51
|
Lv Y, Lv A, Zhai H, Zhang S, Li L, Cai J, Hu Y. Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. Int J Food Microbiol 2018; 284:11-21. [DOI: 10.1016/j.ijfoodmicro.2018.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
52
|
Yang J, Liu M, Liu X, Yin Z, Sun Y, Zhang H, Zheng X, Wang P, Zhang Z. Heat-Shock Proteins MoSsb1, MoSsz1, and MoZuo1 Attenuate MoMkk1-Mediated Cell-Wall Integrity Signaling and Are Important for Growth and Pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1211-1221. [PMID: 29869941 PMCID: PMC6790631 DOI: 10.1094/mpmi-02-18-0052-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mitogen-activated protein kinase (MAPK) MoMkk1 governs the cell-wall integrity (CWI) pathway in rice blast fungus Magnaporthe oryzae. To understand the underlying mechanism, we have identified MoSsb1 as one of the MoMkk1-interacting proteins. MoSsb1 is a stress-seventy subfamily B (Ssb) protein homolog, sharing high amino acid sequence homology with the 70-kDa heat shock proteins (Hsp70s). Hsp70 are a family of conserved and ubiquitously expressed chaperones that regulate protein biogenesis by promoting protein folding, preventing protein aggregation, and controlling protein degradation. We found that MoSsb1 regulates the synthesis of nascent polypeptide chains and this regulation is achieved by being in complex with other members of Hsp70s MoSsz1 and 40-kDa Hsp40 MoZuo1. MoSsb1 is important for the growth, conidiation, and full virulence of the blast fungus and this role is also shared by MoSsz1 and MoZuo1. Importantly, MoSsb1, MoSsz1, and MoZuo1 are all involved in the regulation of the CWI MAPK pathway by modulating MoMkk1 biosynthesis. Our studies reveal novel insights into how MoSsb1, MoSsz1, and MoZuo1 affect CWI signaling that is involved in regulating growth, differentiation, and virulence of M. oryzae and highlight the conserved functional mechanisms of heat-shock proteins in pathogenic fungi.
Collapse
Affiliation(s)
- Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- Corresponding author: Zhengguang Zhang;
| |
Collapse
|
53
|
Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci Rep 2018; 8:14461. [PMID: 30262874 PMCID: PMC6160453 DOI: 10.1038/s41598-018-32633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Collapse
|
54
|
Liu C, Li Z, Xing J, Yang J, Wang Z, Zhang H, Chen D, Peng YL, Chen XL. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus. THE NEW PHYTOLOGIST 2018; 219:1031-1047. [PMID: 29663402 DOI: 10.1111/nph.15141] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/02/2018] [Indexed: 05/23/2023]
Abstract
Protein post-translational modifications play critical roles in cellular processes, development and stress response. The small ubiquitin-like modifier (SUMO) to proteins is one of the essential modifications in eukaryotes, but its function remains largely unknown in plant pathogenic fungi. We present a comprehensive analysis combined with proteomic, molecular and cellular approaches to explore the roles of sumoylation in the model plant fungal pathogen, Magnaporthe oryzae. We found the SUMO pathway plays key roles in colony growth, conidia formation and virulence to the host, as well as cell-cycle-related phenotypes. Sumoylation is also involved in responding to different stresses. Affinity purification identified 940 putative SUMO substrates, many of which were reported to be involved in development, stress response and infection. Interestingly, four septins were also shown to be sumoylated. Mutation of consensus sumoylation sites in each septin all resulted in reduced virulence to the host and dislocation of septins in appressoria. Moreover, sumoylation is also involved in extracellular secretion of different effector proteins. Our study on the functions of sumoylation provides novel insight into development and infection of the rice blast fungus.
Collapse
Affiliation(s)
- Caiyun Liu
- College of Plant Science and Technology, Huazhong Agricultural University, The Provincial Key Laboratory of Plant Pathology of Hubei Province, Wuhan, 430070, China
| | - Zhigang Li
- College of Plant Science and Technology, Huazhong Agricultural University, The Provincial Key Laboratory of Plant Pathology of Hubei Province, Wuhan, 430070, China
- College of Plant Protection, China Agricultural University, State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Beijing, 100193, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jun Yang
- College of Plant Protection, China Agricultural University, State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Beijing, 100193, China
| | - Zhao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, The Provincial Key Laboratory of Plant Pathology of Hubei Province, Wuhan, 430070, China
| | - Hong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, The Provincial Key Laboratory of Plant Pathology of Hubei Province, Wuhan, 430070, China
| | - Deng Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - You-Liang Peng
- College of Plant Protection, China Agricultural University, State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Beijing, 100193, China
| | - Xiao-Lin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, The Provincial Key Laboratory of Plant Pathology of Hubei Province, Wuhan, 430070, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| |
Collapse
|
55
|
Pan Y, Pan R, Tan L, Zhang Z, Guo M. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Curr Genet 2018; 65:223-239. [DOI: 10.1007/s00294-018-0864-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
56
|
Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat. Sci Rep 2018; 8:7826. [PMID: 29777151 PMCID: PMC5959904 DOI: 10.1038/s41598-018-26257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 01/21/2023] Open
Abstract
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Collapse
|
57
|
Manikandan R, Harish S, Karthikeyan G, Raguchander T. Comparative Proteomic Analysis of Different Isolates of Fusarium oxysporum f.sp. lycopersici to Exploit the Differentially Expressed Proteins Responsible for Virulence on Tomato Plants. Front Microbiol 2018; 9:420. [PMID: 29559969 PMCID: PMC5845644 DOI: 10.3389/fmicb.2018.00420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/21/2018] [Indexed: 02/02/2023] Open
Abstract
The vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici is an important soil borne pathogen causes severe yield loss. The molecular characterization and their interaction with its host is necessary to develop a protection strategy. 20 isolates of F. oxysporum f.sp. lycopersici (FOL) were isolated from wilt infected tomato plants across Tamil Nadu. They were subjected to cultural, morphological, molecular and virulence studies. The results revealed that all the isolates produced both micro and macro conidia with different size, number of cells. The colors of the culture and growth pattern were also varied. In addition, chlamydospores were observed terminally and intercalary. The PCR analysis with F. oxysporum species-specific primer significantly amplified an amplicon of 600 bp fragment in all the isolates. Based on the above characters and pathogenicity, isolate FOL-8 was considered as virulent and FOL-20 was considered as least virulent. Proteomics strategy was adopted to determine the virulence factors between the isolates of FOL-8 and FOL-20. The 2D analyses have showed the differential expression of 17 different proteins. Among them, three proteins were down regulated and 14 proteins were significantly up regulated in FOL-8 than FOL-20 isolate. Among the 17 proteins, 10 distinct spots were analyzed by MALDI-TOF. The functions of the analyzed proteins, suggested that they were involved in pathogenicity, symptom expression and disease development, sporulation, growth, and higher penetration rate on tomato root tissue. Overall, these experiments proves the role of proteome in pathogenicity of F. oxysporum f.sp. lycopersici in tomato and unravels the mechanism behinds the virulence of the pathogen in causing wilt disease.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gandhi Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Thiruvengadam Raguchander
