51
|
Ha J, Kim M, Kim MY, Lee T, Yoon MY, Lee J, Lee YH, Kang YG, Park JS, Lee JH, Lee SH. Transcriptomic variation in proanthocyanidin biosynthesis pathway genes in soybean (Glycine spp.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2138-2146. [PMID: 28960323 DOI: 10.1002/jsfa.8698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Proanthocyanidins are oligomeric or polymeric end products of flavonoid metabolic pathways starting with the central phenylpropanoid pathway. Although soybean (Glycine spp.) seeds represent a major source of nutrients for the human diet, as well as components for the cosmetics industry as a result of their high levels of flavonoid metabolites, including isoflavonoids, anthocyanins and proanthocyanidins, the genetic regulatory mechanisms underlying proanthocyanidin biosynthesis in soybean remain unclear. RESULTS We evaluated interspecific and intraspecific variability in flavonoid components in soybean using 43 cultivars, landraces and wild soybean accessions. We performed transcriptomic profiling of genes encoding enzymes involved in flavonoid biosynthesis using three soybean genotypes, Hwangkeum (elite cultivar), IT109098 (landrace) and IT182932 (wild accession), in seeds. We identified a Glycine max landrace, IT109098, with a proanthocyanidin content as high as that of wild soybean. Different homologous genes for anthocyanidin reductase, which is involved in proanthocyanidin biosynthesis, were detected as differentially expressed genes between IT109098 and IT182932 compared to Hwangkeum. CONCLUSION We detected major differences in the transcriptional levels of genes involved in the biosynthesis of proanthocyanidin and anthocyanin among genotypes beginning at the early stage of seed development. The results of the present study provide insights into the underlying genetic variation in proanthocyanidin biosynthesis among soybean genotypes. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Myoyeon Kim
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Ho Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Gyu Kang
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Seong Park
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - John Hwan Lee
- Applied Technology & Research Division, R&D Center, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
52
|
Ohno S, Hori W, Hosokawa M, Tatsuzawa F, Doi M. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) 'Yuino'. PLANTA 2018; 247:413-428. [PMID: 29063185 DOI: 10.1007/s00425-017-2796-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Post-transcriptional gene silencing (PTGS) of a chalcone synthase ( DvCHS2 ) occurred in the white part of bicolor petals and flavonoid-poor leaves; however, it did not in red petals and flavonoid-rich leaves. Petal color lability is a prominent feature of bicolor dahlia cultivars, and causes plants to produce not only original bicolor petals with colored bases and pure white tips, but also frequently single-colored petals without white tips. In this study, we analysed the molecular mechanisms that are associated with petal color lability using the red-white bicolor cultivar 'Yuino'. Red single-colored petals lose their white tips as a result of recover of flavonoid biosynthesis. Among flavonoid biosynthetic genes including four chalcone synthase (CHS)-like genes (DvCHS1, DvCHS2, DvCHS3, and DvCHS4), DvCHS1 and DvCHS2 had significantly lower expression levels in the white part of bicolor petals than in red petals, while DvCHS3, DvCHS4, and other flavonoid biosynthetic genes had almost the same expression levels. Small RNAs from the white part of a bicolor petal were mapped onto DvCHS1 and DvCHS2, while small RNAs from a red single-colored petal were not mapped onto any of the four CHS genes. A relationship between petal color and leaf flavonoid accumulation has previously been demonstrated, whereby red petal-producing plants accumulate flavonoids in their leaves, while bicolor petal-producing plants tend not to. The expression level of DvCHS2 was down-regulated in flavonoid-poor leaves and small RNAs from flavonoid-poor leaves were mapped onto DvCHS2, suggesting that the down-regulation of DvCHS2 in flavonoid-poor leaves occurs post-transcriptionally. Genomic analysis also suggested that DvCHS2 is the key gene involved in bicolor formation. Together, these results suggest that post-transcriptional gene silencing of DvCHS2 plays a key role in phenotypic lability in this bicolor dahlia.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Wakako Hori
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Munetaka Hosokawa
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Motoaki Doi
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
53
|
Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Gossypium. Molecules 2018; 23:molecules23020193. [PMID: 29364830 PMCID: PMC6017885 DOI: 10.3390/molecules23020193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/25/2022] Open
Abstract
Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.
Collapse
|
54
|
Bandillo NB, Anderson JE, Kantar MB, Stupar RM, Specht JE, Graef GL, Lorenz AJ. Dissecting the Genetic Basis of Local Adaptation in Soybean. Sci Rep 2017; 7:17195. [PMID: 29222468 PMCID: PMC5722827 DOI: 10.1038/s41598-017-17342-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Soybean (Glycine max) is the most widely grown oilseed in the world and is an important source of protein for both humans and livestock. Soybean is widely adapted to both temperate and tropical regions, but a changing climate demands a better understanding of adaptation to specific environmental conditions. Here, we explore genetic variation in a collection of 3,012 georeferenced, locally adapted landraces from a broad geographical range to help elucidate the genetic basis of local adaptation. We used geographic origin, environmental data and dense genome-wide SNP data to perform an environmental association analysis and discover loci displaying steep gradients in allele frequency across geographical distance and between landrace and modern cultivars. Our combined application of methods in environmental association mapping and detection of selection targets provide a better understanding of how geography and selection may have shaped genetic variation among soybean landraces. Moreover, we identified several important candidate genes related to drought and heat stress, and revealed important genomic regions possibly involved in the geographic divergence of soybean.
Collapse
Affiliation(s)
- Nonoy B Bandillo
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Keim Hall, Lincoln, NE, 68583-0915, USA
| | - Justin E Anderson
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstraße 150, 40211, Bochum, Germany
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - James E Specht
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Keim Hall, Lincoln, NE, 68583-0915, USA
| | - George L Graef
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Keim Hall, Lincoln, NE, 68583-0915, USA
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA.
| |
Collapse
|
55
|
Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA, Carol P. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:26-34. [PMID: 28763706 DOI: 10.1016/j.jplph.2017.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 05/09/2023]
Abstract
Many landraces of cowpea [Vigna unguiculata (L.) Walp.] are adapted to particular geographical and climatic conditions. Here we describe two landraces grown respectively in arid and temperate areas of Algeria and assess their physiological and molecular responses to drought stress. As expected, when deprived of water cowpea plants lose water over time with a gradual reduction in transpiration rate. The landraces differed in their relative water content (RWC) and whole plant transpiration rate. The landrace from Menia, an arid area, retained more water in adult leaves. Both landraces responded to drought stress at the molecular level by increasing expression of stress-related genes in aerial parts, including proline metabolism genes. Expression of gene(s) encoding proline synthesis enzyme P5CS was up regulated and gene expression of ProDH, a proline catabolism enzyme, was down regulated. Relatively low amounts of proline accumulated in adult leaves with slight differences between the two landraces. During drought stress the most apical part of plants stayed relatively turgid with a high RWC compared to distal parts that wilted. Expression of key stress genes was higher and more proline accumulated at the apex than in distal leaves indicating that cowpea has a non-uniform stress response at the whole plant level. Our study reveals a developmental control of water stress through preferential proline accumulation in the upper tier of the cowpea plant. We also conclude that cowpea landraces display physiological adaptations to water stress suited to the arid and temperate climates in which they are cultivated.
