51
|
Noman A, Aqeel M, Lou Y. PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. Int J Mol Sci 2019; 20:ijms20081882. [PMID: 30995767 PMCID: PMC6514886 DOI: 10.3390/ijms20081882] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
To ward off pathogens and pests, plants use a sophisticated immune system. They use pattern-recognition receptors (PRRs), as well as nucleotide-binding and leucine-rich repeat (NB-LRR) domains, for detecting nonindigenous molecular signatures from pathogens. Plant PRRs induce local and systemic immunity. Plasma-membrane-localized PRRs are the main components of multiprotein complexes having additional transmembrane and cytosolic kinases. Topical research involving proteins and their interactive partners, along with transcriptional and posttranscriptional regulation, has extended our understanding of R-gene-mediated plant immunity. The unique LRR domain conformation helps in the best utilization of a surface area and essentially mediates protein–protein interactions. Genome-wide analyses of inter- and intraspecies PRRs and NB-LRRs offer innovative information about their working and evolution. We reviewed plant immune responses with relevance to PRRs and NB-LRRs. This article focuses on the significant functional diversity, pathogen-recognition mechanisms, and subcellular compartmentalization of plant PRRs and NB-LRRs. We highlight the potential biotechnological application of PRRs and NB-LRRs to enhance broad-spectrum disease resistance in crops.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China.
| | - Yonggen Lou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
52
|
Application of Data-Independent Acquisition Approach to Study the Proteome Change from Early to Later Phases of Tomato Pathogenesis Responses. Int J Mol Sci 2019; 20:ijms20040863. [PMID: 30781546 PMCID: PMC6413104 DOI: 10.3390/ijms20040863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Plants and pathogens are entangled in a continual arms race. Plants have evolved dynamic defence and immune mechanisms to resist infection and enhance immunity for second wave attacks from the same or different types of pathogenic species. In addition to evolutionarily and physiological changes, plant-pathogen interaction is also highly dynamic at the molecular level. Recently, an emerging quantitative mass spectrometry-based proteomics approach named data-independent acquisition (DIA), has been developed for the analysis of the proteome in a high-throughput fashion. In this study, the DIA approach was applied to quantitatively trace the change in the plant proteome from the early to the later stage of pathogenesis progression. This study revealed that at the early stage of the pathogenesis response, proteins directly related to the chaperon were regulated for the defence proteins. At the later stage, not only the defence proteins but also a set of the pathogen-associated molecular pattern-triggered immunity (PTI) and effector triggered immunity (ETI)-related proteins were highly induced. Our findings show the dynamics of the plant regulation of pathogenesis at the protein level and demonstrate the potential of using the DIA approach for tracing the dynamics of the plant proteome during pathogenesis responses.
Collapse
|
53
|
Wan L, Koeck M, Williams SJ, Ashton AR, Lawrence GJ, Sakakibara H, Kojima M, Böttcher C, Ericsson DJ, Hardham AR, Jones DA, Ellis JG, Kobe B, Dodds PN. Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567-A. MOLECULAR PLANT PATHOLOGY 2019; 20:211-222. [PMID: 30242946 PMCID: PMC6637871 DOI: 10.1111/mpp.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.
Collapse
Affiliation(s)
- Li Wan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3280USA
| | - Markus Koeck
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Anthony R. Ashton
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Christine Böttcher
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodAdelaideSA5064Australia
| | - Daniel J. Ericsson
- Australian SynchrotronMacromolecular CrystallographyClaytonVictoria3168Australia
| | - Adrienne R. Hardham
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - David A. Jones
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| |
Collapse
|
54
|
Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X, Zhu L. Genome-Wide Identification of Papain-Like Cysteine Proteases in Gossypium hirsutum and Functional Characterization in Response to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:134. [PMID: 30842780 PMCID: PMC6391353 DOI: 10.3389/fpls.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 05/12/2023]
Abstract
Cotton, a natural fiber producing crop of huge importance, is often prone to attack of Verticillium dahliae. Papain-like cysteine proteases (PLCPs) constitute a large family in plants and were proposed to involve in plant defense against pathogen attack in a number of studies. However, there is no detailed characterization of PLCP genes in cotton against infection of V. dahliae. In this study, we carried out a genome-wide analysis in cotton and identified seventy-eight PLCPs, which were divided into nine subfamilies based on their evolution phylogeny: RD21 (responsive to desiccation 21), CEP (cysteine endopeptidase), XCP (xylem cysteine peptidase), XBCP3 (xylem bark cysteine peptidase 3), THI, SAG12 (senescence-associated gene 12), RD19 (responsive to desiccation 19), ALP (aleurain-like protease) and CTB (cathepsin B-like). Genes in each subfamily exhibit a similar structure and motif composition. The expression patterns of these genes in different organs were examined, and subfamily RD21 was the most abundant in these families. Expression profiles under abiotic stress showed that thirty-five PLCP genes were induced by multiple stresses. Further transcriptome analysis showed that sixteen PLCP genes were up-regulated in response to V. dahliae in cotton. Among those, GhRD21-7 showed a higher transcription level than most other PLCP genes. Additionally, over-expression of GhRD21-7 led to enhanced resistance and RNAi lines were more susceptible to V. dahliae in cotton. Our results provide valuable information for future functional genomic studies of PLCP gene family in cotton.
