SBEIIa. Characterization of mutant lines using next-generation sequencing method identified unique mutations in 698 RING protein genes. This study signifies the putative role of RING-type E3 ligases in amylose biosynthesis and this information will be helpful for further functional validation and its role in other biological processes in wheat.
Collapse
|
77
|
Zhang C, Cheng Q, Wang H, Gao H, Fang X, Chen X, Zhao M, Wei W, Song B, Liu S, Wu J, Zhang S, Xu P. GmBTB/POZ promotes the ubiquitination and degradation of LHP1 to regulate the response of soybean to Phytophthora sojae. Commun Biol 2021; 4:372. [PMID: 33742112 PMCID: PMC7979691 DOI: 10.1038/s42003-021-01907-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
Phytophthora sojae is a pathogen that causes stem and root rot in soybean (Glycine max [L.] Merr.). We previously demonstrated that GmBTB/POZ, a BTB/POZ domain-containing nuclear protein, enhances resistance to P. sojae in soybean, via a process that depends on salicylic acid (SA). Here, we demonstrate that GmBTB/POZ associates directly with soybean LIKE HETEROCHROMATIN PROTEIN1 (GmLHP1) in vitro and in vivo and promotes its ubiquitination and degradation. Both overexpression and RNA interference analysis of transgenic lines demonstrate that GmLHP1 negatively regulates the response of soybean to P. sojae by reducing SA levels and repressing GmPR1 expression. The WRKY transcription factor gene, GmWRKY40, a SA-induced gene in the SA signaling pathway, is targeted by GmLHP1, which represses its expression via at least two mechanisms (directly binding to its promoter and impairing SA accumulation). Furthermore, the nuclear localization of GmLHP1 is required for the GmLHP1-mediated negative regulation of immunity, SA levels and the suppression of GmWRKY40 expression. Finally, GmBTB/POZ releases GmLHP1-regulated GmWRKY40 suppression and increases resistance to P. sojae in GmLHP1-OE hairy roots. These findings uncover a regulatory mechanism by which GmBTB/POZ-GmLHP1 modulates resistance to P. sojae in soybean, likely by regulating the expression of downstream target gene GmWRKY40.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qun Cheng
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Huiyu Wang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Hong Gao
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Xin Fang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Xi Chen
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Wanling Wei
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China.
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, China.
| |
Collapse
|
78
|
Mo F, Zhang N, Qiu Y, Meng L, Cheng M, Liu J, Yao L, Lv R, Liu Y, Zhang Y, Chen X, Wang A. Molecular Characterization, Gene Evolution and Expression Analysis of the F-Box Gene Family in Tomato ( Solanum lycopersicum). Genes (Basel) 2021; 12:417. [PMID: 33799396 PMCID: PMC7998346 DOI: 10.3390/genes12030417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Nian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Lingjun Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Mozhen Cheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Lanning Yao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Aoxue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| |
Collapse
|
79
|
Li J, Wang W, Yuan J, Xu J, He L, Zhang X, Zhang H. Ubiquitin-independent proteasome system is required for degradation of Arabidopsis COPPER TRANSPORTER 2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110825. [PMID: 33568283 DOI: 10.1016/j.plantsci.2021.110825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Plants have evolved sophisticated mechanisms to adjust to deficiency or excess of nutrients. Membrane transport proteins play a central role in nutrient uptake from soil. In Arabidopsis thaliana, the COPPER TRANSPORTOR (COPT) family encodes high-affinity copper transporters. COPT2 is transcriptionally regulated in response to changing levels of cellular copper. However, little is known about whether COPT2 activity is subject to multiple levels of regulation. Here, we showed that the plasma membrane-/endoplasmic reticulum-resident COPT2 protein is degraded in response to excess copper. Confocal microscopy analysis together with pharmacological treatment with a vesicle trafficking inhibitor or vacuolar ATPase inhibitor indicated that copper-mediated downregulation of COPT2 is unlikely to be controlled by endosomal recycling and vacuolar system. However, COPT2 protein is stabilized by proteasome inhibition. Through site-directed mutagenesis, we found that COPT2 cannot be ubiquitinated, and lysine residues at the C-terminus is dispensable for copper-induced degradation of COPT2 but required for copper acquisition. Altogether, our findings reveal that unlike many metal transporters in Arabidopsis, COPT2 is a substrate of ubiquitin-independent proteasomal degradation but not of vacuolar proteases. These findings highlight the mechanistic diversity and complexity of plasma membrane transporter degradation.
