51
|
Bai Y, Zhao X, Yao X, Yao Y, Li X, Hou L, An L, Wu K, Wang Z. Comparative transcriptome analysis of major lodging resistant factors in hulless barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1230792. [PMID: 37905169 PMCID: PMC10613528 DOI: 10.3389/fpls.2023.1230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023]
Abstract
Hulless barley (Hordeum vulgare L. var. nudum Hook. f.), belonging to the genus Gramineae, has high and steady output and thus considered as a principal food crop by Tibetan people. Hulless barley grain can be used for food, brewing, and functional health product development, while its straw serves as an essential supplementary forage and is a crucial cereal crop. Lodging can reduce the yield and quality of barley grain and straw, and it hinders mechanical harvesting. It is a significant factor affecting high and stable yields of barley. Unlike other Poaceae plants (such as rice, wheat), hulless barley is mainly grown in high-altitude regions, where it is susceptible to low temperatures, strong winds, and heavy rainfall. As a result, its stem lodging resistance is relatively weak, making it prone to lodging during the growth period. In this study, we observed that the lignin concentration and the contents of lignin monomers (H, S, and G), and neutral detergent fibre of the lodging-resistant variety Kunlun14 were substantially greater than those of the lodging-sensitive variety Menyuanlianglan. We performed the weighted gene co-expression network analysis (WGCNA) and Short Time-series Expression Miner (STEM) analysis of both the lodging-resistant and lodging-sensitive varieties. Through transcriptome sequencing analysis at different developmental stages, combined with the previously annotated genes related to lodging resistance, a total of 72 DEGs were identified. Among these DEGs, 17 genes were related to lignin, cellulose, and hemicellulose synthesis or regulation, including five transcription factors about NAC, MYB and WRKY. Our results provide a basis for further exploring the molecular mechanism of stem lodging resistance in hulless barley and provide valuable gene resources for stem lodging resistance molecular breeding.
Collapse
Affiliation(s)
- Yixiong Bai
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi, China
| | - Xiaohong Zhao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Good Agricultural Practices Research Center of Traditional, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Xiaohua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Youhua Yao
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Xin Li
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Lu Hou
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Likun An
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Kunlun Wu
- Qinghai University, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Shaanxi, China
| |
Collapse
|
52
|
Atsumi G, Naramoto S, Nishihara M, Nakatsuka T, Tomita R, Matsushita Y, Hoshi N, Shirakawa A, Kobayashi K, Fukuda H, Sekine KT. Identification of a novel viral factor inducing tumorous symptoms by disturbing vascular development in planta. J Virol 2023; 97:e0046323. [PMID: 37668368 PMCID: PMC10537666 DOI: 10.1128/jvi.00463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 09/06/2023] Open
Abstract
Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.
Collapse
Affiliation(s)
- Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Reiko Tomita
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yosuke Matsushita
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Nobue Hoshi
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | | | - Kappei Kobayashi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
- Department of Environmental Sciences and Conservation Biology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
53
|
Whitehill JGA, Yuen MMS, Chiang A, Ritland CE, Bohlmann J. Transcriptome features of stone cell development in weevil-resistant and susceptible Sitka spruce. THE NEW PHYTOLOGIST 2023; 239:2138-2152. [PMID: 37403300 DOI: 10.1111/nph.19103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect-resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell-type-specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Forest Improvement and Research Management Branch, British Columbia Ministry of Forests, Lands, and Natural Resource Operations and Rural Development, 7380 Puckle Road, Saanichton, BC, V8M 1W4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carol E Ritland
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
54
|
Fu C, Liu M. Genome-wide identification and molecular evolution of NAC gene family in Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2023; 14:1232804. [PMID: 37670854 PMCID: PMC10475575 DOI: 10.3389/fpls.2023.1232804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
NAC transcription factors are an important genes that regulate plant growth and development, and can regulate functions such as fruit ripening in plants. Based on genome data of Dendrobium nobile, the NAC gene family was identified and analyzed by bioinformatics methods. In this study, we identified 85 NAC genes in Dendrobium nobile genome, and systematically analyzed the NAC gene family. We found that they were distributed unevenly in the nineteen chromosomes. The amino acid length of D. nobile NAC gene family (DnoNACs) ranged from 80 to 1065, molecular weight ranged from 22.17 to 119.02 kD, and isoelectric point ranged from 4.61~9.26. Its promoter region contains multiple stress responsive elements, including light responsive, gibberellin-responsive, abscisic acid responsiveness, MeJA-responsiveness and drought-inducibility elements. Phylogenetic analysis indicates that the D. nobile NAC gene family is most closely related to Dendrobium catenatum and Dendrobium chrysotoxum. Analysis of SSR loci indicates that the fraction of mononucleotide repeats was the largest, as was the frequency of A/T. Non-coding RNA analysis showed that these 85 NAC genes contain 397 miRNAs. The collinearity analysis shows that 9 collinear locis were found on the chromosomes of D. nobile with Arabidopsis thaliana, and 75 collinear locis with D.chrysotoxum. QRT-PCR experiment under different salt concentration and temperature conditions verified the response mechanism of DnoNAC gene family under stress conditions. Most DnoNAC genes are sensitive to salt stress and temperature stress. The results of this study provide a reference for further understanding the function of NAC gene in D. nobile.
Collapse
|
55
|
Wang H, Guo Y, Hao X, Zhang W, Xu Y, He W, Li Y, Cai S, Zhao X, Song X. Alternative Splicing for Leucanthemella linearis NST1 Contributes to Variable Abiotic Stress Resistance in Transgenic Tobacco. Genes (Basel) 2023; 14:1549. [PMID: 37628601 PMCID: PMC10454811 DOI: 10.3390/genes14081549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Leucanthemella linearis is a marsh plant in the family Compositae. It has good water and moisture resistance and ornamental properties, which makes it one of the important materials for chrysanthemum breeding and genetic improvement. The NST1 (NAC secondary wall enhancement factor 1) gene is associated with the thickening of the secondary walls of fiber cells in the plant ducts and the secondary xylem and plays an important role in plant stress resistance. In this study, two variable spliceosomes of the NST1 gene were identified from a chrysanthemum plant by using bioinformatics, qRT-PCR, transgene, and paraffin section methods to explore the molecular mechanism of the variable splicing of NST1 under abiotic stress. The results show that only three amino acids were found to be different between the two LlNST1 variants. After being treated with salt, drought, and low temperatures, analysis of the expression levels of the LlNST1 and LlNST1.1 genes in Ll showed that LlNST1.1 could respond to low temperatures and salt stress and had a weak response to drought stress. However, the expression level of LlNST1 under the three treatments was lower than that of LlNST1.1. LlNST1 transgenic tobacco showed increased saline-alkali resistance and low-temperature resistance at the seedling stage. LlNST1.1 transgenic tobacco also showed enhanced saline-alkali resistance and drought resistance at the seedling stage. In conclusion, the functions of the two variable spliceosomes of the NST1 gene are very different under abiotic stress. Therefore, this study verified the function of the variable spliceosome of NST1 and improved the stress resistance of the chrysanthemum plant under examination by regulating the expression of the NST protein, which lays a material foundation for the improvement of plant stress resistance materials and has important significance for the study of the resistance of chrysanthemum plants to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China; (H.W.); (Y.G.); (X.H.); (W.Z.); (Y.X.); (W.H.); (Y.L.); (S.C.); (X.Z.)
| |
Collapse
|
56
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
57
|
Li S, Hu Y, Yang H, Tian S, Wei D, Tang Q, Yang Y, Wang Z. The Regulatory Roles of MYC TFs in Plant Stamen Development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111734. [PMID: 37207819 DOI: 10.1016/j.plantsci.2023.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
The stamen, as the male reproductive organ of flowering plants, plays a critical role in completing the life cycle of plants. MYC transcription factors are members of the bHLH IIIE subgroup and participate in a number of plant biological processes. In recent decades, a number of studies have confirmed that MYC transcription factors actively participate in the regulation of stamen development and have a critical impact on plant fertility. In this review, we summarized how MYC transcription factors play a role in regulating secondary thickening of the anther endothecium, the development and degradation of the tapetum, stomatal differentiation, and the dehydration of the anther epidermis. With regard to anther physiological metabolism, MYC transcription factors control dehydrin synthesis, ion and water transport, and carbohydrate metabolism to influence pollen viability. Additionally, MYCs participate in the JA signal transduction pathway, where they directly or indirectly control the development of stamens through the ET-JA, GA-JA, and ABA-JA pathways. By identifying the functions of MYCs during plant stamen development, it will help us to obtain a more comprehensive understanding not only on the molecular functions of this TF family but also the mechanisms underlying stamen development.
Collapse
Affiliation(s)
- Sirui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Yao Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Huiqing Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China.
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 400055, China.
