51
|
To HTM, Pham DT, Le Thi VA, Nguyen TT, Tran TA, Ta AS, Chu HH, Do PT. The Germin-like protein OsGER4 is involved in promoting crown root development under exogenous jasmonic acid treatment in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:860-874. [PMID: 36134434 DOI: 10.1111/tpj.15987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In rice (Oryza sativa L.), crown roots (CRs) have many important roles in processes such as root system expansion, water and mineral uptake, and adaptation to environmental stresses. Phytohormones such as auxin, cytokinin, and ethylene are known to control CR initiation and development in rice. However, the role of jasmonic acid (JA) in CR development remained elusive. Here, we report that JA promotes CR development by regulating OsGER4, a rice Germin-like protein. Root phenotyping analysis revealed that exogenous JA treatment induced an increase in CR number in a concentration-dependent manner. A subsequent genome-wide association study and gene expression analyses pinpointed a strong association between the Germin-like protein OsGER4 and the increase in CR number under exogenous JA treatment. The ProGER4::GUS reporter line showed that OsGER4 is a hormone-responsive gene involved in various stress responses, mainly confined to epidermal and vascular tissues during CR primordia development and to vascular bundles of mature crown and lateral roots. Notable changes in OsGER4 expression patterns caused by the polar auxin transport inhibitor NPA support its connection to auxin signaling. Phenotyping experiments with OsGER4 knockout mutants confirmed that this gene is required for CR development under exogenous JA treatment. Overall, our results provide important insights into JA-mediated regulation of CR development in rice.
Collapse
Affiliation(s)
- Huong Thi Mai To
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Dan The Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Van Anh Le Thi
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Trang Thi Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Tuan Anh Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Anh Son Ta
- School of Applied Mathematics and Informatics, University of Science and Technology of Hanoi, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Phat Tien Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
52
|
Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat Commun 2022; 13:6541. [PMID: 36319648 PMCID: PMC9626627 DOI: 10.1038/s41467-022-34206-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future.
Collapse
|
53
|
Wang H, Han X, Fu X, Sun X, Chen H, Wei X, Cui S, Liu Y, Guo W, Li X, Xing J, Zhang Y. Overexpression of TaLBD16-4D alters plant architecture and heading date in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:911993. [PMID: 36212357 PMCID: PMC9533090 DOI: 10.3389/fpls.2022.911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Lateral organ boundaries domain (LBD) proteins, a class of plant-specific transcription factors with a special domain of lateral organ boundaries (LOB), play essential roles in plant growth and development. However, there is little known about the functions of these genes in wheat to date. Our previous study demonstrated that TaLBD16-4D is conducive to increasing lateral root number in wheat. In the present work, we further examined important agronomical traits of the aerial part of transgenic wheat overexpressing TaLBD16-4D. Interestingly, it was revealed that overexpressing TaLBD16-4D could lead to early heading and multiple alterations of plant architecture, including decreased plant height, increased flag leaf size and stem diameter, reduced spike length and tillering number, improved spike density and grain width, and decreased grain length. Moreover, auxin-responsive experiments demonstrated that the expression of TaLBD16-4D in wild-type (WT) wheat plants showed a significant upregulation through 2,4-D treatment. TaLBD16-4D-overexpression lines displayed a hyposensitivity to 2,4-D treatment and reduced shoot gravitropic response. The expressions of a set of auxin-responsive genes were markedly different between WT and transgenic plants. In addition, overexpressing TaLBD16-4D affected the transcript levels of flowering-related genes (TaGI, TaCO1, TaHd1, TaVRN1, TaVRN2, and TaFT1). Notably, the expression of TaGI, TaCO1, TaHd1, TaVRN1, and TaFT1 displayed significant upregulation under IAA treatment. Collectively, our observations indicated that overexpressing TaLBD16-4D could affect aerial architecture and heading time possibly though participating in the auxin pathway.
Collapse
Affiliation(s)
- Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofeng Fu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xinling Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Hailong Chen
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xirui Wei
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Shubin Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yiguo Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
54
|
Adu BG, Argete AYS, Egawa S, Nagano AJ, Shimizu A, Ohmori Y, Fujiwara T. A Koshihikari X Oryza rufipogon Introgression Line with a High Capacity to Take up Nitrogen to Maintain Growth and Panicle Development under Low Nitrogen Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:1215-1229. [PMID: 35791818 DOI: 10.1093/pcp/pcac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an important macronutrient for plant growth and development. Currently, N fertilizers are required for the efficient production of modern crops such as rice due to their limited capacity to take up N when present at low concentrations. Wild rice represents a useful genetic resource for improving crop responses to low nutrient stress. Here, we describe the isolation and characterization of an introgression line, KRIL37, that carries a small region of the Oryza rufipogon genome in the Oryza sativa L. cv Koshihikari (KH) background. This line was found to grow better under low N conditions and have similar or lower C/N ratios in aerial portions compared to those in the parental KH cultivar, suggesting that KRIL37 has a higher capacity to take up and assimilate N when present at low concentrations. KRIL37 performance in the field was also better than that of KH cultivated without N and fertilizer (-F). Transcriptome analyses of 3-week-old seedlings based on RNA-sequencing revealed that KH induced a wider suite of genes than the tolerant line KRIL37 in response to low N conditions. Some ammonium transporters and N assimilation genes were found to be induced under low N in KRIL37, but not in KH. Our findings suggest that the superior growth performance of KRIL37 under limited N conditions could be due to the expression of wild alleles influencing N uptake and assimilation. Our study demonstrates the potential to use wild rice genomes to improve modern crops for low nutrient tolerance.
Collapse
Affiliation(s)
- Bright G Adu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Aizelle Y S Argete
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Sakiko Egawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
- Institute of Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Akifumi Shimizu
- School of Environmental Science, The University of Shiga Prefecture, Hassaka-cho, Hikone-City, Shiga 522-8533 Japan
| | - Yoshihiro Ohmori
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
55
|
Zhao J, Jiang L, Bai H, Dai Y, Li K, Li S, Wang X, Wu L, Fu Q, Yang Y, Dong Q, Yu S, Wang M, Liu H, Peng Z, Zhu H, Zhang X, He X, Lei Y, Liang Y, Guo L, Zhang H, Yu D, Liu Y, Huang H, Liu C, Peng S, Du Y. Characteristics of members of IGT family genes in controlling rice root system architecture and tiller development. FRONTIERS IN PLANT SCIENCE 2022; 13:961658. [PMID: 36147240 PMCID: PMC9487910 DOI: 10.3389/fpls.2022.961658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani's terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.
Collapse
Affiliation(s)
- Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hanrui Bai
- Division of Life Sciences and Medicine, College of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Yuliang Dai
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Saijie Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoran Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yanfen Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qian Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Si Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Meixian Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Haiyan Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ziai Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xie He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Lei
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Liang
- Yuguopu District Agricultural Comprehensive Service Center, Mengzi, China
| | - Liwei Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hongji Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Decai Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Sheng Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
56
|
The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice. PLANTS 2022; 11:plants11152033. [PMID: 35956512 PMCID: PMC9370703 DOI: 10.3390/plants11152033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots can no longer obtain molecular oxygen for respiration from the rhizosphere, rendering the roots dysfunctional. Rice, however, is a semi-aquatic plant and therefore relatively tolerant to flooding due to adaptive traits developed during evolution. In the present review, we have identified three key root traits, viz. cortical aerenchyma formation, a barrier to radial oxygen loss and adventitious root growth. The understanding of the physiological function, the molecular mechanisms, and the genetic regulation of these three traits has grown substantially and therefore forms the backbone of this review. Our synthesis of the recent literature shows each of the three key root traits contributes to flood tolerance in rice. One trait, however, is generally insufficient to enhance plant tolerance to flooding. Consequently, we suggest comprehensive use of all three adaptive traits in a pyramiding approach in order to improve tolerance to flooding in our major crops, in general, and in rice, in particular.
Collapse
|
57
|
Gonin M, Jeong K, Coudert Y, Lavarenne J, Hoang GT, Bes M, To HTM, Thiaw MN, Do TV, Moukouanga D, Guyomarc'h S, Bellande K, Brossier J, Parizot B, Nguyen HT, Beeckman T, Bergougnoux V, Rouster J, Sallaud C, Laplaze L, Champion A, Gantet P. CROWN ROOTLESS1 binds DNA with a relaxed specificity and activates OsROP and OsbHLH044 genes involved in crown root formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:546-566. [PMID: 35596715 PMCID: PMC9542200 DOI: 10.1111/tpj.15838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.