Collapse
Affiliation(s)
- Zahia Zegaoui
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618, (UPEC, UPMC, CNRS, IRD, INRA, Paris Diderot), case 237, 4 place Jussieu, F-75252, Paris cedex 05, France; Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, BP 32, El Alia 16111, Algeria
| | - Séverine Planchais
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618, (UPEC, UPMC, CNRS, IRD, INRA, Paris Diderot), case 237, 4 place Jussieu, F-75252, Paris cedex 05, France
| | - Cécile Cabassa
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618, (UPEC, UPMC, CNRS, IRD, INRA, Paris Diderot), case 237, 4 place Jussieu, F-75252, Paris cedex 05, France
| | - Reda Djebbar
- Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, BP 32, El Alia 16111, Algeria
| | - Ouzna Abrous Belbachir
- Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, BP 32, El Alia 16111, Algeria
| | - Pierre Carol
- Sorbonne Universités, UPMC Univ Paris 06, iEES, UMR 7618, (UPEC, UPMC, CNRS, IRD, INRA, Paris Diderot), case 237, 4 place Jussieu, F-75252, Paris cedex 05, France
| |
Collapse
|
56
|
Bandillo NB, Lorenz AJ, Graef GL, Jarquin D, Hyten DL, Nelson RL, Specht JE. Genome-wide Association Mapping of Qualitatively Inherited Traits in a Germplasm Collection. THE PLANT GENOME 2017; 10. [PMID: 28724068 DOI: 10.3835/plantgenome2016.06.0054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting many major genes governing categorically defined phenotype variants that exist for qualitatively inherited traits in a germplasm collection. Genome-wide association mapping was applied to categorical phenotypic data available for 10 descriptive traits in a collection of ∼13,000 soybean [ (L.) Merr.] accessions that had been genotyped with a 50,000 single nucleotide polymorphism (SNP) chip. A GWA on a panel of accessions of this magnitude can offer substantial statistical power and mapping resolution, and we found that GWA mapping resulted in the identification of strong SNP signals for 24 classical genes as well as several heretofore unknown genes controlling the phenotypic variants in those traits. Because some of these genes had been cloned, we were able to show that the narrow GWA mapping SNP signal regions that we detected for the phenotypic variants had chromosomal bp spans that, with just one exception, overlapped the bp region of the cloned genes, despite local variation in SNP number and nonuniform SNP distribution in the chip set.
Collapse
|
57
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
58
|
Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD, Li W, Zhang WK, Ma B, Lai YC, Du WG, Man WQ, Chen SY, Zhang JS. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight. MOLECULAR PLANT 2017; 10:670-684. [PMID: 28363587 DOI: 10.1016/j.molp.2017.03.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
Cultivated soybeans may lose some useful genetic loci during domestication. Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits. In this study, through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44, and mapping of quantitative trait loci for seed weight, we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size. PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes. We found that PP2C-1 is associated with GmBZR1, a soybean ortholog of Arabidopsis BZR1, one of key transcription factors in brassinosteroid (BR) signaling, and facilitate accumulation of dephosphorylated GmBZR1. In contrast, the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function. Moreover, we showed that GmBZR1 could promote seed weight/size in transgenic plants. Through analysis of cultivated soybean accessions, we found that 40% of the examined accessions do not have the PP2C-1 allele, suggesting that these accessions can be improved by introduction of this allele. Taken together, our study identifies an elite allele PP2C-1, which can enhance seed weight and/or size in soybean, and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Lei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei-Guang Du
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China.
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
59
|
Rodrigues AS, Miguel CM. The pivotal role of small non-coding RNAs in the regulation of seed development. PLANT CELL REPORTS 2017; 36:653-667. [PMID: 28289886 DOI: 10.1007/s00299-017-2120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Seeds represent a crucial stage of the seed plants life cycle. It is during seed development that the foundations of the future plant body, and the ability to give rise to a new plant capable of growing under sometimes adverse environmental conditions, are established. Small non-coding RNAs are major regulators of gene expression both at the post-transcriptional and transcriptional levels and, not surprisingly, these elements play major roles in seed development and germination. We review here the current knowledge about small RNA expression and functions in seed development, going from the morphogenesis phase comprehending embryo development and patterning, to the several steps of the maturation phase, ending in the transition to the germination. A special focus is given to the small RNAs for which functional studies have been conducted and their participation in regulatory networks operating in seeds. Many challenges remain ahead for dissecting the complex small RNA landscape in seeds, but this is a highly relevant issue in plant biology and advances in this area will most certainly impact plant breeding.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa (FCUL), Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
60
|
Gupta OP, Nigam D, Dahuja A, Kumar S, Vinutha T, Sachdev A, Praveen S. Regulation of Isoflavone Biosynthesis by miRNAs in Two Contrasting Soybean Genotypes at Different Seed Developmental Stages. FRONTIERS IN PLANT SCIENCE 2017; 8:567. [PMID: 28450878 PMCID: PMC5390031 DOI: 10.3389/fpls.2017.00567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 05/20/2023]
Abstract
Owing to the presence of nutritionally important, health-promoting bioactive compounds, especially isoflavones, soybean has acquired the status of a functional food. miRNAs are tiny riboregulator of gene expression by either decreasing and/or increasing the expression of their corresponding target genes. Despite several works on identification and functional characterization of plant miRNAs, the role of miRNAs in the regulation of isoflavones metabolism is still a virgin field. In the present study, we identified a total of 31 new miRNAs along with their 245 putative target genes from soybean seed-specific ESTs using computational approach. The Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that miRNA putatively regulates metabolism and genetic information processing. Out of that, a total of 5 miRNAs (Gma-miRNA12, Gma-miRNA24, Gma-miRNA26, Gma-miRNA28, and Gma-miRNA29) were predicted and validated for their probable role during isoflavone biosynthesis. We also validated their five target genes using RA-PCR, which is as good as 5'RLM-RACE. Temporal regulation [35 days after flowering, 45, 55, and 65 DAF] of miRNAs and their targets showed differential expression schema. Differential expression of Gma-miR26 and Gma-miRNA28 along with their corresponding target genes (Glyma.10G197900 and Glyma.09G127200) showed a direct relationship with the total isoflavone content. Therefore, understanding the miRNA-based genetic regulation of isoflavone pathway would assist in selection and manipulation to get high-performing soybean genotypes with better isoflavone yield.