Collapse
Affiliation(s)
- Jinjin Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Jinhong Yuan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinyu Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lifei He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Xinying Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
80
|
Yu J, Kang L, Li Y, Wu C, Zheng C, Liu P, Huang J. RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:484-493. [PMID: 32970364 DOI: 10.1111/jipb.13019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/18/2020] [Indexed: 05/16/2023]
Abstract
Mitogen activated protein kinase kinase kinase 18 (MAPKKK18) mediated signaling cascade plays important roles in Arabidopsis drought stress tolerance. However, the post-translational modulation patterns of MAPKKK18 are not characterized. In this study, we found that the protein level of MAPKKK18 was tightly controlled by the 26S proteasome. Ubiquitin ligases RGLG1 and RGLG2 ubiquitinated MAPKKK18 at lysine residue K32 and K154, and promoted its degradation. Deletion of RGLG1 and RGLG2 stabilized MAPKKK18 and further enhanced the drought stress tolerance of MAPKKK18-overexpression plants. Our data demonstrate that RGLG1 and RGLG2 negatively regulate MAPKKK18-mediated drought stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Jiayi Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Pei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
81
|
Chen J, Li X, Ye X, Guo P, Hu Z, Qi G, Cui F, Liu S. An S-ribonuclease binding protein EBS1 and brassinolide signaling are specifically required for Arabidopsis tolerance to bicarbonate. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1449-1459. [PMID: 33165537 DOI: 10.1093/jxb/eraa524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Bicarbonate (NaHCO3) present in soils is usually considered to be a mixed stress for plants, with salts and high pH. NaHCO3-specific signaling in plants has rarely been reported. In this study, transcriptome analyses were conducted in order to identify NaHCO3-specific signaling in Arabidopsis. Weighted correlation network analysis was performed to isolate NaHCO3-specific modules in comparison with acetate treatment. The genes in the NaHCO3-root-specific module, which exhibited opposite expression to that in sodium acetate treatments, were further examined with their corresponding knock-out mutants. The gene Exclusively Bicarbonate Sensitive 1 (EBS1) encoding an S-ribonuclease binding protein, was identified to be specifically involved in plant tolerance to NaHCO3, but not to the other two alkaline salts, acetate and phosphate. We also identified the genes that are commonly regulated by bicarbonate, acetate and phosphate. Multiple brassinosteroid-associated gene ontology terms were enriched in these genes. Genetic assays showed that brassinosteroid signaling positively regulated plant tolerance to NaHCO3 stress, but negatively regulated tolerance to acetate and phosphate. Overall, our data identified bicarbonate-specific genes, and confirmed that alkaline stress is mainly dependent on the specificities of the weak acid ions, rather than high pH.
Collapse
Affiliation(s)
- Jipeng Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxiao Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Peng Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China
| |
Collapse
|
82
|
Kim JH, Jang CS. E3 ligase, the Oryza sativa salt-induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein. PLANT MOLECULAR BIOLOGY 2021; 105:231-245. [PMID: 33079323 DOI: 10.1007/s11103-020-01084-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/11/2020] [Indexed: 05/20/2023]
Abstract
OsSIRP4 is an E3 ligase that acts as a negative regulator in the plant response to salt stress via the 26S proteasomal system regulation of substrate proteins, OsPEX11-1, which it provides important information for adaptation and regulation in rice. Plants are sessile organisms that can be exposed to environmental stress. Plants alter their cellular processes to survive under potentially unfavorable conditions. Protein ubiquitination is an important post-translational modification that has a crucial role in various cellular signaling processes in abiotic stress response. In this study, we characterized Oryza sativa salt-induced RING finger protein 4, OsSIRP4, a membrane and cytosol-localized RING E3 ligase in rice. OsSIRP4 transcripts were highly induced under salt stress in rice. We found that OsSIRP4 possesses E3 ligase activity; however, no E3 ligase activity was