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Olericulture, Chongqing, 400715, China.
| |
Collapse
|
58
|
Yu A, Zou H, Li P, Yao X, Zhou Z, Gu X, Sun R, Liu A. Genomic characterization of the NAC transcription factors, directed at understanding their functions involved in endocarp lignification of iron walnut ( Juglans sigillata Dode). Front Genet 2023; 14:1168142. [PMID: 37229193 PMCID: PMC10203416 DOI: 10.3389/fgene.2023.1168142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factors (TF), one of the largest plant-specific gene families, play important roles in the regulation of plant growth and development, stress response and disease resistance. In particular, several NAC TFs have been identified as master regulators of secondary cell wall (SCW) biosynthesis. Iron walnut (Juglans sigillata Dode), an economically important nut and oilseed tree, has been widely planted in the southwest China. The thick and high lignified shell derived endocarp tissues, however, brings troubles in processing processes of products in industry. It is indispensable to dissect the molecular mechanism of thick endocarp formation for further genetic improvement of iron walnut. In the present study, based on genome reference of iron walnut, 117 NAC genes, in total, were identified and characterized in silico, which involves only computational analysis to provide insight into gene function and regulation. We found that the amino acids encoded by these NAC genes varied from 103 to 1,264 in length, and conserved motif numbers ranged from 2 to 10. The JsiNAC genes were unevenly distributed across the genome of 16 chromosomes, and 96 of these genes were identified as segmental duplication genes. Furthermore, 117 JsiNAC genes were divided into 14 subfamilies (A-N) according to the phylogenetic tree based on NAC family members of Arabidopsis thaliana and common walnut (Juglans regia). Furthermore, tissue-specific expression pattern analysis demonstrated that a majority of NAC genes were constitutively expressed in five different tissues (bud, root, fruit, endocarp, and stem xylem), while a total of 19 genes were specifically expressed in endocarp, and most of them also showed high and specific expression levels in the middle and late stages during iron walnut endocarp development. Our result provided a new insight into the gene structure and function of JsiNACs in iron walnut, and identified key candidate JsiNAC genes involved in endocarp development, probably providing mechanistic insight into shell thickness formation across nut species.
Collapse
|
59
|
Zhang B, Dang X, Chen H, Li T, Zhu F, Nagawa S. Ectopic Expression of FvVND4c Promotes Secondary Cell Wall Thickening and Flavonoid Accumulation in Fragaria vesca. Int J Mol Sci 2023; 24:ijms24098110. [PMID: 37175817 PMCID: PMC10179399 DOI: 10.3390/ijms24098110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary cell wall (SCW) thickening has a significant effect on the growth and development of plants, as well as in the resistance to various biotic and abiotic stresses. Lignin accounts for the strength of SCW. It is synthesized through the phenylpropanoid pathway that also leads to flavonoid synthesis. The coupling strategies for lignin and flavonoid syntheses are diverse in plants. How their syntheses are balanced by transcriptional regulation in fleshy fruits is still unclear. The diploid strawberry (Fragaria vesca) is a model for fleshy fruits research due to its small genome and wide scope of genetic transformation. SCW thickening is regulated by a multilevel transcriptional regulatory network wherein vascular-related NAC domains (VNDs) act as key regulators. In this study, we systematically characterized VNDs in Fragaria vesca and explored their functions. The overexpression of FvVND4c in diploid strawberry fruits resulted in SCW thickening and fruit color changes accompanied with the accumulation of lignin and flavonoids. Genes related to these phenotypes were also induced upon FvVND4c overexpression. Among the induced genes, we found FvMYB46 to be a direct downstream regulator of FvVND4c. The overexpression of FvMYB46 resulted in similar phenotypes as FvVND4c, except for the color change. Transcriptomic analyses suggest that both FvVND4c and FvMYB46 act on phenylpropanoid and flavonoid biosynthesis pathways, and induce lignin synthesis for SCW. These results suggest that FvVND4c and FvMYB46 cooperatively regulate SCW thickening and flavonoid accumulation in Fragaria vesca.
Collapse
Affiliation(s)
- Bei Zhang
- College of Horticulture, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Xiaofei Dang
- College of Horticulture, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Hao Chen
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Tian Li
- College of Future Technology, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Fangjie Zhu
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University-University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
60
|
Shen Q, Weng Y. Alternative Splicing of NAC Transcription Factor Gene CmNST1 Is Associated with Naked Seed Mutation in Pumpkin, Cucurbita moschata. Genes (Basel) 2023; 14:genes14050962. [PMID: 37239322 DOI: 10.3390/genes14050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In pumpkin (Cucurbita moschata), the naked or hull-less seed phenotype has great benefits for breeding this crop for oil or snack use. We previously identified a naked seed mutant in this crop. In this study, we report genetic mapping, identification, and characterization of a candidate gene for this mutation. We showed that the naked seed phenotype is controlled by a single recessive gene (N). The bulked segregant analysis identified a 2.4 Mb region on Chromosome 17 with 15 predicted genes. Multiple lines of evidence suggested that CmoCh17G004790 is the most probable candidate gene for the N locus which encodes a NAC transcription factor WALL THICKENING PROMOTING FACTOR 1 (CmNST1). No nucleotide polymorphism or structural variation was found in the genomic DNA sequences of CmNST1 between the mutant and the wildtype inbred line (hulled seed). However, the cDNA sequence cloned from developing seed coat samples of the naked seed mutant was 112 bp shorter than that from the wildtype which is due to seed coat-specific alternative splicing in the second exon of the mutant CmNST1 transcript. The expression level of CmNST1 in the developing seed coat was higher in the mutant than in the wildtype during early seed coat development which was reversed later. Transcriptomic profiling with RNA-Seq at different stages of seed development in the mutant and wildtype revealed a critical role of CmNST1 as a master regulator for the lignin biosynthesis pathway during seed coat development while other NAC and MYB transcription factors were also involved in forming a regulatory network for the building of secondary cell walls. This work provides a novel mechanism for the well-characterized NST1 transcription factor gene in regulating secondary cell wall development. The cloned gene also provides a useful tool for marker-assisted breeding of hull-less C. moschata varieties.
Collapse
Affiliation(s)
- Qiong Shen
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
61
|
Liu J, Qiao Y, Li C, Hou B. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1095967. [PMID: 36909440 PMCID: PMC9996081 DOI: 10.3389/fpls.2023.1095967] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fruits are derived from flowers and play an important role in human food, nutrition, and health. In general, flowers determine the crop yield, and ripening affects the fruit quality. Although transcription factors (TFs) only account for a small part of plant transcriptomes, they control the global gene expression and regulation. The plant-specific NAC (NAM, ATAF, and CUC) TFs constitute a large family evolving concurrently with the transition of both aquatic-to-terrestrial plants and vegetative-to-reproductive growth. Thus, NACs play an important role in fruit yield and quality by determining shoot apical meristem (SAM) inflorescence and controlling ripening. The present review focuses on the various properties of NACs together with their function and regulation in flower formation and fruit ripening. Hitherto, we have a better understanding of the molecular mechanisms of NACs in ripening through abscisic acid (ABA) and ethylene (ETH), but how NACs regulate the expression of the inflorescence formation-related genes is largely unknown. In the future, we should focus on the analysis of NAC redundancy and identify the pivotal regulators of flowering and ripening. NACs are potentially vital manipulation targets for improving fruit quantity and quality.
Collapse
Affiliation(s)
- Jianfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Qiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
62
|
Asaoka M, Sakamoto S, Gunji S, Mitsuda N, Tsukaya H, Sawa S, Hamant O, Ferjani A. Contribution of vasculature to stem integrity in Arabidopsis thaliana. Development 2023; 150:286909. [PMID: 36746191 DOI: 10.1242/dev.201156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
In plants, coordinated growth is important for organ mechanical integrity because cells remain contiguous through their walls. So far, defects in inflorescence stem integrity in Arabidopsis thaliana have mainly been related to epidermal defects. Although these observations suggest a growth-limiting function at the stem cortex, deeper layers of the stem could also contribute to stem integrity. The nac secondary cell wall thickening promoting factor1 (nst1) nst3 double-mutant background is characterized by weaker vascular bundles without cracks. By screening for the cracking phenotype in this background, we identified a regulator of stem cracking, the transcription factor INDETERMINATE DOMAIN9 (IDD9). Stem cracking was not caused by vascular bundle breakage in plants that expressed a dominant repressor version of IDD9. Instead, cracking emerged from increased cell expansion in non-lignified interfascicular fiber cells that stretched the epidermis. This phenotype could be enhanced through CLAVATA3-dependent cell proliferation. Collectively, our results demonstrate that stem integrity relies on three additive mechanical components: the epidermis, which resists inner cell growth; cell proliferation in inner tissues; and growth heterogeneity associated with vascular bundle distribution in deep tissues.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichiro Sawa
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| |
Collapse
|
63
|
Dong T, Wang L, Wang R, Yang X, Jia W, Yi M, Zhou X, He J. Transcriptomic analysis reveals candidate genes associated with anther development in Lilium Oriental Hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1128911. [PMID: 36844086 PMCID: PMC9945121 DOI: 10.3389/fpls.2023.1128911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Lily (Lilium spp. and hybrids) is an important cut flower crop worldwide. Lily flowers have large anthers, which release a large amount of pollen that stains the tepals or clothing and thus can affect the commercial value of cut flowers. In this study, lily Oriental 'Siberia' was used to investigate the regulatory mechanism of lily anther development, which may provide information to prevent pollen pollution in the future. Based on the flower bud length, anther length and color, and anatomical observations, lily anther development was categorized into five stages: green (G), green-to-yellow 1 (GY1), green-to-yellow 2 (GY2), yellow (Y), and purple (P). Total RNA was extracted from the anthers at each stage for transcriptomic analysis. A total of 268.92-Gb clean reads were generated, and 81,287 unigenes were assembled and annotated. The number of differentially expressed genes (DEGs) and unique genes were largest for the pairwise comparison between the G and GY1 stages. The G and P samples were clustered separately, whereas the GY1, GY2, and Y samples were clustered together in scatter plots from a principal component analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs detected in the GY1, GY2, and Y stages revealed that the pectin catabolic process, hormone levels, and phenylpropanoid biosynthesis were enriched. The DEGs associated with jasmonic acid biosynthesis and signaling were highly expressed at the early stages (G and GY1), whereas the DEGs associated with phenylpropanoid biosynthesis were mainly expressed in the intermediate stages (GY1, GY2, and Y). The DEGs involved in the pectin catabolic process were expressed at advanced stages (Y and P). Cucumber mosaic virus-induced gene silencing of LoMYB21 and LoAMS caused a strongly inhibited anther dehiscence phenotype, but without affecting the development of other floral organs. These results provide novel insights for understanding the regulatory mechanism of anther development in lily and other plants.
