51
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
52
|
Rathour M, Shumayla, Alok A, Upadhyay SK. Investigation of Roles of TaTALE Genes during Development and Stress Response in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:587. [PMID: 35270056 PMCID: PMC8912380 DOI: 10.3390/plants11050587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 08/27/2023]
Abstract
The three amino acid loop extension (TALE) genes of the homeobox superfamily are responsible for numerous biological functions in plants. Herein, we identified a total of 72 TaTALE genes in the allohexaploid genome of bread wheat (Triticum aestivum L.) and performed a comprehensive investigation for gene and protein structural properties, phylogeny, expression patterns, and multilevel gene regulations. The identified TaTALE proteins were further classified into two groups, TaBLHs and TaKNOXs, which were tightly clustered into the phylogeny. The negative Ka/Ks ratio of duplicated genes suggested purifying selection pressure with confined functional divergence. Various signature domains and motifs were found conserved in both groups of proteins. The occurrence of diverse cis-regulatory elements and modulated expression during various developmental stages and in the presence of abiotic (heat, drought, salt) and two different fungal stresses suggested their roles in development and stress response, as well. The interaction of TaTALEs with the miRNAs and other development-related homeobox proteins also suggested their roles in growth and development and stress response. The present study revealed several important aspects of TaTALEs that will be useful in further functional validation of these genes in future studies.
Collapse
Affiliation(s)
- Meenakshi Rathour
- Department of Botany, Panjab University, Chandigarh 160014, India; (M.R.); (S.)
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India; (M.R.); (S.)
| | - Anshu Alok
- Department of Plant Pathology, University of Minnesota, Twin Cities, Saint Paul, MN 55108, USA;
| | | |
Collapse
|
53
|
Liu H, Jiang L, Wen Z, Yang Y, Singer SD, Bennett D, Xu W, Su Z, Yu Z, Cohn J, Chae H, Que Q, Liu Y, Liu C, Liu Z. Rice RS2-9, which is bound by transcription factor OSH1, blocks enhancer-promoter interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:541-554. [PMID: 34773305 PMCID: PMC9303810 DOI: 10.1111/tpj.15574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 05/13/2023]
Abstract
Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.2-kb RS2-9 insulator from the Oryza sativa (rice) genome that can, when interposed between an enhancer and promoter, efficiently block the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and Nicotiana tabacum (tobacco). In the rice genome, the genes flanking RS2-9 exhibit an absence of mutual transcriptional interactions, as well as a lack of histone modification spread. We further determined that O. sativa Homeobox 1 (OSH1) bound two regions of RS2-9, as well as over 50 000 additional sites in the rice genome, the majority of which resided in intergenic regions. Mutation of one of the two OSH1-binding sites in RS2-9 impaired insulation activity by up to 60%, whereas the mutation of both binding sites virtually abolished insulator function. We also demonstrated that OSH1 binding sites were associated with 72% of the boundaries of topologically associated domains (TADs) identified in the rice genome, which is comparable to the 77% of TAD boundaries bound by the insulator CCCTC-binding factor (CTCF) in mammals. Taken together, our findings indicate that OSH1-RS2-9 acts as a true insulator in plants, and highlight a potential role for OSH1 in gene insulation and topological organization in plant genomes.
Collapse
Affiliation(s)
- Huawei Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Li Jiang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhifeng Wen
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjun Yang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- Forestry CollegeHenan University of Science and TechnologyLuoyang471023China
| | - Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeAlbertaT1J 4B1Canada
| | - Dennis Bennett
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhifang Yu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jonathan Cohn
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Hyunsook Chae
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Yue Liu
- College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Chang Liu
- Department of EpigeneticsUniversity of HohenheimStuttgart70599Germany
| | - Zongrang Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| |
Collapse
|
54
|
Hormonal Regulatory Patterns of LaKNOXs and LaBEL1 Transcription Factors Reveal Their Potential Role in Stem Bulblet Formation in LA Hybrid Lily. Int J Mol Sci 2021; 22:ijms222413502. [PMID: 34948303 PMCID: PMC8703980 DOI: 10.3390/ijms222413502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
In lily reproduction, the mechanism of formation of bulbs has been a hot topic. However, studies on stem bulblet formation are limited. Stem bulblets, formed in the leaf axils of under- and above-ground stems, provide lilies with a strong capacity for self-propagation. First, we showed that above-ground stem bulblets can be induced by spraying 100 mg/L 6-BA on the LA hybrid lily 'Aladdin', with reduced endogenous IAA and GA4 and a higher relative content of cytokinins. Then, expression patterns of three potential genes (two KNOTTED1-like homeobox (KNOX) and one partial BEL1-like homeobox (BELL)), during stem bulblet formation from our previous study, were determined by RT-qPCR, presenting a down-up trend in KNOXs and a rising tendency in BELL. The partial BELL gene was cloned by RACE from L. 'Aladdin' and denoted LaBEL1. Physical interactions of LaKNOX1-LaBEL1 and LaKNOX1-LaKNOX2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Furthermore, hormonal regulatory patterns of single LaKNOX1, LaKNOX2, LaBEL1, and their heterodimers, were revealed in transgenic Arabidopsis, suggesting that the massive mRNA accumulations of LaKNOX1, LaKNOX2 and LaBEL1 genes during stem bulblet formation could cause the dramatic relative increase of cytokinins and the decline of GAs and IAA. Taken together, a putative model was proposed that LaKNOX1 interacts with LaKNOX2 and LaBEL1 to regulate multiple phytohormones simultaneously for an appropriate hormonal homeostasis, which suggests their potential role in stem bulblet formation in L. 'Aladdin'.
Collapse
|
55
|
Guo B, Zeng S, Yin Y, Li L, Ma G, Wu K, Fang L. Characterization of phytohormone and transcriptome profiles during protocorm-like bodies development of Paphiopedilum. BMC Genomics 2021; 22:806. [PMID: 34749655 PMCID: PMC8576892 DOI: 10.1186/s12864-021-08087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.
Collapse
Affiliation(s)
- Beiyi Guo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Yuying Yin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
56
|
Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2304-2318. [PMID: 34800075 PMCID: PMC8541776 DOI: 10.1111/pbi.13661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Panicle architecture is a key determinant of grain yield in cereals, but the mechanisms governing panicle morphogenesis and organ development remain elusive. Here, we have identified a quantitative trait locus (qPA1) associated with panicle architecture using chromosome segment substitution lines from parents Nipponbare and 9311. The panicle length, branch number and grain number of Nipponbare were significantly higher than CSSL-9. Through map-based cloning and complementation tests, we confirmed that qPA1 was identical to SD1 (Semi Dwarf1), which encodes a gibberellin 20-oxidase enzyme participating in gibberellic acid (GA) biosynthesis. Transcript analysis revealed that SD1 was widely expressed during early panicle development. Analysis of sd1/osga20ox2 and gnp1/ osga20ox1 single and double mutants revealed that the two paralogous enzymes have non-redundant functions during panicle development, likely due to differences in spatiotemporal expression; GNP1 expression under control of the SD1 promoter could rescue the sd1 phenotype. The DELLA protein SLR1, a component of the GA signalling pathway, accumulated more highly in sd1 plants. We have demonstrated that SLR1 physically interacts with the meristem identity class I KNOTTED1-LIKE HOMEOBOX (KNOX) protein OSH1 to repress OSH1-mediated activation of downstream genes related to panicle development, providing a mechanistic link between gibberellin and panicle architecture morphogenesis.