Collapse
|
55
|
Schulze Hüynck J, Kaschani F, van der Linde K, Ziemann S, Müller AN, Colby T, Kaiser M, Misas Villamil JC, Doehlemann G. Proteases Underground: Analysis of the Maize Root Apoplast Identifies Organ Specific Papain-Like Cysteine Protease Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:473. [PMID: 31114592 PMCID: PMC6503450 DOI: 10.3389/fpls.2019.00473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/28/2019] [Indexed: 05/14/2023]
Abstract
Plant proteases are key regulators of plant cell processes such as seed development, immune responses, senescence and programmed cell death (PCD). Apoplastic papain-like cysteine proteases (PL) are hubs in plant-microbe interactions and play an important role during abiotic stresses. The apoplast is a crucial interface for the interaction between plant and microbes. So far, apoplastic maize PL and their function have been mostly described for aerial parts. In this study, we focused on apoplastic PLCPs in the roots of maize plants. We have analyzed the phylogeny of maize PLCPs and investigated their protein abundance after salicylic acid (SA) treatment. Using activity-based protein profiling (ABPP) we have identified a novel root-specific PLCP belonging to the RD21-like subfamily, as well as three SA activated PLCPs. The root specific PLCP CP1C shares sequence and structural similarities to known CP1-like proteases. Biochemical analysis of recombinant CP1C revealed different substrate specificities and inhibitor affinities compared to the related proteases. This study characterized a root-specific PLCP and identifies differences between the SA-dependent activation of PLCPs in roots and leaves.
Collapse
Affiliation(s)
- Jan Schulze Hüynck
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
| | | | | | - Sebastian Ziemann
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
| | - André N. Müller
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Colby
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Markus Kaiser
- Institute of Chemical Biology, University of Duisburg-Essen, Essen, Germany
| | - Johana C. Misas Villamil
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
- *Correspondence: Johana C. Misas Villamil, Gunther Doehlemann,
| | - Gunther Doehlemann
- Center of Excellence on Plant Sciences (CEPLAS), Botanical Institute, University of Cologne, Cologne, Germany
- *Correspondence: Johana C. Misas Villamil, Gunther Doehlemann,
| |
Collapse
|
56
|
De novo transcriptomic profiling of the clonal Leymus chinensis response to long-term overgrazing-induced memory. Sci Rep 2018; 8:17912. [PMID: 30559460 PMCID: PMC6297159 DOI: 10.1038/s41598-018-35605-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Sheepgrass (Leymus chinensis) is one of the dominant grass species present on typical steppes of the Inner Mongolia Plateau. However, L. chinensis has developed a dwarfing phenotype in response to the stressful habitat in grasslands that are severely degraded due to heavy grazing. The lack of transcriptomic and genomic information has prohibited the understanding of the transgenerational effect on physiological alterations in clonal L. chinensis at the molecular level in response to livestock grazing. To solve this problem, transcriptomic information from the leaves of clonal L. chinensis obtained from overgrazed (GR) and non-grazed (NG) grasslands was studied using a paired-end Illumina HiSeq 2500 sequencing platform. First, despite the influence of grazing being absent during the growth of clonal offspring in our hydroponic experiment, compared with those from the NG group, clonal L. chinensis from the GR group exhibited significant dwarf-type morphological traits. A total of 116,356 unigenes were subsequently generated and assembled de novo, of which 55,541 could be annotated to homologous matches in the NCBI non-redundant (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of 3,341 unigenes significantly differed between the GR group and the NG group with an absolute value of Log2 ratio ≥ 1. The altered expression of genes involved in defence and immune responses, pathogenic resistance and cell development indicates that livestock grazing induces a transgenerational effect on the growth inhibition of clonal L. chinensis. The results of the present study will provide important large-scale transcriptomic information on L. chinensis. Furthermore, the results facilitated our investigation of grazing-induced transgenerational effects on both the morphological and physiological characteristics of L. chinensis at the molecular levels.
Collapse
|
57
|
Morel A, Guinard J, Lonjon F, Sujeeun L, Barberis P, Genin S, Vailleau F, Daunay M, Dintinger J, Poussier S, Peeters N, Wicker E. The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex). MOLECULAR PLANT PATHOLOGY 2018; 19:2459-2472. [PMID: 30073750 PMCID: PMC6638172 DOI: 10.1111/mpp.12724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 05/04/2023]
Abstract
To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.
Collapse
Affiliation(s)
- Arry Morel
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | - Jérémy Guinard
- Université de La RéunionUMR PVBMTF‐97410Saint‐Pierre, La RéunionFrance
- CIRADUMR PVBMTF‐97410Saint‐Pierre, La RéunionFrance
| | - Fabien Lonjon
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | | | - Patrick Barberis
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | - Stéphane Genin
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | - Fabienne Vailleau
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | | | | | - Stéphane Poussier
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | - Nemo Peeters
- LIPMUniversité de Toulouse, INRA, CNRS,F‐31326Castanet‐TolosanFrance
| | - Emmanuel Wicker
- CIRADUMR PVBMTF‐97410Saint‐Pierre, La RéunionFrance
- IPME, Université de Montpellier, CIRADIRDF‐34394MontpellierFrance
| |
Collapse
|
58
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
59
|
Sun Q, Li YY, Wang Y, Zhao HH, Zhao TY, Zhang ZY, Li DW, Yu JL, Wang XB, Zhang YL, Han CG. Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3127-3139. [PMID: 29659986 PMCID: PMC5972614 DOI: 10.1093/jxb/ery131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/24/2018] [Indexed: 05/29/2023]
Abstract
In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hang-Hai Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Yong-Liang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
60
|
Zhang X, Farah N, Rolston L, Ericsson DJ, Catanzariti A, Bernoux M, Ve T, Bendak K, Chen C, Mackay JP, Lawrence GJ, Hardham A, Ellis JG, Williams SJ, Dodds PN, Jones DA, Kobe B. Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. MOLECULAR PLANT PATHOLOGY 2018; 19:1196-1209. [PMID: 28817232 PMCID: PMC6638141 DOI: 10.1111/mpp.12597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 05/23/2023]
Abstract
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector-triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc-finger-like structure with a novel interleaved zinc-binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P-mediated recognition. The first zinc-coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid-binding and chromatin-associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non-conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Nadya Farah
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Laura Rolston
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Daniel J. Ericsson
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Australian Synchrotron, Macromolecular crystallographyClaytonVictoria 3168Australia
| | - Ann‐Maree Catanzariti
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Thomas Ve
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Institute for Glycomics, Griffith UniversitySouthportQueensland 4222Australia
| | - Katerina Bendak
- School of Molecular BioscienceUniversity of SydneySydneyNew South Wales 2006Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Joel P. Mackay
- School of Molecular BioscienceUniversity of SydneySydneyNew South Wales 2006Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Adrienne Hardham
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - David A. Jones
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
| |
Collapse
|
61
|
The role of chloroplasts in plant pathology. Essays Biochem 2018; 62:21-39. [PMID: 29273582 DOI: 10.1042/ebc20170020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.