Collapse
Affiliation(s)
- Tingting Dong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lixuan Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xi Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenjie Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
64
|
Pedersen GB, Blaschek L, Frandsen KEH, Noack LC, Persson S. Cellulose synthesis in land plants. MOLECULAR PLANT 2023; 16:206-231. [PMID: 36564945 DOI: 10.1016/j.molp.2022.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.
Collapse
Affiliation(s)
- Gustav B Pedersen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
65
|
Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. Modulation of lignin biosynthesis for drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1116426. [PMID: 37152118 PMCID: PMC10157170 DOI: 10.3389/fpls.2023.1116426] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.
Collapse
|
66
|
Alkaloid production and response to natural adverse conditions in Peganum harmala: in silico transcriptome analyses. BIOTECHNOLOGIA 2022; 103:355-384. [PMID: 36685700 PMCID: PMC9837557 DOI: 10.5114/bta.2022.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.
Collapse
|
67
|
Liu Y, Wu Q, Qin Z, Huang J. Transcription factor OsNAC055 regulates GA-mediated lignin biosynthesis in rice straw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111455. [PMID: 36152809 DOI: 10.1016/j.plantsci.2022.111455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Crop straws represent enormous biomass resource that mainly contain secondary cell walls (SCWs) consisting of cellulose, hemicelluloses and lignin. Nevertheless, the regulatory mechanism of SCW biosynthesis still needs to be well understood. In this study, we identified a rice NAC (NAM, ATAF1/2, CUC2) transcription factor OsNAC055 that regulates GA-mediated lignin biosynthesis. As a nucleus-localized transcription factor, OsNAC055 exhibits the transcriptional activation activity. Overexpression of OsNAC055 increases the lignin content in rice straw. Transcriptomic analyses showed that the expression of multiple lignin biosynthetic genes was increased in OsNAC055-overexpressing plants. Further ChIP-qPCR analysis and transient transactivation assays indicated that OsNAC055 directly activates rice lignin biosynthetic genes CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) and CINNAMYL ALCOHOL DEHYDROGENASE 2 (OsCAD2) by binding to their promoters. On the other hand, phytohormone measurement showed that OsNAC055 overexpression significantly increased exogenous GA3 levels in rice plants by regulating GA biosynthetic gene OsGA20ox2. Moreover, yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays indicated that OsNAC055 interacts with SLENDER RICE1 (SLR1), the repressor in GA signaling. More importantly, exogenous GA treatment markedly enhanced the transcription of OsCCR10 and OsCAD2, suggesting the role of GA in lignin biosynthesis. Together, our results provide the evidence that OsNAC055 functions as an essential transcription factor to regulate the GA-mediated lignin biosynthesis, which provides a strategy for manipulating lignin production.
Collapse
Affiliation(s)
- Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhongliang Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
68
|
Dang X, Zhang B, Li C, Nagawa S. FvNST1b NAC Protein Induces Secondary Cell Wall Formation in Strawberry. Int J Mol Sci 2022; 23:ijms232113212. [PMID: 36361997 PMCID: PMC9654860 DOI: 10.3390/ijms232113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Secondary cell wall thickening plays a crucial role in plant growth and development. Diploid woodland strawberry (Fragaria vesca) is an excellent model for studying fruit development, but its molecular control of secondary wall thickening is largely unknown. Previous studies have shown that Arabidopsis NAC secondary wall thickening promoting factor1 (AtNST1) and related proteins are master regulators of xylem fiber cell differentiation in multiple plant species. In this study, a NST1-like gene, FvNST1b, was isolated and characterized from strawberry. Sequence alignment and phylogenetic analysis showed that the FvNST1b protein contains a highly conserved NAC domain, and it belongs to the same family as AtNST1. Overexpression of FvNST1b in wild-type Arabidopsis caused extreme dwarfism, induced ectopic thickening of secondary walls in various tissues, and upregulated the expression of genes related to secondary cell wall synthesis. In addition, transient overexpression of FvNST1b in wild-type Fragaria vesca fruit produced cells resembling tracheary elements. These results suggest that FvNST1b positively regulates secondary cell wall formation as orthologous genes from other species.
Collapse
Affiliation(s)
- Xiaofei Dang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bei Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shingo Nagawa
- Fujian Agriculture and Forestry University–University of California, Riverside, Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
69
|
Guérin C, Dupuits C, Mouzeyar S, Roche J. Insights into Four NAC Transcription Factors Involved in Grain Development and in Response to Moderate Heat in the Triticeae Tribe. Int J Mol Sci 2022; 23:ijms231911672. [PMID: 36232974 PMCID: PMC9570169 DOI: 10.3390/ijms231911672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
NAC (NAM (no apical meristem)−ATAF (Arabidopsis transcription activation factor)−CUC (cup-shaped cotyledons)) are among the largest transcription factor families in plants, involved in a plethora of physiological mechanisms. This study focused on four NAC genes previously identified in bread wheat as specifically grain-expressed which could be considered as candidate genes for yield improvement under climate changes. Using in silico analyses, the Triticum aestivum “Grain-NAC” (TaGNAC) orthologs in 14 cereal species were identified. A conserved protein motif was identified only in Triticeae. The expression of TaGNAC and einkorn TmGNAC was studied in response to moderate heat stress during grain development and showed a similar expression pattern that is accelerated during cell division stages under heat stress. A conserved structure was found in the promoter of the Triticeae GNAC orthologs, which is absent in the other Poaceae species. A specific model of promoter structure in Triticeae was proposed, based on the presence of key cis-elements involved in the regulation of seed development, hormonal regulation and response to biotic and abiotic stresses. In conclusion, GNAC genes could play a central role in the regulation of grain development in the Triticeae tribe, particularly in the accumulation of storage proteins, as well as in response to heat stress and could be used as candidate genes for breeding.
Collapse
|
70
|
Sakamoto S, Nomura T, Kato Y, Ogita S, Mitsuda N. High-transcriptional activation ability of bamboo SECONDARY WALL NAC transcription factors is derived from C-terminal domain. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:229-240. [PMID: 36349231 PMCID: PMC9592943 DOI: 10.5511/plantbiotechnology.22.0501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/16/2023]
Abstract
The secondary cell wall, which is mainly composed of cellulose, hemicellulose, and lignin, constitutes woody tissues and gives physical strength and hydrophobic properties for resistance against environmental stresses. We cloned and functionally analyzed the homologous transcription factor (TF) genes of SECONDARY WALL NAC (SWN) proteins from Hachiku bamboo (Phyllostachys nigra; PnSWNs). An RT-PCR analysis showed that PnSWNs are expressed in young tissues in bamboo. Their transcriptional activation activities were higher than that of the Arabidopsis NAC SECONDARY WALL THICKENING PROMOTING FACTOR 3 (NST3) TF, which was equivalent to SWN TFs in monocot. PnSWNs preferred to activate the genes related to secondary cell wall formation but not the genes related to programmed cell death. When PnSWNs were expressed in Arabidopsis, they highly induced secondary cell wall formation, like previously-shown rice SWN1. Dissection analysis revealed that this high activity largely depends on C-terminal domain. These results demonstrate that the cloned bamboo SWNs function as regulators of secondary cell wall formation with strong activation ability derived from C-terminal domain, and could be served as new genetic tools for secondary cell wall manipulation.