Collapse
Affiliation(s)
- Su Su
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuwei Chang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Agriculture, Food and WineUniversity of AdelaideUrrbraeSAAustralia
| |
Collapse
|
57
|
Strable J, Nelissen H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102038. [PMID: 33940553 DOI: 10.1016/j.pbi.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.
Collapse
Affiliation(s)
- Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA 27695.
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
58
|
Gao K, Zha WL, Zhu JX, Zheng C, Zi JC. A review: biosynthesis of plant-derived labdane-related diterpenoids. Chin J Nat Med 2021; 19:666-674. [PMID: 34561077 DOI: 10.1016/s1875-5364(21)60100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a labdane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane, kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharmaceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene synthases and cytochrome P450 enzymes) were summarized in this review.
Collapse
Affiliation(s)
- Ke Gao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Long Zha
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian-Xun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou 310052, China.
| | - Jia-Chen Zi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
59
|
Song X, Zhao Y, Wang J, Lu MZ. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5625-5637. [PMID: 33987654 DOI: 10.1093/jxb/erab201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 05/11/2023]
Abstract
Plant architecture is genetically controlled, but is influenced by environmental factors. Plants have evolved adaptive mechanisms that allow changes in their architecture under stress, in which phytohormones play a central role. However, the gene regulators that connect growth and stress signals are rarely reported. Here, we report that a class I KNOX gene, PagKNAT2/6b, can directly inhibit the synthesis of gibberellin (GA), altering plant architecture and improving drought resistance in Populus. Expression of PagKNAT2/6b was significantly induced under drought conditions, and transgenic poplars overexpressing PagKNAT2/6b exhibited shorter internode length and smaller leaf size with short or even absent petioles. Interestingly, these transgenic plants showed improved drought resistance under both short- and long-term drought stress. Histological observations indicated that decreased internode length and leaf size were mainly caused by the inhibition of cell elongation and expansion. GA content was reduced, and the GA20-oxidase gene PagGA20ox1 was down-regulated in overexpressing plants. Expression of PagGA20ox1 was negatively related to that of PagKNAT2/6b under drought stress. ChIP and transient transcription activity assays revealed that PagGA20ox1 was directly targeted by PagKNAT2/6b. Therefore, this study provides evidence that PagKNAT2/6b mediates stress signals and changes in plant architecture via GA signaling by down-regulating PagGA20ox1.
Collapse
Affiliation(s)
- Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, China
| | - Yanqiu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jinnan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
60
|
Hsieh KT, Chen YT, Hu TJ, Lin SM, Hsieh CH, Liu SH, Shiue SY, Lo SF, Wang IW, Tseng CS, Chen LJ. Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. RICE (NEW YORK, N.Y.) 2021; 14:70. [PMID: 34322729 PMCID: PMC8319247 DOI: 10.1186/s12284-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted. RESULTS Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants. Compared to that of wild-type plants, the relative plant height (RPH) of transgenic plants was scored to estimate their reducing effects, and 8.3% to 59.5% RPH was observed. Phylogenetic analysis of class I GA2ox genes revealed two functionally distinct clades in the Poaceae. The OsGA2ox3, 4, and 8 genes belonging to clade A showed the most severe effect (8.3% to 8.7% RPH) on plant height reduction, whereas the OsGA2ox7 gene belonging to clade B showed the least severe effect (59.5% RPH). The clade A OsGA2ox3 gene contained two conserved C186/C194 amino acids that were crucial for enzymatic activity. In the present study, these amino acids were replaced with OsGA2ox7-conserved arginine (C186R) and proline (C194P), respectively, or simultaneously (C186R/C194P) to demonstrate their importance in planta. Another two amino acids, Q220 and Y274, conserved in OsGA2ox3 were substituted with glutamic acid (E) and phenylalanine (F), respectively, or simultaneously to show their significance in planta. In addition, through sequence divergence, RNA expression profile and GA deactivation capability analyses, we proposed that OsGA2ox1, OsGA2ox3 and OsGA2ox6 function as the predominant paralogs in each of their respective classes. CONCLUSIONS This study demonstrates rice has nine functional GA2oxs and the class I GA2ox genes are divided into two functionally distinct clades. Among them, the OsGA2ox7 of clade B is a functional attenuated gene and the OsGA2ox1, OsGA2ox3 and OsGA2ox6 are the three predominant paralogs in the family.
Collapse
Affiliation(s)
- Kun-Ting Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ting Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ting-Jen Hu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Min Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hung Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Su-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiau-Yu Shiue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Wen Wang
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Ching-Shan Tseng
- Division of Biotechnology, Taiwan Agriculture Research Institute, Taichung, 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
61
|
Ci J, Wang X, Wang Q, Zhao F, Yang W, Cui X, Jiang L, Ren X, Yang W. Genome-wide analysis of gibberellin-dioxygenases gene family and their responses to GA applications in maize. PLoS One 2021; 16:e0250349. [PMID: 33961636 PMCID: PMC8104384 DOI: 10.1371/journal.pone.0250349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Gibberellin-dioxygenases genes plays important roles in the regulating plant development. However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic analysis. This result was also further confirmed by their gene structure and conserved motif characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes showed different tissue expression pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberellin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA treatment than that under normal condition in leaf sheath. In addition, we found that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles in plant development. These findings will increase our understanding of Gibberellin-dioxygenases gene family in response to GA and will provide a solid base for further functional characterization of Gibberellin-dioxygenases genes in maize.
Collapse
Affiliation(s)
- Jiabin Ci
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xingyang Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Fuxing Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wei Yang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xueyu Cui
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning, China
| | - Liangyu Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xuejiao Ren
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Weiguang Yang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
62
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3688-3703. [PMID: 33712830 PMCID: PMC8096603 DOI: 10.1093/jxb/erab106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Present address: KWS Saat SE, Grimsehlstraße 31, D-37574 Einbeck, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
- Correspondence:
| |
Collapse
|
63
|
Rüscher D, Corral JM, Carluccio AV, Klemens PAW, Gisel A, Stavolone L, Neuhaus HE, Ludewig F, Sonnewald U, Zierer W. Auxin signaling and vascular cambium formation enable storage metabolism in cassava tuberous roots. JOURNAL OF EXPERIMENTAL BOTANY 2021. [PMID: 33712830 DOI: 10.5061/dryad.0cfxpnw0t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cassava storage roots are among the most important root crops worldwide, and represent one of the most consumed staple foods in sub-Saharan Africa. The vegetatively propagated tropical shrub can form many starchy tuberous roots from its stem. These storage roots are formed through the activation of secondary root growth processes. However, the underlying genetic regulation of storage root development is largely unknown. Here we report distinct structural and transcriptional changes occurring during the early phases of storage root development. A pronounced increase in auxin-related transcripts and the transcriptional activation of secondary growth factors, as well as a decrease in gibberellin-related transcripts were observed during the early stages of secondary root growth. This was accompanied by increased cell wall biosynthesis, most notably increased during the initial xylem expansion within the root vasculature. Starch storage metabolism was activated only after the formation of the vascular cambium. The formation of non-lignified xylem parenchyma cells and the activation of starch storage metabolism coincided with increased expression of the KNOX/BEL genes KNAT1, PENNYWISE, and POUND-FOOLISH, indicating their importance for proper xylem parenchyma function.