Collapse
Affiliation(s)
- Mathieu Gonin
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kwanho Jeong
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIALyon69007France
| | - Jeremy Lavarenne
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Martine Bes
- CIRAD, UMR AGAPF‐34398MontpellierFrance
- UMR AGAPUniversité de Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
| | - Huong Thi Mai To
- University of Science and Technology of Hanoi, LMIRICE2Vietnam Academy of Science and Technology11300HanoiVietnam
| | - Marie‐Rose Ndella Thiaw
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Toan Van Do
- National Key Laboratory for Plant Cell Biotechnology, LMI RICE2Agricultural Genetic Institute11300HanoiVietnam
| | - Daniel Moukouanga
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Soazig Guyomarc'h
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Kevin Bellande
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Jean‐Rémy Brossier
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Boris Parizot
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Hieu Trang Nguyen
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityB‐9052GhentBelgium
- VIB Center for Plant Systems Biology9052GhentBelgium
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de RechercheRoute d'EnnezatChappesFrance
| | - Laurent Laplaze
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Antony Champion
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
| | - Pascal Gantet
- UMR DIADEUniversité de Montpellier, IRD, CIRAD911 Avenue Agropolis34394Montpellier cedex 5France
- Czech Advanced Technology and Research Institute, Centre of Region Haná for Biotechnological and Agricultural ResearchPalacký University OlomoucOlomoucCzech Republic
| |
Collapse
|
58
|
Luo L, Zhu M, Jia L, Xie Y, Wang Z, Xuan W. Ammonium transporters cooperatively regulate rice crown root formation responding to ammonium nitrogen. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3671-3685. [PMID: 35176162 DOI: 10.1093/jxb/erac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Crown roots (CRs) are major components of the rice root system. They form at the basal node of the shoot, and their development is greatly influenced by environmental factors. Ammonium nitrogen is known to impact plant root development through ammonium transporters (AMTs), but it remains unclear whether ammonium and AMTs play roles in rice CR formation. In this study, we revealed a significant role of ammonium, rather than nitrate, in regulating rice CR development. High ammonium supply increases CR formation but inhibits CR elongation. Genetic evidence showed that ammonium regulation of CR development relies on ammonium uptake mediated jointly by ammonium transporters OsAMT1;1, OsAMT1;2; OsAMT1;3, and OsAMT2;1, but not on root acidification which was the result of ammonium uptake. OsAMTs are also needed for glutamine-induced CR formation. Furthermore, we showed that polar auxin transport dependent on the PIN auxin efflux carriers acts downstream of ammonium uptake and assimilation to activate local auxin signaling at CR primordia, in turn promoting CR formation. Taken together, our results highlight a critical role for OsAMTs in cooperatively regulating CR formation through regulating auxin transport under nitrogen-rich conditions.
Collapse
Affiliation(s)
- Long Luo
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Zhu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanming Xie
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziniu Wang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
59
|
Ji XL, Li HL, Qiao ZW, Zhang JC, Sun WJ, You CX, Hao YJ, Wang XF. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. PLANT PHYSIOLOGY 2022; 189:1005-1020. [PMID: 35218363 PMCID: PMC9157121 DOI: 10.1093/plphys/kiac084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Ubiquitination is an important post-translational protein modification. Although BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC and TRANSCRIPTION ADAPTOR PUTATIVE ZINC FINGER domain protein 2 (BT2) is involved in many biological processes, its role in apple (Malus domestic) root formation remains unclear. Here, we revealed that MdBT2 inhibits adventitious root (AR) formation through interacting with AUXIN RESPONSE FACTOR8 (MdARF8) and INDOLE-3-ACETIC ACID INDUCIBLE3 (MdIAA3). MdBT2 facilitated MdARF8 ubiquitination and degradation through the 26S proteasome pathway and negatively regulated GRETCHEN HAGEN 3.1 (MdGH3.1) and MdGH3.6 expression. MdARF8 regulates AR formation through inducing transcription of MdGH3s (MdGH3.1, MdGH3.2, MdGH3.5, and MdGH3.6). In addition, MdBT2 facilitated MdIAA3 stability and slightly promoted its interaction with MdARF8. MdIAA3 inhibited AR formation by forming heterodimers with MdARF8 as well as other MdARFs (MdARF5, MdARF6, MdARF7, and MdARF19). Our findings reveal that MdBT2 acts as a negative regulator of AR formation in apple.
Collapse
Affiliation(s)
- Xing-Long Ji
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| |
Collapse
|
60
|
Xiong J, Zhang W, Zheng D, Xiong H, Feng X, Zhang X, Wang Q, Wu F, Xu J, Lu Y. ZmLBD5 Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:1382. [PMID: 35631807 PMCID: PMC9144968 DOI: 10.3390/plants11101382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors-particularly class-I members-play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels.
Collapse
Affiliation(s)
- Jing Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Weixiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Dan Zheng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Hao Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| | - Xuemei Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Qingjun Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; (J.X.); (W.Z.); (D.Z.); (H.X.); (X.F.); (X.Z.); (Q.W.); (F.W.); (J.X.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang 611130, China
| |
Collapse
|
61
|
Tian Y, Han X, Qu Y, Zhang Y, Rong H, Wu K, Xu L. Genome-Wide Identification of the Ginkgo ( Ginkgo biloba L.) LBD Transcription Factor Gene and Characterization of Its Expression. Int J Mol Sci 2022; 23:ijms23105474. [PMID: 35628284 PMCID: PMC9141976 DOI: 10.3390/ijms23105474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors involved in various transcriptional regulation processes. We identified a total of 37 GbLBD genes in ginkgo, and based on gene structure and phylogenetic analysis, the GbLBD gene family was classified into class I (33, with the largest number of Id genes (16)) and class II (4). The ginkgo LBD gene was also analyzed regarding its chromosomal distributions, gene duplications, promoters, and introns/exons. In addition, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 14 GbLBD genes differed in six different tissues and three developmental stages. The GbLBD gene of class II were highly expressed relative to the class I gene in all tissues and developmental stages, while class Id gene were generally at low levels or were not expressed, especially in seed developmental stages. The expression pattern analysis of cold/drought treatment and IAA/ABA hormone treatment showed that abiotic stress treatment could significantly induce the expression of GbLBD gene, of which class II genes played a key role in stress treatment. Our study provides a solid foundation for further evolutionary and functional analysis of the ginkgo LBD gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li’an Xu
- Correspondence: ; Tel.: +86-25-8542-7882
| |
Collapse
|
62
|
Li C, Wang J, Li L, Li J, Zhuang M, Li B, Li Q, Huang J, Du Y, Wang J, Fan Z, Mao X, Jing R. TaMOR is essential for root initiation and improvement of root system architecture in wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:862-875. [PMID: 34890129 PMCID: PMC9055823 DOI: 10.1111/pbi.13765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Optimal root system architecture is beneficial for water-fertilizer use efficiency, stress tolerance and yield improvement of crops. However, because of the complexity of root traits and difficulty in phenotyping deep roots, the study on mechanisms of root development is rarely reported in wheat (Triticum aestivum L.). In this study, we identified that the LBD (LATERAL ORGAN BOUNDARIES DOMAIN) gene TaMOR (MORE ROOT in wheat) determines wheat crown root initiation. The mor mutants exhibited less or even no crown root, dwarfism, less grain number and lodging caused by few roots. The observation of cross sections showed that crown root initiation is inhibited in the mor mutants. Molecular assays revealed that TaMOR interacts with the auxin response factor ARF5 to directly induce the expression of the auxin transporter gene PIN2 (PIN-FORMED 2) in the root base to regulate crown root initiation. In addition, a 159-bp MITE (miniature inverted-repeat transposable element) insertion causing DNA methylation and lower expression of TaMOR-B was identified in TaMOR-B promoter, which is associated with lower root dry weight and shorter plant height. The results bring new light into regulation mechanisms of crown root initiation and offer a new target for the improvement of root system architecture in wheat.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mengjia Zhuang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Bo Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qiaoru Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Junfang Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Du
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
63
|
Ashraf MA, Nan Q. Evolutionarily conserved shoot-borne root developmental circuit. MOLECULAR PLANT 2022; 15:S1674-2052(22)00119-8. [PMID: 35440407 DOI: 10.1016/j.molp.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Affiliation(s)
- M Arif Ashraf
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Qiong Nan
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
64
|
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:23-42. [PMID: 35020968 DOI: 10.1111/tpj.15669] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