Collapse
Affiliation(s)
- Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinjiro Ogita
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Faculty of Bioresource Sciences, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima 727-0023, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
71
|
Gao Z, Liang Y, Wang Y, Xiao Y, Chen J, Yang X, Shi T. Genome-wide association study of traits in sacred lotus uncovers MITE-associated variants underlying stamen petaloid and petal number variations. FRONTIERS IN PLANT SCIENCE 2022; 13:973347. [PMID: 36212363 PMCID: PMC9539442 DOI: 10.3389/fpls.2022.973347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Understanding the genetic variants responsible for floral trait diversity is important for the molecular breeding of ornamental flowers. Widely used in water gardening for thousands of years, the sacred lotus exhibits a wide range of diversity in floral organs. Nevertheless, the genetic variations underlying various morphological characteristics in lotus remain largely unclear. Here, we performed a genome-wide association study of sacred lotus for 12 well-recorded ornamental traits. Given a moderate linkage disequilibrium level of 32.9 kb, we successfully identified 149 candidate genes responsible for seven flower traits and plant size variations, including many pleiotropic genes affecting multiple floral-organ-related traits, such as NnKUP2. Notably, we found a 2.75-kb presence-and-absence genomic fragment significantly associated with stamen petaloid and petal number variations, which was further confirmed by re-examining another independent population dataset with petal number records. Intriguingly, this fragment carries MITE transposons bound by siRNAs and is related to the expression differentiation of a nearby candidate gene between few-petalled and double-petalled lotuses. Overall, these genetic variations and candidate genes responsible for diverse lotus traits revealed by our GWAS highlight the role of transposon variations, particularly MITEs, in shaping floral trait diversity.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Liang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Yuhan Wang
- Wuhan Institute of Design and Sciences, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
72
|
Nuruzzaman M, Sato M, Okamoto S, Hoque M, Shea DJ, Fujimoto R, Shimizu M, Fukai E, Okazaki K. Comparative transcriptome analysis during tuberous stem formation in Kohlrabi (B. oleracea var. gongylodes) at early growth periods (seedling stages). PHYSIOLOGIA PLANTARUM 2022; 174:e13770. [PMID: 36018597 DOI: 10.1111/ppl.13770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Tuberous stem of kohlrabi is an important agronomic trait, however, the molecular basis of tuberization is poorly understood. To elucidate the tuberization mechanism, we conducted a comparative transcriptomic analysis between kohlrabi and broccoli at 10 and 20 days after germination (DAG) as tuberous stem initiated between these time points. A total of 5580 and 2866 differentially expressed transcripts (DETs) were identified between genotypes (kohlrabi vs. broccoli) and growth stages (10 DAG vs. 20 DAG), respectively, and most of the DETs were down-regulated in kohlrabi. Gene ontology (GO) and KEGG pathway enrichment analyses showed that the DETs between genotypes are involved in cell wall loosening and expansion, cell cycle and division, carbohydrate metabolism, hormone transport, hormone signal transduction and in several transcription factors. The DETs identified in those categories may directly/indirectly relate to the initiation and development of tuberous stem in kohlrabi. In addition, the expression pattern of the hormone synthesis related DETs coincided with the endogenous IAA, IAAsp, GA, ABA, and tZ profiles in kohlrabi and broccoli seedlings, that were revealed in our phytohormone analysis. This is the first report on comparative transcriptome analysis for tuberous stem formation in kohlrabi at early growth periods. The resulting data could provide significant insights into the molecular mechanism underlying tuberous stem development in kohlrabi as well as in other tuberous organ forming crops.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Masato Sato
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Satoru Okamoto
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Mozammel Hoque
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Faculty of Agriculture, Sylhet Agricultural University (SAU), Sylhet, Bangladesh
| | - Daniel J Shea
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
73
|
Wang Y, Hou Y, Wang J, Zhao H. Analyzing lignin biosynthesis pathways in rattan using improved co-expression networks of NACs and MYBs. BMC PLANT BIOLOGY 2022; 22:411. [PMID: 36002818 PMCID: PMC9400238 DOI: 10.1186/s12870-022-03786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The rattan is a valuable plant resource with multiple applications in tropical forests. Calamus simplicifolius and Daemonorops jenkinsiana are the two most representative rattan species, supplying over 95% of the raw materials for the rattan industry. Hence, the wood properties of both rattans have always attracted researchers' attention. RESULTS We re-annotated the genomes, obtained 81 RNA-Seq datasets, and developed an improved pipeline to increase the reliability of co-expression networks of both rattans. Based on the data and pipeline, co-expression relationships were detected in 11 NACs, 49 MYBs, and 86 lignin biosynthesis genes in C. simplicifolius and four NACs, 59 MYBs, and 76 lignin biosynthesis genes in D. jenkinsiana, respectively. Among these co-expression pairs, several genes had a close relationship to the development of wood properties. Additionally, we detected the enzyme gene on the lignin biosynthesis pathway was regulated by either NAC or MYB, while LACCASES was regulated by both NAC and MYB. For D. jenkinsiana, the lignin biosynthesis regulatory network was characterized by positive regulation, and MYB possible negatively regulate non-expressed lignin biosynthesis genes in stem tissues. For C. simplicifolius, NAC may positively regulate highly expressed genes and negatively regulate non-expressed lignin biosynthesis genes in stem tissues. Furthermore, we established core regulatory networks of NAC and MYB for both rattans. CONCLUSIONS This work improved the accuracy of rattan gene annotation by integrating an efficient co-expression network analysis pipeline, enhancing gene coverage and accuracy of the constructed network, and facilitating an understanding of co-expression relationships among NAC, MYB, and lignin biosynthesis genes in rattan and other plants.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Huangpu District, Guangzhou, 510530, China
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
74
|
Meng YT, Zhang XL, Wu Q, Shen RF, Zhu XF. Transcription factor ANAC004 enhances Cd tolerance in Arabidopsis thaliana by regulating cell wall fixation, translocation and vacuolar detoxification of Cd, ABA accumulation and antioxidant capacity. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129121. [PMID: 35580499 DOI: 10.1016/j.jhazmat.2022.129121] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is toxic to plants, which have evolved multiple strategies to cope with Cd stress. In this study, we identified a nucleus-localized NAC-type transcription factor, ANAC004, which is induced by Cd and involved in regulating Cd resistance in Arabidopsis. First, anac004 mutants exhibited Cd sensitive phenotype and accumulated more Cd (12-23% higher than wild type in roots and shoots); plants overexpressing ANAC004 showed the opposite phenotype and with lower Cd accumulation. Second, ANAC004 enhanced Cd fixation in cell wall hemicellulose, thus reducing Cd2+ influx into root cells. Third, ANAC004 was involved in the process of vacuolar Cd compartmentalization by regulating the genes associated with Cd detoxification (PCS1/2, NAS4, ABCC1/2/3, MTP1/3, IREG2 and NRAMP3/4). Fourth, ANAC004 reduced root-to-shoot Cd translocation through down-regulated Cd translocation-related genes (HMA2 and HMA4). Finally, the expression of genes related to ABA synthesis (AAO3, MCSU, and NCED3) and the activities of antioxidant enzymes (SOD, POD and CAT) were all reduced in anac004 mutants, leading to reduced levels of endogenous ABA and increased accumulation of reactive oxygen species (O2.- and H2O2) and MDA, which ultimately weakened resistance to Cd. Our results suggest that ANAC004 decreases Cd accumulation in Arabidopsis through enhancing cell wall Cd immobilization, increasing vacuolar Cd detoxification, and inhibiting Cd translocation, thus improving Cd resistance, processes that might be mediated by ABA signaling and antioxidant defense systems.
Collapse
Affiliation(s)
- Yu Ting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
75
|
Wang G, Yue X, Feng Z, Cai L, Li N, Geng F, Xu C, Wang L, Wang D, Fahad S. Identification of
AtSND1
homologous
NAC
genes related to cotton fiber development, in silico analyses, and gene expression patterns. Food Energy Secur 2022. [DOI: 10.1002/fes3.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Guifeng Wang
- School of Resources and Environmental Engineering Wuhan University of Technology Wuhan Hubei China
- Shandong Cotton Production Technical Guidance Station Jinan Shandong China
| | - Xiaomin Yue
- College of Life Science Linyi University Linyi Shandong China
| | - Zongqin Feng
- College of Life Science Linyi University Linyi Shandong China
| | - Lijuan Cai
- College of Life Science Linyi University Linyi Shandong China
| | - Na Li
- College of Life Science Linyi University Linyi Shandong China
| | - Fang Geng
- College of Life Science Linyi University Linyi Shandong China
| | - Chuanjie Xu
- College of Life Science Linyi University Linyi Shandong China
| | - Lichen Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Depeng Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops Hainan University Haikou China
- Department of Agronomy The University of Haripur Haripur Pakistan
| |
Collapse
|
76
|
Chen Z, Peng Z, Liu S, Leng H, Luo J, Wang F, Yi Y, Resco de Dios V, Lucas GR, Yao Y, Gao Y. Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars. PHYSIOLOGIA PLANTARUM 2022; 174:e13751. [PMID: 36004736 DOI: 10.1111/ppl.13751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and β-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.