Collapse
|
62
|
Indispensable Role of Proteases in Plant Innate Immunity. Int J Mol Sci 2018; 19:ijms19020629. [PMID: 29473858 PMCID: PMC5855851 DOI: 10.3390/ijms19020629] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.
Collapse
|
63
|
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8:2789. [PMID: 29434336 PMCID: PMC5809607 DOI: 10.1038/s41598-018-21268-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.
Collapse
Affiliation(s)
- Yifeng Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China.,Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Qiaoyu Tang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Meiru Wu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Di Mou
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Hui Liu
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chi Zhang
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Li Ding
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
64
|
Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:651-663. [PMID: 29160935 DOI: 10.1111/tpj.13780] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 05/09/2023]
Abstract
Phytopathogens translocate effector proteins into plant cells where they sabotage the host cellular machinery to promote infection. An individual pathogen can translocate numerous distinct effectors during the infection process to target an array of host macromolecules (proteins, metabolites, DNA, etc.) and manipulate them using a variety of enzymatic activities. In this review, we have surveyed the literature for effector targets and curated them to convey the range of functions carried out by phytopathogenic proteins inside host cells. In particular, we have curated the locations of effector targets, as well as their biological and molecular functions and compared these properties across diverse phytopathogens. This analysis validates previous observations about effector functions (e.g. immunosuppression), and also highlights some interesting features regarding effector specificity as well as functional diversification of phytopathogen virulence strategies.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, KW Neatby bldg, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Function and Evolution, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
65
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
66
|
Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Role of Papain-Like Cysteine Proteases in Plant Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1717. [PMID: 30564252 PMCID: PMC6288466 DOI: 10.3389/fpls.2018.01717] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCP) are prominent peptidases found in most living organisms. In plants, PLCPs was divided into nine subgroups based on functional and structural characterization. They are key enzymes in protein proteolysis and involved in numerous physiological processes. In this paper, we reviewed the updated achievements of physiological roles of plant PLCPs in germination, development, senescence, immunity, and stress responses.
Collapse
Affiliation(s)
- Huijuan Liu
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qi Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
- *Correspondence: Zaibao Zhang,
| |
Collapse
|
67
|
Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C. A Novel WRKY Transcription Factor, MuWRKY3 ( Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut ( Arachis hypogaea L.) Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:346. [PMID: 29616059 PMCID: PMC5864901 DOI: 10.3389/fpls.2018.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/01/2018] [Indexed: 05/19/2023]
Abstract
Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2), and superoxide anion (O2∙-), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.
Collapse
Affiliation(s)
- Kurnool Kiranmai
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Gunupuru Lokanadha Rao
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Merum Pandurangaiah
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Ambekar Nareshkumar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | | | - Uppala Lokesh
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Boya Venkatesh
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - A. M. Anthony Johnson
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Chinta Sudhakar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
- *Correspondence: Chinta Sudhakar,
| |
Collapse
|
68
|
Salgon S, Jourda C, Sauvage C, Daunay MC, Reynaud B, Wicker E, Dintinger J. Eggplant Resistance to the Ralstonia solanacearum Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci. FRONTIERS IN PLANT SCIENCE 2017; 8:828. [PMID: 28580001 PMCID: PMC5437220 DOI: 10.3389/fpls.2017.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Bacterial wilt (BW) is a major disease of solanaceous crops caused by the Ralstonia solanacearum species complex (RSSC). Strains are grouped into five phylotypes (I, IIA, IIB, III, and IV). Varietal resistance is the most sustainable strategy for managing BW. Nevertheless, breeding to improve cultivar resistance has been limited by the pathogen's extensive genetic diversity. Identifying the genetic bases of specific and non-specific resistance is a prerequisite to breed improvement. A major gene (ERs1) was previously mapped in eggplant (Solanum melongena L.) using an intraspecific population of recombinant inbred lines derived from the cross of susceptible MM738 (S) × resistant AG91-25 (R). ERs1 was originally found to control three strains from phylotype I, while being totally ineffective against a virulent strain from the same phylotype. We tested this population against four additional RSSC strains, representing phylotypes I, IIA, IIB, and III in order to clarify the action spectrum of ERs1. We recorded wilting symptoms and bacterial stem colonization under controlled artificial inoculation. We constructed a high-density genetic map of the population using single nucleotide polymorphisms (SNPs) developed from genotyping-by-sequencing and added 168 molecular markers [amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), and sequence-related amplified polymorphisms (SRAPs)] developed previously. The new linkage map based on a total of 1,035 markers was anchored on eggplant, tomato, and potato genomes. Quantitative trait locus (QTL) mapping for resistance against a total of eight RSSC strains resulted in the detection of one major phylotype-specific QTL and two broad-spectrum QTLs. The major QTL, which specifically controls three phylotype I strains, was located at the bottom of chromosome 9 and corresponded to the previously identified major gene ERs1. Five candidate R-genes were underlying this QTL, with different alleles between the parents. The two other QTLs detected on chromosomes 2 and 5 were found to be associated with partial resistance to strains of phylotypes I, IIA, III and strains of phylotypes IIA and III, respectively. Markers closely linked to these three QTLs will be crucial for breeding eggplant with broad-spectrum resistance to BW. Furthermore, our study provides an important contribution to the molecular characterization of ERs1, which was initially considered to be a major resistance gene.