65
|
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved superlocus regulates above- and belowground root initiation. Science 2022; 375:eabf4368. [PMID: 35239373 DOI: 10.1126/science.abf4368] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evyatar Steiner
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Idan Efroni
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
66
|
Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. A conserved superlocus regulates above- and belowground root initiation. Science 2022; 375:eabf4368. [PMID: 35239373 DOI: 10.1101/2020.11.11.377937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants continuously form new organs in different developmental contexts in response to environmental cues. Underground lateral roots initiate from prepatterned cells in the main root, but cells can also bypass the root-shoot trajectory separation and generate shoot-borne roots through an unknown mechanism. We mapped tomato (Solanum lycopersicum) shoot-borne root development at single-cell resolution and showed that these roots initiate from phloem-associated cells through a unique transition state. This state requires the activity of a transcription factor that we named SHOOTBORNE ROOTLESS (SBRL). Evolutionary analysis reveals that SBRL's function and cis regulation are conserved in angiosperms and that it arose as an ancient duplication, with paralogs controlling wound-induced and lateral root initiation. We propose that the activation of a common transition state by context-specific regulators underlies the plasticity of plant root systems.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chen Yahav
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evyatar Steiner
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Idan Efroni
- The Institute of Plant Science and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
67
|
Yu S, Xiao Y, Lin Y, Zheng Y, Cai Q, Wei Y, Wang Y, Xie H, Zhang J. RNA-seq profiling of primary calli induced by different media and photoperiods for japonica rice 'Yunyin'. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:13. [PMID: 37309407 PMCID: PMC10248677 DOI: 10.1007/s11032-022-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The induction of embryogenic calli plays a vital role in the genetic transformation and regeneration of rice (Oryza sativa L.). Despite progress in rice tissue culture, the molecular mechanisms of embryogenic callus induction remain unknown. In this study, gene expression profiles associated with calli were comprehensively analyzed during callus induction of japonica rice 'Yunyin'. We first confirmed that NMB medium with 24 h of light and 0 h of dark (NMB-L) was the optimal condition for 'Yunyin' callus induction, while J3 medium with 0 h of light and 24 h of dark (J3-D) was the worst condition. After transcriptome analysis, 33,597 unigenes were assembled, among which we identified 6,063 DEGs (Differentially Expressed Genes) related to media and seven DEGs related to photoperiod. Phenylpropanoid biosynthesis, plant hormone signal, and starch and sucrose metabolism were the top three pathways affected by media, while the circadian rhythm-plant pathway was associated with photoperiod. Furthermore, we identified two candidate genes, Os01g0965900 and Os12g0555200, affected by both medium and photoperiod. Statistical analysis of RNA-seq libraries showed that the expression levels of these two genes in J3-D calli were over 2.5 times higher than those in NMB-L calli, which was further proved by RT-qPCR analysis. Based on FPKM (Fragments Per Kilobase of transcript Per Million mapped reads), unigenes belonging to the NMB-L group were mainly assigned to ribosome, carbon metabolism, biosynthesis of amino acids, protein processing in endoplasmic reticulum, and plant hormone signal transduction pathways. We transformed Os12g0555200Nip and Os12g05552009311 into 'Nipponbare' calli and observed their effects on the growth and development process of rice calli using TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Observations showed that Os12g05552009311 was more disadvantageous to rice callus growth than Os12g0555200Nip. Our results reveal that the Os12g0555200, identified from transcriptomic profiles, has a negative influence during 'Yunyin' callus induction. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01283-y.
Collapse
Affiliation(s)
- Sisi Yu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Yuelong Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Huaan Xie
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| | - Jianfu Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South-China, Ministry of Agriculture/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences &Technology/National Engineering Laboratory of Rice for China/South Base of National Key Laboratory of Hybrid Rice, Fuzhou, 350003 China
| |
Collapse
|
68
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
69
|
Kawai T, Chen Y, Takahashi H, Inukai Y, Siddique KHM. Rice Genotypes Express Compensatory Root Growth With Altered Root Distributions in Response to Root Cutting. FRONTIERS IN PLANT SCIENCE 2022; 13:830577. [PMID: 35295630 PMCID: PMC8919052 DOI: 10.3389/fpls.2022.830577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 05/07/2023]
Abstract
Root systems play a pivotal role in water and nutrient uptake from soil. Lateral root (LR) growth is promoted to compensate for inhibited main root growth. Compensatory LR growth contributes to maintaining total root length (TRL) and hence water and nutrient uptake in compacted soils. However, it remains unclear how shoot and root phenotypic traits change during the compensatory growth and whether there are genotypic variations in compensatory root growth. This study analyzed shoot and root morphological traits of 20 rice genotypes, which includes mutants with altered root morphology, during the vegetative stage using a semihydroponic phenotyping system. The phenotyping experiment detected large variation in root and shoot traits among the 20 genotypes. Morphological changes induced by root cutting were analyzed in six selected genotypes with contrasting root system architecture. Root cutting significantly affected root distribution along vertical sections and among diameter classes. After root cutting, more roots distributed at shallower depth and thicker LRs developed. Furthermore, genotypes with deeper root growth without root cutting allocated more compensatory roots to deeper sections even after root cutting than the genotypes with shallower rooting. Due to the compensatory LR growth, root cutting did not significantly affect TRL, root dry weight (RDW), or shoot dry weight (SDW). To analyze the interaction between crown root (CR) number and compensatory root growth, we removed half of the newly emerged CRs in two genotypes. TRL of YRL38 increased at depth with CR number manipulation (CRM) regardless of root tip excision, which was attributed to an increase in specific root length (SRL), despite no change in RDW. Taken together, the tested rice genotypes exhibited compensatory root growth by changing root distribution at depth and in diameter classes. Reducing CR number promoted root development and compensatory growth by improving the efficiency of root development [root length (RL) per resource investment].
Collapse
Affiliation(s)
- Tsubasa Kawai
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Japan
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
70
|
Auxin Response Factors Are Ubiquitous in Plant Growth and Development, and Involved in Crosstalk between Plant Hormones: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031360] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Auxin response factors (ARFs) are an important family of transcription factors involved in the exertion of auxin in plants and play a key role in regulating the growth and development of plant nutritional and reproductive organs such as roots, stems, leaves, flowers, fruits, and seeds. Foods of plant origin occupy an important place in the nutritional structure of the human diet, and the main edible parts of different plants vary. In this paper, we review recent research reports on ARFs and summarize its role in the regulation of leaf, flower, root, and fruit growth, as well as other important life activities. We also present the challenges and opportunities that ARFs will present in the future. It will be important to deepen our understanding of the mechanisms by which ARFs interact with other proteins or genes. In addition, it is worth considering that more technical tools should be put into the study of ARFs and that the research should be oriented towards solving practical problems. In the future, it is expected that the nutrition and function of plant-derived foods can be improved through gene editing and other means.
Collapse
|
71
|
WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc Natl Acad Sci U S A 2022; 119:2101846119. [PMID: 34983834 PMCID: PMC8740593 DOI: 10.1073/pnas.2101846119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, phenotypic plasticity has received attention for improving plant adaptability to variable environments. For more than half a century, it has been known that rice and cereal plants develop different types of lateral roots (LRs), unlike the dicot model plant Arabidopsis. Despite the importance of plastic LR development under variable water conditions, the molecular mechanisms regulating LR types are unknown. Here, we report the regulatory mechanism of LR primordium size in rice, an important determinant of LR type. We identified two WUSCHEL-related homeobox (WOX) transcription factors that opposingly regulate LR primordium size. Our findings form the basis for improving root phenotypic plasticity for sustainable crop production under variable environments. The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10. Our findings could help improve root system plasticity under variable environments.