Collapse
Affiliation(s)
- David Rüscher
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - José María Corral
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Anna Vittoria Carluccio
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Patrick A W Klemens
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Andreas Gisel
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Biomedical Technologies, CNR, Bari, Italy
| | - Livia Stavolone
- International Institute for Tropical Agriculture, Ibadan, Oyo State, Nigeria
- Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - H Ekkehard Neuhaus
- Technical University Kaiserslautern, Department of Biology, Division of Plant Physiology, Erwin-Schrödinger-Str. 22, Kaiserslautern, Germany
| | - Frank Ludewig
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Division of Biochemistry, Staudtstrasse 5, Erlangen, Germany
| |
Collapse
|
64
|
Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genet 2021; 17:e1009537. [PMID: 33901177 PMCID: PMC8102002 DOI: 10.1371/journal.pgen.1009537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants. Morphogenesis and differentiation are crucial steps in the formation and shaping of organs in both plants and animals. A wide array of transcription factors and hormones were shown to act together to support morphogenesis or promote differentiation. However, a comprehensive molecular and genetic understating of how morphogenesis and differentiation are coordinated during development is still missing. We addressed these questions in the context of the development of the tomato compound leaf, for which many regulators have been described. Investigating the coordination among these different actors, we show that several discrete genetic pathways promote differentiation. Downstream of these separate pathways, two important plant hormones, cytokinin and gibberellin, act antagonistically to tweak the morphogenesis-differentiation balance.
Collapse
|
65
|
Zhang J, Li J, Ni Y, Jiang Y, Jiao Z, Li H, Wang T, Zhang P, Han M, Li L, Liu H, Li Q, Niu J. Key wheat GRF genes constraining wheat tillering of mutant dmc. PeerJ 2021; 9:e11235. [PMID: 33889451 PMCID: PMC8038642 DOI: 10.7717/peerj.11235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Tillering is a key agronomy trait for wheat (Triticum aestivum L.) production. Previously, we have reported a dwarf-monoculm wheat mutant (dmc) obtained from cultivar Guomai 301 (wild type, WT), and found growth regulating factors (GRFs) playing important roles in regulating wheat tillering. This study is to systematically investigate the roles of all the wheat GRFs (T. aestivum GRFs, TaGRFs) in regulating tillering, and screen out the key regulators. A total of 30 TaGRFs were identified and their physicochemical properties, gene structures, conserved domains, phylogenetic relationships and tissue expression profiles were analyzed. The expression levels of all the TaGRFs were significantly lower in dmc than those in WT at early tillering stage, and the abnormal expressions of TaGRF2-7(A, B, D), TaGRF5-7D, TaGRF10-6(A, B, D) and TaGRF11-2A were major causes constraining the tillering of dmc. The transcriptions of TaGRFs were significantly affected by exogenous indole acetic acid (IAA) and gibberellin acid (GA3) applications, which suggested that TaGRFs as well as IAA, GA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of GRF genes in wheat.
Collapse
Affiliation(s)
- Jing Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Yumei Jiang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Ting Wang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Peipei Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Mengyao Han
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Lei Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Hongjie Liu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Qiaoyun Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| |
Collapse
|
66
|
Leiboff S, Strable J, Johnston R, Federici S, Sylvester AW, Scanlon MJ. Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. THE NEW PHYTOLOGIST 2021; 230:218-227. [PMID: 33280125 DOI: 10.1111/nph.17132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves. Mutations disturbing the ligule/auricle region disrupt leaf patterning and impact plant architecture, yet it is unclear how this developmental boundary is established. Targeted microdissection followed by transcriptomic analyses of young leaf primordia were utilized to construct a co-expression network associated with development of the blade/sheath boundary. Evidence is presented for proximodistal gradients of gene expression that establish a prepatterned transcriptomic boundary in young leaf primordia, before the morphological initiation of the blade/sheath boundary in older leaves. This work presents a conceptual model for spatiotemporal patterning of proximodistal leaf domains, and provides a rich resource of candidate gene interactions for future investigations of the mechanisms of blade/sheath boundary formation in maize.
Collapse
Affiliation(s)
- Samuel Leiboff
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvalis, OR, 97331, USA
| | - Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robyn Johnston
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Silvia Federici
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anne W Sylvester
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
67
|
Wang C, Yang X, Li G. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops. Int J Mol Sci 2021; 22:3508. [PMID: 33805287 PMCID: PMC8037405 DOI: 10.3390/ijms22073508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.
Collapse
Affiliation(s)
- Chengyu Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| | - Gang Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| |
Collapse
|
68
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
69
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
70
|
Jia P, Xing L, Zhang C, Zhang D, Ma J, Zhao C, Han M, Ren X, An N. MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110701. [PMID: 33288014 DOI: 10.1016/j.plantsci.2020.110701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
71
|
Satterlee JW, Strable J, Scanlon MJ. Plant stem-cell organization and differentiation at single-cell resolution. Proc Natl Acad Sci U S A 2020; 117:33689-33699. [PMID: 33318187 DOI: 10.1101/2020.08.25.267427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 (KN1) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level.
Collapse
Affiliation(s)
- James W Satterlee
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Josh Strable
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Michael J Scanlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
72
|
Hedden P. The Current Status of Research on Gibberellin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1832-1849. [PMID: 32652020 PMCID: PMC7758035 DOI: 10.1093/pcp/pcaa092] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 05/23/2023]
Abstract
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- Laboratory of Growth Regulators, Palack� University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
73
|
Gao S, Chu C. Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. PLANT & CELL PHYSIOLOGY 2020; 61:1902-1911. [PMID: 32761079 PMCID: PMC7758032 DOI: 10.1093/pcp/pcaa104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are a class of tetracyclic diterpenoid phytohormones that regulate many aspects of plant development, including seed germination, stem elongation, leaf expansion, pollen maturation, and the development of flowers, fruits and seeds. During the past decades, the primary objective of crop breeding programs has been to increase productivity or yields. 'Green Revolution' genes that can produce semidwarf, high-yielding crops were identified as GA synthesis or response genes, confirming the value of research on GAs in improving crop productivity. The manipulation of GA status either by genetic alteration or by exogenous application of GA or GA biosynthesis inhibitors is often used to optimize plant growth and yields. In this review, we summarize the roles of GAs in major aspects of crop growth and development and present the possible targets for the fine-tuning of GA metabolism and signaling as a promising strategy for crop improvement.
