51
|
Figueiredo J, Santos RB, Guerra-Guimarães L, Leclercq CC, Renaut J, Malhó R, Figueiredo A. An in-planta comparative study of Plasmopara viticola proteome reveals different infection strategies towards susceptible and Rpv3-mediated resistance hosts. Sci Rep 2022; 12:20794. [PMID: 36456634 PMCID: PMC9715676 DOI: 10.1038/s41598-022-25164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible ('Trincadeira') and a Rpv3-mediated resistance ('Regent') grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.
Collapse
Affiliation(s)
- Joana Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal.
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Leonor Guerra-Guimarães
- CIFC - Centro de Investigação das Ferrugens Do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Céline C Leclercq
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4362, Esch-Sur-Alzette, Luxembourg
| | - Rui Malhó
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
- Plant Biology Department, BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| |
Collapse
|
52
|
Helm M, Singh R, Hiles R, Jaiswal N, Myers A, Iyer-Pascuzzi AS, Goodwin SB. Candidate Effector Proteins from the Maize Tar Spot Pathogen Phyllachora maydis Localize to Diverse Plant Cell Compartments. PHYTOPATHOLOGY 2022; 112:2538-2548. [PMID: 35815936 DOI: 10.1094/phyto-05-22-0181-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins, of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmEC) proteins remain unknown, and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super yellow fluorescent protein-tagged PmEC proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating that the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed that most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane, whereas an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest that effector candidate proteins from P. maydis target diverse cellular organelles and could thus provide valuable insights into their putative functions, as well as host processes potentially manipulated by this fungal pathogen.
Collapse
Affiliation(s)
- Matthew Helm
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Raksha Singh
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Rachel Hiles
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Namrata Jaiswal
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Ariana Myers
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | | | - Stephen B Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| |
Collapse
|
53
|
Qian Y, Zheng X, Wang X, Yang J, Zheng X, Zeng Q, Li J, Zhuge Q, Xiong Q. Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea. Front Cell Infect Microbiol 2022; 12:1045615. [PMID: 36439212 PMCID: PMC9684206 DOI: 10.3389/fcimb.2022.1045615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 01/10/2024] Open
Abstract
Proteins containing Common in Fungal Extracellular Membrane (CFEM) domains uniquely exist in fungi and play significant roles in their whole life history. In this study, a total of 11 MbCFEM proteins were identified from Marssonina brunnea f. sp. multigermtubi (MULT), a hemibiotrophic pathogenic fungus on poplars that causes severe leaf diseases. Phylogenic analysis showed that the 11 proteins (MbCFEM1-11) were divided into three clades based on the trans-membrane domain and the CFEM domain. Sequence alignment and WebLogo analysis of CFEM domains verified the amino acids conservatism therein. All of them possess eight cysteines except MbCFEM4 and MbCFEM11, which lack two cysteines each. Six MbCFEM proteins with a signal peptide and without trans-membrane domain were considered as candidate effectors for further functional analysis. Three-dimensional (3D) models of their CFEM domains presented a helical-basket structure homologous to the crucial virulence factor Csa2 of Candida albicans. Afterward, four (MbCFEM1, 6, 8, and 9) out of six candidate effectors were successfully cloned and a yeast signal sequence trap (YSST) assay confirmed their secretion activity. Pathogen challenge assays demonstrated that the transient expression of four candidate MbCFEM effectors in Nicotiana benthamiana promoted Fusarium proliferatum infection, respectively. In an N. benthamiana heterogeneous expression system, MbCFEM1, MbCFEM6, and MbCFEM9 appeared to suppress both BAX/INF1-triggered PCD, whereas MbCFEM8 could only defeat BAX-triggered PCD. Additionally, subcellular localization analysis indicated that the four candidate MbCFEM effectors accumulate in the cell membrane, nucleus, chloroplast, and cytosolic bodies. These results demonstrate that MbCFEM1, MbCFEM6, MbCFEM8, and MbCFEM9 are effectors of M. brunnea and provide valuable targets for further dissection of the molecular mechanisms underlying the poplar-M. brunnea interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
54
|