Collapse
|
72
|
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 2021; 256:126956. [PMID: 34995970 DOI: 10.1016/j.micres.2021.126956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Entomopathogenic bacteria are commonly used as biological agents to control different insect pests. However, little is known about the role of bacterial entomopathogens as endophytes in regulating both plant growth and resistance against insect pests. Here, we applied the entomopathogenic bacterium Serratia marcescens S-JS1 via rice seed inoculation and evaluated its effects on host plant growth and resistance against the rice pest Nilaparvata lugens. Furthermore, the induction of defense-related secondary metabolites by the bacterium was assessed by GC-MS/MS. We showed that S-JS1 was able to endophytically colonize the roots and shoots of rice seedlings following seed inoculation. Colonized plants showed increased seed germination (9.4-13.3 %), root (8.2-36.4 %) and shoot lengths (4.1-22.3 %), and root (26.7-69.3 %) and shoot fresh weights (19.0-49.0 %) compared to plants without inoculation. We also identified the production of indole-3-acetic acid by S-JS1, which is likely involved in enhancing rice plant growth. In a two-choice test, N. lugens adults preferred to feed on untreated control plants than on plants treated with S-JS1. In the no-choice feeding tests, the survival of N. lugens nymphs that fed on S-JS1-treated plants was significantly lower than that of nymphs that fed on untreated plants. Additionally, seeds treated with 109 cfu/mL S-JS1 resulted in elevated levels of secondary metabolites, which may be associated with N. lugens resistance in rice plants. Therefore, we suggest that the entomopathogenic bacterium S. marcescens be considered a potentially promising endophyte for use in an innovative strategy for the integrated management of insect pests.
Collapse
Affiliation(s)
- Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yang Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
73
|
Teng R, Wu Z, Xu S, Hou H, Zhang D, Chen F, Teng N. A Novel Lateral Organ Boundary-domain Factor CmLBD2 Positively Regulates Pollen Development by Activating CmACOS5 in Chrysanthemum morifolium. PLANT & CELL PHYSIOLOGY 2021; 62:1687-1701. [PMID: 34370862 DOI: 10.1093/pcp/pcab124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Male sterility, as a common reproductive characteristic in plants, plays an important role in breeding, in which pollen abortion is a key factor leading to male sterility. Here, based on a low expression level gene CmACOS5 in transcriptome of pollen abortive chrysanthemum, a new transcription factor CmLBD2 of the Lateral Organ Boundaries Domain family, which could bind the promoter of CmACOS5 by yeast one-hybrid library was screened. This study revealed the origin and expression pattern of CmLBD2 in chrysanthemum and verified the functions of two genes in pollen development by transgenic means. Inhibiting the expression of CmACOS5 or CmLBD2 can lead to a large reduction in pollen and even abortion in chrysanthemum. Using yeast one-/two-hybrid, electrophoretic mobility shift assays, and luciferase reporter assays, it was verified that CmLBD2 directly binds to the promoter of CmACOS5. These results suggest that LBD2 is a novel, key transcription factor regulating pollen development. This result will provide a new research background for enriching the function of LBD family proteins and also lay a new foundation for the breeding of male sterile lines and the mechanism of pollen development.
Collapse
Affiliation(s)
- Renda Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | - Huizhong Hou
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | - Fadi Chen
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agriculture University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| |
Collapse
|
74
|
Hydrogen Sulfide Improves the Cold Stress Resistance through the CsARF5-CsDREB3 Module in Cucumber. Int J Mol Sci 2021; 22:ijms222413229. [PMID: 34948028 PMCID: PMC8706816 DOI: 10.3390/ijms222413229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
As an important gas signaling molecule, hydrogen sulfide (H2S) plays a crucial role in regulating cold tolerance. H2S cooperates with phytohormones such as abscisic acid, ethylene, and salicylic acid to regulate the plant stress response. However, the synergistic regulation of H2S and auxin in the plant response to cold stress has not been reported. This study showed that sodium hydrosulfide (NaHS, an H2S donor) treatment enhanced the cold stress tolerance of cucumber seedlings and increased the level of auxin. CsARF5, a cucumber auxin response factor (ARF) gene, was isolated, and its role in regulating H2S-mediated cold stress tolerance was described. Transgenic cucumber leaves overexpressing CsARF5 were obtained. Physiological analysis indicated that overexpression of CsARF5 enhanced the cold stress tolerance of cucumber and the regulation of the cold stress response by CsARF5 depends on H2S. In addition, molecular assays showed that CsARF5 modulated cold stress response by directly activating the expression of the dehydration-responsive element-binding (DREB)/C-repeat binding factor (CBF) gene CsDREB3, which was identified as a positive regulator of cold stress. Taken together, the above results suggest that CsARF5 plays an important role in H2S-mediated cold stress in cucumber. These results shed light on the molecular mechanism by which H2S regulates cold stress response by mediating auxin signaling; this will provide insights for further studies on the molecular mechanism by which H2S regulates cold stress. The aim of this study was to explore the molecular mechanism of H2S regulating cold tolerance of cucumber seedlings and provide a theoretical basis for the further study of cucumber cultivation and environmental adaptability technology in winter.
Collapse
|
75
|
Genome-Wide Identification of LATERAL ORGAN BOUNDARIES DOMAIN (LBD) Transcription Factors and Screening of Salt Stress Candidates of Rosa rugosa Thunb. BIOLOGY 2021; 10:biology10100992. [PMID: 34681091 PMCID: PMC8533445 DOI: 10.3390/biology10100992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023]
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors are regulators of lateral organ morphogenesis, boundary establishment, and secondary metabolism in plants. The responsive role of LBD gene family in plant abiotic stress is emerging, whereas its salt stress responsive mechanism in Rosa spp. is still unclear. The wild plant of Rosa rugosa Thunb., which exhibits strong salt tolerance to stress, is an ideal material to explore the salt-responsive LBD genes. In our study, we identified 41 RrLBD genes based on the R. rugosa genome. According to phylogenetic analysis, all RrLBD genes were categorized into Classes I and II with conserved domains and motifs. The cis-acting element prediction revealed that the promoter regions of most RrLBD genes contain defense and stress responsiveness and plant hormone response elements. Gene expression patterns under salt stress indicated that RrLBD12c, RrLBD25, RrLBD39, and RrLBD40 may be potential regulators of salt stress signaling. Our analysis provides useful information on the evolution and development of RrLBD gene family and indicates that the candidate RrLBD genes are involved in salt stress signaling, laying a foundation for the exploration of the mechanism of LBD genes in regulating abiotic stress.
Collapse
|
76
|
Yu E, Yamaji N, Mochida K, Galis I, Asaka K, Ma JF. LYSINE KETOGLUTARATE REDUCTASE TRANS-SPLICING RELATED 1 is involved in temperature-dependent root growth in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6336-6349. [PMID: 34037776 DOI: 10.1093/jxb/erab240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Root length is an important root parameter directly related to the uptake of water and nutrients. However, the molecular mechanisms controlling root length are still not fully understood. Here, we isolated a short-root mutant of rice, dice2 (defective in cell elongation 2). The cell length and meristem size of the roots were decreased in dice2, but the root function in terms of mineral element uptake, root cell width, and root anatomy were hardly altered compared with wild-type (WT) rice. The root growth defect in dice2 could be partially rescued by high temperature. Map-based cloning combined with a complementation test revealed that the short-root phenotype was caused by a nonsense mutation in a gene which was annotated to encode Lysine Ketoglutarate Reductase Trans-Splicing related 1 (OsLKRT1). OsLKRT1, encoding a cytosol-localized protein, was expressed in all cells of the root tip and elongation region as well as the shoot. RNA-seq analysis showed that there was no difference between dice2 and the WT in the expression level of genes involved in root development identified so far. These results indicate that OsLKRT1 is involved in a novel pathway required for root cell elongation in rice, although its exact role remains to be further investigated.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Keiich Mochida
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Kanatani Asaka
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| |
Collapse
|
77
|
Identification and Characterization of Short Crown Root 8, a Temperature-Sensitive Mutant Associated with Crown Root Development in Rice. Int J Mol Sci 2021; 22:ijms22189868. [PMID: 34576034 PMCID: PMC8465104 DOI: 10.3390/ijms22189868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Crown roots are essential for plants to obtain water and nutrients, perceive environmental changes, and synthesize plant hormones. In this study, we identified and characterized short crown root 8 (scr8), which exhibited a defective phenotype of crown root and vegetative development. Temperature treatment showed that scr8 was sensitive to temperature and that the mutant phenotypes were rescued when grown under low temperature condition (20 °C). Histological and EdU staining analysis showed that the crown root formation was hampered and that the root meristem activity was decreased in scr8. With map-based cloning strategy, the SCR8 gene was fine-mapped to an interval of 126.4 kb on chromosome 8. Sequencing analysis revealed that the sequence variations were only found in LOC_Os08g14850, which encodes a CC-NBS-LRR protein. Expression and inoculation test analysis showed that the expression level of LOC_Os08g14850 was significantly decreased under low temperature (20 °C) and that the resistance to Xanthomonas oryzae pv. Oryzae (Xoo) was enhanced in scr8. These results indicated that LOC_Os08g14850 may be the candidate of SCR8 and that its mutation activated the plant defense response, resulting in a crown root growth defect.