Collapse
Affiliation(s)
- Om P. Gupta
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa CampusNew Delhi, India
| | - Deepti Nigam
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa CampusNew Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa CampusNew Delhi, India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa CampusNew Delhi, India
| | - T. Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa CampusNew Delhi, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa CampusNew Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa CampusNew Delhi, India
| |
Collapse
|
61
|
Sedivy EJ, Wu F, Hanzawa Y. Soybean domestication: the origin, genetic architecture and molecular bases. THE NEW PHYTOLOGIST 2017; 214:539-553. [PMID: 28134435 DOI: 10.1111/nph.14418] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/28/2016] [Indexed: 05/20/2023]
Abstract
Domestication provides an important model for the study of evolution, and information learned from domestication research aids in the continued improvement of crop species. Recent progress in de novo assembly and whole-genome resequencing of wild and cultivated soybean genomes, in addition to new archeological discoveries, sheds light on the origin of this important crop and provides a clearer view on the modes of artificial selection that drove soybean domestication and diversification. This novel genomic information enables the search for polymorphisms that underlie variation in agronomic traits and highlights genes that exhibit a signature of selection, leading to the identification of a number of candidate genes that may have played important roles in soybean domestication, diversification and improvement. These discoveries provide a novel point of comparison on the evolutionary bases of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Eric J Sedivy
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Faqiang Wu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoshie Hanzawa
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
62
|
Cho YB, Jones SI, Vodkin LO. Mutations in Argonaute5 Illuminate Epistatic Interactions of the K1 and I Loci Leading to Saddle Seed Color Patterns in Glycine max. THE PLANT CELL 2017; 29:708-725. [PMID: 28351993 PMCID: PMC5435447 DOI: 10.1105/tpc.17.00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 05/18/2023]
Abstract
The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation, and the recessive k1 mutation can epistatically overcome the dominant I and ii alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the ii and ik alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous ik K1 versus homozygous ii k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Nonfunctional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or ii alleles.
Collapse
Affiliation(s)
- Young B Cho
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Sarah I Jones
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
63
|
Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:374. [PMID: 28424705 PMCID: PMC5372812 DOI: 10.3389/fpls.2017.00374] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 05/20/2023]
Abstract
Plant's secondary metabolites such as flavonoids, terpenoids, and alkaloids etc. are known for their role in the defense against various insects-pests of plants and for medicinal benefits in human. Due to the immense biological importance of these phytochemicals, understanding the regulation of their biosynthetic pathway is crucial. In the recent past, advancement in the molecular technologies has enabled us to better understand the proteins, enzymes, genes, etc. involved in the biosynthetic pathway of the secondary metabolites. miRNAs are magical, tiny, non-coding ribonucleotides that function as critical regulators of gene expression in eukaryotes. Despite the accumulated knowledge of the miRNA-mediated regulation of several processes, the involvement of miRNAs in regulating secondary plant product biosynthesis is still poorly understood. Here, we summarize the recent progress made in the area of identification and characterizations of miRNAs involved in regulating the biosynthesis of secondary metabolites in plants and discuss the future perspectives for designing the viable strategies for their targeted manipulation.
Collapse
Affiliation(s)
- Om P. Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
- *Correspondence: Om P. Gupta
| | - Suhas G. Karkute
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Sagar Banerjee
- Division of Biochemistry, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Nand L. Meena
- Division of Basic Sciences, ICAR-Indian Institute of Millets ResearchHyderabad, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
64
|
Song J, Liu Z, Hong H, Ma Y, Tian L, Li X, Li YH, Guan R, Guo Y, Qiu LJ. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean. PLoS One 2016; 11:e0159064. [PMID: 27404272 PMCID: PMC4942065 DOI: 10.1371/journal.pone.0159064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping.
Collapse
Affiliation(s)
- Jian Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhangxiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yansong Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Long Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xinxiu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
65
|
Lu X, Li QT, Xiong Q, Li W, Bi YD, Lai YC, Liu XL, Man WQ, Zhang WK, Ma B, Chen SY, Zhang JS. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:530-44. [PMID: 27062090 DOI: 10.1111/tpj.13181] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Cultivated soybean has undergone many transformations during domestication. In this paper we report a comprehensive assessment of the evolution of gene co-expression networks based on the analysis of 40 transcriptomes from developing soybean seeds in cultivated and wild soybean accessions. We identified 2680 genes that are differentially expressed during seed maturation and established two cultivar-specific gene co-expression networks. Through analysis of the two networks and integration with quantitative trait locus data we identified two potential key drivers for seed trait formation, GA20OX and NFYA. GA20OX encodes an enzyme in a rate-limiting step of gibberellin biosynthesis, and NFYA encodes a transcription factor. Overexpression of GA20OX and NFYA enhanced seed size/weight and oil content, respectively, in seeds of transgenic plants. The two genes showed significantly higher expression in cultivated than in wild soybean, and the increases in expression were associated with genetic variations in the promoter region of each gene. Moreover, the expression of GA20OX and NFYA in seeds of soybean accessions correlated with seed weight and oil content, respectively. Our study reveals transcriptional adaptation during soybean domestication and may identify a mechanism of selection by expression for seed trait formation, providing strategies for future breeding practice.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xin-Lei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
66
|
Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Sci Rep 2016; 6:26323. [PMID: 27189519 PMCID: PMC4870700 DOI: 10.1038/srep26323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 11/08/2022] Open
Abstract
Sacred lotus is rich in biologically active compounds, particularly benzylisoquinoline alkaloids (BIAs). Here, we report on isolation of genes encoding (S)-norcoclaurine synthase (NCS) in sacred lotus, which is a key entry-enzyme in BIA biosynthesis. Seven NCS genes, designated NnNCS1 through NnNCS7, were identified in the sacred lotus genome, and five are located next to each other within a 83 kb region on scaffold 8. The NCS genes are divided into two subfamilies, designated NCSI and NCSII. The NCSII genes are universal in plants, while the NCSI genes are only identified in a limited number of dicotyledonous taxa that produce BIAs. In sacred lotus, only NnNCS4 belongs to the NCSII subfamily, whilst the rest NCS genes within the NCSI subfamily. Overall, the NnNCS7 gene was predominantly expressed in all tested tissues, and its expression is significantly correlated with alkaloid content in leaf. In contrast, the NnNCS4 expression shows no significant correlation with alkaloid accumulation in leaf, and its lack of expression cannot inhibit alkaloid accumulation. Taken together, these results suggest that the NCSI subfamily is crucial for BIA biosynthesis, and its origin may represent an important evolutionary event that allows certain plant taxa to produce BIAs.
Collapse
|
67
|
Kanizay L, Jacobs T, Hancock CN. A transgenic, visual screenable marker for soybean seeds. Transgenic Res 2016; 25:187-93. [PMID: 26660729 DOI: 10.1007/s11248-015-9922-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
Most soybean cultivars produce buff colored seeds due to a seed coat specific siRNA mechanism. This phenomenon is specifically limited to the seed coat and produces a strong visual effect, thus, a strategy to evade the silencing was used to produce a maternal transgenic marker for soybeans. Expression of a rice chalcone synthase transgene with little DNA sequence homology to the soybean siRNAs resulted in dark colored seed coats. This phenotype is the result of anthocyanin pigment production and does not appear to affect other tissues. This novel approach for producing an easily scored transgenic marker for soybean will facilitate high-throughput screening and analysis of transgenic soybean.