Collapse
Affiliation(s)
- Shaopei Gao
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author: E-mail, ; Fax, +86 010 64806608
| |
Collapse
|
74
|
Abstract
Plants possess the remarkable ability to grow and produce new organs throughout their lifespan, owing to the activities of persistent populations of pluripotent stem cells within their meristematic tips. Here we isolated individual cells from the microscopic shoot apical meristem (SAM) of maize and provide single-cell transcriptomic analysis of a plant shoot meristem. This study enabled an unbiased analysis of the developmental genetic organization of the maize shoot apex and uncovered evolutionarily divergent and conserved signatures of SAM homeostasis. The fine-scale resolution of single-cell analysis was used to reconstruct the process of shoot cell differentiation, whereby stem cells acquire diverse and distinct cell fates over developmental time in wild-type and mutant maize seedlings. Plants maintain populations of pluripotent stem cells in shoot apical meristems (SAMs), which continuously produce new aboveground organs. We used single-cell RNA sequencing (scRNA-seq) to achieve an unbiased characterization of the transcriptional landscape of the maize shoot stem-cell niche and its differentiating cellular descendants. Stem cells housed in the SAM tip are engaged in genome integrity maintenance and exhibit a low rate of cell division, consistent with their contributions to germline and somatic cell fates. Surprisingly, we find no evidence for a canonical stem-cell organizing center subtending these cells. In addition, trajectory inference was used to trace the gene expression changes that accompany cell differentiation, revealing that ectopic expression of KNOTTED1 (KN1) accelerates cell differentiation and promotes development of the sheathing maize leaf base. These single-cell transcriptomic analyses of the shoot apex yield insight into the processes of stem-cell function and cell-fate acquisition in the maize seedling and provide a valuable scaffold on which to better dissect the genetic control of plant shoot morphogenesis at the cellular level.
Collapse
|
75
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
76
|
Lee JE, Goretti D, Neumann M, Schmid M, You Y. A gibberellin methyltransferase modulates the timing of floral transition at the Arabidopsis shoot meristem. PHYSIOLOGIA PLANTARUM 2020; 170:474-487. [PMID: 32483836 DOI: 10.1111/ppl.13146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The transition from vegetative to reproductive growth is a key event in the plant life cycle. Plants therefore use a variety of environmental and endogenous signals to determine the optimal time for flowering to ensure reproductive success. These signals are integrated at the shoot apical meristem (SAM), which subsequently undergoes a shift in identity and begins producing flowers rather than leaves, while still maintaining pluripotency and meristematic function. Gibberellic acid (GA), an important hormone associated with cell growth and differentiation, has been shown to promote flowering in many plant species including Arabidopsis thaliana, but the details of how spatial and temporal regulation of GAs in the SAM contribute to floral transition are poorly understood. In this study, we show that the gene GIBBERELLIC ACID METHYLTRANSFERASE 2 (GAMT2), which encodes a GA-inactivating enzyme, is significantly upregulated at the SAM during floral transition and contributes to the regulation of flowering time. Loss of GAMT2 function leads to early flowering, whereas transgenic misexpression of GAMT2 in specific regions around the SAM delays flowering. We also found that GAMT2 expression is independent of the key floral regulator LEAFY but is strongly increased by the application of exogenous GA. Our results indicate that GAMT2 is a repressor of flowering that may act as a buffer of GA levels at the SAM to help prevent premature flowering.
Collapse
Affiliation(s)
- Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuan You
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
- Center for Plant Molecular Biology (ZMBP), Department of General Genetics, University Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
77
|
Chen R, Fan Y, Yan H, Zhou H, Zhou Z, Weng M, Huang X, Lakshmanan P, Li Y, Qiu L, Wu J. Enhanced Activity of Genes Associated With Photosynthesis, Phytohormone Metabolism and Cell Wall Synthesis Is Involved in Gibberellin-Mediated Sugarcane Internode Growth. Front Genet 2020; 11:570094. [PMID: 33193665 PMCID: PMC7655795 DOI: 10.3389/fgene.2020.570094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Internode elongation is an important trait in sugarcane as it affects the sugarcane yield. Gibberellin (GA) is a key modulator of internode elongation in sugarcane. Understanding the gene expression features of GA-mediated internode elongation has both scientific and practical significance. This study aimed to examine the transcriptomic changes in the internode elongation of sugarcane following GA treatment. Eighteen cDNA libraries from the internode tissues on days of 0, 3, and 6 in control and GA treatment groups were sequenced and their gene expression were studied. RNA-seq analysis revealed 1,338,723,248 reads and 70,821 unigenes from elongating internodes of sugarcane. Comparative studies discovered a large number of transcripts that were differentially expressed in GA-treated samples compared to the control. Further analysis revealed that the differentially expressed genes were enriched in the metabolic process, one-carbon compound transport, and single-organism process. Kyoto Encyclopedia of Genes and Genomes pathway annotation showed significant enrichment in photosynthesis and plant hormone signal transduction, indicating its involvement in internode elongation. The function analysis suggested that metabolic pathways and biosynthesis of secondary metabolites, plant hormones, and cell wall components were enriched in the internodes of the GA-treated plants. The hub genes were identified, with the function of cellulose synthesis. The results of this study provide a global view of mRNA changes during sugarcane internode elongation and extend our knowledge of the GA-mediated cellular processes involved in sugarcane stem growth.
Collapse
Affiliation(s)
- Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Haifeng Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Mengling Weng
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
78
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhang X, Zhou H, Ma W, Han M, Xing L, Ren X. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci Rep 2020; 10:17426. [PMID: 33060661 PMCID: PMC7566457 DOI: 10.1038/s41598-020-74171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
The nuclear pore complex (NPC), comprised of individual nucleoporin (Nup) proteins, controls nucleo-cytoplasmic transport of RNA and protein, and is important for regulating plant growth and development. However, there are no reports on this complex in fruit tree species. In this study, we identified 38 apple Nups and named them based on the known Arabidopsis thaliana homologs. We also completed bioinformatics analyses of the intron and exon structural data for apple Nups. The proteins encoded by the apple Nups lacked a universally conserved domain. Moreover, a phylogenetic analysis separated the apple and A. thaliana Nups into three groups. The phylogenetic tree indicated that MdNup54 and MdNup62 are most closely related to genes in other Rosaceae species. To characterize the 38 candidate Malus domestica Nups, we measured their stage-specific expression levels. Our tests revealed these proteins were differentially expressed among diverse tissues. We analyzed the expression levels of seven apple Nups in response to an indole-3-acetic acid (IAA) treatment. The phytohormone treatment significantly inhibited apple flowering. A qRT-PCR analysis proved that an IAA treatment significantly inhibited the expression of these seven genes. A preliminary study regarding two members of the Nup62 subcomplex, MdNup54 and MdNup62, confirmed these two proteins can interact with each other. A yeast two-hybrid assay verified that MdNup54 can interact with MdKNAT4 and MdKNAT6. On the basis of the study results, we identified apple NPC and predicted its structure and function. The data generated in this investigation provide important reference material for follow-up research.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
79
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
80
|
Placido DF, Sandhu J, Sato SJ, Nersesian N, Quach T, Clemente TE, Staswick PE, Walia H. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1955-1968. [PMID: 32031318 PMCID: PMC7415784 DOI: 10.1111/pbi.13355] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 05/10/2023]
Abstract
Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.