Collapse
Affiliation(s)
- Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Zhuoxi Peng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Haiqin Leng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jianxun Luo
- Institute of Forestry, Sichuan Academy of Forestry, Chengdu, People's Republic of China
| | - Fei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yuanyuan Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
77
|
Zhang X, Ran D, Wu P, Cao Z, Xu F, Xia N, Gao H, Jiang Y, Yang C, He N, Tang N, Chen Z. Transcriptome and metabolite profiling to identify genes associated with rhizome lignification and the function of ZoCSE in ginger ( Zingiber officinale). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:689-703. [PMID: 35379382 DOI: 10.1071/fp21267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Ginger (Zingiber officinale Roscoe) is an important spice crop in China, and fresh ginger rhizomes are consumed as vegetable in Sichuan and Chongqing. However, tissue lignification accelerates with rhizome maturation, resulting in the loss of edible quality. To understand the molecular mechanisms of texture modification during rhizome development, we investigated lignin accumulation patterns and identified the key genes associated with lignin biosynthesis using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA-sequencing (RNA-Seq). Results showed that the contents of total lignin and its precursors exhibited notable declines with tissue maturation. However, the lignin composition was remarkably modified and syringyl lignin was deposited in mature rhizomes, leading to ginger lignification. Transcriptome analysis displayed 32 lignin biosynthetic genes were dramatically downregulated with rhizome development, including caffeoylshikimate esterase (CSE ), 4-coumarate-CoA ligase , laccase , cinnamoyl-CoA reductase , cinnamyl-alcohol dehydrogenase , peroxidase and caffeic acid 3-O-methyltransferase , indicating that lignin reduction might be attributed to deficiency in intermediates or the downregulation of key biosynthetic enzymes. Furthermore, overexpressing ZoCSE in Nicotiana benthamiana L. enhanced the total lignin content, suggesting its fundamental role in lignin biosynthesis. RNA-Seq also identified candidate lignin production regulators, including hormone-related genes and NAC/MYB transcription factors (ZoNAC1 , ZoNAC4 , ZoMYB14 and ZoMYB17 ). This result provides a molecular basis for lignin accumulation in ginger.
Collapse
Affiliation(s)
- Xian Zhang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; and Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China; and College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Dongsheng Ran
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; and College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; and College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ning Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ying Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Cheng Yang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Na He
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; and Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; and Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| |
Collapse
|
78
|
Niu Y, Chen T, Zheng Z, Zhao C, Liu C, Jia J, Zhou M. A new major QTL for flag leaf thickness in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2022; 22:305. [PMID: 35751018 PMCID: PMC9229122 DOI: 10.1186/s12870-022-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbohydrate accumulation of photosynthetic organs, mainly leaves, are the primary sources of grain yield in cereals. The flag leaf plays a vital role in seed development, which is probably the most neglected morphological characteristic during traditional selection processes. RESULTS In this experiment, four flag leaf morphological traits and seven yield-related traits were investigated in a DH population derived from a cross between a wild barley and an Australian malting barley cultivar. Flag leaf thickness (FLT) showed significantly positive correlations with grain size. Four QTL, located on chromosomes 1H, 2H, 3H, and 5H, respectively, were identified for FLT. Among them, a major QTL was located on chromosome 3H with a LOD value of 18.4 and determined 32% of the phenotypic variation. This QTL showed close links but not pleiotropism to the previously reported semi-dwarf gene sdw1 from the cultivated barley. This QTL was not reported before and the thick leaf allele from the wild barley could provide a useful source for improving grain yield through breeding. CONCLUSIONS Our results also provided valuable evidence that source traits and sink traits in barley are tightly connected and suggest further improvement of barley yield potential with enhanced and balanced source and sink relationships by exploiting potentialities of the wild barley resources. Moreover, this study will provide a novel sight on understanding the evolution and development of leaf morphology in barley and improving barley production by rewilding for lost superior traits during plant evolution.
Collapse
Affiliation(s)
- Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 4067, St Lucia, QLD, Australia
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, 7250, Prospect, TAS, Australia.
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| |
Collapse
|
79
|
Lyu X, Shi L, Zhao M, Li Z, Liao N, Meng Y, Ma Y, Zhou Y, Xue Q, Hu Z, Yang J, Zhang M. A natural mutation of the NST1 gene arrests secondary cell wall biosynthesis in the seed coat of a hull-less pumpkin accession. HORTICULTURE RESEARCH 2022; 9:uhac136. [PMID: 36072840 PMCID: PMC9437724 DOI: 10.1093/hr/uhac136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Hull-less pumpkins (Cucurbita pepo L.) are naturally occurring novel variants known as oilseed or naked-seeded pumpkins, and are characterized by the absence of a normal lignified seed coat. Due to a specialized seed coat structure, these variants serve as a good model for studying seed coat formation and simplify the processing of pumpkin seeds. However, causal genes for this hull-less trait still remain unknown. Here, by bulked segregant analysis and fine mapping, we found that mutation of a single gene, NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1 (NST1), accounts for the hull-less trait. A 14-bp sequence insertion in the CpNST1 gene causes premature termination of CpNST1 translation, leading to lack of secondary cell wall (SCW) biosynthesis in hull-less seed coats. In situ hybridization analysis provided further evidence for the role of CpNST1 in pumpkin seed coat SCW biosynthesis. Interestingly, through secondary cell wall compositional analysis, we found that the main SCW components differed among cell layers in the seed coat. RNA-seq analysis indicated an upstream role of CpNST1 in the SCW biosynthesis network. Collectively, our findings provide mechanistic insight into seed coat SCW biosynthesis, and a target gene for breeders to introduce this hull-less trait for commercial exploitation.
Collapse
Affiliation(s)
- Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lu Shi
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yulan Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qin Xue
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | | |
Collapse
|
80
|
Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. BIOLOGY 2022; 11:biology11060854. [PMID: 35741375 PMCID: PMC9219611 DOI: 10.3390/biology11060854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal symbiosis is an association that provides nutritional benefits to plants. Importantly, it induces a physiological state allowing plants to respond to a subsequent pathogen attack in a more rapid and intense manner. Consequently, mycorrhiza-colonized plants become less susceptible to root and shoot pathogens. This study aimed to identify some of the molecular players and potential mechanisms related to the onset of defense priming by mycorrhiza colonization, as well as miRNAs that may act as regulators of priming genes. The upregulation of cellulose synthases, pectinesterase inhibitors, and xyloglucan endotransglucosylase/hydrolase, as well as the downregulation of a pectinesterase, suggest that the modification and reinforcement of the cell wall may prime the leaves of mycorrhizal plants to react faster and stronger to subsequent pathogen attack. This was confirmed by the findings of miR164a-3p, miR164a-5p, miR171e-5p, and miR397, which target genes and are also related to the biosynthesis or modification of cell wall components. Our findings support the hypothesis that the reinforcement or remodeling of the cell wall and cuticle could participate in the priming mechanism triggered by mycorrhiza colonization, by strengthening the first physical barriers upstream of the pathogen encounter.
Collapse
|
81
|
Lu S, Fang C, Abe J, Kong F, Liu B. Current overview on the genetic basis of key genes involved in soybean domestication. ABIOTECH 2022; 3:126-139. [PMID: 36312442 PMCID: PMC9590488 DOI: 10.1007/s42994-022-00074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Modern crops were created through the domestication and genetic introgression of wild relatives and adaptive differentiation in new environments. Identifying the domestication-related genes and unveiling their molecular diversity provide clues for understanding how the domesticated variants were selected by ancient people, elucidating how and where these crops were domesticated. Molecular genetics and genomics have explored some domestication-related genes in soybean (Glycine max). Here, we summarize recent studies about the quantitative trait locus (QTL) and genes involved in the domestication traits, introduce the functions of these genes, clarify which alleles of domesticated genes were selected during domestication. A deeper understanding of soybean domestication could help to break the bottleneck of modern breeding by highlighting unused genetic diversity not selected in the original domestication process, as well as highlighting promising new avenues for the identification and research of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-0808 Japan
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
82
|
Carluccio AV, David LC, Claußen J, Sulley M, Adeoti SR, Abdulsalam T, Gerth S, Zeeman SC, Gisel A, Stavolone L. Set up from the beginning: The origin and early development of cassava storage roots. PLANT, CELL & ENVIRONMENT 2022; 45:1779-1795. [PMID: 35229892 PMCID: PMC9314696 DOI: 10.1111/pce.14300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 05/19/2023]
Abstract
Despite the importance of storage root (SR) organs for cassava and the other root crops yield, their developmental origin is poorly understood. Here we use multiple approaches to shed light on the initial stages of root development demonstrating that SR and fibrous roots (FR) follow different rhizogenic processes. Transcriptome analysis carried out on roots collected before, during and after root bulking highlighted early and specific activation of a number of functions essential for root swelling and identified root-specific genes able to effectively discriminate emerging FR and SR. Starch and sugars start to accumulate at a higher rate in SR before they swell but only after parenchyma tissue has been produced. Finally, using non-destructive computed tomography measurements, we show that SR (but not FR) contain, since their emergence from the stem, an inner channel structure in continuity with the stem secondary xylem, indicating that SR derive from a distinct rhizogenic process compared with FR.
