51
|
Liu K, Feng S, Pan Y, Zhong J, Chen Y, Yuan C, Li H. Transcriptome Analysis and Identification of Genes Associated with Floral Transition and Flower Development in Sugar Apple ( Annona squamosa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1695. [PMID: 27881993 PMCID: PMC5101194 DOI: 10.3389/fpls.2016.01695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/27/2016] [Indexed: 05/17/2023]
Abstract
Sugar apple (Annona squamosa L.) is a semi-deciduous subtropical tree that progressively sheds its leaves in the spring. However, little information is available on the mechanism involved in flower developmental pattern. To gain a global perspective on the floral transition and flower development of sugar apple, cDNA libraries were prepared independently from inflorescent meristem and three flowering stages. Illumina sequencing generated 107,197,488 high quality reads that were assembled into 71,948 unigenes, with an average sequence length of 825.40 bp. Among the unigenes, various transcription factor families involved in floral transition and flower development were elucidated. Furthermore, a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that unigenes exhibiting differential expressions were involved in various phytohormone signal transduction events and circadian rhythms. In addition, 147 unigenes exhibiting sequence similarities to known flowering-related genes from other plants were differentially expressed during flower development. The expression patterns of 20 selected genes were validated using quantitative-PCR. The expression data presented in our study is the most comprehensive dataset available for sugar apple so far and will serve as a resource for investigating the genetics of the flowering process in sugar apple and other Annona species.
Collapse
|
52
|
Lakshmanan M, Lim SH, Mohanty B, Kim JK, Ha SH, Lee DY. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis. PLANT PHYSIOLOGY 2015; 169:3002-20. [PMID: 26453433 PMCID: PMC4677915 DOI: 10.1104/pp.15.01379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/07/2015] [Indexed: 05/21/2023]
Abstract
Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes' promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems.
Collapse
Affiliation(s)
- Meiyappan Lakshmanan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| | - Sun-Hyung Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| | - Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| | - Jae Kwang Kim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| | - Sun-Hwa Ha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 (M.L., B.M., D.-Y.L.);Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668 (M.L., D.-Y.L.);Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.-H.L.);Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea (J.K.K.); andDepartment of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea (S.-H.H.)
| |
Collapse
|
53
|
Petrillo E, Godoy Herz MA, Barta A, Kalyna M, Kornblihtt AR. Let there be light: regulation of gene expression in plants. RNA Biol 2015; 11:1215-20. [PMID: 25590224 PMCID: PMC4615654 DOI: 10.4161/15476286.2014.972852] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene expression regulation relies on a variety of molecular mechanisms affecting different steps of a messenger RNA (mRNA) life: transcription, processing, splicing, alternative splicing, transport, translation, storage and decay. Light induces massive reprogramming of gene expression in plants. Differences in alternative splicing patterns in response to environmental stimuli suggest that alternative splicing plays an important role in plant adaptation to changing life conditions. In a recent publication, our laboratories showed that light regulates alternative splicing of a subset of Arabidopsis genes encoding proteins involved in RNA processing by chloroplast retrograde signals. The light effect on alternative splicing is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. These results point at alternative splicing regulation by retrograde signals as an important mechanism for plant adaptation to their environment.
Collapse
Key Words
- DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone
- DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea
- PQ, plastoquinone
- PS, photosystem
- Pol II, RNA polymerase II
- RNA
- ROS, reactive oxygen species
- alternative splicing
- chloroplast
- light
- mRNA, messenger RNA
- photoreceptors
- retrograde signaling
Collapse
Affiliation(s)
- Ezequiel Petrillo
- a Max F. Perutz Laboratories ; Medical University of Vienna ; Vienna , Austria
| | | | | | | | | |
Collapse
|
54
|
Gálvez-Valdivieso G, Cardeñosa R, Pineda M, Aguilar M. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:80-88. [PMID: 26454640 DOI: 10.1016/j.jplph.2015.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.
Collapse
Affiliation(s)
- Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Rosa Cardeñosa
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Botánica, Ecología y Fisiología Vegetal, Instituto Andaluz de Biotecnología and Campus Agroalimentario de Excelencia Internacional ceiA3, Campus de Rabanales, Edif. C-4, 3ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
55
|
Xiang T, Nelson W, Rodriguez J, Tolleter D, Grossman AR. Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:67-80. [PMID: 25664570 DOI: 10.1111/tpj.12789] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 05/10/2023]
Abstract
Symbiosis between unicellular dinoflagellates (genus Symbiodinium) and their cnidarian hosts (e.g. corals, sea anemones) is the foundation of coral reef ecosystems. Dysfunction of this symbiosis under changing environmental conditions has led to global reef decline. Little information is known about Symbiodinium gene expression and mechanisms by which light impacts host-symbiont associations. To address these issues, we generated a transcriptome from axenic Symbiodinium strain SSB01. Here we report features of the transcriptome, including occurrence and length distribution of spliced leader sequences, the functional landscape of encoded proteins and the impact of light on gene expression. Expression of many Symbiodinium genes appears to be significantly impacted by light. Transcript encoding cryptochrome 2 declined in high light while some transcripts for Regulators of Chromatin Condensation (RCC1) declined in the dark. We also identified a transcript encoding a light harvesting AcpPC protein with homology to Chlamydomonas LHCSR2. The level of this transcript increased in high light autotrophic conditions, suggesting that it is involved in photo-protection and the dissipation of excess absorbed light energy. The most extensive changes in transcript abundances occurred when the algae were transferred from low light to darkness. Interestingly, transcripts encoding several cell adhesion proteins rapidly declined following movement of cultures to the dark, which correlated with a dramatic change in cell surface morphology, likely reflecting the complexity of the extracellular matrix. Thus, light-sensitive cell adhesion proteins may play a role in establishing surface architecture, which may in turn alter interactions between the endosymbiont and its host.
Collapse
Affiliation(s)
- Tingting Xiang
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
56
|
Tian C, Zhang X, He J, Yu H, Wang Y, Shi B, Han Y, Wang G, Feng X, Zhang C, Wang J, Qi J, Yu R, Jiao Y. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol Syst Biol 2014; 10:755. [PMID: 25358340 PMCID: PMC4299377 DOI: 10.15252/msb.20145470] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
Abstract
Gene regulatory networks (GRNs) control development via cell type-specific gene expression and interactions between transcription factors (TFs) and regulatory promoter regions. Plant organ boundaries separate lateral organs from the apical meristem and harbor axillary meristems (AMs). AMs, as stem cell niches, make the shoot a ramifying system. Although AMs have important functions in plant development, our knowledge of organ boundary and AM formation remains rudimentary. Here, we generated a cellular-resolution genomewide gene expression map for low-abundance Arabidopsis thaliana organ boundary cells and constructed a genomewide protein-DNA interaction map focusing on genes affecting boundary and AM formation. The resulting GRN uncovers transcriptional signatures, predicts cellular functions, and identifies promoter hub regions that are bound by many TFs. Importantly, further experimental studies determined the regulatory effects of many TFs on their targets, identifying regulators and regulatory relationships in AM initiation. This systems biology approach thus enhances our understanding of a key developmental process.