observed with a single amino acid substitution (OsSIRP4C269A). The results of the yeast two hybrid system, in vitro pull-down assay, BiFC analysis, in vitro ubiquitination assay, and in vitro degradation assay indicate that OsSIRP4 regulates degradation of a substrate protein, OsPEX11-1 (Oryza sativa peroxisomal biogenesis factor 11-1) via the 26S proteasomal system. Phenotypic analysis of OsSIRP4-overexpressing plants demonstrated hypersensitivity to salt response compared to that of the wild type and mutated OsSIRP4C269A plants. In addition, OsSIRP4-overexpressing plants exhibited significant low enzyme activities of superoxide dismutase, catalase, and peroxidase, and accumulation of proline and soluble sugar, but a high level of H2O2. Furthermore, qRT data on transgenic plants suggest that OsSIRP4 acted as a negative regulator of salt response by diminishing the expression of genes related to Na+/K+ homeostasis (AtSOS1, AtAKT1, AtNHX1, and AtHKT1;1) in transgenic plants under salt stress. These results suggest that OsSIRP4 plays a negative regulatory role in response to salt stress by modulating the target protein levels.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Graduate School, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Graduate School, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
83
|
Verma A, Prakash G, Ranjan R, Tyagi AK, Agarwal P. Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Front Genet 2021; 11:600378. [PMID: 33510769 PMCID: PMC7835794 DOI: 10.3389/fgene.2020.600378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. Grain width 2 (GW2) is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346th position) in the functional domain-coding region of OsGW2 in japonica rice genotypes has been shown to cause an increase in grain width/weight in rice. However, this variation is absent in indica rice genotypes. In this study, we report that reduced expression of OsGW2 can alter grain size, even though natural sequence variation is not responsible for increased grain size in indica rice genotypes. OsGW2 shows high expression in seed development stages and the protein localizes to the nucleus and cytoplasm. Downregulation of OsGW2 by RNAi technology results in wider and heavier grains. Microscopic observation of grain morphology suggests that OsGW2 determines grain size by influencing both cell expansion and cell proliferation in spikelet hull. Using transcriptome analysis, upregulated genes related to grain size regulation have been identified among 1,426 differentially expressed genes in an OsGW2_RNAi transgenic line. These results reveal that OsGW2 is a negative regulator of grain size in indica rice and affects both cell number and cell size in spikelet hull.
Collapse
Affiliation(s)
- Ankit Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Geeta Prakash
- National Institute of Plant Genome Research, New Delhi, India.,Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
84
|
Meng X, Yang T, Liu J, Zhao M, Wang J. Genome-wide identification and evolution of HECT genes in wheat. PeerJ 2020; 8:e10457. [PMID: 33344088 PMCID: PMC7718792 DOI: 10.7717/peerj.10457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background As an important class of E3 ubiquitin ligases in the ubiquitin proteasome pathway, proteins containing homologous E6-AP carboxyl terminus (HECT) domains are crucial for growth, development, metabolism, and abiotic and biotic stress responses in plants. However, little is known about HECT genes in wheat (Triticum aestivum L.), one of the most important global crops. Methods Using a genome-wide analysis of high-quality wheat genome sequences, we identified 25 HECT genes classified into six groups based on the phylogenetic relationship among wheat, rice, and Arabidopsis thaliana. Results The predicted HECT genes were distributed evenly in 17 of 21 chromosomes of the three wheat subgenomes. Twenty-one of these genes were hypothesized to be segmental duplication genes, indicating that segmental duplication was significantly associated with the expansion of the wheat HECT gene family. The Ka/Ks ratios of the segmental duplication of these genes were less than 1, suggesting purifying selection within the gene family. The expression profile analysis revealed that the 25 wheat HECT genes were differentially expressed in 15 tissues, and genes in Group II, IV, and VI (UPL8, UPL6, UPL3) were highly expressed in roots, stems, and spikes. This study contributes to further the functional analysis of the HECT gene family in wheat.