Collapse
Affiliation(s)
- Lisa Kanizay
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Thomas Jacobs
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - C Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC, 29801, USA.
| |
Collapse
|
68
|
Valliyodan B, Dan Qiu, Patil G, Zeng P, Huang J, Dai L, Chen C, Li Y, Joshi T, Song L, Vuong TD, Musket TA, Xu D, Shannon JG, Shifeng C, Liu X, Nguyen HT. Landscape of genomic diversity and trait discovery in soybean. Sci Rep 2016; 6:23598. [PMID: 27029319 PMCID: PMC4814817 DOI: 10.1038/srep23598] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/18/2016] [Indexed: 02/08/2023] Open
Abstract
Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Dan Qiu
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Gunvant Patil
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Peng Zeng
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Jiaying Huang
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Lu Dai
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Chengxuan Chen
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Yanjun Li
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Trupti Joshi
- Department of Molecular Microbiology and Immunology and Medical Research Office, School of Medicine, University of Missouri, Columbia, 65212
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, 65211, USA
| | - Li Song
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Tri D. Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Theresa A. Musket
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| | - Dong Xu
- Department of Molecular Microbiology and Immunology and Medical Research Office, School of Medicine, University of Missouri, Columbia, 65212
| | - J. Grover Shannon
- Division of Plant Sciences and NCSB, University of Missouri-Fisher Delta Research Center, Portageville, MO, 63873, USA
| | - Cheng Shifeng
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology (NCSB), University of Missouri, Columbia 65211, USA
| |
Collapse
|
69
|
Yu A, Saudemont B, Bouteiller N, Elvira-Matelot E, Lepère G, Parent JS, Morel JB, Cao J, Elmayan T, Vaucheret H. Second-Site Mutagenesis of a Hypomorphic argonaute1 Allele Identifies SUPERKILLER3 as an Endogenous Suppressor of Transgene Posttranscriptional Gene Silencing. PLANT PHYSIOLOGY 2015; 169:1266-74. [PMID: 26286717 PMCID: PMC4587451 DOI: 10.1104/pp.15.00585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/16/2015] [Indexed: 05/21/2023]
Abstract
Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations.
Collapse
Affiliation(s)
- Agnès Yu
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Baptiste Saudemont
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Emilie Elvira-Matelot
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Gersende Lepère
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jean-Sébastien Parent
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jean-Benoit Morel
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jun Cao
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| |
Collapse
|
70
|
Abstract
We elucidated the genome sequence of Glycine max cv. Enrei to provide a reference for characterization of Japanese domestic soybean cultivars. The whole genome sequence obtained using a next-generation sequencer was used for reference mapping into the current genome assembly of G. max cv. Williams 82 obtained by the Soybean Genome Sequencing Consortium in the USA. After sequencing and assembling the whole genome shotgun reads, we obtained a data set with about 928 Mbs total bases and 60,838 gene models. Phylogenetic analysis provided glimpses into the ancestral relationships of both cultivars and their divergence from the complex that include the wild relatives of soybean. The gene models were analyzed in relation to traits associated with anthocyanin and flavonoid biosynthesis and an overall profile of the proteome. The sequence data are made available in DAIZUbase in order to provide a comprehensive informatics resource for comparative genomics of a wide range of soybean cultivars in Japan and a reference tool for improvement of soybean cultivars worldwide.
Collapse
|
71
|
New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 2015; 37:1719-27. [PMID: 26003096 DOI: 10.1007/s10529-015-1863-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022]
Abstract
Plant cell cultures are of particular interest in industrial applications as a source of biologically active substances. It is difficult, however, to achieve stable production of secondary metabolites for many plant cell cultures using classical techniques. Novel approaches should be developed for removal of the inhibitor blocks that prevent pathway activation and shift the regulatory balance to the activation of entire biosynthetic pathways. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. Only recently miRNAs have been demonstrated as active in secondary metabolism regulation. In this work, we summarize recent data on the emerging approaches based on regulation of secondary metabolism by miRNAs.
Collapse
|
72
|
Sundaramoorthy J, Park GT, Lee JD, Kim JH, Seo HS, Song JT. Genetic and molecular regulation of flower pigmentation in soybean. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, Valdés-López O, Prince S, Musket TA, Nguyen HT, Stacey G, Meyers BC. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. THE PLANT CELL 2014; 26:4584-601. [PMID: 25465409 PMCID: PMC4311202 DOI: 10.1105/tpc.114.131847] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/01/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets.
Collapse
Affiliation(s)
- Siwaret Arikit
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Rui Xia
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Atul Kakrana
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Jixian Zhai
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Zhe Yan
- Division of Plant Science, University of Missouri, Columbia, Missouri 65211
| | - Oswaldo Valdés-López
- Unidad de Morfologia y Función, FES Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090,Mexico
| | - Silvas Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Theresa A Musket
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Science, University of Missouri, Columbia, Missouri 65211
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| |
Collapse
|
74
|
Zabala G, Vodkin LO. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One 2014; 9:e111959. [PMID: 25369033 PMCID: PMC4219821 DOI: 10.1371/journal.pone.0111959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 01/26/2023] Open
Abstract
We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m) is homozygous for a mutable allele (r(m)) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m) line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m) progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
75
|
Zabala G, Vodkin LO. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One 2014; 9:e111959. [PMID: 25369033 DOI: 10.1371/journalpone.0111959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 05/28/2023] Open
Abstract
We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-r(m) is homozygous for a mutable allele (r(m)) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-r(m) line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-r(m) progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
76
|
Sherman-Broyles S, Bombarely A, Powell AF, Doyle JL, Egan AN, Coate JE, Doyle JJ. The wild side of a major crop: soybean's perennial cousins from Down Under. AMERICAN JOURNAL OF BOTANY 2014; 101:1651-65. [PMID: 25326613 DOI: 10.3732/ajb.1400121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in eastern Asia and are the only two species in the annual subgenus Soja. Systematic and evolutionary studies of the ca. 30 perennial species of subgenus Glycine, native to Australia, have benefited from the availability of the G. max genomic sequence. The perennial species harbor many traits of interest to soybean breeders, among them resistance to major soybean pathogens such as cyst nematode and leaf rust. New species in the Australian subgenus continue to be described, due to the collection of new material and to insights gleaned through systematic studies of accessions in germplasm collections. Ongoing studies in perennial species focus on genomic regions that contain genes for key traits relevant to soybean breeding. These comparisons also include the homoeologous regions that are the result of polyploidy in the common ancestor of all Glycine species. Subgenus Glycine includes a complex of recently formed allopolyploids that are the focus of studies aimed at elucidating genomic, transcriptomic, physiological, taxonomic, morphological, developmental, and ecological processes related to polyploid evolution. Here we review what has been learned over the past 30 years and outline ongoing work on photosynthesis, nitrogen fixation, and floral biology, much of it drawing on new technologies and resources.
Collapse
Affiliation(s)
| | | | - Adrian F Powell
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Jane L Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Ashley N Egan
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington D.C. 20013-7012 USA
| | - Jeremy E Coate
- Reed College, Department of Biology, 3203 SE Woodstock Blvd., Portland, Oregon 97202 USA
| | - Jeff J Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| |
Collapse
|
77
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:541-53. [PMID: 24476152 DOI: 10.1111/pbi.12158] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 05/22/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | |
Collapse
|
78
|
Khan D, Chan A, Millar JL, Girard IJ, Belmonte MF. Predicting transcriptional circuitry underlying seed coat development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:146-52. [PMID: 24767124 DOI: 10.1016/j.plantsci.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 05/27/2023]
Abstract
Filling, protection, and dispersal of angiosperm seeds are largely dependent on the development of the maternally derived seed coat. The development of the seed coat in plants such as Arabidopsis thaliana and Glycine max (soybean) is regulated by a complex network of genes and gene products responsible for the establishment and identity of this multicellular structure. Recent studies support the hypothesis that the structure, development, and function of the seed coat are under the control of transcriptional regulators that are specified in space and time. Furthermore, these transcriptional regulators can act in combination to orchestrate the expression of large gene sets. We discuss the underlying transcriptional circuits of the seed coat sub-regions through the interrogation of large-scale datasets, and also provide some ideas on how the identification and analysis of these datasets can be further improved in these two model oilseed systems.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Ainsley Chan
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Jenna L Millar
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
79
|
Kour A, Boone AM, Vodkin LO. RNA-Seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. PLoS One 2014; 9:e96342. [PMID: 24828743 PMCID: PMC4020777 DOI: 10.1371/journal.pone.0096342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall.