Collapse
|
78
|
Xu J, Hu P, Tao Y, Song P, Gao H, Guan Y. Genome-wide identification and characterization of the Lateral Organ Boundaries Domain ( LBD) gene family in polyploid wheat and related species. PeerJ 2021; 9:e11811. [PMID: 34447619 PMCID: PMC8364319 DOI: 10.7717/peerj.11811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Wheat (Triticum aestivum) originated from three different diploid ancestral grass species and experienced two rounds of polyploidization. Exploring how certain wheat gene subfamilies have expanded during the evolutionary process is of great importance. The Lateral Organ Boundaries Domain (LBD) gene family encodes plant-specific transcription factors that share a highly conserved LOB domain and are prime candidates for this, as they are involved in plant growth, development, secondary metabolism and stress in various species. METHODS Using a genome-wide analysis of high-quality polyploid wheat and related species genome sequences, a total of 228 LBD members from five Triticeae species were identified, and phylogenetic relationship analysis of LBD members classified them into two main classes (classes I and II) and seven subgroups (classes I a-e, II a and II b). RESULTS The gene structure and motif composition analyses revealed that genes that had a closer phylogenetic relationship in the same subgroup also had a similar gene structure. Macrocollinearity and microcollinearity analyses of Triticeae species suggested that some LBD genes from wheat produced gene pairs across subgenomes of chromosomes 4A and 5A and that the complex evolutionary history of TaLBD4B-9 homologs was a combined result of chromosome translocation, polyploidization, gene loss and duplication events. Public RNA-seq data were used to analyze the expression patterns of wheat LBD genes in various tissues, different developmental stages and following abiotic and biotic stresses. Furthermore, qRT-PCR results suggested that some TaLBDs in class II responded to powdery mildew, regulated reproductive growth and were involved in embryo sac development in common wheat.
Collapse
Affiliation(s)
- Jun Xu
- Henan Institute of Science and Technology, Xinxiang, China
| | - Ping Hu
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Ye Tao
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Puwen Song
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Huanting Gao
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Yuanyuan Guan
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| |
Collapse
|
79
|
Xu W, Li M, Lin W, Nan Z, Tian P. Effects of Epichloë sinensis Endophyte and Host Ecotype on Physiology of Festuca sinensis under Different Soil Moisture Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:1649. [PMID: 34451694 PMCID: PMC8402098 DOI: 10.3390/plants10081649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
This study explored the effects of the Epichloë sinensis endophyte on growth, photosynthesis, ionic content (K+ and Ca2+), phytohormones (abscisic acid-ABA, cytokinin-CTK, indolE-3-acetic acid-IAA, and gibberellin-GA), and elements-C, N, P (in the shoot and root) in two ecotypes of Festuca sinensis (ecotypes 111 and 141) under different soil water conditions (35% and 65% relative saturation moisture content (RSMC)). The results showed that 35% RSMC inhibited the plants' growth, and compared with 65% RSMC, there was a significant (p < 0.05) decrease in the growth and photosynthesis indices, the contents of CTK and GA, Ca2+ concentration, and the contents of C, N, and P (in both the aboveground and underground parts) under 35% RSMC. E. sinensis had beneficial effects on host growth and stress tolerance. Under both 35% and 65% RSMC, the presence of E. sinensis significantly (p < 0.05) increased host plant height, tiller number, root length, root volume, shoot dry weight, chlorophyll content, and the rate of photosynthesis of both ecotypes. Furthermore, the shoot C, N, and P contents in plants infected with E. sinensis (E+) from the two ecotypes, under both conditions of RSMC, were significantly (p < 0.05) higher than those in corresponding plants that were not infected with E. sinensis (E-). Under 35% RSMC, the contents of ABA, K+, Ca2+, and root P contents in E+ plants were significantly (p < 0.05) higher than those in corresponding E- plants in both ecotypes. However, under 65% RSMC, root C, N, and P contents in E+ plants of ecotype 111 and 141 were significantly (p < 0.05) higher than those in corresponding E- plants. In addition, the host ecotype also had effects on host growth and stress tolerance; the growth and photosynthetic indices of ecotype 141 were significantly (p < 0.05) higher than those of ecotype 111 under 35% RSMC, which suggested that ecotype 141 is more competitive than ecotype 111 under water deficiency conditions. These findings suggest that the endophyte improved the host plant resistance to water deficiency by maintaining the growth of the plant, improving photosynthesis, accumulating K+ and Ca2+, promoting nutrient absorption, and adjusting the metabolism of plant hormones.
Collapse
Affiliation(s)
- Wenbo Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (W.X.); (M.L.); (W.L.); (Z.N.)
| | - Miaomiao Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (W.X.); (M.L.); (W.L.); (Z.N.)
| | - Weihu Lin
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (W.X.); (M.L.); (W.L.); (Z.N.)
- Institute of Rural Development, Gansu Provincial Academy of Social Sciences, Lanzhou 730071, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (W.X.); (M.L.); (W.L.); (Z.N.)
| | - Pei Tian
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (W.X.); (M.L.); (W.L.); (Z.N.)
| |
Collapse
|
80
|
Neogy A, Singh Z, Mushahary KKK, Yadav SR. Dynamic cytokinin signaling and function of auxin in cytokinin responsive domains during rice crown root development. PLANT CELL REPORTS 2021; 40:1367-1375. [PMID: 33047229 DOI: 10.1007/s00299-020-02618-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We reveal the onset and dynamic tissue-specific cytokinin signaling domains and functional importance of auxin in the auxin-cytokinin interaction domains in shaping root architecture in the economically important rice plant. Plant hormones such as auxin and cytokinin are central regulators of root organogenesis. Typical in the grass species, the root system in rice is primarily composed of post-embryonic adventitious/crown roots (ARs/CRs). Antagonistic auxin-cytokinin activities mutually balance each other to ensure proper root development. Cytokinin has been shown to inhibit crown root initiation in rice; albeit, the responsive domains remain elusive during the initiation and outgrowth of crown root primordia (CRP). Here, we show the cytokinin response domains during various stages of CRP development. RNA-RNA in situ hybridization and protein immunohistochemistry studies of the reporter gene expressed under the cytokinin responsive synthetic promoter revealed detailed spatio-temporal cytokinin signaling domains in the developing CRP. Furthermore, rice lines genetically depleted for endogenous auxin in the cytokinin responsive domains provided insight into the functional importance of auxin signaling during crown root development. Thus, our study demonstrates the onset and dynamic tissue-specific cytokinin response and functional significance of auxin-cytokinin interaction during root architecture formation in rice, a model grass species.