Collapse
Affiliation(s)
- Anna Vittoria Carluccio
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| | - Laure C. David
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Joelle Claußen
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Marco Sulley
- International Institute of Tropical AgricultureIbadanNigeria
| | | | | | - Stefan Gerth
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Samuel C. Zeeman
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Andreas Gisel
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Biomedical Technologies, CNRBariItaly
| | - Livia Stavolone
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| |
Collapse
|
83
|
Buerstmayr M, Buerstmayr H. The effect of the Rht1 haplotype on Fusarium head blight resistance in relation to type and level of background resistance and in combination with Fhb1 and Qfhs.ifa-5A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1985-1996. [PMID: 35396946 PMCID: PMC9205817 DOI: 10.1007/s00122-022-04088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The effect of the Rht1-genes on FHB resistance depends on anther extrusion and level of background resistance. Qfhs.ifa-5A increases resistance and anther extrusion as efficiently as semi-dwarfing alleles decrease it. The semi-dwarfing reduced height alleles Rht-D1b and Rht-B1b have been deployed in modern wheat cultivars throughout the world, but they increase susceptibility to Fusarium head blight (FHB). Here, we investigated the impact of the Rht1 genes on anther retention (AR) in relation to FHB resistance using four different sets of near-isogenic lines (NILs) with contrasting levels and types of background FHB resistance. NILs were evaluated for FHB severity, plant height and AR in three greenhouse and three field trials using artificial spray inoculation. Rht-B1b and Rht-D1b alleles increased AR and FHB susceptibility in all genetic backgrounds. The magnitude of the effects differed between NIL groups. Increased FHB susceptibility largely followed increased AR. Differences in FHB susceptibility between tall and dwarf haplotypes were largest in the NIL group with the highest changes in AR. In the most resistant NIL group, dwarfed lines had only slightly higher AR than tall lines and maintained good resistance, while both tall and dwarf lines had high levels of retained anthers in the most susceptible NIL group. We further investigated the effect of the major Fusarium resistance QTL Fhb1 and Qfhs.ifa-5A in combination with the Rht1 genes. Qfhs.ifa-5A enhanced anther extrusion in tall as well as semi-dwarf haplotypes, whereas Fhb1 did not affect AR. Qfhs.ifa-5A supported FHB resistance more efficiently than Fhb1 in lines that were more responsive to AR, while both Fhb1 and Qfhs.ifa-5A were equally efficient in NILs that had high background resistance and low response to AR.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria.
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| |
Collapse
|
84
|
Li X, Huang H, Rizwan HM, Wang N, Jiang J, She W, Zheng G, Pan H, Guo Z, Pan D, Pan T. Transcriptome Analysis Reveals Candidate Lignin-Related Genes and Transcription Factors during Fruit Development in Pomelo ( Citrus maxima). Genes (Basel) 2022; 13:845. [PMID: 35627230 PMCID: PMC9140673 DOI: 10.3390/genes13050845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Juice sac granulation (a physiological disorder) leads to large postharvest losses of pomelo (Citrus maxima). Previous studies have shown that juice sac granulation is closely related to lignin accumulation, while the molecular mechanisms underlying this disorder remain elusive in pomelo. Our results showed that the lignin content in NC (near the core) and FC (far away from the core) juice sacs overall increased from 157 DPA (days post anthesis) to 212 DPA and reached a maximum at 212 DPA. Additionally, the lignin content of NC juice sacs was higher than that of FC juice sacs. In this study, we used transcriptome-based weighted gene co-expression network analysis (WGCNA) to address how lignin formation in NC and FC juice sacs is generated during the development of pomelo. After data assembly and bioinformatic analysis, we found a most correlated module (black module) to the lignin content, then we used the 11 DEGs in this module as hub genes for lignin biosynthesis. Among these DEGs, PAL (phenylalanine ammonia lyase), HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase), 4CL2 (4-coumarate: CoA ligase), C4H (cinnamate 4-hydroxylase), C3'H (p-coumarate 3-hydroxylase), and CCoAOMT1 (caffeoyl CoA 3-Omethyltransferase) were the most distinct DEGs in granulated juice sacs. Co-expression analysis revealed that the expression patterns of several transcription factors such as MYB, NAC, OFP6, and bHLH130 are highly correlated with lignin formation. In addition, the expression patterns of the DEGs related to lignin biosynthesis and transcription factors were validated by qRT-PCR, and the results were highly concordant with the RNA-seq results. These results would be beneficial for further studies on the molecular mechanism of lignin accumulation in pomelo juice sacs and would help with citrus breeding.
Collapse
Affiliation(s)
- Xiaoting Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100083, China;
| | - Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Naiyu Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Jingyi Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Zhixiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Dongming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (H.M.R.); (N.W.); (J.J.); (W.S.); (G.Z.); (H.P.); (Z.G.); (T.P.)
| |
Collapse
|
85
|
Qi X, Guo S, Wang D, Zhong Y, Chen M, Chen C, Cheng D, Liu Z, An T, Li J, Jiao Y, Wang Y, Liu J, Zhang Y, Chen S, Liu C. ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:849-862. [PMID: 35167149 DOI: 10.1111/tpj.15708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In higher plants, the generation and release of viable pollen from anthers is vital for double fertilization and the initiation of seed development. Thus, the characterization of genes related to pollen development and anther dehiscence in plants is of great significance. The F-box protein COI1 plays a crucial role in the jasmonate (JA) signaling pathway and interacts with many JAZ family proteins in the presence of jasmonoyl-isoleucine (JA-Ile) or coronatine (COR). The mutation of AtCOI1 in Arabidopsis leads to defective anther dehiscence and male sterility (MS), although COI has not been shown to affect fertility in Zea mays (maize). Here we identified two genes, ZmCOI2a and ZmCOI2b, that redundantly regulate gametophytic male fertility. Both ZmCOI2a and ZmCOI2b are highly homologous and constitutively expressed in all tissues tested. Subcellular localization revealed that ZmCOI2a and ZmCOI2b were located in the nucleus. The coi2a coi2b double mutant, generated by CRISPR/Cas9, had non-dehiscent anthers, delayed anther development and MS. In addition, coi2a coi2b male gametes could not be transmitted to the next generation because of severe defects in pollen germination. The JA content of coi2a coi2b anthers was unaltered compared with those of the wild type, and the exogenous application of JA could not rescue the fertility defects of coi2a coi2b. Transcriptome analysis showed that the expression of genes involving the JA signaling transduction pathway, including ZmJAZ3, ZmJAZ4, ZmJAZ5 and ZmJAZ15, was affected in coi2a coi2b. However, yeast two-hybrid assays showed that ZmJAZs interacted with ZmCOI1s, but not with ZmCOI2s. In conclusion, ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize.
Collapse
Affiliation(s)
- Xiaolong Qi
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Shuwei Guo
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Dong Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yu Zhong
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Ming Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Chen Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Dehe Cheng
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zongkai Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Tai An
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinlong Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yanyan Jiao
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yuwen Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinchu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yuling Zhang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Chenxu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
86
|
Luo L, Li L. Molecular understanding of wood formation in trees. FORESTRY RESEARCH 2022; 2:5. [PMID: 39525426 PMCID: PMC11524228 DOI: 10.48130/fr-2022-0005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2024]
Abstract
Trees convert and store the majority of their photosynthetic products in wood which is an essential renewable resource much in demand by human society. Formation of wood follows a process of consecutive cell developmental stages, from vascular cambium proliferation, cell expansion and differentiation, secondary cell wall deposition to programmed cell death, which is controlled by the functionality of complex molecular networks. What are the molecular networks involved in wood formation? How do the molecular networks act in a way to generate wood tissue during tree growth? What are the regulatory modules that lead to the formation of various wood characteristics? The answers to these questions are fundamental to understanding how trees grow, as well as how we can genetically engineer trees with desired properties of wood for human needs. In recent years, a great deal of interest has been invested in the elucidation of wood formation at the molecular level. This review summarizes the current state of understanding of the molecular process that guides wood formation in trees.
Collapse
Affiliation(s)
- Laifu Luo
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
87
|
Huang TH, Hsu WH, Mao WT, Yang CH. The Oncidium Ethylene Synthesis Gene Oncidium 1-Aminocyclopropane-1 Carboxylic Acid Synthase 12 and Ethylene Receptor Gene Oncidium ETR1 Affect GA-DELLA and Jasmonic Acid Signaling in Regulating Flowering Time, Anther Dehiscence, and Flower Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:785441. [PMID: 35432433 PMCID: PMC9011138 DOI: 10.3389/fpls.2022.785441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
In plants, the key enzyme in ethylene biosynthesis is 1-aminocyclopropane-1 carboxylic acid (ACC) synthase (ACS), which catalyzes S-adenosyl-L-methionine (SAM) to ACC, the precursor of ethylene. Ethylene binds to its receptors, such as ethylene response 1 (ETR1), to switch on ethylene signal transduction. To understand the function of ACS and ETR1 in orchids, Oncidium ACC synthase 12 (OnACS12) and Oncidium ETR1 (OnETR1) from Oncidium Gower Ramsey were functionally analyzed in Arabidopsis. 35S::OnACS12 caused late flowering and anther indehiscence phenotypes due to its effect on GA-DELLA signaling pathways. 35S::OnACS12 repressed GA biosynthesis genes (CPS, KS, and GA3ox1), which caused the upregulation of DELLA [GA-INSENSITIVE (GAI), RGA-LIKE1 (RGL1), and RGL2] expression. The increase in DELLAs not only suppressed LEAFY (LFY) expression and caused late flowering but also repressed the jasmonic acid (JA) biosynthesis gene DAD1 and caused anther indehiscence by downregulating the endothecium-thickening-related genes MYB26, NST1, and NST2. The ectopic expression of an OnETR1 dominant-negative mutation (OnETR1-C65Y) caused both ethylene and JA insensitivity in Arabidopsis. 35S::OnETR1-C65Y delayed flower/leaf senescence by suppressing downstream genes in ethylene signaling, including EDF1-4 and ERF1, and in JA signaling, including MYC2 and WRKY33. JA signaling repression also resulted in indehiscent anthers via the downregulation of MYB26, NST1, NST2, and MYB85. These results not only provide new insight into the functions of ACS and ETR1 orthologs but also uncover their functional interactions with other hormone signaling pathways, such as GA-DELLA and JA, in plants.