Collapse
Affiliation(s)
- Dante F. Placido
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
- Bioproducts Research UnitWestern Regional Research CenterAgricultural Research ServiceUnited States Department of AgricultureAlbanyCAUSA
| | - Jaspreet Sandhu
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | - Shirley J. Sato
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
- Center for BiotechnologyUniversity of NebraskaLincolnNEUSA
| | - Natalya Nersesian
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
- Center for BiotechnologyUniversity of NebraskaLincolnNEUSA
| | - Truyen Quach
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
- Center for BiotechnologyUniversity of NebraskaLincolnNEUSA
| | - Thomas E. Clemente
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
- Center for BiotechnologyUniversity of NebraskaLincolnNEUSA
| | - Paul E. Staswick
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| |
Collapse
|
81
|
Garrido AN, Supijono E, Boshara P, Douglas SJ, Stronghill PE, Li B, Nambara E, Kliebenstein DJ, Riggs CD. flasher, a novel mutation in a glucosinolate modifying enzyme, conditions changes in plant architecture and hormone homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1989-2006. [PMID: 32529723 DOI: 10.1111/tpj.14878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of the KNOX1 mutant brevipedicellus (bp) that we termed flasher (fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map-based cloning and complementation tests revealed that fsh is due to an E40K change in the flavin monooxygenase GS-OX5, a gene encoding a glucosinolate (GSL) modifying enzyme. In vitro enzymatic assays revealed that fsh poorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicating FSH in feedback control of GSL flux. FSH is expressed predominantly in the vasculature in patterns that do not significantly overlap those of BP, implying a non-cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low in bp, but fsh restores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in the fsh suppressor are significantly lower than in bp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.
Collapse
Affiliation(s)
- Ameth N Garrido
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Esther Supijono
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Peter Boshara
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Scott J Douglas
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Patti E Stronghill
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Baohua Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - C Daniel Riggs
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
82
|
Kenchanmane Raju SK, Adkins M, Enersen A, Santana de Carvalho D, Studer AJ, Ganapathysubramanian B, Schnable PS, Schnable JC. Leaf Angle eXtractor: A high-throughput image processing framework for leaf angle measurements in maize and sorghum. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11385. [PMID: 32999772 PMCID: PMC7507698 DOI: 10.1002/aps3.11385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/17/2020] [Indexed: 05/08/2023]
Abstract
PREMISE Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment. METHODS High-throughput time series image data from water-deprived maize (Zea mays subsp. mays) and sorghum (Sorghum bicolor) were obtained using battery-powered time-lapse cameras. A MATLAB-based image processing framework, Leaf Angle eXtractor (LAX), was developed to extract and quantify leaf angles from images of maize and sorghum plants under drought conditions. RESULTS Leaf angle measurements showed differences in leaf responses to drought in maize and sorghum. Tracking leaf angle changes at intervals as short as one minute enabled distinguishing leaves that showed signs of wilting under water deprivation from other leaves on the same plant that did not show wilting during the same time period. DISCUSSION Automating leaf angle measurements using LAX makes it feasible to perform large-scale experiments to evaluate, understand, and exploit the spatial and temporal variations in plant response to water limitations.
Collapse
Affiliation(s)
- Sunil K. Kenchanmane Raju
- Center for Plant Science InnovationUniversity of Nebraska–LincolnLincolnNebraskaUSA
- Present address:
Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Miles Adkins
- Department of Mechanical EngineeringIowa State UniversityAmesIowaUSA
| | - Alex Enersen
- Center for Plant Science InnovationUniversity of Nebraska–LincolnLincolnNebraskaUSA
| | - Daniel Santana de Carvalho
- Center for Plant Science InnovationUniversity of Nebraska–LincolnLincolnNebraskaUSA
- Present address:
Department of BioinformaticsFederal University of Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | | | | | - James C. Schnable
- Center for Plant Science InnovationUniversity of Nebraska–LincolnLincolnNebraskaUSA
- Department of Agronomy and HorticultureUniversity of Nebraska–LincolnLincolnNebraskaUSA
| |
Collapse
|
83
|
McKim SM. Moving on up - controlling internode growth. THE NEW PHYTOLOGIST 2020; 226:672-678. [PMID: 31955426 DOI: 10.1111/nph.16439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/27/2023]
Abstract
Plant reproductive success depends on making fertile flowers but also upon developing appropriate shoot internodes that optimally arrange and support the flowering shoot. Compared to floral morphogenesis, we understand little about the networks directing internode growth during flowering. However, new studies reveal that long-range signals, local factors, and age-dependent micoRNA-networks are all important to harmonize internode morphogenesis with shoot development. Some of the same players modulate symplastic transport to seasonally regulate internode growth in perennial species. Exploring possible hierarchical control amongst symplastic continuity, age, systemic signals and local regulators during internode morphogenesis will help elucidate the mechanisms coordinating axial growth with the wider plant body.
Collapse
Affiliation(s)
- Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
84
|
Muszynski MG, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria AR, Alvarez-Castro I, Petefish A, Sakakibara H, Krivosheev DM, Lomin SN, Romanov GA, Thamotharan S, Dam T, Li B, Brugière N. The Maize Hairy Sheath Frayed1 ( Hsf1) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. THE PLANT CELL 2020; 32:1501-1518. [PMID: 32205456 PMCID: PMC7203929 DOI: 10.1105/tpc.19.00677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.
Collapse
Affiliation(s)
- Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822
| | - Lindsay Moss-Taylor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Sivanandan Chudalayandi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - James Cahill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | | | - Abby Petefish
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Dmitry M Krivosheev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Subbiah Thamotharan
- School of Chemical and Biotechnology, SASTRA University; Thanjavur, 613401, India
| | - Thao Dam
- Corteva Agriscience, Johnston, Iowa 50131
| | - Bailin Li
- Corteva Agriscience, Johnston, Iowa 50131
| | | |
Collapse
|
85
|
Azarakhsh M, Rumyantsev AM, Lebedeva MA, Lutova LA. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula. PLoS One 2020; 15:e0232352. [PMID: 32353031 PMCID: PMC7192382 DOI: 10.1371/journal.pone.0232352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Cytokinin is an important regulator of symbiotic nodule development. Recently, KNOTTED1-LIKE HOMEOBOX 3 transcription factor (TF) was shown to regulate symbiotic nodule development possibly via the activation of cytokinin biosynthesis genes. However, the direct interaction between the KNOX3 TF and its target genes has not been investigated up to date. Here, using EMSA analysis and SPR-based assay, we found that MtKNOX3 homeodomain directly binds to the regulatory sequences of the MtLOG1, MtLOG2, and MtIPT3 genes involved in nodulation in Medicago truncatula. Moreover, we showed that MtLOG2 and MtIPT3 expression patterns partially overlap with MtKNOX3 expression in developing nodules as it was shown by promoter:GUS analysis. Our data suggest that MtKNOX3 TF may directly activate the MtLOG1, MtLOG2, and MtIPT3 genes during nodulation thereby increasing cytokinin biosynthesis in developing nodules.