Collapse
Affiliation(s)
- Caihuan Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Xiaoni Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Haopeng Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Bihai Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Guoxun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Cui Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| | - Jin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Jiyan Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Rong Yu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, China
| |
Collapse
|
57
|
Mizuno H, Yazawa T, Kasuga S, Sawada Y, Ogata J, Ando T, Kanamori H, Yonemaru JI, Wu J, Hirai MY, Matsumoto T, Kawahigashi H. Expression level of a flavonoid 3'-hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Res Notes 2014; 7:761. [PMID: 25346182 PMCID: PMC4219097 DOI: 10.1186/1756-0500-7-761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
Background Sorghum (Sorghum bicolor L. Moench) accumulates 3-deoxyanthocyanidins and exhibits orange to purple coloration on parts of the leaf in response to infection with the fungus Bipolaris sorghicola. We aimed to identify the key genes determining this color variation. Results Sorghum populations derived from Nakei-MS3B and M36001 accumulated apigeninidin, or both apigeninidin and luteolinidin, in different proportions in lesions caused by B. sorghicola infection, suggesting that the relative proportions of the two 3-deoxyanthocyanidins determine color variation. QTL analysis and genomic sequencing indicated that two closely linked loci on chromosome 4, containing the flavonoid 3′-hydroxylase (F3′H) and Tannin1 (Tan1) genes, were responsible for the lesion color variation. The F3′H locus in Nakei-MS3B had a genomic deletion resulting in the fusion of two tandemly arrayed F3′H genes. The recessive allele at the Tan1 locus derived from M36001 had a genomic insertion and encoded a non-functional WD40 repeat transcription factor. Whole-mRNA sequencing revealed that expression of the fused F3′H gene was conspicuously induced in purple sorghum lines. The levels of expression of F3′H matched the relative proportions of apigeninidin and luteolinidin. Conclusions Expression of F3′H is responsible for the synthesis of luteolinidin; the expression level of this gene is therefore critical in determining color variation in sorghum leaves infected with B. sorghicola. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-761) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- National Institute of Agrobiological Sciences, Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju JH, Song C, Hyun JK, Jin E. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J 2014; 28:4924-35. [PMID: 25114178 DOI: 10.1096/fj.14-256388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure and function of the Antarctic marine diatom Chaetoceros neogracile antifreeze protein (Cn-AFP), as well as its expression levels and characteristics of the ice-binding site, were analyzed in the present study. In silico analysis revealed that the Cn-AFP promoter contains both light- and temperature-responsive elements. Northern and Western blot analyses demonstrated that both Cn-AFP transcript and protein expression were strongly and rapidly stimulated by freezing, as well as temperature and high light stress. Immunogold labeling revealed that Cn-AFP is preferentially localized to the intracellular space near the chloroplast membrane. Recombinant Cn-AFP had clear antifreeze activity. Protein-folding simulation was used to predict the putative ice-binding sites in Cn-AFP, and site-directed mutagenesis of the Cn-AFP b-face confirmed their identification.
Collapse
Affiliation(s)
- Yunho Gwak
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Woongsic Jung
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea; Division of Polar Life Science, Korea Polar Research Institute, Incheon, Republic of Korea; and
| | - Yew Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ji Sook Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Chul Geun Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hyun Ju
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Chihong Song
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jae-Kyung Hyun
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea;
| |
Collapse
|
59
|
Yeaman S, Hodgins KA, Suren H, Nurkowski KA, Rieseberg LH, Holliday JA, Aitken SN. Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca×Picea engelmannii). THE NEW PHYTOLOGIST 2014; 203:578-591. [PMID: 24750196 DOI: 10.1111/nph.12819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Species respond to environmental stress through a combination of genetic adaptation and phenotypic plasticity, both of which may be important for survival in the face of climatic change. By characterizing the molecular basis of plastic responses and comparing patterns among species, it is possible to identify how such traits evolve. Here, we used de novo transcriptome assembly and RNAseq to explore how patterns of gene expression differ in response to temperature, moisture, and light regime treatments in lodgepole pine (Pinus contorta) and interior spruce (a natural hybrid population of Picea glauca and Picea engelmannii). We found wide evidence for an effect of treatment on expression within each species, with 6413 and 11,658 differentially expressed genes identified in spruce and pine, respectively. Comparing patterns of expression among these species, we found that 74% of all orthologs with differential expression had a pattern that was conserved in both species, despite 140 million yr of evolution. We also found that the specific treatments driving expression patterns differed between genes with conserved versus diverged patterns of expression. We conclude that natural selection has probably played a role in shaping plastic responses to environment in these species.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- School of Biological Sciences, Monash University, Building 18, Melbourne, Vic., 3800, Australia
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kristin A Nurkowski
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
60
|
Leister D, Romani I, Mittermayr L, Paieri F, Fenino E, Kleine T. Identification of target genes and transcription factors implicated in translation-dependent retrograde signaling in Arabidopsis. MOLECULAR PLANT 2014; 7:1228-47. [PMID: 24874869 DOI: 10.1093/mp/ssu066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Changes in organellar gene expression (OGE) trigger retrograde signaling. The molecular dissection of OGE-dependent retrograde signaling based on analyses of mutants with altered OGE is complicated by compensatory responses that mask the primary signaling defect and by secondary effects that influence other retrograde signaling pathways. Therefore, to identify the earliest effects of altered OGE on nuclear transcript accumulation, we have induced OGE defects in adult plants by ethanol-dependent repression of PRORS1, which encodes a prolyl-tRNA synthetase located in chloroplasts and mitochondria. After 32h of PRORS1 repression, the translational capacity of chloroplasts was reduced, and this effect subsequently intensified, while basic photosynthetic parameters were still unchanged at 51h. Analysis of changes in whole-genome transcriptomes during exposure to ethanol revealed that induced PRORS1 silencing affects the expression of 1020 genes in all. Some of these encode photosynthesis-related proteins, including several down-regulated light-harvesting chlorophyll a/b binding (LHC) proteins. Interestingly, genes for presumptive endoplasmic reticulum proteins are transiently up-regulated. Furthermore, several NAC-domain-containing proteins are among the transcription factors regulated. Candidate cis-acting elements which may coordinate the transcriptional co-regulation of genes sets include both G-box variants and sequence motifs with no similarity to known plant cis-elements.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Isidora Romani
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Lukas Mittermayr
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Francesca Paieri
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Elena Fenino
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, D-82152 Martinsried, Germany
| |
Collapse
|
61
|
Ozalvo R, Cabrera J, Escobar C, Christensen SA, Borrego EJ, Kolomiets MV, Castresana C, Iberkleid I, Brown Horowitz S. Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. MOLECULAR PLANT PATHOLOGY 2014; 15:319-32. [PMID: 24286169 PMCID: PMC6638665 DOI: 10.1111/mpp.12094] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The responses of two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, to infection by the sedentary nematodes root-knot nematode (Meloidogyne javanica) and cyst nematode (Heterodera schachtii) were analysed in transgenic Arabidopsis seedlings. The tissue localization of LOX3 and LOX4 gene expression using β-glucuronidase (GUS) reporter gene constructs showed local induction of LOX3 expression when second-stage juveniles reached the vascular bundle and during the early stages of plant-nematode interaction through gall and syncytia formation. Thin sections of nematode-infested knots indicated LOX3 expression in mature giant cells, and high expression in neighbouring cells and those surrounding the female body. LOX4 promoter was also activated by nematode infection, although the GUS signal weakened as infection and disease progressed. Homozygous insertion mutants lacking LOX3 were less susceptible than wild-type plants to root-knot nematode infection, as reflected by a decrease in female counts. Conversely, deficiency in LOX4 function led to a marked increase in females and egg mass number and in the female to male ratio of M. javanica and H. schachtii, respectively. The susceptibility of lox4 mutants was accompanied by increased expression of allene oxide synthase, allene oxide cyclase and ethylene-responsive transcription factor 4, and the accumulation of jasmonic acid, measured in the roots of lox4 mutants. This response was not found in lox3 mutants. Taken together, our results reveal that LOX4 and LOX3 interfere differentially with distinct metabolic and signalling pathways, and that LOX4 plays a major role in controlling plant defence against nematode infection.