Collapse
Affiliation(s)
- Xianwen Meng
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Nationalities University, Xining, China
| | - Ting Yang
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Nationalities University, Xining, China
| | - Jing Liu
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Nationalities University, Xining, China
| | - Mingde Zhao
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Nationalities University, Xining, China
| | - Jiuli Wang
- The College of Ecological Environmental and Resources, Qinghai Provincial Key Laboratory of High Value Utilization of Characteristic Economic Plants, Qinghai Nationalities University, Xining, China
| |
Collapse
|
85
|
Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato. Commun Biol 2020; 3:730. [PMID: 33273697 PMCID: PMC7713427 DOI: 10.1038/s42003-020-01474-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are natural pigments that are indispensable to plants and humans, whereas the regulation of carotenoid biosynthesis by post-translational modification remains elusive. Here, we show that a tomato E3 ubiquitin ligase, Plastid Protein Sensing RING E3 ligase 1 (PPSR1), is responsible for the regulation of carotenoid biosynthesis. PPSR1 exhibits self-ubiquitination activity and loss of PPSR1 function leads to an increase in carotenoids in tomato fruit. PPSR1 affects the abundance of 288 proteins, including phytoene synthase 1 (PSY1), the key rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY1 contains two ubiquitinated lysine residues (Lys380 and Lys406) as revealed by the global analysis and characterization of protein ubiquitination. We provide evidence that PPSR1 interacts with PSY1 precursor protein and mediates its degradation via ubiquitination, thereby affecting the steady-state level of PSY1 protein. Our findings not only uncover a regulatory mechanism for controlling carotenoid biosynthesis, but also provide a strategy for developing carotenoid-enriched horticultural crops. Wang et al. report on the role of a novel E3 ubiquitin ligase, Plastid Protein Sensing RING E3 ligase 1 (PPSR1), during tomato fruit ripening and find that it interacts with phytoene synthase 1 (PSY1) precursor protein and mediates its degradation via ubiquitination. This affects the steady-state level of PSY1 protein, the key rate-limiting enzyme in the carotenoid biosynthetic pathway. This study may provide a strategy for developing carotenoid-enriched horticultural crops.
Collapse
|
86
|
Qu L, Sun M, Li X, He R, Zhong M, Luo D, Liu X, Zhao X. The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110643. [PMID: 33218620 DOI: 10.1016/j.plantsci.2020.110643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a crucial role at various plant developmental stages, including seed germination and seedling development, and regulates stomatal aperture in response to drought. However, the underlying mechanisms are not well understood. Here, we showed that F-BOX OF FLOWERING 2 (FOF2) is induced by ABA and drought stress. Overexpression of FOF2 led to reduced ABA sensitivity during seed germination and early seedling development, whereas the fof2 mutant exhibited increased sensitivity to ABA. Molecular and genetic analyses revealed that FOF2 negatively affected ABA-mediated seed germination and early seedling development partially by repressing the expression of the ABA-signaling genes ABI3 and ABI5. Additionally, we found that FOF2-overexpressing plants exhibited increased ABA contents, enhanced ABA sensitivity during stomatal closure, and decreased water loss, thereby improving tolerance to drought stress, in contrast to the fof2 mutant. Consistent with a higher ABA content and enhanced drought tolerance, the expression of ABA- and drought-induced genes and the ABA-biosynthesis gene NCED3 was upregulated in the FOF2-overexpressing plants but downregulated in fof2 mutant in response to drought stress. Taken together, our findings revealed that FOF2 plays an important negative role in ABA-mediated seed germination and early seedling development, as well as a positive role in ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mengsi Sun
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Reqing He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Dan Luo
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
87
|
Alfatih A, Wu J, Jan SU, Zhang ZS, Xia JQ, Xiang CB. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. PLANT, CELL & ENVIRONMENT 2020; 43:2743-2754. [PMID: 32691446 DOI: 10.1111/pce.13856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 05/23/2023]
Abstract
Plants frequently suffer from environmental stresses in nature and have evolved sophisticated and efficient mechanisms to cope with the stresses. To balance between growth and stress response, plants are equipped with efficient means to switch off the activated stress responses when stresses diminish. We previously revealed such an off-switch mechanism conferred by Arabidopsis PARAQUAT TOLERANCE 3 (AtPQT3) encoding an E3 ubiquitin ligase, knockout of which significantly enhances resistance to abiotic stresses. To explore whether the rice homologue OsPQT3 is functionally conserved, we generated three knockout mutants with CRISPR-Cas9 technology. The OsPQT3 knockout mutants (ospqt3) display enhanced resistance to oxidative and salt stress with elevated expression of OsGPX1, OsAPX1 and OsSOD1. More importantly, the ospqt3 mutants show significantly enhanced agronomic performance with higher yield compared with the wild type under salt stress in greenhouse as well as in field conditions. We further showed that OsPQT3 expression rapidly decreased in response to oxidative and other abiotic stresses as AtPQT3 does. Taken together, these results show that OsPQT3 is functionally well conserved in rice as an off-switch in stress response as AtPQT3 in Arabidopsis. Therefore, PQT3 locus provides a promising candidate for crop improvement with enhanced stress resistance by gene editing technology.