Collapse
Affiliation(s)
- Mahboobeh Azarakhsh
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
- Cell and Molecular Biology Department, Kosar University of Bojnord, Bojnord, North Khorasan Province, Iran
| | - Andrey M Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Lyudmila A Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
86
|
Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica). Genes Genomics 2020; 42:383-392. [DOI: 10.1007/s13258-019-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
|
87
|
Jia P, Zhang C, Xing L, Li Y, Shah K, Zuo X, Zhang D, An N, Han M, Ren X. Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. FRONTIERS IN PLANT SCIENCE 2020; 11:128. [PMID: 32153621 PMCID: PMC7047289 DOI: 10.3389/fpls.2020.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 05/11/2023]
Abstract
Knotted1-like Homeobox (KNOX) proteins play important roles in regulating plant growth, development, and other biological processes. However, little information is available on the KNOX gene family in apple (Malus domestica Borkh.). In this study, 22 KNOX genes were identified in the apple genome. The gene structure, protein characteristics, and promoter region were characterized. The MdKNOX family members were divided into three classes based on their phylogenetic relationships. Quantitative real-time PCR analysis revealed that the majority of MdKNOX genes exhibited strongly preferential expression in buds and were significantly up-regulated during the flower induction period. The transcript levels of MdKNOX genes were responsive to treatments with flowering- and stress-related hormones. The putative upstream regulation factor MdGRF could directly bind to the promoter of MdKNOX15 and MdKNOX19, and inhibit their transcriptional activities, which were confirmed by yeast one-hybrid and dual-luciferase assays. The results provide an important foundation for future analysis of the regulation and functions of the MdKNOX gene family.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiya Zuo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| |
Collapse
|
88
|
Katyayini NU, Rinne PLH, Tarkowská D, Strnad M, van der Schoot C. Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation. FRONTIERS IN PLANT SCIENCE 2020; 11:736. [PMID: 32582259 PMCID: PMC7289990 DOI: 10.3389/fpls.2020.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 05/05/2023]
Abstract
Shoot branching from axillary buds (AXBs) is regulated by a network of inhibitory and promotive forces, which includes hormones. In perennials, the dwarfed stature of the embryonic shoot inside AXBs is indicative of gibberellin (GA) deficiency, suggesting that AXB activation and outgrowth require GA. Nonetheless, the role of GA in branching has remained obscure. We here carried out comprehensive GA transcript and metabolite analyses in hybrid aspen, a perennial branching model. The results indicate that GA has an inhibitory as well as promotive role in branching. The latter is executed in two phases. While the expression level of GA2ox is high in quiescent AXBs, decapitation rapidly downregulated it, implying increased GA signaling. In the second phase, GA3ox2-mediated de novo GA-biosynthesis is initiated between 12 and 24 h, prior to AXB elongation. Metabolite analyzes showed that GA1/4 levels were typically high in proliferating apices and low in the developmentally inactive, quiescent AXBs, whereas the reverse was true for GA3/6. To investigate if AXBs are differently affected by GA3, GA4, and GR24, an analog of the branch-inhibitor hormone strigolactone, they were fed into AXBs of single-node cuttings. GA3 and GA4 had similar effects on GA and SL pathway genes, but crucially GA3 induced AXB abscission whereas GA4 promoted outgrowth. Both GA3 and GA4 strongly upregulated GA2ox genes, which deactivate GA1/4 but not GA3/6. Thus, the observed production of GA3/6 in quiescent AXBs targets GA1/4 for GA2ox-mediated deactivation. AXB quiescence can therefore be maintained by GA3/6, in combination with strigolactone. Our discovery of the distinct tasks of GA3 and GA4 in AXB activation might explain why the role of GA in branching has been difficult to decipher. Together, the results support a novel paradigm in which GA3/6 maintains high levels of GA2ox expression and low levels of GA4 in quiescent AXBs, whereas activation and outgrowth require increased GA1/4 signaling through the rapid reduction of GA deactivation and subsequent GA biosynthesis.
Collapse
Affiliation(s)
| | - Päivi L. H. Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Christiaan van der Schoot
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot,
| |
Collapse
|
89
|
Janiak A, Kwasniewski M, Sowa M, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Szarejko I. Insights into Barley Root Transcriptome under Mild Drought Stress with an Emphasis on Gene Expression Regulatory Mechanisms. Int J Mol Sci 2019; 20:ijms20246139. [PMID: 31817496 PMCID: PMC6940957 DOI: 10.3390/ijms20246139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Root systems play a pivotal role in coupling with drought stress, which is accompanied with a substantial transcriptome rebuilding in the root tissues. Here, we present the results of global gene expression profiling of roots of two barley genotypes with contrasting abilities to cope with drought that were subjected to a mild level of the stress. We concentrate our analysis on gene expression regulation processes, which allowed the identification of 88 genes from 39 families involved in transcriptional regulation in roots upon mild drought. They include 13 genes encoding transcription factors (TFs) from AP2 family represented by ERFs, DREB, or B3 domain-containing TFs, eight WRKYs, six NACs, five of the HD-domain, MYB or MYB-related, bHLH and bZIP TFs. Also, the representatives of C3H, CPP, GRAS, LOB-domain, TCP, Tiffy, Tubby, and NF-Ys TFs, among others were found to be regulated by the mild drought in barley roots. We found that drought tolerance is accompanied with a lower number of gene expression changes than the amount observed in a susceptible genotype. The better drought acclimation may be related to the activation of transcription factors involved in the maintenance of primary root growth and in the epigenetic control of chromatin and DNA methylation. In addition, our analysis pointed to fives TFs from ERF, LOB, NAC, WRKY and bHLH families that may be important in the mild but not the severe drought response of barley roots.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
- Correspondence: ; Tel.: +0048-32-2009-457
| | - Miroslaw Kwasniewski
- Center of Bioinformatics and Data Analysis, Medical University in Białystok, 15-269 Białystok, Poland
| | - Marta Sowa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
90
|
Song L, Chen W, Yao Q, Guo B, Valliyodan B, Wang Z, Nguyen HT. Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Sci Rep 2019; 9:16085. [PMID: 31695113 PMCID: PMC6834599 DOI: 10.1038/s41598-019-52599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Soybean is a widely grown grain legume and one of the most important economic crop species. Brassinosteroids play a crucial role in plant vegetative growth and reproductive development. However, it remains unclear how BRs regulate the developmental processes in soybean, and the molecular mechanism underlying soybean early development is largely unexplored. In this study, we first characterized how soybean early vegetative growth was specifically regulated by the BR biosynthesis inhibitor propiconazole; this characterization included shortened root and shoot lengths, reduced leaf area, and decreased chlorophyll content. In addition, the growth inhibition induced by Pcz could be rescued by exogenous brassinolide application. The RNA-seq technique was employed to investigate the BR regulatory networks during soybean early vegetative development. Identification and analysis of differentially expressed genes indicated that BRs orchestrate a wide range of cellular activities and biological processes in soybean under various BR concentrations. The regulatory networks between BRs and multiple hormones or stress-related pathways were investigated. The results provide a comprehensive view of the physiological functions of BRs and new insights into the molecular mechanisms at the transcriptional level of BR regulation of soybean early development.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qiuming Yao
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
91
|
Satterlee JW, Scanlon MJ. Coordination of Leaf Development Across Developmental Axes. PLANTS 2019; 8:plants8100433. [PMID: 31652517 PMCID: PMC6843618 DOI: 10.3390/plants8100433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Leaves are initiated as lateral outgrowths from shoot apical meristems throughout the vegetative life of the plant. To achieve proper developmental patterning, cell-type specification and growth must occur in an organized fashion along the proximodistal (base-to-tip), mediolateral (central-to-edge), and adaxial–abaxial (top-bottom) axes of the developing leaf. Early studies of mutants with defects in patterning along multiple leaf axes suggested that patterning must be coordinated across developmental axes. Decades later, we now recognize that a highly complex and interconnected transcriptional network of patterning genes and hormones underlies leaf development. Here, we review the molecular genetic mechanisms by which leaf development is coordinated across leaf axes. Such coordination likely plays an important role in ensuring the reproducible phenotypic outcomes of leaf morphogenesis.