Collapse
Affiliation(s)
- Sylvia Salgon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- Association Réunionnaise pour la Modernisation de l’Economie Fruitière, Légumière et HORticoleSaint-Pierre, Réunion
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la RéunionSaint-Pierre, Réunion
- *Correspondence: Sylvia Salgon, Jacques Dintinger,
| | - Cyril Jourda
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
| | - Christopher Sauvage
- UR 1052 Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche AgronomiqueMontfavet, France
| | - Marie-Christine Daunay
- UR 1052 Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche AgronomiqueMontfavet, France
| | - Bernard Reynaud
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la RéunionSaint-Pierre, Réunion
| | - Emmanuel Wicker
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- UMR Interactions Plantes-Microorganismes-Environnement, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Jacques Dintinger
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- *Correspondence: Sylvia Salgon, Jacques Dintinger,
| |
Collapse
|
69
|
Misas-Villamil JC, van der Hoorn RAL, Doehlemann G. Papain-like cysteine proteases as hubs in plant immunity. THE NEW PHYTOLOGIST 2016; 212:902-907. [PMID: 27488095 DOI: 10.1111/nph.14117] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/11/2016] [Indexed: 05/02/2023]
Abstract
902 I. 902 II. 903 III. 903 IV. 903 V. 905 VI. 905 VII. 905 906 References 906 SUMMARY: Plants deploy a sophisticated immune system to cope with different microbial pathogens and other invaders. Recent research provides an increasing body of evidence for papain-like cysteine proteases (PLCPs) being central hubs in plant immunity. PLCPs are required for full resistance of plants to various pathogens. At the same time, PLCPs are targeted by secreted pathogen effectors to suppress immune responses. Consequently, they are subject to a co-evolutionary host-pathogen arms race. When activated, PLCPs induce a broad spectrum of defense responses including plant cell death. While the important role of PLCPs in plant immunity has become more evident, it remains largely elusive how these enzymes are activated and which signaling pathways are triggered to orchestrate different downstream responses.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, D-50674, Cologne, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane Road, Oxford, OX1 3RB, UK
| | - Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, D-50674, Cologne, Germany
| |
Collapse
|
70
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
71
|
Deng MY, Sun YH, Li P, Fu B, Shen D, Lu YJ. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae. Toxicon 2016; 121:109-118. [DOI: 10.1016/j.toxicon.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|
72
|
Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci U S A 2016; 113:10204-9. [PMID: 27555587 PMCID: PMC5018743 DOI: 10.1073/pnas.1605483113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.
Collapse
Affiliation(s)
- Stella Cesari
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - John Moore
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia;
| |
Collapse
|
73
|
Na C, Shuanghua W, Jinglong F, Bihao C, Jianjun L, Changming C, Jin J. Overexpression of the Eggplant (Solanum melongena) NAC Family Transcription Factor SmNAC Suppresses Resistance to Bacterial Wilt. Sci Rep 2016; 6:31568. [PMID: 27528282 PMCID: PMC4985710 DOI: 10.1038/srep31568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Bacterial wilt (BW) is a serious disease that affects eggplant (Solanum melongena) production. Although resistance to this disease has been reported, the underlying mechanism is unknown. In this study, we identified a NAC family transcription factor (SmNAC) from eggplant and characterized its expression, its localization at the tissue and subcellular levels, and its role in BW resistance. To this end, transgenic eggplant lines were generated in which the expression of SmNAC was constitutively up regulated or suppressed using RNAi. The results indicated that overexpression of SmNAC decreases resistance to BW. Moreover, SmNAC overexpression resulted in the reduced accumulation of the plant immune signaling molecule salicylic acid (SA) and reduced expression of ICS1 (a gene that encode isochorismate synthase 1, which is involved in SA biosynthesis). We propose that reduced SA content results in increased bacterial wilt susceptibility in the transgenic lines. Our results provide important new insights into the regulatory mechanisms of bacterial wilt resistance in eggplant.
Collapse
Affiliation(s)
- Chen Na
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Wu Shuanghua
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Fu Jinglong
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Cao Bihao
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Lei Jianjun
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Chen Changming
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| | - Jiang Jin
- College of Horticulture, South Agricultural University, Guangzhou City, 510642, P.R. China
| |
Collapse
|
74
|
Song T, Chu M, Lahlali R, Yu F, Peng G. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:1013. [PMID: 27462338 PMCID: PMC4939851 DOI: 10.3389/fpls.2016.01013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/27/2016] [Indexed: 05/23/2023]
Abstract
Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR.
Collapse
Affiliation(s)
- Tao Song
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Mingguang Chu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Rachid Lahlali
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
- Canadian Light Source Inc.Saskatoon, SK, Canada
| | - Fengqun Yu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Gary Peng
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| |
Collapse
|
75
|
Utsumi Y, Tanaka M, Kurotani A, Yoshida T, Mochida K, Matsui A, Ishitani M, Sraphet S, Whankaew S, Asvarak T, Narangajavana J, Triwitayakorn K, Sakurai T, Seki M. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. JOURNAL OF PLANT RESEARCH 2016; 129:711-726. [PMID: 27138000 DOI: 10.1007/s10265-016-0828-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 02/14/2016] [Indexed: 05/04/2023]
Abstract
Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Kurotani
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiichi Mochida
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Biomass Research Platform Team, RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Ishitani
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
| | - Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sukhuman Whankaew
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Thipa Asvarak
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Kanokporn Triwitayakorn
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
76
|
Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA, Dodds PN. Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model. THE PLANT CELL 2016; 28:146-59. [PMID: 26744216 PMCID: PMC4746675 DOI: 10.1105/tpc.15.00303] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 05/18/2023]
Abstract
NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling.
Collapse
Affiliation(s)
| | - Hayden Burdett
- School of Biological Sciences, Flinders University, Adelaide SA 5001, Australia
| | - Simon J Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | - Kim Newell
- CSIRO Agriculture, Canberra ACT 2601, Australia
| | | | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane QLD 4072, Australia
| | | | - Peter A Anderson
- School of Biological Sciences, Flinders University, Adelaide SA 5001, Australia
| | | |
Collapse
|
77
|
Perochon A, Jianguang J, Kahla A, Arunachalam C, Scofield SR, Bowden S, Wallington E, Doohan FM. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. PLANT PHYSIOLOGY 2015; 169:2895-906. [PMID: 26508775 PMCID: PMC4677899 DOI: 10.1104/pp.15.01056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/26/2015] [Indexed: 05/18/2023]
Abstract
All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance.