Collapse
Affiliation(s)
- Alamin Alfatih
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jie Wu
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Sami Ullah Jan
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zi-Sheng Zhang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jin-Qiu Xia
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
88
|
Li J, Yuan J, Wang H, Zhang H, Zhang H. Arabidopsis COPPER TRANSPORTER 1 undergoes degradation in a proteasome-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6174-6186. [PMID: 32720982 DOI: 10.1093/jxb/eraa352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The essential nutrient copper is toxic in excess. Therefore, plants must tightly control copper uptake and distribution. Arabidopsis thaliana high-affinity copper transporters (COPTs) mediate copper uptake, partitioning, and redistribution. Here we show that COPT1 localizes to the plasma membrane and endoplasmic reticulum in stably transgenic plants expressing a COPT1-green fluorescent protein (GFP) fusion protein, and the fusion protein is rapidly degraded upon plant exposure to excess copper. MG132 treatment largely abolished copper-induced degradation of COPT1, implying a link between the proteasome and COPT1 activity in modulating copper uptake. Co-immunoprecipitation analyses revealed that COPT1 cannot be ubiquitinated in the presence of excess copper and MG132. Through site-directed mutagenesis, we identified Lys159 in the C-terminal cytoplasmic tail of COPT1 as critical for copper acquisition, but not for copper-mediated down-regulation of COPT1, in plants. Furthermore, pharmacological analysis showed that treatment with a vesicle trafficking inhibitor or a V-ATPase inhibitor does not alter the subcellular dynamics of COPT1-GFP, consistent with the absence of a connection between the endosomal recycling/vacuolar system and COPT1 degradation. Together, our data suggest that proteasomal degradation rather than vacuolar proteolysis is important for the regulation of copper transport to maintain copper homeostasis in plants.
Collapse
Affiliation(s)
- Jinjin Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinhong Yuan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
89
|
Wang N, Liu Y, Cai Y, Tang J, Li Y, Gai J. The soybean U-box gene GmPUB6 regulates drought tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:284-296. [PMID: 32795910 DOI: 10.1016/j.plaphy.2020.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The plant U-box (PUB) proteins function as E3 ligases to poly-ubiquitinate the target proteins for their degradation or post-translational modification. PUBs also play important roles in regulation of diverse biological processes, including plant response to environmental stresses. In this study, the functional characterization of a soybean PUB gene, GmPUB6, was performed. GmPUB6 was mainly localized to peroxisome, and showed E3 ubiquitin ligase activity. The transcript levels of GmPUB6 in soybean leaves and roots were induced by abscisic acid (ABA), high salinity and polyethylene glycol (PEG) treatment. Comparing with the wild-type (WT) plants, overexpression of GmPUB6 in Arabidopsis thaliana decreased plant survival rate after drought stress, reduced seed germination rate and root elongation under mannitol (osmotic) stress, and suppressed ABA- or mannitol-mediated stomatal closure. In addition, under dehydration stress, the relative expression levels of seven stress responsive genes, including ABI1, DREB2A, KIN2, RAB18, RD20, RD29A and RD29B, were lower in GmPUB6-overexpressed plants than WT. Taken together, these results suggest that GmPUB6 functions as a negative regulator in drought tolerance, and plays an important role in osmotic stress and ABA signaling pathways, which might be the possible mechanism of PUB6 participating in drought stress response.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yandang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Cai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
90
|
Kalmar JG, Oh Y, Dean RA, Muddiman DC. Comparative Proteomic Analysis of Wild Type and Mutant Lacking an SCF E3 Ligase F-Box Protein in Magnaporthe oryzae. J Proteome Res 2020; 19:3761-3768. [PMID: 32692924 DOI: 10.1021/acs.jproteome.0c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnaporthe oryzae (M. oryzae) is a pathogenic, filamentous fungus that is a primary cause of rice blast disease. The M. oryzae protein MGG_13065, SCF E3 ubiquitin ligase complex F-box protein, has been identified as playing a crucial role in the infection process, specifically, as part of the ubiquitin mediated proteolysis pathway. Proteins targeted by MGG_13065 E3 ligase are first phosphorylated and then ubiquitinated by E3 ligase. In this study, we used a label-free quantitative global proteomics technique to probe the role of ubiquitination and phosphorylation in the mechanism of how E3 ligase regulates change in virulence of M. oryzae. To do this, we compared the WT M. oryzae 70-15 strain with a gene knock out (E3 ligase KO) strain. After applying a ≥ 5 normalized spectral count cutoff, a total of 4432 unique proteins were identified comprised of 4360 and 4372 in the WT and E3 ligase KO samples, respectively. Eighty proteins drastically increased in abundance, while 65 proteins decreased in abundance in the E3 ligase KO strain. Proteins (59) were identified only in the WT strain; 13 of these proteins had both phosphorylation and ubiquitination post-translational modifications. Proteins (71) were revealed to be only in the E3 ligase KO strain; 23 of the proteins have both phosphorylation and ubiquitination post-translational modifications. Several of these proteins were associated with key biological processes. These data greatly assist in the selection of future genes for functional studies and enable mechanistic insight related to virulence.