Collapse
Affiliation(s)
- Tzu-Hsiang Huang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
88
|
Feng X, Abubakar AS, Yu C, Zhu A, Chen J, Chen K, Gao G, Wang X, Mou P, Shao D, Chen P. Analysis of WRKY Resistance Gene Family in Boehmeria nivea (L.) Gaudich: Crosstalk Mechanisms of Secondary Cell Wall Thickening and Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:812988. [PMID: 35432436 PMCID: PMC9010656 DOI: 10.3389/fpls.2022.812988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A total of 60 WRKY family genes of ramie were identified in the ramie. The genes were unevenly distributed across 14 chromosomes in the specie and highly concentrated (72%) in the distal telomeric region. Phylogenetic analysis placed these genes into seven distinct subfamilies groups: I, II (a, b, c, d, e), and III, with group IIc containing only the variant of heptapetide sequence (WRKYGKK). Segmental duplication events (41.7%) was found to be the main driver of BnGWRKY evolution. Thirty eight from among the genes showed collinear relationships with WRKY genes from Arabidopsis thaliana, Cannabis sativa, Oryza sativa, and Zea mays. The number and density of stress and hormone responsives cis-acting elements were comparably higher than other elements, with abundant ARE and rare LTR cis-acting elements indicating the long-standing adaptability of ramie to its natural environment. GO and KEGG enrichment analysis of the WRKY target genes revealed their involvement in response to stimuli, immune system processes, transporter protein activity and antioxidant activity. Expression analysis show that most WRKYs were activated by the cadmium stress, more especially the BnGWRKY2, BnGWRKY15, BnGWRKY20, BnGWRKY50 and BnGWRKY58. Combining transcriptome, orthologous gene relationships and qPCR result, we established the possible involvement of BnGWRKY50 and BnGWRKY58 in crosstalk mechanism between secondary cell wall thickening and Cd2+ stress. This provided information into the role of BnGWRKY proteins in ramie secondary wall development and cadmium stress response to, and could serve as basis for improvement of the ramie.
Collapse
Affiliation(s)
- Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Agronomy, Bayero University Kano, Kano, Nigeria
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
89
|
Sui J, Jia W, Xin Y, Zhang Y. Transcriptomics-Based Identification of Genes Related to Tapetum Degradation and Microspore Development in Lily. Genes (Basel) 2022; 13:genes13020366. [PMID: 35205410 PMCID: PMC8872214 DOI: 10.3390/genes13020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Lily is a popular and economically ornamental crop around the world. However, its high production of pollen grains causes serious problems to consumers, including allergies and staining of clothes. During anther development, the tapetum is a crucial step for pollen formation and microspore release. Therefore, it is important to understand the mechanism of tapetum degradation and microspore development in lily where free pollen contamination occurs. Here, we used the cut lily cultivar ‘Siberia’ to characterize the process of tapetum degradation through the use of cytology and transcriptomic methods. The cytological observation indicated that, as the lily buds developed from 4 cm (Lo 4 cm) to 8 cm (Lo 8 cm), the tapetum completed the degradation process and the microspores matured. Furthermore, by comparing the transcriptome profiling among three developmental stages (Lo 4 cm, Lo 6 cm and Lo 8 cm), we identified 27 differentially expressed genes. These 27 genes were classed into 4 groups by function, namely, cell division and expansion, cell-wall morphogenesis, transcription factors, LRR-RLK (leucine-rich repeat receptor-like kinases), plant hormone biosynthesis and transduction. Quantitative real-time PCR was performed as validation of the transcriptome data. These selected genes are candidate genes for the tapetum degradation and microspore development of lily and our work provides a theoretical basis for breeding new lily cultivars without pollen.
Collapse
Affiliation(s)
- Juanjuan Sui
- Department of Biology, Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Wenjie Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.J.); (Y.X.)
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.J.); (Y.X.)
| | - Yuanyuan Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
90
|
Spielmann J, Detry N, Thiébaut N, Jadoul A, Schloesser M, Motte P, Périlleux C, Hanikenne M. ZRT-IRT-Like PROTEIN 6 expression perturbs local ion homeostasis in flowers and leads to anther indehiscence and male sterility. PLANT, CELL & ENVIRONMENT 2022; 45:206-219. [PMID: 34628686 DOI: 10.1111/pce.14200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Metallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Nathalie Detry
- InBioS-PhytoSystems, Laboratory of Plant Physiology, University of Liège, Liège, Belgium
| | - Noémie Thiébaut
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Alice Jadoul
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Claire Périlleux
- InBioS-PhytoSystems, Laboratory of Plant Physiology, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
91
|
Nakano Y, Endo H, Gerber L, Hori C, Ihara A, Sekimoto M, Matsumoto T, Kikuchi J, Ohtani M, Demura T. Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:819360. [PMID: 35371169 PMCID: PMC8967175 DOI: 10.3389/fpls.2022.819360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/17/2022] [Indexed: 05/06/2023]
Abstract
The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula × tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin β-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hitoshi Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lorenz Gerber
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chiaki Hori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ayumi Ihara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masayo Sekimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- *Correspondence: Misato Ohtani,
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Taku Demura,
| |
Collapse
|
92
|
Akiyoshi N, Ihara A, Matsumoto T, Takebayashi A, Hiroyama R, Kikuchi J, Demura T, Ohtani M. Functional Analysis of Poplar Sombrero-Type NAC Transcription Factors Yields a Strategy to Modify Woody Cell Wall Properties. PLANT & CELL PHYSIOLOGY 2021; 62:1963-1974. [PMID: 34226939 DOI: 10.1093/pcp/pcab102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 05/22/2023]
Abstract
Woody cells generate lignocellulosic biomass, which is a promising sustainable bioresource for wide industrial applications. Woody cell differentiation in vascular plants, including the model plant poplar (Populus trichocarpa), is regulated by a set of NAC family transcription factors, the VASCULAR-RELATED NAC-DOMAIN (VND), NAC SECONDARY CELL WALL THICKENING PROMOTING FACTOR (NST)/SND, and SOMBRERO (SMB) (VNS)-related proteins, but the precise contributions of each VNS protein to wood quality are unknown. Here, we performed a detailed functional analysis of the poplar SMB-type VNS proteins PtVNS13-PtVNS16. PtVNS13-PtVNS16 were preferentially expressed in the roots of young poplar plantlets, similar to the Arabidopsis thalianaSMB gene. PtVNS13 and PtVNS14, as well as the NST-type PtVNS11, suppressed the abnormal root cap phenotype of the Arabidopsis sombrero-3 mutant, whereas the VND-type PtVNS07 gene did not, suggesting a functional gap between SMB- or NST-type VNS proteins and VND-type VNS proteins. Overexpressing PtVNS13-PtVNS16 in Arabidopsis seedlings and poplar leaves induced ectopic xylem-vessel-like cells with secondary wall deposition, and a transient expression assay showed that PtVNS13-16 transactivated woody-cell-related genes. Interestingly, although any VNS protein rescued the pendant stem phenotype of the Arabidopsis nst1-1 nst3-1 mutant, the resulting inflorescence stems exhibited distinct cell wall properties: poplar VNS genes generated woody cell walls with higher enzymatic saccharification efficiencies compared with Arabidopsis VNS genes. Together, our data reveal clear functional diversity among VNS proteins in woody cell differentiation and demonstrate a novel VNS-based strategy for modifying woody cell wall properties toward enhanced utilization of woody biomass.