Collapse
Affiliation(s)
- Rachel Ozalvo
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sharma P, Chatterjee M, Burman N, Khurana JP. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. PLANT, CELL & ENVIRONMENT 2014; 37:961-77. [PMID: 24117455 DOI: 10.1111/pce.12212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 10/01/2013] [Indexed: 05/19/2023]
Abstract
The blue light photoreceptors cryptochromes are ubiquitous in higher plants and are vital for regulating plant growth and development. In spite of being involved in controlling agronomically important traits like plant height and flowering time, cryptochromes have not been extensively characterized from agriculturally important crops. Here we show that overexpression of CRY1 from Brassica napus (BnCRY1), an oilseed crop, results in short-statured Brassica transgenics, likely to be less prone to wind and water lodging. The overexpression of BnCRY1 accentuates the inhibition of cell elongation in hypocotyls of transgenic seedlings. The analysis of hypocotyl growth inhibition and anthocyanin accumulation responses in BnCRY1 overexpressors substantiates that regulation of seedling photomorphogenesis by cry1 is dependent on light intensity. This study highlights that the photoactivated cry1 acts through coordinated induction and suppression of specific downstream genes involved in phytohormone synthesis or signalling, and those involved in cell wall modification, during de-etiolation of Brassica seedlings. The microarray-based transcriptome profiling also suggests that the overexpression of BnCRY1 alters abiotic/biotic stress signalling pathways; the transgenic seedlings were apparently oversensitive to abscisic acid (ABA) and mannitol.
Collapse
Affiliation(s)
- Pooja Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | |
Collapse
|
63
|
Chao Y, Zhang T, Yang Q, Kang J, Sun Y, Gruber MY, Qin Z. Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:92-99. [PMID: 24388519 DOI: 10.1016/j.plantsci.2013.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 06/03/2023]
Abstract
Zinc finger proteins comprise a large family and function in various developmental processes. CCCH type zinc finger protein is one kind of zinc finger protein, which function is little known. MsZFN gene encoding a CCCH type zinc finger protein was first discovered by its elevated transcript level in a salt-induced alfalfa SSH cDNA library. The previous experiment had showed that MsZFN protein was localized to the nucleus and little is known about the function of MsZFN protein and its homologous proteins in other plants including model plant, Arabidopsis thaliana. In the current study, we found that MsZFN transcript levels increased in alfalfa under continuous dark conditions and that expression was strongest in leaves and weakest in unopened flowers under light/dark conditions. Expression of MsZFN in transgenic Arabidopsis plants resulted in late flowering phenotypes under long day conditions. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that MsZFN protein can interact with itself. Transcript analyses of floral regulatory genes in MsZFN(+) transgenic Arabidopsis showed enhanced expression of the flowering repressor FLOWERING LOCUS C and decreased expression of three key flowering time genes, FLOWERING LOCUS T, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS and GIGANTEA. These results suggest that MsZFN primarily controls flowering time by repressing flowering genes expression under long day conditions.
Collapse
Affiliation(s)
- Yuehui Chao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yan Sun
- College of Animal Science and Technology, China Agriculture University, Beijing 100193, People's Republic of China
| | - Margaret Yvonne Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N0X2, Canada
| | - Zhihui Qin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
64
|
Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 2014; 24:444-53. [PMID: 24402519 PMCID: PMC3941109 DOI: 10.1101/gr.165555.113] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent research on long noncoding RNAs (lncRNAs) has expanded our understanding of gene transcription regulation and the generation of cellular complexity. Depending on their genomic origins, lncRNAs can be transcribed from intergenic or intragenic regions or from introns of protein-coding genes. We have recently reported more than 6000 intergenic lncRNAs in Arabidopsis. Here, we systematically identified long noncoding natural antisense transcripts (lncNATs), defined as lncRNAs transcribed from the opposite DNA strand of coding or noncoding genes. We found a total of 37,238 sense–antisense transcript pairs and 70% of annotated mRNAs to be associated with antisense transcripts in Arabidopsis. These lncNATs could be reproducibly detected by different technical platforms, including strand-specific tiling arrays, Agilent custom expression arrays, strand-specific RNA-seq, and qRT-PCR experiments. Moreover, we investigated the expression profiles of sense–antisense pairs in response to light and observed spatial and developmental-specific light effects on 626 concordant and 766 discordant NAT pairs. Genes for a large number of the light-responsive NAT pairs are associated with histone modification peaks, and histone acetylation is dynamically correlated with light-responsive expression changes of NATs.