Collapse
|
91
|
Joo H, Lim CW, Lee SC. The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1. PLANT, CELL & ENVIRONMENT 2020; 43:1911-1924. [PMID: 32421865 DOI: 10.1111/pce.13789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 05/07/2023]
Abstract
Protein degradation by the ubiquitin/26S proteasome system is a critical process that modulates many eukaryotic cellular processes. E3 ligase usually modulates stress response by adjusting the stability of transcription factors. Previous studies have shown that a RING-type E3 ligase, CaASRF1, positively modulates abscisic acid (ABA) signalling and ABA-mediated drought response by modulating the stability of CaAIBZ1 and CaATBZ1. In this study, we conducted yeast two-hybrid (Y2H) screening with CaATBZ1 to isolate an additional modulator, identified as CaATIR1 (Capsicum annuum ATBZ1 Interacting RING finger protein 1). CaATIR1 has E3 ligase activity and promoted CaATBZ1 degradation using the 26S proteasome system. We investigated the loss-of and gain-of functions of this E3 ligase by using silencing pepper and overexpressing (OX) Arabidopsis plants, respectively. In response to ABA and drought treatments, CaATIR1-silenced pepper plants showed ABA insensitive and drought-sensitive phenotypes, while CaATIR1-OX plants showed the opposite phenotypes. Additionally, CaATBZ1-silencing rescued the ABA insensitive and drought-sensitive phenotypes of CaATIR1-silencing pepper plants. Taken together, these data demonstrate that the stability of CaATBZ1 mediated by CaATIR1 has a crucial role in drought stress signalling in pepper plants.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
92
|
Liu J, Lin QF, Qi SL, Feng XJ, Han HL, Xu T, Hua XJ. The F-box protein EST1 modulates salt tolerance in Arabidopsis by regulating plasma membrane Na +/H + antiport activity. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153217. [PMID: 32574916 DOI: 10.1016/j.jplph.2020.153217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 05/10/2023]
Abstract
F-box protein, one of the building blocks of the SCF complex, functions in substrate recognition of the SCF subtype of E3 ubiquitin ligase. However, the role of F-box protein in salt stress is largely elusive in plants. Here, we report the characterization of an Arabidopsis salt-tolerant mutant est1 with significantly reduced sodium content and higher Na+/H+ antiporter activity after NaCl treatment compared to the wild-type. Over-expression of EST1 resulted in increased sensitivity to salt stress, suggesting that EST1 may act as a negative regulator for salt tolerance in Arabidopsis. EST1 encodes an F-box protein, which interacts with ASK4, ASK14, and ASK18, and is likely targeted to the endoplasmic reticulum. In addition, EST1 interacts with MKK4 and negatively regulates MKK4 protein levels and the activity of the plasma membrane Na+/H+ antiporter. Our findings demonstrate the existence of an EST1-MKK4 module that mediates salt sensitivity by regulating the activity of the plasma membrane Na+/H+ antiporter. These results provide important information for engineering salt-tolerant crops.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Fang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shi Lian Qi
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xuan Jun Feng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China.