Collapse
Affiliation(s)
- Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Anne M. Boone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
80
|
Yu J, Zhang Z, Wei J, Ling Y, Xu W, Su Z. SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genomics 2014; 15:271. [PMID: 24712981 PMCID: PMC4051163 DOI: 10.1186/1471-2164-15-271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean (Glycine max L.) is one of the world's most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers' goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions. It is essential to build a comprehensive analysis platform for integrating soybean whole-genome sequencing data, the available transcriptome data and protein information. This platform could also be used to identify acyl-lipid metabolism pathways. DESCRIPTION In this study, we describe our construction of the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser (Gbrowse) as the core platform. We integrated microarray expression profiling with 255 samples from 14 groups' experiments and mRNA-seq data with 30 samples from four groups' experiments, including spatial and temporal transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a gene co-expression regulatory network containing 23,267 genes and 1873 miRNA-target pairs, and a group of acyl-lipid pathways containing 221 enzymes and more than 1550 genes. The SFGD also provides some key analysis tools, i.e. BLAST search, expression pattern search and cis-element significance analysis, as well as gene ontology information search and single nucleotide polymorphism display. CONCLUSION The SFGD is a comprehensive database integrating genome and transcriptome data, and also for soybean acyl-lipid metabolism pathways. It provides useful toolboxes for biologists to improve the accuracy and robustness of soybean functional genomics analysis, further improving understanding of gene regulatory networks for effective crop improvement. The SFGD is publically accessible at http://bioinformatics.cau.edu.cn/SFGD/, with all data available for downloading.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenhai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Ling
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
81
|
Li Y, Varala K, Hudson ME. A survey of the small RNA population during far-red light-induced apical hook opening. FRONTIERS IN PLANT SCIENCE 2014; 5:156. [PMID: 24808898 PMCID: PMC4010784 DOI: 10.3389/fpls.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 04/04/2014] [Indexed: 05/20/2023]
Abstract
Photomorphogenesis is a mechanism employed by plants to regulate their architecture and developmental program in response to light conditions. As they emerge into light for the first time, dark-grown seedlings employ a rapid and finely-controlled photomorphogenic signaling network. Small RNAs have increasingly been revealed to play an important role in regulating multiple aspects of plant development, by modulating the stability of mRNAs. The rapid alteration of the mRNA transcriptome is a known hallmark of the de-etiolation response, thus we investigated the small RNA transcriptome during this process in specific seedling tissues. Here we describe a survey of the small RNA expression profile in four tissues of etiolated soybean seedlings, the cotyledons, hypocotyl and the convex and concave sides of the apical hook. We also investigate how this profile responds to a 1-h far-red light treatment. Our data suggests that miRNAs show a different global profile between these tissues and treatments, suggesting a possible role for tissue- and treatment-specific expression in the differential morphology of the seedling on de-etiolation. Further evidence for the role of miRNA in light-regulated development is given by the de-etiolation responses of a hypomorphic ago1 mutant, which displays reduced and delayed photomorphogenic responses in apical hook and cotyledon angle to far-red light.
Collapse
Affiliation(s)
- Ying Li
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kranthi Varala
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Matthew E. Hudson
- Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Energy Biosciences Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- *Correspondence: Matthew E. Hudson, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 34 National Soybean Res Ctr., 1101 West Peabody Drive, Urbana, IL 61801, USA e-mail:
| |
Collapse
|
82
|
Senda M, Nishimura S, Kasai A, Yumoto S, Takada Y, Tanaka Y, Ohnishi S, Kuroda T. Comparative analysis of the inverted repeat of a chalcone synthase pseudogene between yellow soybean and seed coat pigmented mutants. BREEDING SCIENCE 2013; 63:384-92. [PMID: 24399910 PMCID: PMC3859349 DOI: 10.1270/jsbbs.63.384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/17/2013] [Indexed: 05/13/2023]
Abstract
In soybean, the I gene inhibits pigmentation over the entire seed coat, resulting in yellow seeds. It is thought that this suppression of seed coat pigmentation is due to naturally occurring RNA silencing of chalcone synthase genes (CHS silencing). Fully pigmented seeds can be found among harvested yellow seeds at a very low percentage. These seed coat pigmented (scp) mutants are generated from yellow soybeans by spontaneous recessive mutation of the I gene. A candidate for the I gene, GmIRCHS, contains a perfect inverted repeat (IR) of a CHS pseudogene (pseudoCHS3) and transcripts of GmIRCHS form a double-stranded CHS RNA that potentially triggers CHS silencing. One CHS gene, ICHS1, is located 680 bp downstream of GmIRCHS. Here, the GmIRCHS-ICHS1 cluster was compared in scp mutants of various origins. In these mutants, sequence divergence in the cluster resulted in complete or partial loss of GmIRCHS in at least the pseudoCHS3 region. This result is consistent with the notion that the IR of pseudoCHS3 is sufficient to induce CHS silencing, and further supports that GmIRCHS is the I gene.
Collapse
Affiliation(s)
- Mineo Senda
- Faculty of Agriculture and Life Sciences, Hirosaki University,
3 Bunkyo-cho, Hirosaki, Aomori 036-8561,
Japan
- Corresponding author (e-mail: )
| | - Satsuki Nishimura
- Faculty of Agriculture and Life Sciences, Hirosaki University,
3 Bunkyo-cho, Hirosaki, Aomori 036-8561,
Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Sciences, Hirosaki University,
3 Bunkyo-cho, Hirosaki, Aomori 036-8561,
Japan
| | - Setsuzo Yumoto
- Research Support Center, National Agricultural Research Center for Tohoku Region,
Yotsuya, Daisen, Akita 014-0102,
Japan
| | - Yoshitake Takada
- National Agricultural Research Organization (NARO) Western Region Agricultural Research Center,
1-3-1 Senyu, Zentsuji, Kagawa 765-8508,
Japan
| | - Yoshinori Tanaka
- Hokkaido Research Organization Tokachi Agricultural Experiment Station,
S9-2 Shinsei, Memuro, Kasai, Hokkaido 082-0081,
Japan
| | - Shizen Ohnishi
- Hokkaido Research Organization Kitami Agricultural Experiment Station,
52 Yayoi, Kunneppu, Tokoro, Hokkaido 099-1406,
Japan
| | - Tomohisa Kuroda
- Niigata Agricultural Research Institute,
857 Nagakura-machi, Nagaoka, Niigata 940-0826,
Japan
| |
Collapse
|
83
|
Cho YB, Jones SI, Vodkin L. The transition from primary siRNAs to amplified secondary siRNAs that regulate chalcone synthase during development of Glycine max seed coats. PLoS One 2013; 8:e76954. [PMID: 24204712 PMCID: PMC3804491 DOI: 10.1371/journal.pone.0076954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
The I locus is a 27-kb inverted repeat cluster of chalcone synthase genes CHS1-3-4 that mediates siRNA down-regulation of CHS7 and CHS8 target mRNAs during seed development leading to yellow seed coats lacking anthocyanin pigments. Here, we report small RNA sequencing of ten stages of seed development from a few days post fertilization through maturity, revealing the amplification from primary to secondary short interfering RNAs (siRNAs) occurring during development. The young seed populations had a higher proportion of siRNAs representing the CHS1-3-4 gene family members, consistent with this region as the origin of the primary siRNAs. More intriguingly, the very young seed had a higher proportion of 22-nt CHS siRNAs than did the mid-maturation seed. We infer that the primary CHS siRNAs increase during development to levels sufficient to trigger amplification of secondary CHS siRNAs from the CHS7/8 target mRNAs, enabling the total levels of 21-nt CHS siRNAs to rise dramatically. Further, we demonstrate that the soybean system exhibits tissue-specific CHS siRNA production because primary CHS siRNA levels are not sufficient to trigger secondary amplification in tissues other than the seed coat.