Collapse
Affiliation(s)
- Nobuhiro Akiyoshi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ayumi Ihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8915-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
93
|
Zhu Y, Li L. Multi-layered Regulation of Plant Cell Wall Thickening. PLANT & CELL PHYSIOLOGY 2021; 62:1867-1873. [PMID: 34698856 DOI: 10.1093/pcp/pcab152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
94
|
Åstrand J, Knight C, Robson J, Talle B, Wilson ZA. Evolution and diversity of the angiosperm anther: trends in function and development. PLANT REPRODUCTION 2021; 34:307-319. [PMID: 34173886 PMCID: PMC8566645 DOI: 10.1007/s00497-021-00416-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 05/21/2023]
Abstract
Anther development and dehiscence is considered from an evolutionary perspective to identify drivers for differentiation, functional conservation and to identify key questions for future male reproduction research. Development of viable pollen and its timely release from the anther are essential for fertilisation of angiosperm flowers. The formation and subsequent dehiscence of the anther are under tight regulatory control, and these processes are remarkably conserved throughout the diverse families of the angiosperm clade. Anther development is a complex process, which requires timely formation and communication between the multiple somatic anther cell layers (the epidermis, endothecium, middle layer and tapetum) and the developing pollen. These layers go through regulated development and selective degeneration to facilitate the formation and ultimate release of the pollen grains. Insight into the evolution and divergence of anther development and dehiscence, especially between monocots and dicots, is driving greater understanding of the male reproductive process and increased, resilient crop yields. This review focuses on anther structure from an evolutionary perspective by highlighting their diversity across plant species. We summarise new findings that illustrate the complexities of anther development and evaluate how they challenge established models of anther form and function, and how they may help to deliver future sustainable crop yields.
Collapse
Affiliation(s)
- Johanna Åstrand
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Christopher Knight
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Jordan Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
95
|
Gao Y, Fan ZQ, Zhang Q, Li HL, Liu GS, Jing Y, Zhang YP, Zhu BZ, Zhu HL, Chen JY, Grierson D, Luo YB, Zhao XD, Fu DQ. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1317-1331. [PMID: 34580960 DOI: 10.1111/tpj.15512] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.
Collapse
Affiliation(s)
- Ying Gao
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Jing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Ping Zhang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Dan Zhao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
96
|
Ma J, Sun P, Wang D, Wang Z, Yang J, Li Y, Mu W, Xu R, Wu Y, Dong C, Shrestha N, Liu J, Yang Y. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat Commun 2021; 12:6929. [PMID: 34836967 PMCID: PMC8626421 DOI: 10.1038/s41467-021-26931-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Most extant angiosperms belong to Mesangiospermae, which comprises eudicots, monocots, magnoliids, Chloranthales and Ceratophyllales. However, phylogenetic relationships between these five lineages remain unclear. Here, we report the high-quality genome of a member of the Chloranthales lineage (Chloranthus sessilifolius). We detect only one whole genome duplication within this species and find that polyploidization events in different Mesangiospermae lineage are mutually independent. We also find that the members of all floral development-related gene lineages are present in C. sessilifolius despite its extremely simplified flower. The AP1 and PI genes, however, show a weak floral tissue-specialized expression. Our phylogenomic analyses suggest that Chloranthales and magnoliids are sister groups, and both are together sister to the clade comprising Ceratophyllales and eudicots, while the monocot lineage is sister to all other Mesangiospermae. Our findings suggest that in addition to hybridization, incomplete lineage sorting may largely account for phylogenetic inconsistencies between the observed gene trees.
Collapse
Affiliation(s)
- Jianxiang Ma
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dandan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology and School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
97
|
Xiao Y, Ling J, Yi F, Ma W, Lu N, Zhu T, Wang J, Zhao K, Yun H. Transcriptomic, Proteomic, and Metabolic Profiles of Catalpa bungei Tension Wood Reveal New Insight Into Lignin Biosynthesis Involving Transcription Factor Regulation. FRONTIERS IN PLANT SCIENCE 2021; 12:704262. [PMID: 34868103 PMCID: PMC8634757 DOI: 10.3389/fpls.2021.704262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a complex polymer in plant cell walls whose proportion is second only to that of cellulose and plays an important role in the mechanical properties of wood and stress resistance of plants. Here, we induced tension wood (TW) formation in Catalpa bungei by artificial bending and analyzed the lignin metabolism of the TW. LC-MS analysis showed that a significantly higher content of coniferyl aldehyde was observed in the TW cell wall than in the opposite wood (OW) and normal wood (NW) cell walls. TW had significantly lower contents of coniferyl alcohol than OW and NW. Raman spectroscopy results indicated that TW had lower total lignin than OW and NW. The transcription and translation levels of most of the differentially expressed genes (DEGs) involved in lignin monomer biosynthesis indicated upregulation in TW/OW and TW/NW. We found no significant difference in the transcription levels of three collision gases (CADs) between TW and OW or between NW, but their translation levels were significantly downregulated in TW, suggesting post-transcriptional control for CAD. We predicted and analyzed transcription factors that could target DEGs involved in lignin monomer biosynthesis in TW. Based on the analysis of the relationships of targeting and coexpression, we found that NAC (evm.model.group1.695) could potentially target 4CLs and CCoAOMT, that HD-Zip (evm.model.group7.1157) had potential targeting relationships with CCoAOMT, F5H, and CCR, and that their expression levels were significantly positive. It is speculated that the upregulation of NAC and HD-ZIP transcription factors activates the expression of downstream target genes, which leads to a significant increase in coniferyl aldehyde in TW. However, the decrease in total lignin in TW may be caused by the significant downregulation of CAD translation and the significant decrease in precursors (coniferyl alcohol). Whether the expression of CAD genes is regulated by post-transcriptional control and affects TW lignin metabolism needs further study.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Juanjuan Ling
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry Sciences, Luoyang, China
| | - Huiling Yun
- Xiaolongshan Research Institute of Forest Science and Technology, Tianshui, China
| |
Collapse
|
98
|
Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily. Int J Mol Sci 2021; 22:ijms222212124. [PMID: 34830002 PMCID: PMC8619306 DOI: 10.3390/ijms222212124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of ‘Siberia’ lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6–8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.
Collapse
|
99
|
Zhao L, Liu L, Liu Y, Dou X, Cai H, Aslam M, Hou Z, Jin X, Li Y, Wang L, Zhao H, Wang X, Sicard A, Qin Y. Characterization of germline development and identification of genes associated with germline specification in pineapple. HORTICULTURE RESEARCH 2021; 8:239. [PMID: 34719672 PMCID: PMC8558326 DOI: 10.1038/s41438-021-00669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
Understanding germline specification in plants could be advantageous for agricultural applications. In recent decades, substantial efforts have been made to understand germline specification in several plant species, including Arabidopsis, rice, and maize. However, our knowledge of germline specification in many agronomically important plant species remains obscure. Here, we characterized the female germline specification and subsequent female gametophyte development in pineapple using callose staining, cytological, and whole-mount immunolocalization analyses. We also determined the male germline specification and gametophyte developmental timeline and observed male meiotic behavior using chromosome spreading assays. Furthermore, we identified 229 genes that are preferentially expressed at the megaspore mother cell (MMC) stage during ovule development and 478 genes that are preferentially expressed at the pollen mother cell (PMC) stage of anther development using comparative transcriptomic analysis. The biological functions, associated regulatory pathways and expression patterns of these genes were also analyzed. Our study provides a convenient cytological reference for exploring pineapple germline development and a molecular basis for the future functional analysis of germline specification in related plant species.
Collapse
Affiliation(s)
- Lihua Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Liping Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianying Dou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhimin Hou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingyue Jin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Li
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Yuan Qin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
100
|
Zhang Q, Wang L, Wang Z, Zhang R, Liu P, Liu M, Liu Z, Zhao Z, Wang L, Chen X, Xu H. The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. HORTICULTURE RESEARCH 2021; 8:238. [PMID: 34719675 PMCID: PMC8558337 DOI: 10.1038/s41438-021-00670-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
Fruit lignification is due to lignin deposition in the cell wall during cell development. However, there are few studies on the regulation of cell wall lignification and lignin biosynthesis during fruit pigmentation. In this study, we investigated the regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. The cellulose content decreased, while the lignin content increased in the winter jujube pericarp during pigmentation. Safranin O-fast green staining showed that the cellulose content was higher in the cell wall of winter jujube prior to pigmentation, whereas the lignin in the cell wall increased after pigmentation. The thickness of the epidermal cells decreased with pericarp pigmentation. A combined metabolomics and transcriptomics analysis showed that guaiacyl-syringyl (G-S) lignin was the main lignin type in the pericarp of winter jujube, and F5H (LOC107424406) and CCR (LOC107420974) were preliminarily identified as the key genes modulating lignin biosynthesis in winter jujube. Seventeen MYB and six NAC transcription factors (TFs) with potential regulation of lignin biosynthesis were screened out based on phylogenetic analysis. Three MYB and two NAC TFs were selected as candidate genes and further studied in detail. Arabidopsis ectopic expression and winter jujube pericarp injection of the candidate genes indicated that the MYB activator (LOC107425254) and the MYB repressor (LOC107415078) control lignin biosynthesis by regulating CCR and F5H, while the NAC (LOC107435239) TF promotes F5H expression and positively regulates lignin biosynthesis. These findings revealed the lignin biosynthetic pathway and associated genes during pigmentation of winter jujube pericarp and provide a basis for further research on lignin regulation.
Collapse
Affiliation(s)
- Qiong Zhang
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, 056038, China
| | - Zhongtang Wang
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China
| | - Rentang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, P.R. China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xin Chen
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China.
| | - Haifeng Xu
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China.
| |
Collapse
|