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
58
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
59
|
Goh J, Jeon J, Lee YH. ER retention receptor, MoERR1 is required for fungal development and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Sci Rep 2017; 7:1259. [PMID: 28455525 PMCID: PMC5430845 DOI: 10.1038/s41598-017-01237-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
ER retention receptor is a seven trans-membrane protein that plays pivotal roles in function and integrity of endoplasmic reticulum (ER). Insertional mutagenesis of Magnaporthe oryzae identified MoERR1 as a pathogenicity gene encoding putative ER retention receptor orthologous to ERD2 in Saccharomyces cerevisiae. Search through the genome identified that M. oryzae possesses another ortholog of ERD2, which is designated as MoERR2. When MoERR1 and MoERR2 were tagged with GFP, both were localized to ER. Targeted disruption of MoERR1 showed pleiotropic effects on phenotypes, while deletion of MoERR2 had no effect on phenotypes we examined. The disruption mutant of MoERR1 showed growth retardation and produced significantly reduced number of conidia with aberrant morphology. Appressoria from the mutant were unable to penetrate into plant tissues presumably due to defect in cell wall integrity, thereby rendering the mutant non-pathogenic. The MoERR1 mutant also appeared to display abnormal ER structure and mis-regulation of genes involved in chaperone function and unfolded protein response under ER stress condition. Taken together, these results suggest that MoERR1 is a ER retention receptor required for function and integrity of ER, and that MoERR1-mediated ER functionalities are essential for fungal development and pathogenesis.
Collapse
Affiliation(s)
- Jaeduk Goh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- National Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
60
|
Li G, Zhang X, Tian H, Choi YE, Tao WA, Xu JR. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 2017; 19:1959-1974. [PMID: 28244240 DOI: 10.1111/1462-2920.13710] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 12/31/2022]
Abstract
Appressorium formation plays a critical role in Magnaporthe oryzae. Mst50 is an adapter protein of the Mst11-Mst7-Pmk1 cascade that is essential for appressorium formation. To further characterize its functions, affinity purification was used to identify Mst50-interacting proteins (MIPs) in this study. Two of the MIPs are Mst11 and Mst7 that are known to interact with Mst50 for Pmk1 activation. Surprisingly, two other MIPs are Mck1 and Mkk2 that are the upstream kinases of the Mps1 pathway. Domain deletion analysis showed that the sterile alpha-motif of Mst50 but not the Ras-association domain was important for its interaction with Mck1 and responses to cell wall and oxidative stresses. The mst50 mutant was reduced in Mps1 activation under stress conditions. MIP11 encodes a RACK1 protein that also interacted with Mck1. Deletion of MIP11 resulted in defects in cell wall integrity, Mps1 phosphorylation and plant infection. Furthermore, Mst50 interacted with histidine kinase Hik1, and the mst50 mutant was reduced in Osm1 phosphorylation. These results indicated that Mst50 is involved in all three MAPK pathways in M. oryzae although its functions differ in each pathway. Several MIPs are conserved hypothetical proteins and may be involved in responses to various signals and crosstalk among signaling pathways.
Collapse
Affiliation(s)
- Guotian Li
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huan Tian
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
61
|
Mangwanda R, Zwart L, van der Merwe NA, Moleleki LN, Berger DK, Myburg AA, Naidoo S. Localization and Transcriptional Responses of Chrysoporthe austroafricana in Eucalyptus grandis Identify Putative Pathogenicity Factors. Front Microbiol 2016; 7:1953. [PMID: 28008326 PMCID: PMC5143476 DOI: 10.3389/fmicb.2016.01953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Chrysoporthe austroafricana is a fungal pathogen that causes the development of stem cankers on susceptible Eucalyptus grandis trees. Clones of E. grandis that are partially resistant and highly susceptible have been identified based on the extent of lesion formation on the stem upon inoculation with C. austroafricana. These interactions have been used as a model pathosystem to enhance our understanding of interactions between pathogenic fungi and woody hosts, which may be different to herbaceous hosts. In previous research, transcriptomics of host responses in these two clones to C. austroafricana suggested roles for salicylic acid and gibberellic acid phytohormone signaling in defense. However, it is unclear how the pathogen infiltrates host tissue and which pathogenicity factors facilitate its spread in the two host genotypes. The aim of this study was to investigate these two aspects of the E. grandis-C. austroafricana interaction and to test the hypothesis that the pathogen possesses mechanisms to modulate the tree phytohormone-mediated defenses. Light microscopy showed that the pathogen occurred in most cell types and structures within infected E. grandis stem tissue. Notably, the fungus appeared to spread through the stem by penetrating cell wall pits. In order to understand the molecular interaction between these organisms and predict putative pathogenicity mechanisms of C. austroafricana, fungal gene expression was studied in vitro and in planta. Fungal genes associated with cell wall degradation, carbohydrate metabolism and phytohormone manipulation were expressed in planta by C. austroafricana. These genes could be involved in fungal spread by facilitating cell wall pit degradation and manipulating phytohormone mediated defense in each host environment, respectively. Specifically, the in planta expression of an ent-kaurene oxidase and salicylate hydroxylase in C. austroafricana suggests putative mechanisms by which the pathogen can modulate the phytohormone-mediated defenses of the host. These mechanisms have been reported in herbaceous plant-pathogen interactions, supporting the notion that these aspects of the interaction are similar in a woody species. This study highlights ent-kaurene oxidase and salicylate hydroxylase as candidates for further functional characterization.