Collapse
Affiliation(s)
- Young B. Cho
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Sarah I. Jones
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
84
|
Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, Xu D, Stacey G, Ecker JR. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 2013; 23:1663-74. [PMID: 23739894 PMCID: PMC3787263 DOI: 10.1101/gr.152538.112] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/05/2013] [Indexed: 01/22/2023]
Abstract
Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation.
Collapse
Affiliation(s)
- Robert J. Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Yupeng He
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA
| | - Oswaldo Valdés-López
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Saad M. Khan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
- Department of Computer Science, University of Missouri, Columbia, Missouri 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri 65211, USA
| | - Mark A. Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R. Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
- Department of Computer Science, University of Missouri, Columbia, Missouri 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri 65211, USA
| | - Gary Stacey
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- National Center for Soybean Biotechnology, University of Missouri, Columbia, Missouri 65211, USA
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
85
|
Jossey S, Hobbs HA, Domier LL. Role of soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean. PHYTOPATHOLOGY 2013; 103:941-8. [PMID: 23927427 DOI: 10.1094/phyto-09-12-0248-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean (Glycine max). The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing mutants in and chimeric recombinants between SMV 413 (efficiently aphid and seed transmitted) and an isolate of SMV G2 (not aphid or seed transmitted). As previously reported, the DAG amino acid sequence motif near the amino terminus of the coat protein (CP) was the major determinant in differences in aphid transmissibility of the two SMV isolates, and helper component proteinase (HC-Pro) played a secondary role. Seed transmission of SMV was influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmissibility of SMV 413. Substitution in SMV 413 of the two amino acids that varied in the CPs of the two isolates with those from SMV G2, G to D in the DAG motif and Q to P near the carboxyl terminus, significantly reduced seed transmission. The Q-to-P substitution in SMV 413 also abolished virus-induced seed-coat mottling in plant introduction 68671. This is the first report associating P1, CP, and the DAG motif with seed transmission of a potyvirus and suggests that HC-Pro interactions with CP are important for multiple functions in the virus infection cycle.
Collapse
Affiliation(s)
- Sushma Jossey
- Department of Crop Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
86
|
Deguchi A, Ohno S, Hosokawa M, Tatsuzawa F, Doi M. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. PLANTA 2013; 237:1325-35. [PMID: 23389674 DOI: 10.1007/s00425-013-1848-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 05/02/2023]
Abstract
Black color in flowers is a highly attractive trait in the floricultural industry, but its underlying mechanisms are largely unknown. This study was performed to identify the bases of the high accumulation of anthocyanidins in black cultivars and to determine whether the high accumulation of total anthocyanidins alone leads to the black appearance. Our approach was to compare black dahlia (Dahlia variabilis) cultivars with purple cultivars and a purple flowering mutant of a black cultivar, using pigment and molecular analyses. Black cultivars characteristically exhibited low lightness, high petal accumulation of cyanidin and total anthocyanidins without flavones, and marked suppression of flavone synthase (DvFNS) expression. A comparative study using black and purple cultivars revealed that neither the absence of flavones nor high accumulation of total anthocyanidins is solely sufficient for black appearance, but that cyanidin content in petals is also an important factor in the phenotype. A study comparing the black cultivar 'Kokucho' and its purple mutant showed that suppression of DvFNS abolishes the competition between anthocyanidin and flavone synthesis and leads to accumulation of cyanidin and total anthocyanidins that produce a black appearance. Surprisingly, in black cultivars the suppression of DvFNS occurred in a post-transcriptional manner, as determined by small RNA mapping.
Collapse
Affiliation(s)
- Ayumi Deguchi
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
87
|
Hosokawa M, Yamauchi T, Takahama M, Goto M, Mikano S, Yamaguchi Y, Tanaka Y, Ohno S, Koeda S, Doi M, Yazawa S. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla. PLANT CELL REPORTS 2013; 32:601-609. [PMID: 23397276 DOI: 10.1007/s00299-013-1391-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to <2,000 ppm, completely white corollas continued to develop in >40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.
Collapse
Affiliation(s)
- Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Jensen PD, Zhang Y, Wiggins BE, Petrick JS, Zhu J, Kerstetter RA, Heck GR, Ivashuta SI. Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes. GM CROPS & FOOD 2013; 4:90-7. [PMID: 23787988 DOI: 10.4161/gmcr.25285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long double-stranded RNAs (long dsRNAs) are precursors for the effector molecules of sequence-specific RNA-based gene silencing in eukaryotes. Plant cells can contain numerous endogenous long dsRNAs. This study demonstrates that such endogenous long dsRNAs in plants have sequence complementarity to human genes. Many of these complementary long dsRNAs have perfect sequence complementarity of at least 21 nucleotides to human genes; enough complementarity to potentially trigger gene silencing in targeted human cells if delivered in functional form. However, the number and diversity of long dsRNA molecules in plant tissue from crops such as lettuce, tomato, corn, soy and rice with complementarity to human genes that have a long history of safe consumption supports a conclusion that long dsRNAs do not present a significant dietary risk.