Collapse
Affiliation(s)
- Huan Wang
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Godoy Herz MA, Kornblihtt AR, Barta A, Kalyna M, Petrillo E. Shedding light on the chloroplast as a remote control of nuclear gene expression. PLANT SIGNALING & BEHAVIOR 2014; 9:e976150. [PMID: 25482785 PMCID: PMC4622676 DOI: 10.4161/15592324.2014.976150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 05/20/2023]
Abstract
Plants rely on a sophisticated light sensing and signaling system that allows them to respond to environmental changes. Photosensory protein systems -phytochromes, cryptochromes, phototropins, and ultraviolet (UV)-B photoreceptors- have evolved to let plants monitor light conditions and regulate different levels of gene expression and developmental processes. However, even though photoreceptor proteins are best characterized and deeply studied, it is also known that chloroplasts are able to sense light conditions and communicate the variations to the nucleus that adjust its transcriptome to the changing environment. The redox state of components of the photosynthetic electron transport chain works as a sensor of photosynthetic activity and can affect nuclear gene expression by a retrograde signaling pathway. Recently, our groups showed that a retrograde signaling pathway can modulate the alternative splicing process, revealing a novel layer of gene expression control by chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Micaela A Godoy Herz
- Laboratorio de Fisiología y Biología Molecular; Departamento de Fisiología, Biología Molecular y Celular; IFIBYNE-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Ciudad Universitaria; Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Laboratorio de Fisiología y Biología Molecular; Departamento de Fisiología, Biología Molecular y Celular; IFIBYNE-CONICET; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Ciudad Universitaria; Buenos Aires, Argentina
| | - Andrea Barta
- Max F. Perutz Laboratories; Medical University of Vienna; Vienna, Austria
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology; BOKU – University of Natural Resources and Life Sciences; Vienna, Austria
| | - Ezequiel Petrillo
- Max F. Perutz Laboratories; Medical University of Vienna; Vienna, Austria
- Correspondence to: Ezequiel Petrillo;
| |
Collapse
|
66
|
Cevher-Keskin B. ARF1 and SAR1 GTPases in endomembrane trafficking in plants. Int J Mol Sci 2013; 14:18181-99. [PMID: 24013371 PMCID: PMC3794775 DOI: 10.3390/ijms140918181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/06/2023] Open
Abstract
Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process.
Collapse
Affiliation(s)
- Birsen Cevher-Keskin
- Plant Molecular Biology Laboratory, Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technical Research Council of Turkey, TUBITAK, P.O. Box: 21, Gebze 41470, Kocaeli, Turkey.
| |
Collapse
|
67
|
Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. THE PLANT CELL 2013; 25:1258-73. [PMID: 23548744 PMCID: PMC3663266 DOI: 10.1105/tpc.113.109710] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II-associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings.
Collapse
Affiliation(s)
- Xuncheng Liu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ko-Ching Wang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ming Luo
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ready Tai
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Lianyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minglei Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gang Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Address correspondence to
| |
Collapse
|
68
|
Jin GH, Gho HJ, Jung KH. A systematic view of rice heat shock transcription factor family using phylogenomic analysis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:321-9. [PMID: 23122336 DOI: 10.1016/j.jplph.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 05/04/2023]
Abstract
The heat shock transcription factor (Hsf) family includes key regulators of the physiological response to heat stress. Here, we present a systematic analysis of the Hsf family in rice using a phylogenomics-based approach that integrates multi-omics data into the context of a phylogenetic tree. For 25 previously identified Hsfs, we integrated anatomical meta-profiling data from 983 Affymetrix arrays into a phylogenetic tree, revealing a global view of the functional redundancy within this family. Interestingly, most of the Hsfs showed significant fluctuation in gene expression patterns, suggesting that they have condition- or stress-dependent roles. Therefore, we further analyzed the abiotic stress responses of the Hsfs using log(2-)fold change data in response to heat, cold, drought and salt stresses. Subsequently, we identified 19 Hsfs that are positively associated with heat stress, 11 with drought, 9 with salt, and 7 with cold stress, as indicated by at least a 2-fold change and coefficient of variation less than 1. The Hsf subfamily A2 was conserved in the heat stress response. The Hsf subfamily C showed a strong positive association with drought, salt and cold stresses. Downregulation of three members in the Hsf subfamily B in response to cold stress is characteristic. More interestingly, half of the Hsf subfamily B genes were upregulated by heat, drought and salt stresses, while one gene in the other half was downregulated by drought, salt, and cold stresses. Finally, we developed a hypothetical functional gene network mediated by OsHsfA2e/OsHsf-12 that is involved in thermotolerance as well as upregulated in response to heat. We expect that our data will help researchers design more efficient strategies to study the rice Hsf family with information about probable functional redundancy.
Collapse
Affiliation(s)
- Geun-Ho Jin
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | |
Collapse
|
69
|
Ranade SS, Abrahamsson S, Niemi J, García-Gil MR. <i>Pinus taeda</i> cDNA Microarray as a Tool for Candidate Gene Identification for Local Red/Far-Red Light Adaptive Response in <i>Pinus sylvestris</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Chen J, Uebbing S, Gyllenstrand N, Lagercrantz U, Lascoux M, Källman T. Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics 2012; 13:589. [PMID: 23122049 PMCID: PMC3543189 DOI: 10.1186/1471-2164-13-589] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. RESULTS mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions. CONCLUSIONS Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10-09 and 1.1 × 10-09) is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence) reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1.
Collapse
Affiliation(s)
- Jun Chen
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Severin Uebbing
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Gyllenstrand
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, P.O. Box 7080, SE-750 07 Uppsala, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Evolutionary Genomics, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Thomas Källman
- Department of Ecology and Genetics, EBC, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
71
|
Hsieh WP, Hsieh HL, Wu SH. Arabidopsis bZIP16 transcription factor integrates light and hormone signaling pathways to regulate early seedling development. THE PLANT CELL 2012; 24:3997-4011. [PMID: 23104829 PMCID: PMC3517232 DOI: 10.1105/tpc.112.105478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 09/21/2012] [Accepted: 10/03/2012] [Indexed: 05/19/2023]
Abstract
Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box-specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)-, and abscisic acid (ABA)-responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-like2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of phytochrome interacting factoR3-like5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development.
Collapse
Affiliation(s)
- Wen-Ping Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Address correspondence to
| |
Collapse
|
72
|
Movahedi S, Van Bel M, Heyndrickx KS, Vandepoele K. Comparative co-expression analysis in plant biology. PLANT, CELL & ENVIRONMENT 2012; 35:1787-98. [PMID: 22489681 DOI: 10.1111/j.1365-3040.2012.02517.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The analysis of gene expression data generated by high-throughput microarray transcript profiling experiments has shown that transcriptionally coordinated genes are often functionally related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-association principle has been applied to study modular gene programmes, identify cis-regulatory elements or predict functions for unknown genes in different model plants. Recently, several studies have demonstrated how, through the integration of gene homology and expression information, correlated gene expression patterns can be compared between species. The incorporation of detailed functional annotations as well as experimental data describing protein-protein interactions, phenotypes or tissue specific expression, provides an invaluable source of information to identify conserved gene modules and translate biological knowledge from model organisms to crops. In this review, we describe the different steps required to systematically compare expression data across species. Apart from the technical challenges to compute and display expression networks from multiple species, some future applications of plant comparative transcriptomics are highlighted.