Collapse
Affiliation(s)
- Ronishree Mangwanda
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
62
|
Zhou Z, Pang Z, Li G, Lin C, Wang J, Lv Q, He C, Zhu L. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2016; 17:1211-1222. [PMID: 26679839 PMCID: PMC6638330 DOI: 10.1111/mpp.12357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 05/31/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) constitutes the first line of plant inducible immunity. As an important step of plant colonization, phytopathogens have to suppress PTI, and secreted effectors are therefore co-evolved and deployed. In this study, we characterized the function of MoSec62 of Magnaporthe oryzae, the causal agent of the destructive rice blast. MoSec62 encodes a homologue of Sec62p, a yeast endoplasmic reticulum (ER) membrane transporter for precursors of secretory proteins. We showed that a T-DNA insertion into the promoter region of MoSec62, causing a disturbance to the up-regulation of MoSec62 expression during blast invasion, resulted in a complete loss of blast virulence of the mutant, M1575. Both 3,3'-diaminobenzidine (DAB) staining of the infected rice leaves and expression analysis revealed that the infectious attempt by the mutant led to strong defence responses of rice. Consistently, in transcriptomic analysis of rice leaves subject to blast inoculation, a battery of defence responses was found to be induced exclusively on M1575 challenge. For further exploration, we tested the pathogenicity on a highly susceptible rice variety and detected the accumulation of Slp1, a known PTI suppressor. Both results suggested that the mutant most likely failed to overcome rice PTI. In addition, we showed that MoSec62 was able to rescue the thermosensitivity of a yeast Δsec62, and the MoSec62-GFP fusion was co-localized to the ER membrane, both suggesting the conservation of Sec62 homologues. In conclusion, our data indicate that MoSec62, probably as an ER membrane transporter, plays an essential role in antagonizing rice defence at the early stages of blast invasion.
Collapse
Affiliation(s)
- Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqian Pang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihua Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Lin
- College of Environment and Plant Protection, Hainan University, Haikou, 570228, China
| | - Jing Wang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiming Lv
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China.
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
63
|
Shin KS, Park HS, Kim Y, Heo IB, Kim YH, Yu JH. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response. J Proteomics 2016; 148:26-35. [DOI: 10.1016/j.jprot.2016.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/26/2023]
|
64
|
Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, Yang J, Li Y, Ru Y, Zhang H, Zheng X, Wang P, Zhang Z. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. THE NEW PHYTOLOGIST 2016; 209:1655-1667. [PMID: 26522477 DOI: 10.1111/nph.13710] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate cellular membrane fusion and intracellular vesicle trafficking in eukaryotic cells, and are critical in the growth and development of pathogenic fungi such as Magnaporthe oryzae which causes rice blast. Rice blast is thought to involve distinct SNARE-mediated transport and secretion of fungal effector proteins into the host to modulate rice immunity. We have previously characterized two SNARE proteins, secretory protein (MoSec22) and vesicle-associated membrane protein (MoVam7), as being important in cellular transport and pathogenicity. Here, we show that syntaxin 8 (MoSyn8), a Qc-SNARE protein homolog, also plays important roles in growth, conidiation, and pathogenicity. The MoSYN8 deletion mutant (∆Mosyn8) mutant exhibits defects in endocytosis and F-actin organization, appressorium turgor pressure generation, and host penetration. In addition, the ∆Mosyn8 mutant cannot elaborate biotrophic invasion of the susceptible rice host, or secrete avirulence factors Avr-Pia (corresponding to the rice resistance gene Pia) and Avrpiz-t (the cognate Avr gene for the resistance gene Piz-t) proteins. Our study of MoSyn8 advances our understanding of SNARE proteins in effector secretion which underlies the normal physiology and pathogenicity of M. oryzae, and it sheds new light on the mechanism of the blight disease caused by M. oryzae.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Qian Zhu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
65
|
Lo Presti L, López Díaz C, Turrà D, Di Pietro A, Hampel M, Heimel K, Kahmann R. A conserved co-chaperone is required for virulence in fungal plant pathogens. THE NEW PHYTOLOGIST 2016; 209:1135-1148. [PMID: 26487566 DOI: 10.1111/nph.13703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The maize pathogenic fungus Ustilago maydis experiences endoplasmic reticulum (ER) stress during plant colonization and relies on the unfolded protein response (UPR) to cope with this stress. We identified the U. maydis co-chaperone, designated Dnj1, as part of this conserved cellular response to ER stress. ∆dnj1 cells are sensitive to the ER stressor tunicamycin and display a severe virulence defect in maize infection assays. A dnj1 mutant allele unable to stimulate the ATPase activity of chaperones phenocopies the null allele. A Dnj1-mCherry fusion protein localizes in the ER and interacts with the luminal chaperone Bip1. The Fusarium oxysporum Dnj1 ortholog contributes to the virulence of this fungal pathogen in tomato plants. Unlike the human ortholog, F. oxysporum Dnj1 partially rescues the virulence defect of the Ustilago dnj1 mutant. By enabling the fungus to restore ER homeostasis and maintain a high secretory activity, Dnj1 contributes to the establishment of a compatible interaction with the host. Dnj1 orthologs are present in many filamentous fungi, but are absent in budding and fission yeasts. We postulate a conserved and essential role during virulence for this class of co-chaperones.
Collapse
Affiliation(s)
- Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch-Strasse 10, 35043, Marburg, Germany
| | - Cristina López Díaz
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071, Cordoba, Spain
| | - Martin Hampel
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch-Strasse 10, 35043, Marburg, Germany
| |
Collapse
|
66
|
Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR. Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54. FRONTIERS IN PLANT SCIENCE 2016; 7:1140. [PMID: 27551285 PMCID: PMC4976503 DOI: 10.3389/fpls.2016.01140] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/18/2016] [Indexed: 05/04/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice.