Collapse
Affiliation(s)
- Ananya Neogy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Zeenu Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
81
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
82
|
Zhao Y, Yin Z, Wang X, Jiang C, Aslam MM, Gao F, Pan Y, Xie J, Zhu X, Dong L, Liu Y, Zhang H, Li J, Li Z. Genetic basis and network underlying synergistic roots and shoots biomass accumulation revealed by genome-wide association studies in rice. Sci Rep 2021; 11:13769. [PMID: 34215814 PMCID: PMC8253791 DOI: 10.1038/s41598-021-93170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Genetic basis and network studies underlying synergistic biomass accumulation of roots and shoots (SBA) are conducive for rational design of high-biomass rice breeding. In this study, association signals for root weight, shoot weight, and the ratio of root-to-shoot mass (R/S) were identified using 666 rice accessions by genome-wide association study, together with their sub-traits, root length, root thickness and shoot length. Most association signals for root weight and shoot weight did not show association with their sub-traits. Based on the results, we proposed a top-to-bottom model for SBA, i.e. root weight, shoot weight and R/S were determined by their highest priority in contributing to biomass in the regulatory pathway, followed by a lower priority pathway for their sub-traits. Owing to 37 enriched clusters with more than two association signals identified, the relationship among the six traits could be also involved in linkage and pleiotropy. Furthermore, a discrimination of pleiotropy and LD at sequencing level using the known gene OsPTR9 for root weight, R/S and root length was provided. The results of given moderate correlation between traits and their corresponding sub-traits, and moderate additive effects between a trait and the accumulation of excellent alleles corresponding to its sub-traits supported a bottom-to-top regulation model for SBA. This model depicted each lowest-order trait (root length, root thickness and shoot length) was determined by its own regulation loci, and competition among different traits, as well as the pleiotropy and LD. All above ensure the coordinated development of each trait and the accumulation of the total biomass, although the predominant genetic basis of SBA is still indistinguishable. The presentation of the above two models and evidence of this study shed light on dissecting the genetic architecture of SBA.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhigang Yin
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Conghui Jiang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Muhammad Mahran Aslam
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fenghua Gao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China
| | - Jianyin Xie
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaoyang Zhu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yanhe Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
83
|
Lian L, Lin Y, Wei Y, He W, Cai Q, Huang W, Zheng Y, Xu H, Wang F, Zhu Y, Luo X, Xie H, Zhang J. PEPC of sugarcane regulated glutathione S-transferase and altered carbon-nitrogen metabolism under different N source concentrations in Oryza sativa. BMC PLANT BIOLOGY 2021; 21:287. [PMID: 34167489 PMCID: PMC8223297 DOI: 10.1186/s12870-021-03071-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphoenolpyruvate carboxylase (PEPC) plays an important role in the primary metabolism of higher plants. Several studies have revealed the critical importance of PEPC in the interaction of carbon and nitrogen metabolism. However, the function mechanism of PEPC in nitrogen metabolism is unclear and needs further investigation. RESULTS This study indicates that transgenic rice expressing the sugarcane C4-PEPC gene displayed shorter primary roots and fewer crown roots at the seedling stage. However, total nitrogen content was significantly higher in transgenic rice than in wild type (WT) plants. Proteomic analysis revealed that there were more differentially expressed proteins (DEPs) responding to nitrogen changes in transgenic rice. In particular, the most enriched pathway "glutathione (GSH) metabolism", which mainly contains GSH S-transferase (GST), was identified in transgenic rice. The expression of endogenous PEPC, GST and several genes involved in the TCA cycle, glycolysis and nitrogen assimilation changed in transgenic rice. Correspondingly, the activity of enzymes including GST, citrate synthase, 6-phosphofructokinase, pyruvate kinase and ferredoxin-dependent glutamate synthase significantly changed. In addition, the levels of organic acids in the TCA cycle and carbohydrates including sucrose, starch and soluble sugar altered in transgenic rice under different nitrogen source concentrations. GSH that the substrate of GST and its components including glutamic acid, cysteine and glycine accumulated in transgenic rice. Moreover, the levels of phytohormones including indoleacetic acid (IAA), zeatin (ZT) and isopentenyladenosine (2ip) were lower in the roots of transgenic rice under total nutrients. Taken together, the phenotype, physiological and biochemical characteristics of transgenic rice expressing C4-PEPC were different from WT under different nitrogen levels. CONCLUSIONS Our results revealed the possibility that PEPC affects nitrogen metabolism through regulating GST, which provide a new direction and concepts for the further study of the PEPC functional mechanism in nitrogen metabolism.
Collapse
Affiliation(s)
- Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Wei Huang
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Fuxiang Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Xi Luo
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350019, Fuzhou, Fujian, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China/National Engineering Laboratory of Rice, Fujian Academy of Agricultural Sciences, 350003, Fuzhou, Fujian, China.
| |
Collapse
|
84
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
85
|
Lin N, Landis JB, Sun Y, Huang X, Zhang X, Liu Q, Zhang H, Sun H, Wang H, Deng T. Demographic history and local adaptation of Myripnois dioica (Asteraceae) provide insight on plant evolution in northern China flora. Ecol Evol 2021; 11:8000-8013. [PMID: 34188867 PMCID: PMC8216978 DOI: 10.1002/ece3.7628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The flora of northern China forms the main part of the Sino-Japanese floristic region and is located in a south-north vegetative transect in East Asia. Phylogeographic studies have demonstrated that an arid belt in this region has promoted divergence of plants in East Asia. However, little is known about how plants that are restricted to the arid belt of flora in northern China respond to climatic oscillation and environmental change. Here, we used genomic-level data of Myripnois dioica across its distribution as a representative of northern China flora to reconstruct plant demographic history, examine local adaptation related to environmental disequilibrium, and investigate the factors related to effective population size change. Our results indicate M. dioica originated from the northern area and expanded to the southern area, with the Taihang Mountains serving as a physical barrier promoting population divergence. Genome-wide evidence found strong correlation between genomic variation and environmental factors, specifically signatures associated with local adaptation to drought stress in heterogeneous environments. Multiple linear regression analyses revealed joint effects of population age, mean temperature of coldest quarter, and precipitation of wettest month on effective population size (Ne). Our current study uses M. dioica as a case for providing new insights into the evolutionary history and local adaptation of northern China flora and provides qualitative strategies for plant conservation.
Collapse
Affiliation(s)
- Nan Lin
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- College of Life ScienceHenan Agricultural UniversityZhengzhouChina
| | - Jacob B. Landis
- School of Integrative Plant ScienceSection of Plant Biology and the L.H. Bailey HortoriumCornell UniversityIthacaNYUSA
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Xianhan Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanChina
| | - Qun Liu
- School of Life SciencesYunnan Normal UniversityKunmingChina
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanChina
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
86
|
Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina CM, Yamauchi A, Inukai Y. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110861. [PMID: 33775366 DOI: 10.1016/j.plantsci.2021.110861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
A well-developed root system is essential for efficient water uptake, particularly in drought-prone environments. However, the molecular mechanisms underlying the promotion of root development are poorly understood. We identified and characterized a rice mutant, outstanding rooting1 (our1), which exhibited a well-developed root system. The our1 mutant displayed typical auxin-related phenotypes, including elongated seminal root and defective gravitropism. Seminal root elongation in the our1 mutant was accelerated via the promotion of cell division and elongation. In addition, compared with the wild type, the density of short and thin lateral roots (S-type LRs) was reduced in the our1 mutant, whereas that of long and thick LRs (L-type LRs) was increased. Expression of OUR1, which encodes OsbZIP1, a member of the basic leucine zipper transcription factor family, was observed in the seminal root tip and sites of LR emergence, wherein attenuation of reporter gene expression levels controlled by the auxin response promoter DR5 was also observed in the our1 mutant. Taken together, our results indicate that the our1 gene promotes root development by suppressing auxin signaling, which may be a key factor contributing to an improvement in root architecture.
Collapse
Affiliation(s)
- Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines.
| | - Koki Yasufuku
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, 010-0146, Japan.
| | | | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan.
| | - Cornelius Mbathi Wainaina
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
87
|
OsARF11 Promotes Growth, Meristem, Seed, and Vein Formation during Rice Plant Development. Int J Mol Sci 2021; 22:ijms22084089. [PMID: 33920962 PMCID: PMC8071273 DOI: 10.3390/ijms22084089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone auxin acts as a mediator providing positional instructions in a range of developmental processes. Studies in Arabidopsis thaliana L. show that auxin acts in large part via activation of Auxin Response Factors (ARFs) that in turn regulate the expression of downstream genes. The rice (Oryza sativa L.) gene OsARF11 is of interest because of its expression in developing rice organs and its high sequence similarity with MONOPTEROS/ARF5, a gene with prominent roles in A. thaliana development. We have assessed the phenotype of homozygous insertion mutants in the OsARF11 gene and found that in relation to wildtype, osarf11 seedlings produced fewer and shorter roots as well as shorter and less wide leaves. Leaves developed fewer veins and larger areoles. Mature osarf11 plants had a reduced root system, fewer branches per panicle, fewer grains per panicle and fewer filled seeds. Mutants had a reduced sensitivity to auxin-mediated callus formation and inhibition of root elongation, and phenylboronic acid (PBA)-mediated inhibition of vein formation. Taken together, our results implicate OsARF11 in auxin-mediated growth of multiple organs and leaf veins. OsARF11 also appears to play a central role in the formation of lateral root, panicle branch, and grain meristems.