Collapse
Affiliation(s)
- Alexandre Perochon
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Jia Jianguang
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Amal Kahla
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Chanemougasoundharam Arunachalam
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Steven R Scofield
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Sarah Bowden
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Emma Wallington
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| | - Fiona M Doohan
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin 4, Ireland (A.P., J.J., A.K., C.A., F.M.D.);United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, and Purdue University, Department of Agronomy, West Lafayette, Indiana 47907-2054 (S.R.S.); andNational Institute of Agricultural Botany, Cambridge, CB3 0LE, United Kingdom (S.B., E.W.)
| |
Collapse
|
78
|
Pensec F, Lebeau A, Daunay MC, Chiroleu F, Guidot A, Wicker E. Towards the Identification of Type III Effectors Associated with Ralstonia solanacearum Virulence on Tomato and Eggplant. PHYTOPATHOLOGY 2015; 105:1529-44. [PMID: 26368514 DOI: 10.1094/phyto-06-15-0140-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
For the development of pathogen-informed breeding strategies, identifying the microbial genes involved in interactions with the plant is a critical step. To identify type III effector (T3E) repertoires associated with virulence of the bacterial wilt pathogen Ralstonia solanacearum on Solanaceous crops, we used an original association genetics approach combining DNA microarray data and pathogenicity data on resistant eggplant, pepper, and tomato accessions. From this first screen, 25 T3Es were further full-length polymerase chain reaction-amplified within a 35-strain field collection, to assess their distribution and allelic diversity. Six T3E repertoire groups were identified, within which 11 representative strains were chosen to challenge the bacterial wilt-resistant egg plants 'Dingras multiple Purple' and 'AG91-25', and tomato Hawaii 7996. The virulence or avirulence phenotypes could not be explained by specific T3E repertoires, but rather by individual T3E genes. We identified seven highly avirulence-associated genes, among which ripP2, primarily referenced as conferring avirulence to Arabidopsis thaliana. Interestingly, no T3E was associated with avirulence to both egg-plants. Highly virulence-associated genes were also identified: ripA5_2, ripU, and ripV2. This study should be regarded as a first step toward investigating both avirulence and virulence function of the highlighted genes, but also their evolutionary dynamics in natural R. solanacearum populations.
Collapse
Affiliation(s)
- Flora Pensec
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| | - Aurore Lebeau
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| | - M C Daunay
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| | - Frédéric Chiroleu
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| | - Alice Guidot
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| | - Emmanuel Wicker
- First, second, fourth, and sixth authors: CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint-Pierre, La Réunion, France; third author: INRA, Centre d'Avignon, Unité de Génétique et Amélioration des Fruits et Légumes, UR1052, Montfavet, France; and fifth author: INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes (LIPM), Castanet-Tolosan, France. Current address of first author: Institut National de la Recherche Agronomique, UMR A 1131 Santé de la Vigne et Qualité du Vin (SVQV), Colmar, France. Université de Strasbourg, Strasbourg, France
| |
Collapse
|
79
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
80
|
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions. Int J Mol Sci 2015; 16:23177-94. [PMID: 26404238 PMCID: PMC4632692 DOI: 10.3390/ijms161023177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Collapse
|
81
|
Du Y, Berg J, Govers F, Bouwmeester K. Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. THE NEW PHYTOLOGIST 2015; 207:735-47. [PMID: 25760731 DOI: 10.1111/nph.13355] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 05/21/2023]
Abstract
Resistance against oomycete pathogens is mainly governed by intracellular nucleotide-binding leucine-rich repeat (NLR) receptors that recognize matching avirulence (AVR) proteins from the pathogen, RXLR effectors that are delivered inside host cells. Detailed molecular understanding of how and where NLR proteins and RXLR effectors interact is essential to inform the deployment of durable resistance (R) genes. Fluorescent tags, nuclear localization signals (NLSs) and nuclear export signals (NESs) were exploited to determine the subcellular localization of the potato late blight protein R1 and the Phytophthora infestans RXLR effector AVR1, and to target these proteins to the nucleus or cytoplasm. Microscopic imaging revealed that both R1 and AVR1 occurred in the nucleus and cytoplasm, and were in close proximity. Transient expression of NLS- or NES-tagged R1 and AVR1 in Nicotiana benthamiana showed that activation of the R1-mediated hypersensitive response and resistance required localization of the R1/AVR1 pair in the nucleus. However, AVR1-mediated suppression of cell death in the absence of R1 was dependent on localization of AVR1 in the cytoplasm. Balanced nucleocytoplasmic partitioning of AVR1 seems to be a prerequisite. Our results show that R1-mediated immunity is activated inside the nucleus with AVR1 in close proximity and suggest that nucleocytoplasmic transport of R1 and AVR1 is tightly regulated.
Collapse
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Jeroen Berg
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
82
|
Duwadi K, Chen L, Menassa R, Dhaubhadel S. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production. PLoS One 2015; 10:e0130556. [PMID: 26148064 PMCID: PMC4493103 DOI: 10.1371/journal.pone.0130556] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL)-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP) in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10) were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER), suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.