Collapse
Affiliation(s)
- Sara Movahedi
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
73
|
Trupkin SA, Mora-García S, Casal JJ. The cyclophilin ROC1 links phytochrome and cryptochrome to brassinosteroid sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:712-23. [PMID: 22463079 DOI: 10.1111/j.1365-313x.2012.05013.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although multiple photoreceptors converge to control common aspects of seedling de-etiolation, we are relatively ignorant of the genes acting at or downstream of their signalling convergence. To address this issue we screened for mutants under a mixture of blue plus far-red light and identified roc1-1D. The roc1-1D mutant, showing elevated expression of the ROTAMASE CYCLOPHILIN 1 (ROC1/AtCYP18-3) gene, and partial loss-of function roc1 alleles, has defects in phytochrome A (phyA)-, cryptochrome 1 (cry1)- and phytochrome B (phyB)-mediated de-etiolation, including long hypocotyls under blue or far-red light. These mutants show elevated sensitivity to brassinosteroids in the light but not in the dark. Mutations at brassinosteroid signalling genes and the application of a brassinosteroid synthesis inhibitor eliminated the roc1 and roc1-D phenotypes. The roc1 and roc1-D mutants show altered patterns of phosphorylation of the transcription factor BES1, a known point of control of sensitivity to brassinosteroids, which correlate with the expression levels of genes directly targeted by BES1. We propose a model where perception of light by phyA, cry1 or phyB activates ROC1 (at least in part by enhancing its expression). This in turn reduces the intensity of brassinosteroid signalling and fine-tunes seedling de-etiolation.
Collapse
Affiliation(s)
- Santiago A Trupkin
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417-Buenos Aires, Argentina
| | | | | |
Collapse
|
74
|
Klose C, Büche C, Fernandez AP, Schäfer E, Zwick E, Kretsch T. The mediator complex subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light signaling. PLANT PHYSIOLOGY 2012; 160:289-307. [PMID: 22760208 PMCID: PMC3440207 DOI: 10.1104/pp.112.197319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to far-red light were isolated under a light program of alternating red and far-red light pulses and were named eid (for empfindlicher im dunkelroten Licht). The dominant eid3 mutant carries a missense mutation in a conserved domain of PHYTOCHROME AND FLOWERING TIME1 (PFT1), an important component of the plant mediator coactivator complex, which links promoter-bound transcriptional regulators to RNA polymerase II complexes. Epistatic analyses were performed to obtain information about the coaction between the mutated PFT1(eid3) and positively and negatively acting components of light signaling cascades. The data presented here provide clear evidence that the mutation mainly enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB function. Our results demonstrate that the Mediator component cooperates with CONSTITUTIVE PHOTORMORPHOGENIC1 in the regulation of light responses and that the hypersensitive phenotype strictly depends on the presence of the ELONGATED HYPOCOTYL5 transcription factor, an important positive regulator of light-dependent gene expression. Expression profile analyses revealed that PFT1(eid3) alters the transcript accumulation of light-regulated genes even in darkness. Our data further indicate that PFT1 regulates the floral transition downstream of phyA. The PFT1 missense mutation seems to create a constitutively active transcription factor by mimicking an early step in light signaling.
Collapse
|
75
|
Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 2012; 7:e43705. [PMID: 22912900 PMCID: PMC3422346 DOI: 10.1371/journal.pone.0043705] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/24/2012] [Indexed: 01/04/2023] Open
Abstract
Arabidopsis thaliana early flowering 3 (ELF3) as a zeitnehmer (time taker) is responsible for generation of circadian rhythm and regulation of photoperiodic flowering. There are two orthologs (OsELF3-1 and OsELF3-2) of ELF3 in rice (Oryza sativa), but their roles have not yet been fully identified. Here, we performed a functional characterization of OsELF3-1 and revealed it plays a more predominant role than OsELF3-2 in rice heading. Our results suggest OsELF3-1 can affect rice circadian systems via positive regulation of OsLHY expression and negative regulation of OsPRR1, OsPRR37, OsPRR73 and OsPRR95 expression. In addition, OsELF3-1 is involved in blue light signaling by activating early heading date 1 (Ehd1) expression to promote rice flowering under short-day (SD) conditions. Moreover, OsELF3-1 suppresses a flowering repressor grain number, plant height and heading date 7 (Ghd7) to indirectly accelerate flowering under long-day (LD) conditions. Taken together, our results indicate OsELF3-1 is essential for circadian regulation and photoperiodic flowering in rice.
Collapse
Affiliation(s)
- Junming Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Li Y, Sun Y, Yang Q, Kang J, Zhang T, Gruber MY, Fang F. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Mol Biol Rep 2012; 39:8559-69. [PMID: 22696187 DOI: 10.1007/s11033-012-1712-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.
Collapse
Affiliation(s)
- Yan Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
77
|
Hopkins JA, Kiss JZ. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway. PHYSIOLOGIA PLANTARUM 2012; 145:461-73. [PMID: 22380624 DOI: 10.1111/j.1399-3054.2012.01607.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.
Collapse
Affiliation(s)
- Jane A Hopkins
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
78
|
Deng Y, Yao J, Wang X, Guo H, Duan D. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One 2012; 7:e39704. [PMID: 22761876 PMCID: PMC3384632 DOI: 10.1371/journal.pone.0039704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/24/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Light has significant effect on the growth and development of Saccharina japonica, but there are limited reports on blue light mediated physiological responses and molecular mechanism. In this study, high-throughput paired-end RNA-sequencing (RNA-Seq) technology was applied to transcriptomes of S. japonica exposed to blue light and darkness, respectively. Comparative analysis of gene expression was designed to correlate the effect of blue light and physiological mechanisms on the molecular level. PRINCIPAL FINDINGS RNA-seq analysis yielded 70,497 non-redundant unigenes with an average length of 538 bp. 28,358 (40.2%) functional transcripts encoding regions were identified. Annotation through Swissprot, Nr, GO, KEGG, and COG databases showed 25,924 unigenes compared well (E-value <10(-5)) with known gene sequences, and 43 unigenes were putative BL photoreceptor. 10,440 unigenes were classified into Gene Ontology, and 8,476 unigenes were involved in 114 known pathways. Based on RPKM values, 11,660 (16.5%) differentially expressed unigenes were detected between blue light and dark exposed treatments, including 7,808 upregulated and 3,852 downregulated unigenes, suggesting S. japonica had undergone extensive transcriptome re-orchestration during BL exposure. The BL-specific responsive genes were indentified to function in processes of circadian rhythm, flavonoid biosynthesis, photoreactivation and photomorphogenesis. SIGNIFICANCE Transcriptome profiling of S. japonica provides clues to potential genes identification and future functional genomics study. The global survey of expression changes under blue light will enhance our understanding of molecular mechanisms underlying blue light induced responses in lower plants as well as facilitate future blue light photoreceptor identification and specific responsive pathways analysis.