Collapse
Affiliation(s)
- Soham Ray
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Pankaj K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Deepak K. Gupta
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Ajay K. Mahato
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Chiranjib Sarkar
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Rajeev Rathour
- Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Nagendra K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
- *Correspondence: Tilak R. Sharma,
| |
Collapse
|
67
|
Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015; 17:4672-89. [PMID: 26248223 DOI: 10.1111/1462-2920.13010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
Conidiation and appressorium differentiation are key processes for polycyclic dissemination and infection in many pathogens. Our previous study using DNA microarray led to the discovery of the MoYAK1 gene in Magnaporthe oryzae that is orthologous to YAK1 in Saccharomyces cerevisiae. Although the mechanistic roles of YAK1 in S. cerevisiae have been described, roles of MoYAK1 in M. oryzae, a phytopathogenic fungus responsible for rice blast, remain uncharacterized. Targeted disruption of MoYAK1 results in pleiotropic defects in M. oryzae development and pathogenicity. The ΔMoyak1 mutant exhibits a severe reduction in aerial hyphal formation and conidiation. Conidia in the ΔMoyak1 are delayed in germination and demonstrate decreased glycogen content in a conidial age-dependent manner. The expression of hydrophobin-coding genes is dramatically changed in the ΔMoyak1 mutant, leading to a loss of surface hydrophobicity. Unlike the complete inability of the ΔMoyak1 mutant to develop appressoria on an inductive surface, the mutant forms appressoria of abnormal morphology in response to exogenous cyclic adenosine-5'-monophosphate and host-driven signals, which are all defective in penetrating host tissues due to abnormalities in glycogen and lipid metabolism, turgor generation and cell wall integrity. These data indicate that MoYAK1 is a protein kinase important for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Joon-Hee Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hye-Min Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong-Hwan Shin
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,BioHerb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| |
Collapse
|
68
|
Choi J, Chung H, Lee GW, Koh SK, Chae SK, Lee YH. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae. PLoS One 2015; 10:e0134939. [PMID: 26241858 PMCID: PMC4524601 DOI: 10.1371/journal.pone.0134939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen in the rice-growing area. This fungus has a biotrophic phase early in infection and later switches to a necrotrophic lifestyle. During the biotrophic phase, the fungus competes with its host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified that 1,047 genes were up-regulated in response to hypoxia. Those genes are involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms, and are well-conserved among three fungal species. In addition, null mutants of two hypoxia-responsive genes were generated and their roles in fungal development and pathogenicity tested. The mutant for the sterol regulatory element-binding protein gene, MoSRE1, exhibited increased sensitivity to a hypoxia-mimicking agent, increased conidiation, and delayed invasive growth within host cells, which is suggestive of important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant, for the alcohol dehydrogenase gene MoADH1, showed no defect in the hypoxia-mimicking condition (using cobalt chloride) and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxic condition with experimental validations would provide new insights into fungal development and pathogenicity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
| | - Gir-Won Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
| | - Sun-Ki Koh
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, Daejeon 302–735, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151–921, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
69
|
Wang J, Wu J, Wu H, Liu X, Chen Y, Wu J, Hu C, Zou D. Liraglutide protects pancreatic β-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy. Mol Med Rep 2015; 12:4210-4218. [PMID: 26080706 PMCID: PMC4526029 DOI: 10.3892/mmr.2015.3944] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to determine whether liraglutide (LRG), a long acting glucagon-like peptide 1 analogue, exerted a protective effect on free fatty acid (FFA)-treated pancreatic β-cells via activating autophagy. INS-1 insulinoma pancreatic islet cell lines were treated with FFA and the levels of cell necrosis, apoptosis and autophagy were detected using an MTT assay, flow cytometry and electron microscopy (ECM). A type 2 diabetes mellitus mouse model was established through treatment of mice with a high-fat diet for 8 weeks and injection of streptozotocin. LRG and autophagy inhibitors were used to investigate the protective effect of LRG on pancreatic β-cells in vivo. Metabolic indices were measured and pancreatic autophagy was detected. In the INS-1 cells, viability was higher in the FFA + LRG group compared with the FFA group, while the apoptotic rate was lower (P<0.05). The light chain 3B and p62 autophagy-associated proteins were upregulated by LRG, while ATG7 and Beclin1 were downregulated. Autophagy inhibitors reduced the protective effect of LRG in the FFA-treated INS-1 cells. The type 2 diabetes mouse model was successfully established, termed the HF group, in which LRG was observed to reduce body weight and decrease levels of fasting blood glucose, total cholesterol, serum insulin, triglyceride, low density lipoprotein-cholesterol and glycosylated hemoglobin (P<0.05), compared with the HF group. However, chloroquine treatment abrogated these effects (P<0.05, compared with the HF + LRG group; P>0.05, compared with the HF group). Autophagosomes were also observed under ECM in the pancreatic tissues of mice in the HF + LRG group. Therefore, LRG induced autophagy and exerted protective effects on pancreatic β-cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jia Wang
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jie Wu
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong Wu
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Xingzhen Liu
- Department of Internal Medicine, Hangzhou Sanatorium of Nanjing Military Region, Hangzhou, Zhejiang 310000, P.R. China
| | - Yingjian Chen
- Department of Laboratory Diagnostics, General Hospital of Jinan Military District, Jinan, Shandong 250031, P.R. China
| | - Jianying Wu
- Department of Laboratory Diagnostics, General Hospital of Jinan Military District, Jinan, Shandong 250031, P.R. China
| | - Chengjin Hu
- Department of Laboratory Diagnostics, General Hospital of Jinan Military District, Jinan, Shandong 250031, P.R. China
| | - Dajin Zou
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
70
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
71
|
A nucleotide exchange factor promotes endoplasmic reticulum-to-cytosol membrane penetration of the nonenveloped virus simian virus 40. J Virol 2015; 89:4069-79. [PMID: 25653441 DOI: 10.1128/jvi.03552-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Collapse
|
72
|
Heimel K. Unfolded protein response in filamentous fungi-implications in biotechnology. Appl Microbiol Biotechnol 2014; 99:121-32. [PMID: 25384707 DOI: 10.1007/s00253-014-6192-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/16/2023]
Abstract
The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
Collapse
Affiliation(s)
- Kai Heimel
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, Grisebachstr. 8, 37077, Göttingen, Germany,
| |
Collapse
|
73
|
Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role inUstilago maydispathogenesis. FEMS Microbiol Lett 2014; 361:17-24. [DOI: 10.1111/1574-6968.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/18/2014] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anupama Ghosh
- Division of Plant Biology; Bose Institute, Centenary campus; Kolkata West Bengal India
| |
Collapse
|
74
|
Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 2014; 17:1377-96. [PMID: 25186614 DOI: 10.1111/1462-2920.12618] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The basic leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum stress response through a conserved unfolded protein response pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration and pathogenicity.