Collapse
|
88
|
Zhao J, Yang B, Li W, Sun S, Peng L, Feng D, Li L, Di H, He Y, Wang Z. A genome-wide association study reveals that the glucosyltransferase OsIAGLU regulates root growth in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1119-1134. [PMID: 33130882 DOI: 10.1093/jxb/eraa512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 05/18/2023]
Abstract
Good root growth in the early post-germination stages is an important trait for direct seeding in rice, but its genetic control is poorly understood. In this study, we examined the genetic architecture of variation in primary root length using a diverse panel of 178 accessions. Four QTLs for root length (qRL3, qRL6, qRL7, and qRL11) were identified using genome-wide association studies. One candidate gene was validated for the major QTL qRL11, namely the glucosyltransferase OsIAGLU. Disruption of this gene in Osiaglu mutants reduced the primary root length and the numbers of lateral and crown roots. The natural allelic variations of OsIAGLU contributing to root growth were identified. Functional analysis revealed that OsIAGLU regulates root growth mainly via modulating multiple hormones in the roots, including levels of auxin, jasmonic acid, abscisic acid, and cytokinin. OsIAGLU also influences the expression of multiple hormone-related genes associated with root growth. The regulation of root growth through multiple hormone pathways by OsIAGLU makes it a potential target for future rice breeding for crop improvement.
Collapse
Affiliation(s)
- Jia Zhao
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Bin Yang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Wenjun Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Defeng Feng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Li Li
- Huzhou Agricultural Science and Technology Development Center, Huzhou, People's Republic of China
| | - Hong Di
- Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
89
|
Lucob-Agustin N, Kawai T, Kano-Nakata M, Suralta RR, Niones JM, Hasegawa T, Inari-Ikeda M, Yamauchi A, Inukai Y. Morpho-physiological and molecular mechanisms of phenotypic root plasticity for rice adaptation to water stress conditions. BREEDING SCIENCE 2021; 71:20-29. [PMID: 33762873 PMCID: PMC7973496 DOI: 10.1270/jsbbs.20106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/23/2023]
Abstract
Different types of water stress severely affect crop production, and the plant root system plays a critical role in stress avoidance. In the case of rice, a cereal crop cultivated under the widest range of soil hydrologic conditions, from irrigated anaerobic conditions to rainfed conditions, phenotypic root plasticity is of particular relevance. Recently, important plastic root traits under different water stress conditions, and their physiological and molecular mechanisms have been gradually understood. In this review, we summarize these plastic root traits and their contributions to dry matter production through enhancement of water uptake under different water stress conditions. We also discuss the physiological and molecular mechanisms regulating the phenotypic plasticity of root systems.
Collapse
Affiliation(s)
- Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Roel R. Suralta
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Jonathan M. Niones
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
90
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
91
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
92
|
Wang Y, Bao Y, Zheng Y, Guo P, Peng D, Wang B. Promoter P PSP1-5- BnPSP-1 From Ramie ( Boehmeria nivea L. Gaud.) Can Drive Phloem-Specific GUS Expression in Arabidopsis thaliana. Front Genet 2021; 11:553265. [PMID: 33391335 PMCID: PMC7772962 DOI: 10.3389/fgene.2020.553265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Isolation of phloem-specific promoters is one of the basic conditions for improving the fiber development and resistance of ramie phloem using genetic engineering. In this study, we isolated a ramie endogenous promoter (named PPSP1-BnPSP-1) and analyzed the function of its truncated fragments in Arabidopsis. The results show that PPSP1-BnPSP-1 can drive the GUS reporter gene to be specifically expressed in the veins of Arabidopsis. After hormone and simulated drought treatment of the independent Arabidopsis lines carrying PPSP1-BnPSP-1 and its truncated fragments, only PPSP1–5-BnPSP-1 (−600 to −1 bp region of PPSP1-BnPSP-1) is stably expressed and exhibits phloem specificity. Our findings suggest that PPSP1–5-BnPSP-1 can be used as a phloem specific promoter for further research.
Collapse
Affiliation(s)
- Yunhe Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaning Bao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Tobacco Science, University of Guizhou, Guiyang, China
| | - Yancheng Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping'an Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, University of Hubei Normal, Huangshi, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
93
|
Gautam V, Singh A, Yadav S, Singh S, Kumar P, Sarkar Das S, Sarkar AK. Conserved LBL1-ta-siRNA and miR165/166 -RLD1/2 modules regulate root development in maize. Development 2021; 148:dev.190033. [PMID: 33168582 DOI: 10.1242/dev.190033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
Root system architecture and anatomy of monocotyledonous maize is significantly different from dicotyledonous model Arabidopsis The molecular role of non-coding RNA (ncRNA) is poorly understood in maize root development. Here, we address the role of LEAFBLADELESS1 (LBL1), a component of maize trans-acting short-interfering RNA (ta-siRNA), in maize root development. We report that root growth, anatomical patterning, and the number of lateral roots (LRs), monocot-specific crown roots (CRs) and seminal roots (SRs) are significantly affected in lbl1-rgd1 mutant, which is defective in production of ta-siRNA, including tasiR-ARF that targets AUXIN RESPONSE FACTOR3 (ARF3) in maize. Altered accumulation and distribution of auxin, due to differential expression of auxin biosynthesis and transporter genes, created an imbalance in auxin signalling. Altered expression of microRNA165/166 (miR165/166) and its targets, ROLLED1 and ROLLED2 (RLD1/2), contributed to the changes in lbl1-rgd1 root growth and vascular patterning, as was evident by the altered root phenotype of Rld1-O semi-dominant mutant. Thus, LBL1/ta-siRNA module regulates root development, possibly by affecting auxin distribution and signalling, in crosstalk with miR165/166-RLD1/2 module. We further show that ZmLBL1 and its Arabidopsis homologue AtSGS3 proteins are functionally conserved.
Collapse
Affiliation(s)
- Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- Department of Botany and Forestry, Vidyasagar University, Midnapore, WB 721104, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
94
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
95
|
Islam A, Zhang Y, Anis G, Rani MH, Anley W, Yang Q, Liu L, Shen X, Cao L, Cheng S, Wu W. Fine mapping and candidate gene analysis of qRN5a, a novel QTL promoting root number in rice under low potassium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:213-227. [PMID: 33001260 DOI: 10.1007/s00122-020-03692-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE: qRN5a, a novel QTL for increasing root number under low K in rice, was fine mapped to a 48.8-kb region on chromosome 5, and LOC_Os05g27980 is the most likely candidate gene. Potassium (K) is a mineral nutrient essential for plant growth and development, but the molecular mechanism for low-K (LK) tolerance in rice remains poorly understood. In our previous study, the quantitative trait locus (QTL) qRN5a for root number (RN) under LK was identified in the chromosome segment substitution line CSSL35 carrying segments from XieqingzaoB in the genetic background of Zhonghui9308 (ZH9308). CSSL35 developed more roots than ZH9308 under LK at the seedling stage, and qRN5a was initially located within a 1,023-kb genomic region. In this study, to understand the molecular basis of qRN5a, a large F2:3 (BC5F2:3) population obtained from crossing CSSL35 and ZH9308 was constructed for fine mapping. High-resolution linkage analysis narrowed down qRN5a to a 48.8-kb interval flanked by markers A99 and A139. Seven putative candidate genes were annotated in the delimited region, and three genes (Os05g0346700, LOC_Os05g27980, and LOC_Os05g28000) had nonsynonymous single-nucleotide polymorphisms in the coding sequence between the two parents. Expression analysis suggests that LOC_Os05g27980, which encodes a LATERAL ORGAN BOUNDARIES domain-containing protein, is a positive regulator of RN under LK and is the most likely candidate gene for qRN5a. Moreover, we found that qRN5a promotes expression of OsIAA23 and represses OsHAK5 expression in root tissues to promote root initiation in CSSL35 under LK conditions. Additional investigations on OsHAK5 in rice are needed to elucidate the basis of changing root architecture under different K+ concentrations. qRN5a is useful for marker-assisted selection to develop an ideotype with improved root architecture in rice under K deficiency.