Collapse
|
89
|
Jones SI, Vodkin LO. Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS One 2013; 8:e59270. [PMID: 23555009 PMCID: PMC3598657 DOI: 10.1371/journal.pone.0059270] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/13/2013] [Indexed: 12/15/2022] Open
Abstract
To understand gene expression networks leading to functional properties and compositional traits of the soybean seed, we have undertaken a detailed examination of soybean seed development from a few days post-fertilization to the mature seed using Illumina high-throughput transcriptome sequencing (RNA-Seq). RNA was sequenced from seven different stages of seed development, yielding between 12 million and 78 million sequenced transcripts. These have been aligned to the 79,000 gene models predicted from the soybean genome recently sequenced by the Department of Energy Joint Genome Institute. Over one hundred gene models were identified with high expression exclusively in young seed stages, starting at just four days after fertilization. These were annotated as being related to many basic components and processes such as histones and proline-rich proteins. Genes encoding storage proteins such as glycinin and beta-conglycinin had their highest expression levels at the stages of largest fresh weight, confirming previous knowledge that these storage products are being rapidly accumulated before the seed begins the desiccation process. Other gene models showed high expression in the dry, mature seeds, perhaps indicating the preparation of pathways needed later, in the early stages of imbibition. Many highly-expressed gene models at the dry seed stage are, as expected, annotated as hydrophilic proteins associated with low water conditions, such as late embryogenesis abundant (LEA) proteins and dehydrins, which help preserve the cellular structures and nutrients within the seed during desiccation. More significantly, the power of RNA-Seq to detect genes expressed at low levels revealed hundreds of transcription factors with notable expression in at least one stage of seed development. Results from a second biological replicate demonstrate high reproducibility of these data revealing a comprehensive view of the transciptome of seed development in the cultivar Williams, the reference cultivar for the first soybean genome sequence.
Collapse
Affiliation(s)
- Sarah I. Jones
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
90
|
Xue B, Hamamouch N, Li C, Huang G, Hussey RS, Baum TJ, Davis EL. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. PHYTOPATHOLOGY 2013; 103:175-81. [PMID: 23294405 DOI: 10.1094/phyto-07-12-0173-r] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parasitism genes encode effector proteins that are secreted through the stylet of root-knot nematodes to dramatically modify selected plant cells into giant-cells for feeding. The Mi8D05 parasitism gene previously identified was confirmed to encode a novel protein of 382 amino acids that had only one database homolog identified on contig 2374 within the Meloidogyne hapla genome. Mi8D05 expression peaked in M. incognita parasitic second-stage juveniles within host roots and its encoded protein was limited to the subventral esophageal gland cells that produce proteins secreted from the stylet. Constitutive expression of Mi8D05 in transformed Arabidopsis thaliana plants induced accelerated shoot growth and early flowering but had no visible effects on root growth. Independent lines of transgenic Arabidopsis that expressed a double-stranded RNA complementary to Mi8D05 in host-derived RNA interference (RNAi) tests had up to 90% reduction in infection by M. incognita compared with wild-type control plants, suggesting that Mi8D05 plays a critical role in parasitism by the root-knot nematode. Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi8D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction.
Collapse
Affiliation(s)
- Bingye Xue
- North Carolina State University, Department of Plant Pathology, Raleigh 27607, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Kasai M, Matsumura H, Yoshida K, Terauchi R, Taneda A, Kanazawa A. Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia. BMC Genomics 2013; 14:63. [PMID: 23360437 PMCID: PMC3608071 DOI: 10.1186/1471-2164-14-63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. Results We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. Conclusions The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of these silencing phenomena.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
92
|
The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements. PLoS One 2012; 7:e47043. [PMID: 23118865 PMCID: PMC3485269 DOI: 10.1371/journal.pone.0047043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequencing to characterize the inheritance patterns of small RNA levels in reciprocal hybrids of two Arabidopsis thaliana accessions, Columbia and Landsberg erecta. We find 24-nt siRNAs predominate among those small RNAs that are differentially expressed between the parents. Following hybridization, the transposable element (TE)-derived siRNAs are often inherited in an additive manner, whereas siRNAs associated with protein-coding genes are often down-regulated in hybrids to the levels observed for the parent with lower relative siRNA levels. Among the protein-coding genes that exhibit this pattern, genes that function in pathogen defense, abiotic stress tolerance, and secondary metabolism are significantly enriched. Small RNA clusters from protein-coding genes where a TE is present within one kilobase show a different predominant inheritance pattern (additive) from those that do not (low-parent dominance). Thus, down-regulation in the form of low-parent dominance is likely the default pattern of inheritance for genic siRNA, and a different inheritance mechanism for TE siRNA is suggested.
Collapse
|
93
|
Zabala G, Campos E, Varala KK, Bloomfield S, Jones SI, Win H, Tuteja JH, Calla B, Clough SJ, Hudson M, Vodkin LO. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC PLANT BIOLOGY 2012; 12:177. [PMID: 23031057 PMCID: PMC3534067 DOI: 10.1186/1471-2229-12-177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/22/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gained mostly through studies with Arabidopsis. In recent years, high throughput sequencing of smRNA populations has enabled extension of knowledge from model systems to plants with larger, more complex genomes. Soybean (Glycine max) now has many genomics resources available including a complete genome sequence and predicted gene models. Relatively little is known, however, about the full complement of its endogenous smRNAs populations and the silenced genes. RESULTS Using Illumina sequencing and computational analysis, we characterized eight smRNA populations from multiple tissues and organs of soybean including developing seed and vegetative tissues. A total of 41 million raw sequence reads collapsed into 135,055 unique reads were mapped to the soybean genome and its predicted cDNA gene models. Bioinformatic analyses were used to distinguish miRNAs and siRNAs and to determine their genomic origins and potential target genes. In addition, we identified two soybean TAS3 gene homologs, the miRNAs that putatively guide cleavage of their transcripts, and the derived tasiRNAs that could target soybean genes annotated as auxin response factors. Tissue-differential expression based on the flux of normalized miRNA and siRNA abundances in the eight smRNA libraries was evident, some of which was confirmed by smRNA blotting. Our global view of these smRNA populations also revealed that the size classes of smRNAs varied amongst different tissues, with the developing seed and seed coat having greater numbers of unique smRNAs of the 24-nt class compared to the vegetative tissues of germinating seedlings. The 24-nt class is known to be derived from repetitive elements including transposons. Detailed analysis of the size classes associated with ribosomal RNAs and transposable element families showed greater diversity of smRNAs in the 22- and 24-nt size classes. CONCLUSIONS The flux of endogenous smRNAs within multiple stages and tissues of seed development was contrasted with vegetative tissues of soybean, one of the dominant sources of protein and oil in world markets. The smRNAs varied in size class, complexity of origins, and possible targets. Sequencing revealed tissue-preferential expression for certain smRNAs and expression differences among closely related miRNA family members.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Organ Specificity/genetics
- Plant Proteins/chemistry
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/genetics
- RNA, Small Interfering/genetics
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- Retroelements/genetics
- Seeds/genetics
- Sequence Alignment
- Sequence Analysis, RNA
- Glycine max/genetics
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Edhilvia Campos
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Kranthi K Varala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Sean Bloomfield
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Sarah I Jones
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Hlaing Win
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jigyasa H Tuteja
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Bernarda Calla
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
94
|
Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. PLANTA 2012; 236:943-958. [PMID: 22761008 DOI: 10.1007/s00425-012-1693-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/07/2012] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants have to cope with the ever-changing environment as well as with numerous forms of stress. To react to these external cues, plants have evolved a suite of response mechanisms operating at many different levels, ranging from physiological to molecular processes that provide the organism with a wide phenotypic plasticity, allowing for fine tuning of the reactions to these adverse circumstances. During the past decade, non-coding RNAs (ncRNAs) have emerged as key regulatory molecules, which contribute to a significant portion of the transcriptome in eukaryotes and are involved in the control of transcriptional and post-transcriptional gene regulatory pathways. Although accumulated evidence supports an important role for ncRNAs in plant response and adaptation to abiotic stress, their mechanism(s) of action still remains obscure and a functional characterization of the ncRNA repertoire in plants is still needed. Moreover, common features in the biogenesis of different small ncRNAs, and in some cases, cross talk between different gene regulatory pathways may add to the complexity of these pathways and could play important roles in modulating stress responses. Here we review the various ncRNAs that have been reported to participate in the response to abiotic stress in plants, focusing on their importance in plant adaptation and evolution. Understanding how ncRNAs work may reveal novel mechanisms involved in the plant responses to the environment.