Collapse
Affiliation(s)
- Wei Tang
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| | - David S Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529
| |
Collapse
|
76
|
Abstract
Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- INRA, Interactions Arbres/Microorganismes, UMR 1136, Champenoux, France
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
77
|
Guillemette T, Calmes B, Simoneau P. Impact of the UPR on the virulence of the plant fungal pathogen A. brassicicola. Virulence 2014; 5:357-64. [PMID: 24189567 PMCID: PMC3956514 DOI: 10.4161/viru.26772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The fungal genus Alternaria contains many destructive plant pathogens, including Alternaria brassicicola, which causes black spot disease on a wide range of Brassicaceae plants and which is routinely used as a model necrotrophic pathogen in studies with Arabidopsis thaliana. During host infection, many fungal proteins that are critical for disease progression are processed in the endoplasmic reticulum (ER)/Golgi system and secreted in planta. The unfolded protein response (UPR) is an essential part of ER protein quality control that ensures efficient maturation of secreted and membrane-bound proteins in eukaryotes. This review highlights the importance of the UPR signaling pathway with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle. Understanding the pathogenicity mechanisms that fungi uses during infection is crucial for the development of new antifungal therapies. Therefore the UPR pathway has emerged as a promising drug target for plant disease control.
Collapse
Affiliation(s)
- Thomas Guillemette
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| | - Benoit Calmes
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| | - Philippe Simoneau
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| |
Collapse
|
78
|
Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:427-51. [PMID: 25001456 DOI: 10.1146/annurev-phyto-102313-045831] [Citation(s) in RCA: 480] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
Collapse
|
79
|
Torres MF, Cuadros DF, Vaillancourt LJ. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction. MOLECULAR PLANT PATHOLOGY 2014; 15:80-93. [PMID: 24003973 PMCID: PMC6638722 DOI: 10.1111/mpp.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild-type fungus. Evidence is presented suggesting that the wild-type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild-type colony, is dosage dependent and is specific to C. graminicola.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546, USA
| | | | | |
Collapse
|
80
|
Abstract
Live-cell imaging assisted by fluorescent markers has been fundamental to understanding the focused secretory 'warfare' that occurs between plants and biotrophic pathogens that feed on living plant cells. Pathogens succeed through the spatiotemporal deployment of a remarkably diverse range of effector proteins to control plant defences and cellular processes. Some effectors can be secreted by appressoria even before host penetration, many enter living plant cells where they target diverse subcellular compartments and others move into neighbouring cells to prepare them before invasion. This Review summarizes the latest advances in our understanding of the cell biology of biotrophic interactions between plants and their eukaryotic filamentous pathogens based on in planta analyses of effectors.
Collapse
|
81
|
Chung H, Choi J, Park SY, Jeon J, Lee YH. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Fungal Genet Biol 2013; 61:133-41. [PMID: 24140150 DOI: 10.1016/j.fgb.2013.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023]
Abstract
Regulation of gene expression by transcription factors (TFs) helps plant pathogens to interact with the host plants and to sustain a pathogenic lifestyle in the environmental changes. Elucidating novel functions of TFs is, therefore, crucial for understanding pathogenesis mechanisms of plant pathogens. Magnaporthe oryzae, the rice blast pathogen, undergoes a series of developmental morphogenesis to complete its infection cycle. To understand TF genes implicated in pathogenic development of this fungus, two Zn(II)2Cys6 TF genes, MoCOD1 and MoCOD2, whose expression was notably induced during conidiation, were functionally characterized. Targeted deletion of MoCOD1 resulted in defects in conidiation and pathogenicity due to defects in appressorium formation and invasive growth within the host cells. MoCOD2 was also a critical regulator in conidiation and pathogenicity, but not in conidial germination and appressorium formation. When rice plants were inoculated with conidia of the ΔMocod2 mutant, rapid accumulation of dark brown granules was observed around the infection sites in the plant cells and no visible disease symptom was incited. Taken together, both MoCOD1 and MoCOD2 play important roles in conidiation and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
82
|
The MET13 methylenetetrahydrofolate reductase gene is essential for infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. PLoS One 2013; 8:e76914. [PMID: 24116181 PMCID: PMC3792160 DOI: 10.1371/journal.pone.0076914] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae.
Collapse
|
83
|
Heimel K, Freitag J, Hampel M, Ast J, Bölker M, Kämper J. Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis. THE PLANT CELL 2013; 25:4262-77. [PMID: 24179126 PMCID: PMC3877826 DOI: 10.1105/tpc.113.115899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The unfolded protein response (UPR) is a conserved eukaryotic signaling pathway regulating endoplasmic reticulum (ER) homeostasis during ER stress, which results, for example, from an increased demand for protein secretion. Here, we characterize the homologs of the central UPR regulatory proteins Hac1 (for Homologous to ATF/CREB1) and Inositol Requiring Enzyme1 in the plant pathogenic fungus Ustilago maydis and demonstrate that the UPR is tightly interlinked with the b mating-type-dependent signaling pathway that regulates pathogenic development. Exact timing of UPR is required for virulence, since premature activation interferes with the b-dependent switch from budding to filamentous growth. In addition, we found crosstalk between UPR and the b target Clampless1 (Clp1), which is essential for cell cycle release and proliferation in planta. The unusual C-terminal extension of the U. maydis Hac1 homolog, Cib1 (for Clp1 interacting bZIP1), mediates direct interaction with Clp1. The interaction between Clp1 and Cib1 promotes stabilization of Clp1, resulting in enhanced ER stress tolerance that prevents deleterious UPR hyperactivation. Thus, the interaction between Cib1 and Clp1 constitutes a checkpoint to time developmental progression and increased secretion of effector proteins at the onset of biotrophic development. Crosstalk between UPR and the b mating-type regulated developmental program adapts ER homeostasis to the changing demands during biotrophy.