Collapse
Affiliation(s)
- Yunyan Deng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jianting Yao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiuliang Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Delin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
79
|
Mateášiková-Kováčová B, Vesteg M, Drahovská H, Záhonová K, Vacula R, Krajčovič J. Nucleus-encoded mRNAs for Chloroplast Proteins GapA, PetA, and PsbO areTrans-spliced in the FlagellateEuglena gracilisIrrespective of Light and Plastid Function. J Eukaryot Microbiol 2012; 59:651-3. [DOI: 10.1111/j.1550-7408.2012.00634.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/10/2012] [Accepted: 04/14/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Hana Drahovská
- Department of Molecular Biology; Faculty of Natural Sciences; Comenius University; Mlynská dolina, 842 15 Bratislava; Slovakia
| | | | - Rostislav Vacula
- Institute of Cell Biology and Biotechnology; Faculty of Natural Sciences; Comenius University; Mlynská dolina, 842 15 Bratislava; Slovakia
| | | |
Collapse
|
80
|
van Zanten M, Tessadori F, Peeters AJM, Fransz P. Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:583-90. [PMID: 22528207 DOI: 10.1093/mp/sss030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants need to respond quickly and appropriately to various types of light signals from the environment to optimize growth and development. The immediate response to shading, reduced photon flux (low light), and changes in spectral quality involves changes in gene regulation. In the case of more persistent shade, the plant shows a dramatic change in the organization of chromatin. Both plant responses are controlled via photoreceptor signaling proteins. Recently, several studies have revealed similar features of chromatin reorganization in response to various abiotic and biotic signals, while others have unveiled intricate molecular networks of light signaling towards gene regulation. This opinion paper briefly describes the chromatin (de)compaction response from a light-signaling perspective to provide a link between chromatin and the molecular network of photoreceptors and E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
81
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
82
|
Li J, Terzaghi W, Deng XW. Genomic basis for light control of plant development. Protein Cell 2012; 3:106-16. [PMID: 22426979 PMCID: PMC4875414 DOI: 10.1007/s13238-012-2016-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022] Open
Abstract
Light is one of the key environmental signals regulating plant growth and development. Therefore, understanding the mechanisms by which light controls plant development has long been of great interest to plant biologists. Traditional genetic and molecular approaches have successfully identified key regulatory factors in light signaling, but recent genomic studies have revealed massive reprogramming of plant transcriptomes by light, identified binding sites across the entire genome of several pivotal transcription factors in light signaling, and discovered the involvement of epigenetic regulation in light-regulated gene expression. This review summarizes the key genomic work conducted in the last decade which provides new insights into light control of plant development.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871 China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| | - William Terzaghi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766 USA
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871 China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104 USA
| |
Collapse
|
83
|
Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis. Biochem Biophys Res Commun 2012; 418:565-70. [PMID: 22293194 DOI: 10.1016/j.bbrc.2012.01.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/17/2012] [Indexed: 11/20/2022]
Abstract
To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene β-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.
Collapse
|
84
|
Ometto L, Li M, Bresadola L, Varotto C. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages. BMC Evol Biol 2012; 12:7. [PMID: 22257588 PMCID: PMC3398273 DOI: 10.1186/1471-2148-12-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/18/2012] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E, Mach 1, 38010 San Michele all'Adige (TN), Italy
| | | | | | | |
Collapse
|
85
|
Keskin BC, Yuca E, Ertekin O, Yüksel B, Memon AR. Expression characteristics of ARF1 and SAR1 during development and the de-etiolation process. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:24-32. [PMID: 21973219 DOI: 10.1111/j.1438-8677.2011.00482.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ARF1 (ADP-ribosylation factor 1) and SAR1 (secretion-associated RAS super family) are involved in the formation and budding of vesicles throughout plant endomembrane systems. The molecular mechanisms of this transport have been studied extensively in mammalian and yeast cells. However, very little is known about the mechanisms of coat protein complex (COP) formation and recruitment of COP-vesicle cargoes in plants. To provide insights into vesicular trafficking in Pisum sativum L., we investigated mRNA and protein expression patterns of ARF1 and SAR1 in roots and shoots at early growth stages and in the de-etiolation process. We showed that ARF1 was concentrated mostly in the crude Golgi fractions, and SAR1 was concentrated predominantly in the crude ER fractions of de-etiolated shoots. ARF1 and SAR1 proteins were several times more abundant in shoots relative to roots. In total protein homogenates, the expression level of SAR1 and ARF1 was higher in shoots of dark-grown pea plants than light-grown plants. In contrast, ARF1 was higher in roots of light-grown pea relative to roots of dark-grown pea. With ageing, the ARF1 mRNA in roots was reduced, while SAR1 expression increased. Unlike ARF1 transcripts, ARF1 protein levels did not fluctuate significantly in root and shoot tissue during early development. The relative abundance of SAR1 protein in root tissues may suggest a high level of vesicular transport from the ER to the Golgi. Experimental results suggested that white light probably affects the regulation of ARF1 and SAR1 protein levels. On the other hand, short-term white light affects SAR1 but not ARF1.
Collapse
Affiliation(s)
- B Cevher Keskin
- Plant Molecular Biology Laboratory, TUBITAK, The Scientific and Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey.
| | | | | | | | | |
Collapse
|
86
|
Guleria P, Mahajan M, Bhardwaj J, Yadav SK. Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:183-99. [PMID: 22289475 PMCID: PMC5054152 DOI: 10.1016/s1672-0229(11)60022-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/21/2011] [Indexed: 01/01/2023]
Abstract
Small RNAs (sRNAs) are 18-30 nt non-coding regulatory elements found in diverse organisms, which were initially identified as small double-stranded RNAs in Caenorhabditis elegans. With the development of new and improved technologies, sRNAs have also been identified and characterized in plant systems. Among them, micro RNAs (miRNAs) and small interfering RNAs (siRNAs) are found to be very important riboregulators in plants. Various types of sRNAs differ in their mode of biogenesis and in their function of gene regulation. sRNAs are involved in gene regulation at both transcriptional and post-transcriptional levels. They are known to regulate growth and development of plants. Furthermore, sRNAs especially plant miRNAs have been found to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. Therefore, in the present review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant sRNAs and their responses to various abiotic stresses.