Collapse
Affiliation(s)
- Kishor Duwadi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, ON, Canada
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada
| |
Collapse
|
83
|
Lee HA, Yeom SI. Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Brief Funct Genomics 2015; 14:233-42. [DOI: 10.1093/bfgp/elv012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
84
|
Hewezi T, Juvale PS, Piya S, Maier TR, Rambani A, Rice JH, Mitchum MG, Davis EL, Hussey RS, Baum TJ. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis. THE PLANT CELL 2015; 27:891-907. [PMID: 25715285 PMCID: PMC4558665 DOI: 10.1105/tpc.114.135327] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Abstract
Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Parijat S Juvale
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Tom R Maier
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011
| | - Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Eric L Davis
- North Carolina State University, Raleigh, North Carolina 27695
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602
| | - Thomas J Baum
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
85
|
Davies LJ, Zhang L, Elling AA. The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The root-knot nematode Meloidogyne chitwoodi secretes effector proteins into the cells of host plants to manipulate plant-derived processes in order to achieve successful parasitism. Mc1194 is a M. chitwoodi effector that is highly expressed in pre-parasitic second-stage juvenile nematodes. Yeast two-hybrid assays revealed Mc1194 specifically interacts with a papain-like cysteine protease (PLCP), RD21A in Arabidopsis thaliana. Mc1194 interacts with both the protease and granulin domains of RD21A. PLCPs are targeted by effectors secreted by bacterial, fungal and oomycete pathogens and the hypersusceptibility of rd21-1 mutants to M. chitwoodi indicates RD21A plays a role in plant-parasitic nematode infection.
Collapse
Affiliation(s)
- Laura J. Davies
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
86
|
Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJCB, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LAB, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 2014; 5:5110. [PMID: 25300236 DOI: 10.1038/ncomms610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/27/2014] [Indexed: 05/28/2023] Open
Abstract
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
Collapse
Affiliation(s)
- Wenquan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Binxiao Feng
- 1] Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China [2] Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingfa Xiao
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Xincheng Zhou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Pinghua Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Weixiong Zhang
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Ying Wang
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Peng Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Gong Xiao
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Jingxing Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jun Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Songbi Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xin Chen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Henan Ceballos
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Zou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Luiz J C B Carvalho
- Brazilian Enterprise for Agricultural Research (EMBRAPA), Genetic Resources and Biotechnology, Brasilia 70770, Brazil
| | - Changying Zeng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jing Xia
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Shixiang Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhua Fu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Haiyan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Cheng Lu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mengbin Ruan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhicheng Wu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Hui Liu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Rubini Maya Kannangara
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Rebecca Louise Neale
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Maya Bonde
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Nanna Heinz
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Wenli Zhu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Shujuan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Yang Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Kun Pan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mingfu Wen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Ping-An Ma
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengxu Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Meizhen Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Liao
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shengkui Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jinli Pei
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jianchun Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengwen Zhang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jianqiu Ye
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Wenjun Ou
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Yaqin Ma
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Xinyue Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kevin Galens
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jie Huang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingjing Xue
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Feifei An
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qingqun Yao
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Xiaojing Lu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Martin Fregene
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | | | - Jiajie Wu
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Frank M You
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Meili Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guojiang Wu
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ling
- Citrus Research and Education Center (CREC), University of Florida, Gainesville, Florida 32611, USA
| | - Yeyuan Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qinghuang Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Guodao Liu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Bin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Biogeography and Bioresources in Arid Land, Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
| | - Kaimian Li
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Ming Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| |
Collapse
|
87
|
Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJCB, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LAB, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 2014; 5:5110. [PMID: 25300236 PMCID: PMC4214410 DOI: 10.1038/ncomms6110] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
Collapse
Affiliation(s)
- Wenquan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Binxiao Feng
- 1] Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China [2] Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingfa Xiao
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Xincheng Zhou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Pinghua Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Weixiong Zhang
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Ying Wang
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Peng Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Gong Xiao
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Jingxing Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jun Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Songbi Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xin Chen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Henan Ceballos
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Zou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Luiz J C B Carvalho
- Brazilian Enterprise for Agricultural Research (EMBRAPA), Genetic Resources and Biotechnology, Brasilia 70770, Brazil
| | - Changying Zeng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jing Xia
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Shixiang Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhua Fu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Haiyan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Cheng Lu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mengbin Ruan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhicheng Wu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Hui Liu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Rubini Maya Kannangara
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Rebecca Louise Neale
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Maya Bonde
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Nanna Heinz
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Wenli Zhu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Shujuan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Yang Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Kun Pan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mingfu Wen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Ping-An Ma
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengxu Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Meizhen Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Liao
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shengkui Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jinli Pei
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jianchun Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengwen Zhang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jianqiu Ye
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Wenjun Ou
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Yaqin Ma
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Xinyue Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kevin Galens
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jie Huang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingjing Xue
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Feifei An
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qingqun Yao
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Xiaojing Lu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Martin Fregene
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | | | - Jiajie Wu
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Frank M You
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Meili Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guojiang Wu
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ling
- Citrus Research and Education Center (CREC), University of Florida, Gainesville, Florida 32611, USA
| | - Yeyuan Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qinghuang Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Guodao Liu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Bin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Biogeography and Bioresources in Arid Land, Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
| | - Kaimian Li
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Ming Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| |
Collapse
|
88
|
Zhang B, Tremousaygue D, Denancé N, van Esse HP, Hörger AC, Dabos P, Goffner D, Thomma BPHJ, van der Hoorn RAL, Tuominen H. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1009-19. [PMID: 24947605 PMCID: PMC4321228 DOI: 10.1111/tpj.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/18/2023]
Abstract
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R. solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| | - Dominique Tremousaygue
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Nicolas Denancé
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - H Peter van Esse
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anja C Hörger
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Patrick Dabos
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Deborah Goffner
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| |
Collapse
|
89
|
Deslandes L, Genin S. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:110-7. [PMID: 24880553 DOI: 10.1016/j.pbi.2014.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 05/19/2023]
Abstract
Effectors delivered to host cells by the Type III secretion system are essential to Ralstonia solanacearum pathogenicity, as in several other plant pathogenic bacteria. The establishment of exhaustive effector repertoires in multiple R. solanacearum strains drew a first picture of the evolutionary dynamics of the pathogen effector suites. Effector repertoires are diversified, with a core of 20-30 effectors present in most of the strains and the obtention of mutants lacking one or more effector genes revealed the functional overlap among this effector network. Recent functional studies have provided insights into the ability of single effectors to manipulate the host proteasome, elicit cell death, trigger the expression of plant genes, and/or display biochemical activities on plant protein targets.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France
| | - Stephane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan F-31326, France.