Collapse
Affiliation(s)
- Kai Heimel
- Georg-August-University Göttingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, 37077 Goettingen, Germany
- Karlsruhe Institute of Technology, Institute for Applied Bioscience, Department of Genetics, 76187 Karlsruhe, Germany
| | - Johannes Freitag
- Philipps-University Marburg, Department of Biology, 35032 Marburg, Germany
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), 35032 Marburg, Germany
| | - Martin Hampel
- Georg-August-University Göttingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, 37077 Goettingen, Germany
| | - Julia Ast
- Philipps-University Marburg, Department of Biology, 35032 Marburg, Germany
| | - Michael Bölker
- Philipps-University Marburg, Department of Biology, 35032 Marburg, Germany
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), 35032 Marburg, Germany
- Address correspondence to
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Bioscience, Department of Genetics, 76187 Karlsruhe, Germany
| |
Collapse
|
84
|
Liu SY, Chen JY, Wang JL, Li L, Xiao HL, Adam SM, Dai XF. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene 2013; 529:307-16. [PMID: 23891822 DOI: 10.1016/j.gene.2013.06.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/22/2022]
Abstract
Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt diseases in hundreds of dicotyledonous plant species. Previous research has demonstrated that the secretome plays an important role in the pathogenicity of V. dahliae. In this study, the specific secreted protein gene (VdSSP1) in highly virulent defoliating V. dahliae strain VDG1 was cloned, and considered to be a secreted protein by signal peptide activity assay. VdSSP1 deletion mutants in VDG1 significantly compromised virulence, and the fungal growth decreased in media with pectin and starch as carbon sources. Pathogenicity and carbon utilization were restored upon complementation of the VdSSP1 deletion strains or low virulence non-defoliating strain VDG2, which lacks VdSSP1. It is indicated that the virulence role of VdSSP1 is associated with plant cell wall degradation. In conclusion, our data suggested that VdSSP1 is a secreted protein that is engaged in the pathogenicity of the highly virulent defoliating V. dahliae.
Collapse
Affiliation(s)
- Shao-Yan Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
85
|
Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS One 2013; 8:e58623. [PMID: 23516518 PMCID: PMC3597732 DOI: 10.1371/journal.pone.0058623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.
Collapse
Affiliation(s)
- Delong Li
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidan Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Lu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng Yao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Hao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhai
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
86
|
Gao HM, Liu XG, Shi HB, Lu JP, Yang J, Lin FC, Liu XH. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol 2013; 164:300-9. [PMID: 23376292 DOI: 10.1016/j.resmic.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/26/2012] [Indexed: 01/07/2023]
Abstract
Mon1 protein is involved in cytoplasm-to-vacuole trafficking, vacuolar morphology and autophagy, and is required for homotypic vacuole fusion in Saccharomyces cerevisiae. Here we identify MoMON1 from Magnaporthe oryzae as an ortholog of S. cerevisiae MON1, essential for the morphology of the vacuole and vesicle fusion. Target gene deletion of MoMON1 resulted in accumulation of small punctuate vacuoles in the hypha and hypersensitivity to monensin, an antibiotic that blocks intracellular protein transport. The ΔMomon1 mutant exhibited significantly reduced aerial hyphal development and poor conidiation. Conidia of ΔMomon1 were able to differentiate appressoria. However, ΔMomon1 was non-pathogenic on rice leaves, even after wound inoculation. In addition, ΔMomon1 was slightly hypersensitive to Congo red and SDS, but not to cell wall degrading enzymes, suggesting significant alterations in its cell wall. The autophagy process was blocked in the ΔMomon1 mutant. Taken together, our results suggest that MoMON1 has an essential function in vacuolar assembly, autophagy, fungal development and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Hui-Min Gao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
87
|
Nonself recognition through intermolecular disulfide bond formation of ribonucleotide reductase in neurospora. Genetics 2013; 193:1175-83. [PMID: 23335337 DOI: 10.1534/genetics.112.147405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I ribonucleotide reductases (RNRs) are conserved across diverse taxa and are essential for the conversion of RNA into DNA precursors. In Neurospora crassa, the large subunit of RNR (UN-24) is unusual in that it also has a nonself recognition function, whereby coexpression of Oak Ridge (OR) and Panama (PA) alleles of un-24 in the same cell leads to growth inhibition and cell death. We show that coexpressing these incompatible alleles of un-24 in N. crassa results in a high molecular weight UN-24 protein complex. A 63-amino-acid portion of the C terminus was sufficient for un-24(PA) incompatibility activity. Redox active cysteines that are conserved in type I RNRs and essential for their catalytic function were found to be required for incompatibility activity of both UN-24(OR) and UN-24(PA). Our results suggest a plausible model of un-24 incompatibility activity in which the formation of a complex between the incompatible RNR proteins is potentiated by intermolecular disulfide bond formation.
Collapse
|
88
|
Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 2013; 4:1996. [PMID: 23774898 PMCID: PMC3709508 DOI: 10.1038/ncomms2996] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/09/2013] [Indexed: 12/30/2022] Open
Abstract
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion.
Collapse
Affiliation(s)
- Martha C. Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
- These authors contributed equally to this work
| | - Yasin F. Dagdas
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- These authors contributed equally to this work
| | - Yogesh K. Gupta
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas A. Mentlak
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Present address: Cambridge Consultants Ltd, Cambridge, CB4 0DW, UK
| | - Mihwa Yi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ana Lilia Martinez-Rocha
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Present address: Department of Molecular Phytopathology and Genetics, University of Hamburg, Biozentrum Klein Flottbek, D-22609 Hamburg, Germany
| | - Hiromasa Saitoh
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
89
|
Fernandez J, Wilson RA. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1286-93. [PMID: 22947213 DOI: 10.1094/mpmi-12-11-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnaporthe oryzae is a devastating pathogen of rice and wheat. It is a hemibiotroph that exhibits symptomless biotrophic growth for the first 4 to 5 days of infection of susceptible cultivars before becoming necrotrophic. Here, we review recent advances in our understanding of how M. oryzae is able to grow, acquire nutrients, and interact with the plant cell during infection. In particular, we describe direct mechanisms (such as the integration of carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1) and indirect mechanisms (such as the suppression of host responses) that allow M. oryzae to utilize available host nutrient. We contrast the ability of M. oryzae to voraciously metabolize a wide range of carbon and nitrogen sources in vitro with the carefully orchestrated development it displays during the biotrophic phase of in planta growth and ask how the two observations can be reconciled. We also look at how nutrient acquisition and effector biology might be linked in order to facilitate rapid colonization of the plant host.