Collapse
Affiliation(s)
- Anowerul Islam
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka, 1215, Bangladesh
| | - Yingxin Zhang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Galal Anis
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh, 33717, Egypt
| | - Mohammad Hasanuzzaman Rani
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Workie Anley
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Department of Plant Sciences, University of Gondor, P.O. Box 196, Gondor, Ethiopia
| | - Qinqin Yang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ling Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xihong Shen
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liyong Cao
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shihua Cheng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
96
|
Lucob-Agustin N, Sugiura D, Kano-Nakata M, Hasegawa T, Suralta RR, Niones JM, Inari-Ikeda M, Yamauchi A, Inukai Y. The promoted lateral root 1 (plr1) mutation is involved in reduced basal shoot starch accumulation and increased root sugars for enhanced lateral root growth in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110667. [PMID: 33218634 DOI: 10.1016/j.plantsci.2020.110667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Lateral roots (LRs) are indispensable for plant growth, adaptability and productivity. We previously reported a rice mutant, exhibiting a high density of thick and long LRs (L-type LRs) with long parental roots and herein referred to as promoted lateral root1 (plr1). In this study, we describe that the mutant exhibited decreased basal shoot starch accumulation, suggesting that carbohydrates might regulate the mutant root phenotype. Further analysis revealed that plr1 mutation gene regulated reduced starch accumulation resulting in increased root sugars for the regulation of promoted LR development. This was supported by the exogenous glucose application that promoted L-type LRs. Moreover, nitrogen (N) application was found to reduce basal shoot starch accumulation in both plr1 mutant and wild-type seedlings, which was due to the repressed expression of starch biosynthesis genes. However, unlike the wild-type that responded to N treatment only at seedling stage, the plr1 mutant regulated LR development under low to increasing N levels, both at seedling and higher growth stages. These results suggest that plr1 mutation gene is involved in reduced basal shoot starch accumulation and increased root sugar level for the promotion of L-type LR development, and thus would be very useful in improving rice root architecture.
Collapse
Affiliation(s)
- Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Roel R Suralta
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija 3119, Philippines.
| | - Jonathan M Niones
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija 3119, Philippines.
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
97
|
Zhang H, San ML, Jang SG, Lee JH, Kim NE, Lee AR, Park SY, Cao FY, Chin JH, Kwon SW. Genome-Wide Association Study of Root System Development at Seedling Stage in Rice. Genes (Basel) 2020; 11:genes11121395. [PMID: 33255557 PMCID: PMC7760126 DOI: 10.3390/genes11121395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Root network structure plays a crucial role in growth and development processes in rice. Longer, more branched root structures help plants to assimilate water and nutrition from soil, support robust plant growth, and improve resilience to stresses such as disease. Understanding the molecular basis of root development through screening of root-related traits in rice germplasms is critical to future rice breeding programs. This study used a small germplasm collection of 137 rice varieties chosen from the Korean rice core set (KRICE_CORE) to identify loci linked to root development. Two million high-quality single nucleotide polymorphisms (SNPs) were used as the genotype, with maximum root length (MRL) and total root weight (TRW) in seedlings used as the phenotype. Genome-wide association study (GWAS) combined with Principal Components Analysis (PCA) and Kinship matrix analysis identified four quantitative trait loci (QTLs) on chromosomes 3, 6, and 8. Two QTLs were linked to MRL and two were related to TRW. Analysis of Linkage Disequilibrium (LD) decay identified a 230 kb exploratory range for detection of candidate root-related genes. Candidates were filtered using RNA-seq data, gene annotations, and quantitative real-time PCR (qRT-PCR), and five previously characterized genes related to root development were identified, as well as four novel candidate genes. Promoter analysis of candidate genes showed that LOC_Os03g08880 and LOC_Os06g13060 contained SNPs with the potential to impact gene expression in root-related promoter motifs. Haplotype analysis of candidate genes revealed diverse haplotypes that were significantly associated with phenotypic variation. Taken together, these results indicate that LOC_Os03g08880 and LOC_Os06g13060 are strong candidate genes for root development functions. The significant haplotypes identified in this study will be beneficial in future breeding programs for root improvement.
Collapse
Affiliation(s)
- Hongjia Zhang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - Mar Lar San
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - Seong-Gyu Jang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - Ja-Hong Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - Na-Eun Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - Ah-Rim Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
| | - So-Yeon Park
- National Institute of Crop Science, Rural Development Administration, Miryang 50463, Korea;
| | - Fang-Yuan Cao
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, School of Biology and Technology, Jiangsu University of Science and Technology, Zhenjiang 212008, China;
| | - Joong-Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: (J.-H.C.); (S.-W.K.); Tel.: +82-55-350-5506 (S.-W.K.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.Z.); (M.L.S.); (S.-G.J.); (J.-H.L.); (N.-E.K.); (A.-R.L.)
- Correspondence: (J.-H.C.); (S.-W.K.); Tel.: +82-55-350-5506 (S.-W.K.)
| |
Collapse
|
98
|
Lavarenne J, Gonin M, Champion A, Javelle M, Adam H, Rouster J, Conejéro G, Lartaud M, Verdeil JL, Laplaze L, Sallaud C, Lucas M, Gantet P. Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS One 2020; 15:e0238736. [PMID: 33211715 PMCID: PMC7676735 DOI: 10.1371/journal.pone.0238736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/22/2020] [Indexed: 12/04/2022] Open
Abstract
Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mathieu Gonin
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Antony Champion
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Marie Javelle
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Hélène Adam
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Jacques Rouster
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Geneviève Conejéro
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marc Lartaud
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD, UMR1334 AGAP, PHIV-MRI, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurent Laplaze
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Christophe Sallaud
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain—Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Mikael Lucas
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
| | - Pascal Gantet
- Université de Montpellier, IRD, UMR DIADE, Montpellier, France
- * E-mail:
| |
Collapse
|
99
|
Tiwari P, Indoliya Y, Chauhan AS, Singh P, Singh PK, Singh PC, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122811. [PMID: 32540701 DOI: 10.1016/j.jhazmat.2020.122811] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The MYB TF family is an immensely large and functionally diverse class of proteins involved in the regulation of cell cycle, cell morphogenesis to stress signaling mechanism. The present study deciphered the hormonal cross-talk of wound inducible and stress-responsive OsMYB-R1 transcription factor in combating abiotic [Cr(VI) and drought/PEG] as well as biotic (Rhizoctonia solani) stress. OsMYB-R1 over-expressing rice transgenics exhibit a significant increase in lateral roots, which may be associated with increased tolerance under Cr(VI) and drought exposure. In contrast, its loss-of-function reduces stress tolerance. Higher auxin accumulation in the OsMYB-R1 over-expressed lines further strengthens the protective role of lateral roots under stress conditions. RNA-seq. data reveals over-representation of salicylic acid signaling molecule calcium-dependent protein kinases, which probably activate the stress-responsive downstream genes (Peroxidases, Glutathione S-transferases, Osmotins, Heat Shock Proteins, Pathogenesis Related-Proteins). Enzymatic studies further confirm OsMYB-R1 mediated robust antioxidant system as catalase, guaiacol peroxidase and superoxide dismutase activities were found to be increased in the over-expressed lines. Our results suggest that OsMYB-R1 is part of a complex network of transcription factors controlling the cross-talk of auxin and salicylic acid signaling and other genes in response to multiple stresses by modifying molecular signaling, internal cellular homeostasis and root morphology.
Collapse
Affiliation(s)
- Poonam Tiwari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Singh Chauhan
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradyumna Kumar Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
100
|
Jiang W, Zhou S, Huang H, Song H, Zhang Q, Zhao Y. MERISTEM ACTIVITYLESS (MAL) is involved in root development through maintenance of meristem size in rice. PLANT MOLECULAR BIOLOGY 2020; 104:499-511. [PMID: 32918256 DOI: 10.1007/s11103-020-01053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Rice MERISTEM ACTIVITYLESS (MAL), a RING-H2 finger domain (RFD)-containing gene, regulates meristem cell viability after the initiation of root primordia mediated by cytokinin signaling. Genes in the RING-H2 finger domain (RFD) family play various roles during plant development and in biotic/abiotic stress responses. Rice gene MERISTEM ACTIVITYLESS (MAL), being contained in the RING-H2 finger domain (RFD), is characterized by a transmembrane domain at the N-terminal and a C3H2C3 zinc finger domain at the C-terminal. To elucidate the physiological and molecular functions of MAL, we generated MAL knockdown transgenic plants by RNA interference. MAL RNA-interfered (MRi) transgenic plants exhibited a phenotype with shorter crown root length and lower crown root number, accompanied by a lower cell division rate. The low division rate was observed in the root meristem exactly where MAL was expressed. Furthermore, transcriptome data revealed that cell wall macromolecule metabolism-related genes and redox-related genes were enriched in MAL RNAi lines. Most of these differentially expressed genes (DEGs) were induced by exogenous cytokinin. Hence, we conclude that MAL, as a novel regulatory factor, plays a major role in maintaining cell viability in the meristem after the initiation of root primordial formation, mediated by cytokinin signaling and reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honglin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huazhi Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|