Collapse
Affiliation(s)
- James W Satterlee
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michael J Scanlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
92
|
Zhang S, Gottschalk C, van Nocker S. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.). BMC Genomics 2019; 20:747. [PMID: 31619173 PMCID: PMC6796362 DOI: 10.1186/s12864-019-6090-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gibberellins (GAs) can have profound effects on growth and development in higher plants. In contrast to their flowering-promotive role in many well-studied plants, GAs can repress flowering in woody perennial plants such as apple (Malus x domestica Borkh.). Although this effect of GA on flowering is intriguing and has commercial importance, the genetic mechanisms linking GA perception with flowering have not been well described. RESULTS Application of a mixture of bioactive GAs repressed flower formation without significant effect on node number or shoot elongation. Using Illumina-based transcriptional sequence data and a newly available, high-quality apple genome sequence, we generated transcript models for genes expressed in the shoot apex, and estimated their transcriptional response to GA. GA treatment resulted in downregulation of a diversity of genes participating in GA biosynthesis, and strong upregulation of the GA catabolic GA2 OXIDASE genes, consistent with GA feedback and feedforward regulation, respectively. We also observed strong downregulation of numerous genes encoding potential GA transporters and receptors. Additional GA-responsive genes included potential components of cytokinin (CK), abscisic acid (ABA), brassinosteroid, and auxin signaling pathways. Finally, we observed rapid and strong upregulation of both of two copies of a gene previously observed to inhibit flowering in apple, MdTFL1 (TERMINAL FLOWER 1). CONCLUSION The rapid and robust upregulation of genes associated with GA catabolism in response to exogenous GA, combined with the decreased expression of GA biosynthetic genes, highlights GA feedforward and feedback regulation in the apple shoot apex. The finding that genes with potential roles in GA metabolism, transport and signaling are responsive to GA suggests GA homeostasis may be mediated at multiple levels in these tissues. The observation that TFL1-like genes are induced quickly in response to GA suggests they may be directly targeted by GA-responsive transcription factors, and offers a potential explanation for the flowering-inhibitory effects of GA in apple. These results provide a context for investigating factors that may transduce the GA signal in apple, and contribute to a preliminary genetic framework for the repression of flowering by GAs in a woody perennial plant.
Collapse
Affiliation(s)
- Songwen Zhang
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - Christopher Gottschalk
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - Steve van Nocker
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics, and Biotechnology, Michigan State University, 390 Plant and Soil Science Building, 1066 Bogue St., East Lansing, MI, 48824, USA.
| |
Collapse
|
93
|
Burgess SJ, Reyna-Llorens I, Stevenson SR, Singh P, Jaeger K, Hibberd JM. Genome-Wide Transcription Factor Binding in Leaves from C 3 and C 4 Grasses. THE PLANT CELL 2019; 31:2297-2314. [PMID: 31427470 PMCID: PMC6790085 DOI: 10.1105/tpc.19.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/06/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
The majority of plants use C3 photosynthesis, but over 60 independent lineages of angiosperms have evolved the C4 pathway. In most C4 species, photosynthesis gene expression is compartmented between mesophyll and bundle-sheath cells. We performed DNaseI sequencing to identify genome-wide profiles of transcription factor binding in leaves of the C4 grasses Zea mays, Sorghum bicolor, and Setaria italica as well as C3 Brachypodium distachyon In C4 species, while bundle-sheath strands and whole leaves shared similarity in the broad regions of DNA accessible to transcription factors, the short sequences bound varied. Transcription factor binding was prevalent in gene bodies as well as promoters, and many of these sites could represent duons that influence gene regulation in addition to amino acid sequence. Although globally there was little correlation between any individual DNaseI footprint and cell-specific gene expression, within individual species transcription factor binding to the same motifs in multiple genes provided evidence for shared mechanisms governing C4 photosynthesis gene expression. Furthermore, interspecific comparisons identified a small number of highly conserved transcription factor binding sites associated with leaves from species that diverged around 60 million years ago. These data therefore provide insight into the architecture associated with C4 photosynthesis gene expression in particular and characteristics of transcription factor binding in cereal crops in general.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Pallavi Singh
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Katja Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
94
|
Li C, Zheng L, Wang X, Hu Z, Zheng Y, Chen Q, Hao X, Xiao X, Wang X, Wang G, Zhang Y. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:1-13. [PMID: 31203874 DOI: 10.1016/j.plantsci.2019.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/07/2019] [Accepted: 04/27/2019] [Indexed: 05/09/2023]
Abstract
Bioactive gibberellins (GAs) play multiple roles in plant development and stress responses. GA2-oxidases (GA2oxs) are a class of 2-oxoglutarate-dependent dioxygenases that regulate the deactivation of bioactive GAs. In this study, we investigated the phylogeny and domain structures of the seven GA2ox genes present in the Arabidopsis thaliana genome. Comprehensive expression analysis using translational reporter lines showed that the seven GA2ox genes are differentially expressed during Arabidopsis growth and development: GA2ox1 is specifically expressed in the hypocotyl and lateral root primordium; GA2ox2 is highly expressed in aboveground tissues; GA2ox3 is expressed in the chalazal endosperm of the early embryo sac and inflorescences; GA2ox4 is expressed in the shoot apical meristem and during lateral root initiation; GA2ox6 is expressed in the maturation zone, but not in the meristem or elongating zone of the root; GA2ox7 is constitutively expressed during almost all developmental stages; and GA2ox8 is exclusively expressed in stomatal cells. Overexpression of each of these GA2ox genes inhibited high temperature-induced hypocotyl elongation in both wild-type and elongated hypocotyl 5 plants, which have an elongated hypocotyl phenotype, suggesting that these genes negatively regulate hypocotyl elongation by reducing bioactive GA levels. This study provides a valuable resource for further elucidating the roles of GA2ox genes during different stages of development.