Collapse
Affiliation(s)
- J Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
90
|
Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y, Win J, Kamoun S, Takano Y, Terauchi R. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog 2012; 8:e1002711. [PMID: 22589729 PMCID: PMC3349759 DOI: 10.1371/journal.ppat.1002711] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/05/2012] [Indexed: 12/29/2022] Open
Abstract
To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.
Collapse
Affiliation(s)
- Hiromasa Saitoh
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhao F, Fang W, Xie D, Zhao Y, Tang Z, Li W, Nie L, Lv S. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:176-84. [PMID: 22325879 DOI: 10.1016/j.plantsci.2011.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 05/23/2023]
Abstract
Thurber's cotton (Gossypium thurberi) is the wild relative of cultivated cotton. It is highly resistant to cotton Verticillium wilt, a disease that significantly affects cotton yield and quality. To reveal the mechanism of disease resistance in G. thurberi and to clone resistance-related genes, we used two-dimensional electrophoresis (2-DE) and tandem time-of-flight mass spectrometry (MALDI-TOF-MS) to identify differentially expressed proteins in Thurber's cotton after inoculation with Verticillium dahliae. A total of 57 different protein spots were upregulated, including 52 known proteins representing 11% of the total protein spots. These proteins are involved in resistance to stress and disease, transcriptional regulation, signal transduction, protein processing and degradation, photosynthesis, production capacity, basic metabolism, and other processes. In addition, five disease resistance proteins showed intense upregulation, indicating that resistance genes (R genes) may play a critical role in resistance to Verticillium wilt in Thurber's cotton. Our results suggest that disease and stress resistance are the combined effects of multiple co-expressed genes. This provides a basis for further, detailed investigation into the mechanisms underlying Verticillium wilt resistance of G. thurberi and for cloning essential genes into cotton cultivars to produce Verticillium wilt resistant plants.
Collapse
Affiliation(s)
- Fu'an Zhao
- College of Life Sciences, Henan University, Kaifeng 475100, China
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Singh K, Nizam S, Sinha M, Verma PK. Comparative transcriptome analysis of the necrotrophic fungus Ascochyta rabiei during oxidative stress: insight for fungal survival in the host plant. PLoS One 2012; 7:e33128. [PMID: 22427966 PMCID: PMC3299738 DOI: 10.1371/journal.pone.0033128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/10/2012] [Indexed: 11/18/2022] Open
Abstract
Localized cell death, known as the hypersensitive response (HR), is an important defense mechanism for neutralizing phytopathogens. The hallmark of the HR is an oxidative burst produced by the host plant. We aimed to identify genes of the necrotrophic chickpea blight fungus Ascochyta rabiei that are involved in counteracting oxidative stress. A subtractive cDNA library was constructed after menadione treatment, which resulted in the isolation of 128 unigenes. A reverse northern blot was used to compare transcript profiles after H(2)O(2), menadione and sodium nitroprusside treatments. A total of 70 unigenes were found to be upregulated by more than two-fold following menadione treatment at different time intervals. A large number of genes not previously associated with oxidative stress were identified, along with many stress-responsive genes. Differential expression patterns of several genes were validated by quantitative real-time PCR (qRT-PCR) and northern blotting. In planta qRT-PCR of several selected genes also showed differential expression patterns during infection and disease progression. These data shed light on the molecular responses of the phytopathogen A. rabiei to overcome oxidative and nitrosative stresses and advance the understanding of necrotrophic fungal pathogen survival mechanisms.
Collapse
Affiliation(s)
- Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shadab Nizam
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Manisha Sinha
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen K. Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
93
|
Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002526. [PMID: 22346755 PMCID: PMC3276572 DOI: 10.1371/journal.ppat.1002526] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022] Open
Abstract
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.
Collapse
Affiliation(s)
- Ling-An Kong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Guo-Tian Li
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lu Qi
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Yu-Jun Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Chen-Fang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
94
|
Frandsen RJN, Frandsen M, Giese H. Targeted gene replacement in fungal pathogens via Agrobacterium tumefaciens- mediated transformation. Methods Mol Biol 2012; 835:17-45. [PMID: 22183645 DOI: 10.1007/978-1-61779-501-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genome sequence data on fungal pathogens provide the opportunity to carry out a reverse genetics approach to uncover gene function. Efficient methods for targeted genome modifications such as knockout and in locus over-expression are in high demand. Here we describe two efficient single-step cloning strategies for construction of vectors for Agrobacterium tumefaciens-mediated transformation (ATMT). Targeted genome modifications require integration by a homologous double crossover event, which is achieved by placing target sequences on either side of a selection marker gene in the vector. Protocols are given for two single-step vector construction techniques. The In-Fusion cloning technique is independent of compatible restriction enzyme sites in the vector and the fragment to be cloned. The method can be directly applied to any vector of choice and it is possible to carry out four fragment cloning without the need for subcloning. The cloning efficiency is not always as high as desired, but it still presents an efficient alternative to restriction enzyme and ligase-based cloning systems. The USER technology offers a higher four fragment cloning efficiency than In-Fusion, but depends on specific structures in the binary vector. The available fungal binary vectors adapted for the USER system are described and protocols are provided for vector design and construction. A general protocol for verification of the resulting gene replacement events in the recipient fungal cells is also given. The cloning systems described above are relevant for all transformation vector constructs, but here we describe their application for ATMT compatible binary vectors. Protocols are provided for ATMT exemplified by Fusarium graminearum. For large-scale reverse genetic projects, the USER technology is recommended combined with ATMT.