| | - Hui Ling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Xue Jun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
93
|
Park YC, Jang CS. Molecular dissection of two homoeologous wheat genes encoding RING H2-type E3 ligases: TaSIRFP-3A and TaSIRFP-3B. PLANTA 2020; 252:26. [PMID: 32696139 DOI: 10.1007/s00425-020-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Two homoeologous wheat genes, TaSIRFP-3A and TaSIRFP-3B, encode the RING-HC-type E3 ligases that play an inhibitory role in sucrose metabolism in response to cold stress. In higher plants, the attachment of ubiquitin (Ub) and the subsequent recognition and degradation by the 26S proteasome affects a variety of cellular functions that are essential for survival. Here, we characterized the two homoeologous wheat genes encoding the really interesting new gene (RING) HC-type E3 ligases: TaSIRFP-3A and TaSIRFP-3B (Triticum aestivum SINA domain including RING finger protein 1 and 2), which regulate target proteins via the Ub/26S proteasome system. The TaSIRFP-3A gene was highly expressed under cold stress. In contrast, its homoeologous gene, TaSIRFP-3B, showed only a slight increase in expression levels in shoots. Despite these differences, both the proteins exhibited E3 ligase activity with the cytosol- and nucleus-targeted localization, demonstrating their conserved molecular function. Heterogeneous overexpression of TaSIRFP-3A or TaSIRFP-3B in Arabidopsis showed delayed plant growth causing a reduction in sucrose synthase enzymatic activity and photosynthetic sucrose synthesis, by regulating sucrose synthase proteins. TaSIRFP-3A- or TaSIRFP-3B-overexpressing plants showed higher hypersensitivity under cold stress than WT plants with an accumulation of reactive oxygen species (ROS). These results suggest that the negative regulation of TaSIRFP-3A and TaSIRFP-3B in response to cold stress is involved in sucrose metabolism.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
94
|
Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, Zhang H, Gong G, Xu Y. Decreased Protein Abundance of Lycopene β-Cyclase Contributes to Red Flesh in Domesticated Watermelon. PLANT PHYSIOLOGY 2020; 183:1171-1183. [PMID: 32321841 PMCID: PMC7333704 DOI: 10.1104/pp.19.01409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Red-fleshed watermelons (Citrullus lanatus) that accumulate lycopene in their flesh cells have been selected and domesticated from their pale-fleshed ancestors. However, the molecular basis of this trait remains poorly understood. Using map-based cloning and transgenic analysis, we identified a lycopene β-cyclase (ClLCYB) gene that controls the flesh color of watermelon. Down-regulation of ClLCYB caused the flesh color to change from pale yellow to red, and ClLCYB overexpression in the red-fleshed line caused the flesh color to change to orange. Analysis of ClLCYB single-nucleotide polymorphisms using 211 watermelon accessions with different flesh colors revealed that two missense mutations between three haplotypes (ClLCYB red , ClLCYB white , and ClLCYB yellow ) were selected and largely fixed in domesticated watermelon. Proteins derived from these three ClLCYB haplotypes were localized in plastids to catalyze the conversion of lycopene to β-carotene and showed similar catalytic abilities. We revealed that ClLCYB protein abundance, instead of ClLCYB transcript level, was negatively correlated with lycopene accumulation. Different amounts of ClLCYB protein degradation among the ClLCYB haplotypes were found in ClLCYB transgenic Arabidopsis (Arabidopsis thaliana) lines. After treatment with the proteasome inhibitor MG132, the concentration of ClLCYBred increased noticeably compared with other ClLCYB proteins. These results indicate that natural missense mutations within ClLCYB influence ClLCYB protein abundance and have contributed to the development of red flesh color in domesticated watermelon.
Collapse
Affiliation(s)
- Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
95
|
Majumdar P, Nath U. De-ubiquitinases on the move: an emerging field in plant biology. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:563-572. [PMID: 32233097 DOI: 10.1111/plb.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A balance between the synthesis and degradation of active proteins governs diverse cellular processes in plants, spanning from cell-cycle progression and circadian rhythm to the outcome of several hormone signalling pathways. Ubiquitin-mediated post-translational modification determines the degradative fate of the target proteins, thereby altering the output of cellular processes. An equally important, and perhaps under-appreciated, aspect of this pathway is the antagonistic process of de-ubiquitination. De-ubiquitinases (DUBs), a group of processing enzymes, play an important role in maintaining cellular ubiquitin homeostasis by hydrolyzing ubiquitin poly-proteins and free poly-ubiquitin chains into mono-ubiquitin. Further, DUBs rescue the cellular proteins from 26S proteasome-mediated degradation to their active form by cleaving the poly-ubiquitin chain from the target protein. Any perturbation in DUB activity is likely to affect proteostasis and downstream cellular processes. This review illustrates recent findings on the biological significance and mechanisms of action of the DUBs in Arabidopsis thaliana, with an emphasis on ubiquitin-specific proteases (UBPs), the largest family among the DUBs. We focus on the putative roles of various protein-protein interaction interfaces in DUBs and their generalized function in ubiquitin recycling, along with their pre-eminent role in plant development.