| |
Collapse
|
90
|
Dang F, Wang Y, She J, Lei Y, Liu Z, Eulgem T, Lai Y, Lin J, Yu L, Lei D, Guan D, Li X, Yuan Q, He S. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. PHYSIOLOGIA PLANTARUM 2014; 150:397-411. [PMID: 24032447 DOI: 10.1111/ppl.12093] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 05/20/2023]
Abstract
WRKY proteins are encoded by a large gene family and are linked to many biological processes across a range of plant species. The functions and underlying mechanisms of WRKY proteins have been investigated primarily in model plants such as Arabidopsis and rice. The roles of these transcription factors in non-model plants, including pepper and other Solanaceae, are poorly understood. Here, we characterize the expression and function of a subgroup IIe WRKY protein from pepper (Capsicum annuum), denoted as CaWRKY27. The protein localized to nuclei and activated the transcription of a reporter GUS gene construct driven by the 35S promoter that contained two copies of the W-box in its proximal upstream region. Inoculation of pepper cultivars with Ralstonia solanacearum induced the expression of CaWRKY27 transcript in 76a, a bacterial wilt-resistant pepper cultivar, whereas it downregulated the expression of CaWRKY27 transcript in Gui-1-3, a bacterial wilt-susceptible pepper cultivar. CaWRKY27 transcript levels were also increased by treatments with salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH). Transgenic tobacco plants overexpressing CaWRKY27 exhibited resistance to R. solanacearum infection compared to that of wild-type plants. This resistance was coupled with increased transcript levels in a number of marker genes, including hypersensitive response genes, and SA-, JA- and ET-associated genes. By contrast, virus-induced gene silencing (VIGS) of CaWRKY27 increased the susceptibility of pepper plants to R. solanacearum infection. These results suggest that CaWRKY27 acts as a positive regulator in tobacco resistance responses to R. solanacearum infection through modulation of SA-, JA- and ET-mediated signaling pathways.
Collapse
Affiliation(s)
- Fengfeng Dang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Wang ZQ, Xu XY, Gong QQ, Xie C, Fan W, Yang JL, Lin QS, Zheng SJ. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteomics 2014; 98:189-205. [PMID: 24412201 DOI: 10.1016/j.jprot.2013.12.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/13/2013] [Accepted: 12/27/2013] [Indexed: 01/06/2023]
Abstract
One of the major limitations to crop growth on acid soils is the prevalence of soluble aluminum ions (Al(3+)). Rice (Oryza sativa L.) has been reported to be highly Al tolerant; however, large-scale proteomic data of rice in response to Al(3+) are still very scanty. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of the expression profiles of proteins in rice roots in response to Al(3+) at an early phase. A total of 700 distinct proteins (homologous proteins grouped together) with >95% confidence were identified. Among them, 106 proteins were differentially expressed upon Al(3+) toxicity in sensitive and tolerant cultivars. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was the most significantly up-regulated biochemical process in response to excess Al(3+). The mRNA levels of eight proteins mapped in the glycolysis/gluconeogenesis were further analyzed by qPCR and the expression levels of all the eight genes were higher in tolerant cultivar than in sensitive cultivar, suggesting that these compounds may promote Al tolerance by modulating the production of available energy. Although the exact roles of these putative tolerance proteins remain to be examined, our data lead to a better understanding of the Al tolerance mechanisms in rice plants through the proteomics approach. BIOLOGICAL SIGNIFICANCE Aluminum (mainly Al(3+)) is one of the major limitations to the agricultural productivity on acid soils and causes heavy yield loss every year. Rice has been reported to be highly Al tolerant; however, the mechanisms of rice Al tolerance are still not fully understood. Here, a combined proteomics, bioinformatics and qPCR analysis revealed that Al(3+) invasion caused complex proteomic changes in rice roots involving energy, stress and defense, protein turnover, metabolism, signal transduction, transport and intracellular traffic, cell structure, cell growth/division, and transcription. Promotion of the glycolytic/gluconeogenetic pathway in roots appeared crucially important for Al tolerance. These results lead to a better understanding of the Al tolerance mechanisms in rice and help to improve plant performance on acid soils, eventually to increase the crop production.
Collapse
Affiliation(s)
- Zhan Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiao Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiao Qiao Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen Xie
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100101, China.
| | - Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qi Shan Lin
- UAlbany Proteomics Facility, Center for Functional Genomics, University at Albany, Rensselaer, NY 12144, USA.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
92
|
Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 2013; 14:859. [PMID: 24314259 PMCID: PMC3878972 DOI: 10.1186/1471-2164-14-859] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background Ralstonia solanacearum is a soil-borne beta-proteobacterium that causes bacterial wilt disease in many food crops and is a major problem for agriculture in intertropical regions. R. solanacearum is a heterogeneous species, both phenotypically and genetically, and is considered as a species complex. Pathogenicity of R. solanacearum relies on the Type III secretion system that injects Type III effector (T3E) proteins into plant cells. T3E collectively perturb host cell processes and modulate plant immunity to enable bacterial infection. Results We provide the catalogue of T3E in the R. solanacearum species complex, as well as candidates in newly sequenced strains. 94 T3E orthologous groups were defined on phylogenetic bases and ordered using a uniform nomenclature. This curated T3E catalog is available on a public website and a bioinformatic pipeline has been designed to rapidly predict T3E genes in newly sequenced strains. Systematical analyses were performed to detect lateral T3E gene transfer events and identify T3E genes under positive selection. Our analyses also pinpoint the RipF translocon proteins as major discriminating determinants among the phylogenetic lineages. Conclusions Establishment of T3E repertoires in strains representatives of the R. solanacearum biodiversity allowed determining a set of 22 T3E present in all the strains but provided no clues on host specificity determinants. The definition of a standardized nomenclature and the optimization of predictive tools will pave the way to understanding how variation of these repertoires is correlated to the diversification of this species complex and how they contribute to the different strain pathotypes.