Collapse
Affiliation(s)
- Rasmus John Normand Frandsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
95
|
Powers-Fletcher MV, Jambunathan K, Brewer JL, Krishnan K, Feng X, Galande AK, Askew DS. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus. PLoS One 2011; 6:e28865. [PMID: 22163332 PMCID: PMC3233604 DOI: 10.1371/journal.pone.0028865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER) that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.
Collapse
Affiliation(s)
- Margaret V. Powers-Fletcher
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Jordan L. Brewer
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amit K. Galande
- SRI International, Harrisonburg, Virginia, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
96
|
Li HJ, Xue Y, Jia DJ, Wang T, hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. THE PLANT CELL 2011; 23:3288-302. [PMID: 21954464 PMCID: PMC3203432 DOI: 10.1105/tpc.111.088914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao hi
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
97
|
Lee S, Son H, Lee J, Lee YR, Lee YW. A putative ABC transporter gene, ZRA1, is required for zearalenone production in Gibberella zeae. Curr Genet 2011; 57:343-51. [DOI: 10.1007/s00294-011-0352-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 12/14/2022]
|
98
|
Zhang H, Liu K, Zhang X, Tang W, Wang J, Guo M, Zhao Q, Zheng X, Wang P, Zhang Z. Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS One 2011; 6:e17241. [PMID: 21386978 PMCID: PMC3046207 DOI: 10.1371/journal.pone.0017241] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 01/22/2011] [Indexed: 01/02/2023] Open
Abstract
Cyclic AMP (cAMP) signaling plays an important role in regulating multiple cellular responses, such as growth, morphogenesis, and/or pathogenicity of eukaryotic organisms such as fungi. As a second messenger, cAMP is important in the activation of downstream effector molecules. The balance of intracellular cAMP levels depends on biosynthesis by adenylyl cyclases (ACs) and hydrolysis by cAMP phosphodiesterases (PDEases). The rice blast fungus Magnaporthe oryzae contains a high-affinity (PdeH/Pde2) and a low-affinity (PdeL/Pde1) PDEases, and a previous study showed that PdeH has a major role in asexual differentiation and pathogenicity. Here, we show that PdeL is required for asexual development and conidial morphology, and it also plays a minor role in regulating cAMP signaling. This is in contrast to PdeH whose mutation resulted in major defects in conidial morphology, cell wall integrity, and surface hydrophobicity, as well as a significant reduction in pathogenicity. Consistent with both PdeH and PdeL functioning in cAMP signaling, disruption of PDEH only partially rescued the mutant phenotype of ΔmagB and Δpka1. Further studies suggest that PdeH might function through a feedback mechanism to regulate the expression of pathogenicity factor Mpg1 during surface hydrophobicity and pathogenic development. Moreover, microarray data revealed new insights into the underlying cAMP regulatory mechanisms that may help to identify potential pathogenicity factors for the development of new disease management strategies.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Kaiyue Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Xing Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Wei Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Jiansheng Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Min Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Qian Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- * E-mail:
| |
Collapse
|
99
|
Joubert A, Simoneau P, Campion C, Bataillé-Simoneau N, Iacomi-Vasilescu B, Poupard P, François JM, Georgeault S, Sellier E, Guillemette T. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol Microbiol 2011; 79:1305-24. [PMID: 21251090 DOI: 10.1111/j.1365-2958.2010.07522.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unfolded protein response (UPR) is an important stress signalling pathway involved in the cellular development and environmental adaptation of fungi. We investigated the importance of the UPR pathway in the pathogenicity of the plant necrotrophic fungus Alternaria brassicicola, which causes black spot disease on a wide range of Brassicaceae. We identified the AbHacA gene encoding the major UPR transcription regulator in A. brassicicola. Deletion of AbHacA prevented induction of the UPR in response to endoplasmic reticulum stress. Loss of UPR in mutants resulted in a complete loss of virulence and was also associated with a cell wall defect and a reduced capacity for secretion. In addition, our results showed that the UPR was triggered by treatment of mycelia with camalexin, i.e. the major Arabidopsis thaliana phytoalexin, and that strains lacking functional AbHacA exhibited increased in vitro susceptibility to antimicrobial plant metabolites. We hypothesize that the UPR plays a major role in fungal virulence by altering cell protection against host metabolites and by reducing the ability of the fungus to assimilate nutrients required for growth in the host environment. This study suggests that targeting the UPR pathway would be an effective plant disease control strategy.
Collapse
Affiliation(s)
- A Joubert
- UMR PAVE No. 77, IFR 149 QUASAV, 2 Bd Lavoisier, F-49045 Angers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genomics 2011; 12:49. [PMID: 21247492 PMCID: PMC3037901 DOI: 10.1186/1471-2164-12-49] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 01/19/2011] [Indexed: 01/13/2023] Open
Abstract
Background Rice blast is the most threatening disease to cultivated rice. Magnaporthe oryzae, its causal agent, is likely to encounter environmental challenges during invasive growth in its host plants that require shifts in gene expression to establish a compatible interaction. Here, we tested the hypothesis that gene expression patterns during in planta invasive growth are similar to in vitro stress conditions, such as nutrient limitation, temperature up shift and oxidative stress, and determined which condition most closely mimicked that of in planta invasive growth. Gene expression data were collected from these in vitro experiments and compared to fungal gene expression during the invasive growth phase at 72 hours post-inoculation in compatible interactions on two grass hosts, rice and barley. Results We identified 4,973 genes that were differentially expressed in at least one of the in planta and in vitro stress conditions when compared to fungal mycelia grown in complete medium, which was used as reference. From those genes, 1,909 showed similar expression patterns between at least one of the in vitro stresses and rice and/or barley. Hierarchical clustering of these 1,909 genes showed three major clusters in which in planta conditions closely grouped with the nutrient starvation conditions. Out of these 1,909 genes, 55 genes and 129 genes were induced and repressed in all treatments, respectively. Functional categorization of the 55 induced genes revealed that most were either related to carbon metabolism, membrane proteins, or were involved in oxidoreduction reactions. The 129 repressed genes showed putative roles in vesicle trafficking, signal transduction, nitrogen metabolism, or molecular transport. Conclusions These findings suggest that M. oryzae is likely primarily coping with nutrient-limited environments at the invasive growth stage 72 hours post-inoculation, and not with oxidative or temperature stresses.
Collapse
|