Collapse
Affiliation(s)
- P Majumdar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - U Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
96
|
Agarwal P, Patel K, More P, Sapara KK, Singh VK, Agarwal PK. The AlRabring7 E3-Ub-ligase mediates AlRab7 ubiquitination and improves ionic and oxidative stress tolerance in Saccharomyces cerevisiae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:689-704. [PMID: 32353675 DOI: 10.1016/j.plaphy.2020.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The maintenance of ROS homeostasis, membrane biogenesis and recycling of molecules are common stress responses involving specific and complex regulatory network. Ubiquitination is an important and common mechanism which facilitates environmental adaptation in eukaryotes. In the present study we have cloned the AlRabring7, an E3-Ub-ligase, previously identified as AlRab7 interacting partner. The role of AlRabring7 for ubiquitinating AlRab7 and facilitating stress tolerance is analysed. The AlRabring7, with an open-reading frame of 702 bp encodes a protein of 233 amino acids, with RING-HC domain of 40 amino acids. In silico analysis shows that AlRabring7 is a C3HC4-type RING E3 Ub ligase. The protein - protein docking show interaction dynamics between AlRab7-AlRabring7-Ubiquitin proteins. The AlRab7 and AlRabring7 transcript showed up-regulation in response to different salts i.e: NaCl, KCl, CaCl2, NaCl + KCl, NaCl + CaCl2, imposing ionic as well as hyperosmotic stress, and also with oxidative stress by H2O2 treatment. Interestingly, the AlRabring7 showed early transcript expression with maximum expression in shoots on combinatorial stresses. The AlRab7 showed delayed and maximum expression with NaCl + CaCl2 stress treatment. The AlRab7 complements yeast ypt7Δ mutants and restored the fragmented vacuole. The in vitro ubiquitination assay revealed that AlRabring7 function as E3 ubiquitin ligase and mediates AlRab7 ubiquitination. Overexpression of AlRab7 and AlRabring7 independently and when co-transformed enhanced the growth of yeast cells during stress conditions. Further, the bimolecular fluorescence complementation assay shows the in planta interaction of the two proteins. Our results suggest that AlRab7 and AlRabring7 confers enhanced stress tolerance in yeast.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Prashant More
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Komal K Sapara
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| | - Vinay K Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
97
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
98
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
99
|
Faizan M, Faraz A, Sami F, Siddiqui H, Yusuf M, Gruszka D, Hayat S. Role of Strigolactones: Signalling and Crosstalk with Other Phytohormones. Open Life Sci 2020; 15:217-228. [PMID: 33987478 PMCID: PMC8114782 DOI: 10.1515/biol-2020-0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
Plant hormones play important roles in controlling how plants grow and develop. While metabolism provides the energy needed for plant survival, hormones regulate the pace of plant growth. Strigolactones (SLs) were recently defined as new phytohormones that regulate plant metabolism and, in turn, plant growth and development. This group of phytohormones is derived from carotenoids and has been implicated in a wide range of physiological functions including regulation of plant architecture (inhibition of bud outgrowth and shoot branching), photomorphogenesis, seed germination, nodulation, and physiological reactions to abiotic factors. SLs also induce hyphal branching in germinating spores of arbuscular mycorrhizal fungi (AMF), a process that is important for initiating the connection between host plant roots and AMF. This review outlines the physiological roles of SLs and discusses the significance of interactions between SLs and other phytohormones to plant metabolic responses.
Collapse
Affiliation(s)
- Mohammad Faizan
- Tree Seed Center, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing-210037, P.R. China
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
- E-mail:
| | - Ahmad Faraz
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| | - Mohammad Yusuf
- Department of Biology, United Arab Emirates University, Al-Ain, UAE
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh202 002, India
| |
Collapse
|
100
|
Fanourakis D, Nikoloudakis N, Pappi P, Markakis E, Doupis G, Charova SN, Delis C, Tsaniklidis G. The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E340. [PMID: 32182645 PMCID: PMC7154916 DOI: 10.3390/plants9030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture tuning, with particular emphasis on their involvement in numerous signaling pathways triggered by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several proteases are directly or indirectly implicated in the process of stomatal development, affecting stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the proteases-mediated regulation of stomatal movements considerably affects plants' ability to cope not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though the determining role of proteases on stomatal development and functioning is just beginning to unfold, our understanding of the underlying processes and cellular mechanisms still remains far from being completed.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion, 71500 Crete, Greece;
- Giannakakis SA, Export Fruits and Vegetables, Tympaki, 70200 Crete, Greece
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| | - Polyxeni Pappi
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Emmanouil Markakis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Georgios Doupis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Development, Heraklion, 70013 Crete, Greece;
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| |
Collapse
|