Collapse
Affiliation(s)
- Praveen Guleria
- Plant Metabolic Engineering, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, CSIR, Palampur 176061 (HP), India
| | | | | | | |
Collapse
|
87
|
Hamamoto K, Aki T, Shigyo M, Sato S, Ishida T, Yano K, Yoneyama T, Yanagisawa S. Proteomic characterization of the greening process in rice seedlings using the MS spectral intensity-based label free method. J Proteome Res 2011; 11:331-47. [PMID: 22077597 DOI: 10.1021/pr200852q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Illumination-induced greening in dark-grown plants is one of the most dramatic developmental processes known in plants. In our current study, we characterized the greening process of rice seedlings using comparative proteome analysis. We identified 886 different proteins in both whole cell lysates of illuminated and nonilluminated rice shoots and performed comparative proteome analysis based on the MS spectral intensities obtained for unique peptides from respective proteins. Furthermore, the changes in the levels of individual proteins were then compared with those of the corresponding mRNAs. The results revealed well-coordinated increases in the enzymes involved in the Calvin cycle at both the protein and mRNA levels during greening, and that the changes at the mRNA level precede those at the protein level. Although a much lower effect of illumination was found on the enzymes associated with glycolysis and the TCA cycle, coordinated increases during greening were evident for the enzymes involved in photorespiration and nitrogen assimilation as well as the components of the chloroplastic translational machinery. These results thus define the differential regulation of distinct biological systems during greening in rice and demonstrate the usefulness of comprehensive and comparative proteome analysis for the characterization of biological processes in plant cells.
Collapse
Affiliation(s)
- Kentaro Hamamoto
- Department of Applied Biological Chemistzry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1138-50. [PMID: 21875894 PMCID: PMC3252167 DOI: 10.1104/pp.111.184689] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.
Collapse
|
89
|
Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:166-75. [PMID: 22001611 DOI: 10.1016/j.bbagrm.2011.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/15/2023]
Abstract
During the last decade, microarrays became a routine tool for the analysis of transcripts in the model plant Arabidopsis thaliana and the crop plant species rice, poplar or barley. The overwhelming amount of data generated by gene expression studies is a valuable resource for every scientist. Here, we summarize the most important findings about the abiotic stress responses in plants. Interestingly, conserved patterns of gene expression responses have been found that are common between different abiotic stresses or that are conserved between different plant species. However, the individual histories of each plant affect the inter-comparability between experiments already before the onset of the actual stress treatment. This review outlines multiple aspects of microarray technology and highlights some of the benefits, limitations and also pitfalls of the technique. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Joachim Kilian
- Center of Plant Molecular Biology, ZMBP-Plant Physiology, University of Tuebingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
90
|
Holtan HE, Bandong S, Marion CM, Adam L, Tiwari S, Shen Y, Maloof JN, Maszle DR, Ohto MA, Preuss S, Meister R, Petracek M, Repetti PP, Reuber TL, Ratcliffe OJ, Khanna R. BBX32, an Arabidopsis B-Box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. PLANT PHYSIOLOGY 2011; 156:2109-23. [PMID: 21632973 PMCID: PMC3149924 DOI: 10.1104/pp.111.177139] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
A B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5). We further show that BBX32 interacts with SALT TOLERANCE HOMOLOG2/BBX21, another B-box protein previously shown to interact with HY5. Based on these data, we propose that BBX32 functions downstream of multiple photoreceptors as a modulator of light responses. As such, BBX32 potentially has a native role in mediating gene repression to maintain dark adaptation.
Collapse
|
91
|
Zenoni S, Fasoli M, Tornielli GB, Dal Santo S, Sanson A, de Groot P, Sordo S, Citterio S, Monti F, Pezzotti M. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. THE NEW PHYTOLOGIST 2011; 191:662-677. [PMID: 21534969 DOI: 10.1111/j.1469-8137.2011.03726.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | | | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Andrea Sanson
- Computer Science Department, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Peter de Groot
- Department of Molecular Plant Physiology IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Sara Sordo
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Sandra Citterio
- Environment and Territory Science Department, University of Milano-Bicocca, Piazza delle Scienze 1, 20133 Milano, Italy
| | - Francesca Monti
- Computer Science Department, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
92
|
Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascorbic acid and tocochromanols biosynthetic genes in rice. Comput Biol Chem 2011; 35:261-8. [PMID: 22000797 DOI: 10.1016/j.compbiolchem.2011.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/02/2011] [Indexed: 01/03/2023]
Abstract
During the last two decades, several exciting reports have provided many advances in the role and biosynthesis of l-ascorbic acid (AsA) and tocochromanols, including tocopherols and tocotrienols, in higher plants. There are increasing bodies of experimental evidence that demonstrate that AsA and tocochromanols (especially tocopherols) play an important role as antioxidants and nutrients in mammals and photosynthetic organisms and are also involved in plant responses to stimuli. Although AsA and tocochromanol biosynthesis pathways have been well characterized using Arabidopsis, these pathways are still poorly understood in rice, which is an economically important monocot cereal crop. In this study using computational analysis of sequenced rice genome, we identified eight and seven potential non-redundant members involved in AsA and tocochromanol biosynthetic pathways, respectively. The results reveal that the common feature of these gene promoters is the combination of light-responsive, hormone-responsive, and stress-responsive elements. These findings, together with expression analysis in the MPSS database, indicate that AsA and tocochromanols might be co-related with the complex signaling pathways involved in plant responses.
Collapse
|
93
|
Peng FY, Weselake RJ. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 2011; 12:286. [PMID: 21635767 PMCID: PMC3126783 DOI: 10.1186/1471-2164-12-286] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 06/02/2011] [Indexed: 12/16/2022] Open
Abstract
Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.
Collapse
Affiliation(s)
- Fred Y Peng
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
94
|
A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC SYSTEMS BIOLOGY 2011; 5:77. [PMID: 21595952 PMCID: PMC3123201 DOI: 10.1186/1752-0509-5-77] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/19/2011] [Indexed: 11/30/2022]
Abstract
Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of chlorophyll biosynthesis genes in a manner that is consistent with the increased synthesis of carotenoid precursors for ABA biosynthesis. In all tissues examined, induction of β-carotene hydroxylase transcript levels are linked to an increased demand for ABA. Conclusions This analysis provides compelling evidence to suggest that coordinated transcriptional regulation of isoprenoid-related biosynthesis pathway genes plays a major role in coordinating the synthesis of functionally related chloroplast localized isoprenoid-derived compounds.