Collapse
Affiliation(s)
- Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, 62250 Cuernavaca, Mor, Mexico
| | | | | | | | | |
Collapse
|
95
|
Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:703-12. [PMID: 22947222 DOI: 10.1111/j.1744-7909.2012.01161.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant secondary metabolites play critical roles in plant-environment interactions. They are synthesized in different organs or tissues at particular developmental stages, and in response to various environmental stimuli, both biotic and abiotic. Accordingly, corresponding genes are regulated at the transcriptional level by multiple transcription factors. Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites. These regulators integrate internal (often developmental) and external signals, bind to corresponding cis-elements--which are often in the promoter regions--to activate or repress the expression of enzyme-coding genes, and some of them interact with other transcription factors to form a complex. In this review, we summarize recent research in these areas, with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.
Collapse
Affiliation(s)
- Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
96
|
Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics 2012; 13:310. [PMID: 22799740 PMCID: PMC3410764 DOI: 10.1186/1471-2164-13-310] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 07/16/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate the expression of target genes by mediating gene silencing in both plants and animals. The miRNA targets have been extensively investigated in Arabidopsis and rice using computational prediction, experimental validation by overexpression in transgenic plants, and by degradome or PARE (parallel analysis of RNA ends) sequencing. However, miRNA targets mostly remain unknown in soybean (Glycine max). More specifically miRNA mediated gene regulation at different seed developmental stages in soybean is largely unexplored. In order to dissect miRNA guided gene regulation in soybean developing seeds, we performed a transcriptome-wide experimental method using degradome sequencing to directly detect cleaved miRNA targets. RESULTS In this study, degradome libraries were separately prepared from immature soybean cotyledons representing three stages of development and from seed coats of two stages. Sequencing and analysis of 10 to 40 million reads from each library resulted in identification of 183 different targets for 53 known soybean miRNAs. Among these, some were found only in the cotyledons representing cleavage by 25 miRNAs and others were found only in the seed coats reflecting cleavage by 12 miRNAs. A large number of targets for 16 miRNAs families were identified in both tissues irrespective of the stage. Interestingly, we identified more miRNA targets in the desiccating cotyledons of late seed maturation than in immature seed. We validated four different auxin response factor genes as targets for gma-miR160 via RNA ligase mediated 5' rapid amplification of cDNA ends (RLM-5'RACE). Gene Ontology (GO) analysis indicated the involvement of miRNA target genes in various cellular processes during seed development. CONCLUSIONS The miRNA targets in both the cotyledons and seed coats of several stages of soybean seed development have been elucidated by experimental evidence from comprehensive, high throughput sequencing of the enriched fragments resulting from miRNA-guided cleavage of messenger RNAs. Nearly 50% of the miRNA targets were transcription factors in pathways that are likely important in setting or maintaining the developmental program leading to high quality soybean seeds that are one of the dominant sources of protein and oil in world markets.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
97
|
Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG, Hussey RS, Vodkin LO, Davis EL. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3683-95. [PMID: 22442414 PMCID: PMC3388836 DOI: 10.1093/jxb/ers058] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 05/18/2023]
Abstract
Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant β-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host β-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.
Collapse
Affiliation(s)
- Noureddine Hamamouch
- Longwood University, Department of Biological & Environmental Sciences, Farmville, VA 23909, USA
| | - Chunying Li
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27607, USA
| | - Tarek Hewezi
- Iowa State University, Department of Plant Pathology, Ames, IA 50011, USA
| | - Thomas J. Baum
- Iowa State University, Department of Plant Pathology, Ames, IA 50011, USA
| | - Melissa G. Mitchum
- University of Missouri, Division of Plant Sciences, Columbia, MO 65211, USA
| | - Richard S. Hussey
- University of Georgia, Department of Plant Pathology, Athens, GA 30602, USA
| | - Lila O. Vodkin
- University of Illinois, Crop Sciences, Urbana-Champaign, IL 61801, USA
| | - Eric L. Davis
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27607, USA
- To whom correspondence should be addressed: E-mail.
| |
Collapse
|
98
|
Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, Ando T, Yoshikawa M, Habu Y, Ozeki Y, Nakayama M. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:739-49. [PMID: 22288551 DOI: 10.1111/j.1365-313x.2012.04908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event.
Collapse
Affiliation(s)
- Yasumasa Morita
- Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba 305-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Song J, Guo Y, Yu LJ, Qiu LJ. [Progress in genes related to seed-coat color in soybean]. YI CHUAN = HEREDITAS 2012; 34:687-94. [PMID: 22698739 DOI: 10.3724/sp.j.1005.2012.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Seed-coat color has changed from black to yellow during natural and artificial selection of cultivated soybean from wild soybean, and it is also an important morphological marker. Therefore, discovering genes related to the soybean seed-coat color will play a very important role in breeding and evolutionary study. Different seed-coat colors caused by deposition of various anthocyanin pigments. Although pigmentation has been well dissected at molecular level in several plant species, the genes controlling natural variation of seed-coat color in soybean remain to be unknown. Genes related to seed-coat color in soybean were discussed in this paper, including 5 genetic loci (I, T, W1, R and O). Locus I is located in a region that riches in chalcone synthase (CHS) genes on chromosome 8. Gene CHS is a multi-gene family with highly conserved sequences in soybean. Locus T located on chromosome 6 has been cloned and verified, which encodes a flavon-oid-3'-hydroxylase. Mutant of F3'H can not interact with the heme-binding domain due to lack of conservative domain GGEK caused by a nucleotide deletion in the coding region of F3'H. Locus R is located between A668-1 and K387-1 on chromosome 9 (linkage group K). This locus may encode a R2R3 MYB transcription factor or a UDP flavonoid 3-O glyco-syltransferase. Locus O is located between Satt207 and Satt493 on chromosome 8 (linkage group A2) and its molecular characteristics has not been characterized. Locus W1 may be a homology of F3'5'H gene.
Collapse
Affiliation(s)
- Jian Song
- College of Biological Science and Technology, Harbin Normal University, Harbin 150025, China.
| | | | | | | |
Collapse
|
100
|
Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A, Katayose Y, Ishimoto M, Harada K. The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes. PLANT MOLECULAR BIOLOGY 2012; 78:301-9. [PMID: 22193750 DOI: 10.1007/s11103-011-9865-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/23/2011] [Indexed: 05/11/2023]
Abstract
β-conglycinin, a major seed protein in soybean, is composed of α, α', and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α', and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, 'QT2', lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar 'Fukuyutaka', 'QY7-25', (its near-isogenic line carrying the Scg-1 gene), and the F₂ population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.
Collapse
Affiliation(s)
- Yasutaka Tsubokura
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|