Collapse
Affiliation(s)
- Nemo Peeters
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
93
|
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. THE PLANT CELL 2013; 25:3785-807. [PMID: 24179129 PMCID: PMC3877795 DOI: 10.1105/tpc.113.115428] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/14/2013] [Indexed: 05/06/2023]
Abstract
Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes flowering locus t, suppressor of overexpression of CO1, and leafy, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that dehydration response element B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB domain protein 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought.
Collapse
Affiliation(s)
- Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Huihong Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bin Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Sarah M. Assmann
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
94
|
Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, Bergelson J, Roux F, Roby D. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genet 2013; 9:e1003766. [PMID: 24068949 PMCID: PMC3772041 DOI: 10.1371/journal.pgen.1003766] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops. During the evolution of plant-pathogen interactions, plants have evolved the capability to defend themselves from pathogen infection by different overlapping mechanisms. Disease resistance is constituted by an elaborate, multilayered system of defense. Among these responses, quantitative resistance is a prevalent form of resistance in crops and natural plant populations, for which the genetic and molecular bases remain largely unknown. Thus, identification of the genes underlying quantitative resistance constitutes a major challenge in plant breeding and evolutionary biology, and might have enormous practical implications for human health by increasing crop yield and quality. Our work contributes to understanding the molecular bases of quantitative resistance to the vascular pathogen Xanthomonas campestris (Xc), which is responsible for black rot, an important disease of crucifers worldwide. By multiple approaches, we demonstrate that RKS1 is a quantitative resistance gene in Arabidopsis thaliana conferring broad-spectrum resistance to Xc and that this resistance mechanism in plants is associated with regulation of RKS1 expression. We also provide evidence that RKS1 allelic variation is a major component of quantitative resistance to Xc at the species level. Finally, the long-lived polymorphism associated with RKS1 suggests that evolutionary stable broad-spectrum resistance to Xc may be achieved in natural populations of A. thaliana.
Collapse
Affiliation(s)
- Carine Huard-Chauveau
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Laure Perchepied
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Marilyne Debieu
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille, Lille, Villeneuve d'Ascq, France
| | - Susana Rivas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Thomas Kroj
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Ilona Kars
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Fabrice Roux
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille, Lille, Villeneuve d'Ascq, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
95
|
Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. MOLECULAR PLANT PATHOLOGY 2013; 14:651-62. [PMID: 23718203 PMCID: PMC6638647 DOI: 10.1111/mpp.12038] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. TAXONOMY Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia. DISEASE SYMPTOMS Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. DISEASE CONTROL As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. USEFUL WEBSITES Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?
Collapse
Affiliation(s)
- Nemo Peeters
- INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| | | | | | | |
Collapse
|
96
|
Segura-Cabrera A, García-Pérez CA, Guo X, Rodríguez-Pérez MA. A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS One 2013; 8:e71526. [PMID: 23951184 PMCID: PMC3738538 DOI: 10.1371/journal.pone.0071526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022] Open
Abstract
Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets.
Collapse
Affiliation(s)
- Aldo Segura-Cabrera
- Laboratorio de Bioinformática, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México.
| | | | | | | |
Collapse
|
97
|
Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens. THE NEW PHYTOLOGIST 2013; 198:1001-1016. [PMID: 23594392 DOI: 10.1111/nph.12277] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens have evolved a variety of strategies to enter plant hosts and cause disease. In particular, biotrophic pathogens, which parasitize living plant tissue, establish sophisticated interactions in which they modulate the plant's metabolism to their own good. The prime decision, whether or not a pathogen can accommodate itself in its host tissue, is made during the initial phase of infection. At this stage, the plant immune system recognizes conserved molecular patterns of the invading microbe, which initiate a set of basal immune responses. Induced plant defense proteins, toxic compounds and antimicrobial proteins encounter a broad arsenal of pathogen-derived virulence factors that aim to disarm host immunity. Crucial regulatory processes and protein-protein interactions take place in the apoplast, that is, intercellular spaces, plant cell walls and defined host-pathogen interfaces which are formed between the plant cytoplasm and the specialized infection structures of many biotrophic pathogens. This article aims to provide an insight into the most important principles and components of apoplastic plant immunity and its modulation by filamentous microbial pathogens.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
98
|
A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virol J 2013; 10:164. [PMID: 23710752 PMCID: PMC3672095 DOI: 10.1186/1743-422x-10-164] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. RESULTS Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. CONCLUSIONS Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.
Collapse
|
99
|
Un Huh S, Paek KH. Role of Arabidopsis Pumilio RNA binding protein 5 in virus infection. PLANT SIGNALING & BEHAVIOR 2013; 8:e23975. [PMID: 23511198 PMCID: PMC3906142 DOI: 10.4161/psb.23975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Regulation of gene expression is mediated by diverse RNA binding proteins which play important roles in development and defense processes. Pumilio/FBF (Puf) protein in mammals functions as a posttranscriptional/translational repressor by binding to the 3' UTR regions of its target mRNAs. Previous study reported that APUM5 provides protection against CMV infection by directly binding to CMV RNAs in Arabidopsis. CMV RNAs contain putative Pumilio-binding motifs and APUM5 bound to the 3' UTR and some of its internal motifs both in vitro and in vivo. APUM5 works as a negative regulator of the 3' UTR of CMV and it might regulate CMV replication. Our findings suggest that APUM5 acts as a defensive repressor in plants during CMV infection. However, functions of APUM5 and other APUM members are still not clear and more studies are needed to find out the interacting partners and target mRNAs in host plant.
Collapse
|
100
|
Coll NS, Valls M. Current knowledge on the Ralstonia solanacearum type III secretion system. Microb Biotechnol 2013; 6:614-20. [PMID: 23617636 PMCID: PMC3815929 DOI: 10.1111/1751-7915.12056] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG).Edifici CRAG, Campus UAB, 08193, Bellaterra, Catalonia, Spain
| | | |
Collapse
|