Collapse
|
95
|
Chang CSJ, Maloof JN, Wu SH. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:228-39. [PMID: 21427283 PMCID: PMC3091042 DOI: 10.1104/pp.111.175042] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 05/19/2023]
Abstract
Light regulates multiple aspects of growth and development in plants. Transcriptomic changes govern the expression of signaling molecules with the perception of light. Also, the 26S proteasome regulates the accumulation of positive and negative regulators for optimal growth of Arabidopsis (Arabidopsis thaliana) in the dark, light, or light/dark cycles. BBX22, whose induction is both light regulated and HY5 dependent, is a positive regulator of deetiolation in Arabidopsis. We found that during skotomorphogenesis, the expression of BBX22 needs to be tightly regulated at both transcriptional and posttranslational levels. During photomorphogenesis, the expression of BBX22 transiently accumulates to execute its roles as a positive regulator. BBX22 protein accumulates to a higher level under short-day conditions and functions to inhibit hypocotyl elongation. The proteasome-dependent degradation of BBX22 protein is tightly controlled even in plants overexpressing BBX22. An analysis of BBX22 degradation kinetics shows that the protein has a short half-life under both dark and light conditions. COP1 mediates the degradation of BBX22 in the dark. Although dispensable in the dark, HY5 contributes to the degradation of BBX22 in the light. The constitutive photomorphogenic development of the cop1 mutant is enhanced in cop1BBX22ox plants, which show a short hypocotyl, high anthocyanin accumulation, and expression of light-responsive genes. Exaggerated light responsiveness is also observed in cop1BBX22ox seedlings grown under short-day conditions. Therefore, the proper accumulation of BBX22 is crucial for plants to maintain optimal growth when grown in the dark as well as to respond to seasonal changes in daylength.
Collapse
|
96
|
Peschke F, Kretsch T. Genome-wide analysis of light-dependent transcript accumulation patterns during early stages of Arabidopsis seedling deetiolation. PLANT PHYSIOLOGY 2011; 155:1353-66. [PMID: 21220763 PMCID: PMC3046591 DOI: 10.1104/pp.110.166801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/07/2011] [Indexed: 05/18/2023]
Abstract
Light is among the most important exogenous factors that regulate plant development. To sense light quality, intensity, direction, and duration, plants have evolved multiple photoreceptors that enable the detection of photons from the ultraviolet B (UV-B) to the far-red spectrum. To study the effect of different light qualities on early gene expression, dark-grown Arabidopsis (Arabidopsis thaliana) seedlings were either irradiated with continuous far-red, red, or blue light or received pulses of red, UV-A, or UV-A/B light. The expression profiles of seedlings harvested at 45 min and 4 h were determined on a full genome level and compared with the profiles of dark controls. Data were used to identify light-regulated genes and to group these genes according to their light responses. While most of the genes were regulated by more than one light quality, a considerable number of UV-B-specific gene expression responses were obtained. An extraordinarily high similarity in gene expression patterns was obtained for samples that perceived continuous irradiation with either far-red or blue light for 4 h. Mutant analyses hint that this coincidence is caused by a convergence of the signaling cascades that regulate gene expression downstream of cryptochrome blue light photoreceptors and phytochrome A. Whereas many early light-regulated genes exhibited uniform responses to all applied light treatments, highly divergent expression patterns developed at 4 h. These data clearly indicate that light signaling during early deetiolation undergoes a switch from a rapid, but unspecific, response mode to regulatory systems that measure the spectral composition and duration of incident light.
Collapse
|
97
|
Stephenson TJ, McIntyre CL, Collet C, Xue GP. TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Funct Integr Genomics 2011; 11:327-40. [PMID: 21327447 DOI: 10.1007/s10142-011-0212-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
Nuclear factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate-limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction centre subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase γ subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Collapse
Affiliation(s)
- Troy J Stephenson
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Brisbane, QLD 4067, Australia.
| | | | | | | |
Collapse
|
98
|
Jang IC, Chung PJ, Hemmes H, Jung C, Chua NH. Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus. THE PLANT CELL 2011; 23:459-70. [PMID: 21317377 PMCID: PMC3077797 DOI: 10.1105/tpc.110.080481] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/14/2010] [Accepted: 01/28/2011] [Indexed: 05/19/2023]
Abstract
Recent genome-wide surveys showed that acetylation of H3K9 and H3K27 is correlated with gene activation during deetiolation of Arabidopsis thaliana seedlings, but less is known regarding changes in the histone status of repressed genes. Phytochrome A (phyA) is the major photoreceptor of deetiolation, and phyA expression is reversibly repressed by light. We found that in adult Arabidopsis plants, phyA activation in darkness was accompanied by a significant enrichment in the phyA transcription and translation start sites of not only H3K9/14ac and H3K27ac but also H3K4me3, and there was also moderate enrichment of H4K5ac, H4K8ac, H4K12ac, and H4K16ac. Conversely, when phyA expression was repressed by light, H3K27me3 was enriched with a corresponding decline in H3K27ac; moreover, demethylation of H3K4me3 and deacetylation of H3K9/14 were also seen. These histone modifications, which were focused around the phyA transcription/translation start sites, were detected within 1 h of deetiolation. Mutant analysis showed that HDA19/HD1 mediated deacetylation of H3K9/14 and uncovered possible histone crosstalk between H3K9/14ac and H3K4me3. Neither small RNA pathways nor the circadian clock affected H3 modification status of the phyA locus, and DNA methylation was unchanged by light. The presence of activating and repressive histone marks suggests a mechanism for the rapid and reversible regulation of phyA by dark and light.
Collapse
|
99
|
Abstract
The epigenomic regulation of chromatin structure and genome stability is essential for the interpretation of genetic information and ultimately the determination of phenotype. High-resolution maps of plant epigenomes have been obtained through a combination of chromatin technologies and genomic tiling microarrays and through high-throughput sequencing-based approaches. The transcriptomic activity of a plant at a certain stage of development is controlled by genome-wide combinatorial interactions of epigenetic modifications. Tissue- or environment-specific epigenomes are established during plant development. Epigenomic reprogramming triggered by the activation and movement of small RNAs is important for plant gametogenesis. Genome-wide loss of DNA methylation in the endosperm and the accompanying endosperm-specific gene expression during seed development provide a genomic insight into epigenetic regulation of gene imprinting in plants. Global changes of histone modifications during plant responses to different light environments play an important regulatory role in a sophisticated light-regulated transcriptional network. Epigenomic natural variation that developed during evolution is important for phenotypic diversity and can potentially contribute to the molecular mechanisms of complex biological phenomena such as heterosis in plants.
Collapse
Affiliation(s)
- Guangming He
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
100
|
Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci U S A 2010; 107:22570-5. [PMID: 21149731 DOI: 10.1073/pnas.1013395108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.
Collapse
|