Collapse
Affiliation(s)
- Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuening Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Zhubing Hu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Shiyan, 442008, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
95
|
Anderson A, St Aubin B, Abraham-Juárez MJ, Leiboff S, Shen Z, Briggs S, Brunkard JO, Hake S. The Second Site Modifier, Sympathy for the ligule, Encodes a Homolog of Arabidopsis ENHANCED DISEASE RESISTANCE4 and Rescues the Liguleless narrow Maize Mutant. THE PLANT CELL 2019; 31:1829-1844. [PMID: 31217219 PMCID: PMC6713312 DOI: 10.1105/tpc.18.00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 05/19/2023]
Abstract
Liguleless narrow1 encodes a plasma membrane-localized receptor-like kinase required for normal development of maize (Zea mays) leaves, internodes, and inflorescences. The semidominant Lgn-R mutation lacks kinase activity, and phenotypic severity is dependent on inbred background. We created near isogenic lines and assayed the phenotype in multiple environments. Lgn-R plants that carry the B73 version of Sympathy for the ligule (Sol-B) fail to grow under hot conditions, but those that carry the Mo17 version (Sol-M) survive at hot temperatures and are significantly taller at cool temperatures. To identify Sol, we used recombinant mapping and analyzed the Lgn-R phenotype in additional inbred backgrounds. We identified amino acid sequence variations in GRMZM2G075262 that segregate with severity of the Lgn-R phenotypes. This gene is expressed at high levels in Lgn-R B73, but expression drops to nonmutant levels with one copy of Sol-M An EMS mutation solidified the identity of SOL as a maize homolog of Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE4 (EDR4). SOL, like EDR4, is induced in response to pathogen-associated molecular patterns such as flg22. Integrated transcriptomic and phosphoproteomic analyses suggest that Lgn-R plants constitutively activate an immune signaling cascade that induces temperature-sensitive responses in addition to defects in leaf development. We propose that aspects of the severe Lgn-R developmental phenotype result from constitutive defense induction and that SOL potentially functions in repressing this response in Mo17 but not B73. Identification of LGN and its interaction with SOL provides insight into the integration of developmental control and immune responses.
Collapse
Affiliation(s)
- Alyssa Anderson
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Brian St Aubin
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - María Jazmín Abraham-Juárez
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Steve Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Jacob O Brunkard
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| |
Collapse
|
96
|
Kim DY, Hong MJ, Seo YW. Genome-wide transcript analysis of inflorescence development in wheat. Genome 2019; 62:623-633. [PMID: 31269405 DOI: 10.1139/gen-2018-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of inflorescence development is directly related to yield components that determine the final grain yield in most cereal crops. Here, microarray analysis was conducted for four different developmental stages of inflorescence to identify genes expressed specifically during inflorescence development. To select inflorescence-specific expressed genes, we conducted meta-analysis using 1245 Affymetrix GeneChip array sets obtained from various development stages, organs, and tissues of members of Poaceae. The early stage of inflorescence development was accompanied by a significant upregulation of a large number of cell differentiation genes, such as those associated with the cell cycle, cell division, DNA repair, and DNA synthesis. Moreover, key regulatory genes, including the MADS-box gene, KNOTTED-1-like homeobox genes, GROWTH-REGULATING FACTOR 1 gene, and the histone methyltransferase gene, were highly expressed in the early inflorescence development stage. In contrast, fewer genes were expressed in the later stage of inflorescence development, and played roles in hormone biosynthesis and meiosis-associated genes. Our work provides novel information regarding the gene regulatory network of cell division, key genes involved in the differentiation of inflorescence in wheat, and regulation mechanism of inflorescence development that are crucial stages for determining final grain number per spike and the yield potential of wheat.
Collapse
Affiliation(s)
- Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
97
|
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. The Dynamics of Cambial Stem Cell Activity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:293-319. [PMID: 30822110 DOI: 10.1146/annurev-arplant-050718-100402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stem cell populations in meristematic tissues at distinct locations in the plant body provide the potency of continuous plant growth. Primary meristems, at the apices of the plant body, contribute mainly to the elongation of the main plant axes, whereas secondary meristems in lateral positions are responsible for the thickening of these axes. The stem cells of the vascular cambium-a secondary lateral meristem-produce the secondary phloem (bast) and secondary xylem (wood). The sites of primary and secondary growth are spatially separated, and mobile signals are expected to coordinate growth rates between apical and lateral stem cell populations. Although the underlying mechanisms have not yet been uncovered, it seems likely that hormones, peptides, and mechanical cues orchestrate primary and secondary growth. In this review, we highlight the current knowledge and recent discoveries of how cambial stem cell activity is regulated, with a focus on mobile signals and the response of cambial activity to environmental and stress factors.
Collapse
Affiliation(s)
- Urs Fischer
- KWS SAAT SE, 37555 Einbeck, Germany
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
98
|
Mejía-Guerra MK, Buckler ES. A k-mer grammar analysis to uncover maize regulatory architecture. BMC PLANT BIOLOGY 2019; 19:103. [PMID: 30876396 PMCID: PMC6419808 DOI: 10.1186/s12870-019-1693-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/21/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Only a small percentage of the genome sequence is involved in regulation of gene expression, but to biochemically identify this portion is expensive and laborious. In species like maize, with diverse intergenic regions and lots of repetitive elements, this is an especially challenging problem that limits the use of the data from one line to the other. While regulatory regions are rare, they do have characteristic chromatin contexts and sequence organization (the grammar) with which they can be identified. RESULTS We developed a computational framework to exploit this sequence arrangement. The models learn to classify regulatory regions based on sequence features - k-mers. To do this, we borrowed two approaches from the field of natural language processing: (1) "bag-of-words" which is commonly used for differentially weighting key words in tasks like sentiment analyses, and (2) a vector-space model using word2vec (vector-k-mers), that captures semantic and linguistic relationships between words. We built "bag-of-k-mers" and "vector-k-mers" models that distinguish between regulatory and non-regulatory regions with an average accuracy above 90%. Our "bag-of-k-mers" achieved higher overall accuracy, while the "vector-k-mers" models were more useful in highlighting key groups of sequences within the regulatory regions. CONCLUSIONS These models now provide powerful tools to annotate regulatory regions in other maize lines beyond the reference, at low cost and with high accuracy.
Collapse
Affiliation(s)
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, 14853 NY USA
- USDA-ARS, Research Geneticist, USDA ARS Robert Holley Center, Ithaca, 14853 NY USA
- Department of Plant Breeding and Genetics, Cornell University, 159 Biotechnology Building, Ithaca, 14853 NY USA
| |
Collapse
|
99
|
McKim SM. How plants grow up. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:257-277. [PMID: 30697935 DOI: 10.1111/jipb.12786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 05/27/2023]
Abstract
A plant's lateral structures, such as leaves, branches and flowers, literally hinge on the shoot axis, making its integrity and growth fundamental to plant form. In all plants, subapical proliferation within the shoot tip displaces cells downward to extrude the cylindrical stem. Following the transition to flowering, many plants show extensive axial elongation associated with increased subapical proliferation and expansion. However, the cereal grasses also elongate their stems, called culms, due to activity within detached intercalary meristems which displaces cells upward, elevating the grain-bearing inflorescence. Variation in culm length within species is especially relevant to cereal crops, as demonstrated by the high-yielding semi-dwarfed cereals of the Green Revolution. Although previously understudied, recent renewed interest the regulation of subapical and intercalary growth suggests that control of cell division planes, boundary formation and temporal dynamics of differentiation, are likely critical mechanisms coordinating axial growth and development in plants.
Collapse
Affiliation(s)
- Sarah M McKim
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
100
|
Paolis AD, Frugis G, Giannino D, Iannelli MA, Mele G, Rugini E, Silvestri C, Sparvoli F, Testone G, Mauro ML, Nicolodi C, Caretto S. Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps. PLANTS (BASEL, SWITZERLAND) 2019; 8:E18. [PMID: 30634627 PMCID: PMC6359066 DOI: 10.3390/plants8010018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Eddo Rugini
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy.
| | - Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|