Zhao Y, Yang B, Xu H, Wu J, Xu Z, Wang Y. The Phytophthora effector Avh94 manipulates host jasmonic acid signaling to promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2199-2210. [PMID: 36067028 DOI: 10.1111/jipb.13358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The oomycete pathogen Phytophthora sojae is a causal agent of soybean root rot. Upon colonization of soybeans, P. sojae secretes various RXLR effectors to suppress host immune responses, supporting successful infection. Previous research has demonstrated that the RXLR effector Avh94 functions as a virulence effector, but the molecular mechanism underlying its role in virulence remains unknown. Here, we demonstrate that Avh94 overexpression in plants and pathogens promotes Phytophthora infection. Avh94 interacts with soybean JAZ1/2, which is a repressor of jasmonic acid (JA) signaling. Avh94 stabilizes JAZ1/2 to inhibit JA signaling and silencing of JAZ1/2 enhances soybean resistance against P. sojae. Moreover, P. sojae lines overexpressing Avh94 inhibit JA signaling. Furthermore, exogenous application of methyl jasmonate improves plant resistance to Phytophthora. Taken together, these findings suggest that P. sojae employs an RXLR effector to hijack JA signaling and thereby promote infection.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
55
|
Shen P, Li X, Fu S, Zhou C, Wang X. A " Candidatus Liberibacter asiaticus"-secreted polypeptide suppresses plant immune responses in Nicotiana benthamiana and Citrus sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:997825. [PMID: 36352861 PMCID: PMC9638108 DOI: 10.3389/fpls.2022.997825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 05/22/2023]
Abstract
Citrus Huanglongbing (HLB), known as the most economically devastating disease in citrus industry, is mainly caused by phloem-restricted Gram-negative bacterium "Candidatus Liberibacter asiaticus" (CLas). To date, CLas is still unculturable in vitro, which has been dramatically delaying the research on its pathogenesis, and only few Sec-dependent effectors (SDEs) have been identified to elucidate the pathogenesis of CLas. Here, we confirmed that a CLas-secreted Sec-dependent polypeptide, namely SECP8 (CLIBASIA_05330), localized in nucleus, cytoplasm and cytoplasmic membrane, and showed remarkably higher transcript abundance in citrus than in psyllids. Potato virus X (PVX)-mediated transient expression assays indicated that mSECP8 (the mature form of SECP8) suppressed pro-apoptotic mouse protein BAX and Phytophthora infestans elicitin INF1-triggered hypersensitive response (HR) associated phenotypes, including cell death, H2O2 accumulation and callose deposition. Intriguingly, mSECP8 also inhibited SDE1 (CLIBASIA_05315)-induced water-soaked and dwarfing symptoms in Nicotiana benthamiana. In addition, mSECP8 can promote the susceptibility of transgenic Wanjincheng orange (Citrus sinensis) to CLas invasion and further HLB symptom development, and it contributes to the proliferation of Xanthomonas citri subsp. citri (Xcc). Moreover, the expression of ten immunity-related genes were significantly down-regulated in mSECP8 transgenic citrus than those in wide-type (WT) plants. Overall, we propose that mSECP8 may serve as a novel broad-spectrum suppressor of plant immunity, and provide the first evidence counteractive effect among CLas effectors. This study will enrich and provide new evidences for elucidating the pathogenic mechanisms of CLas in citrus host.
Collapse
Affiliation(s)
| | | | | | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
56
|
Yin X, Fu Q, Shang B, Wang Y, Liu R, Chen T, Xiang G, Dou M, Liu G, Xu Y. An RxLR effector from Plasmopara viticola suppresses plant immunity in grapevine by targeting and stabilizing VpBPA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:104-114. [PMID: 35929367 DOI: 10.1111/tpj.15933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Grapevine downy mildew, caused by Plasmopara viticola, is one of the most devastating diseases in viticulture. Plasmopara viticola secretes RxLR effectors to modulate immune responses in grapevine. Here, we report an RxLR effector RxLR50253 from P. viticola that can interfere with plant immune response and thus promote pathogen colonization. RxLR50253 was induced at an early stage of P. viticola infection and could suppress elicitor (INF1 and Bax)-triggered cell death. RxLR50253 promote pathogen colonization in both tobacco and grapevine leaves. VpBPA1 was found to be the host target of RxLR50253 by yeast two-hybrid screening, and interaction between RxLR50253 and VpBPA1 was confirmed by multiple in vivo and in vitro assays. Further analysis revealed that VpBPA1 promoted pathogen colonization and decreased H2 O2 accumulation in transgenic tobacco and grapevine, while there was enhanced resistance and H2 O2 accumulation in NbBPA1-silenced Nicotiana benthamiana leaves. Moreover, transient expression of VpBPA1 in NbBPA1-silenced N. benthamiana leaves could reduce the accumulation of H2 O2 . Experiments in vivo demonstrated that RxLR50253 inhibits degradation of VpBPA1. Taken together, our findings showed that RxLR50253 targets and stabilizes VpBPA1 to attenuate plant immunity through decreasing H2 O2 accumulation during pathogen infection.
Collapse
Affiliation(s)
- Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yunlei Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University) Yangling, Shaanxi, People's Republic of China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
57
|
Wang C, Zhang D, Cheng J, Zhao D, Pan Y, Li Q, Zhu J, Yang Z, Wang J. Identification of effector CEP112 that promotes the infection of necrotrophic Alternaria solani. BMC PLANT BIOLOGY 2022; 22:466. [PMID: 36171557 PMCID: PMC9520946 DOI: 10.1186/s12870-022-03845-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Alternaria solani is a typical necrotrophic pathogen that can cause severe early blight on Solanaceae crops and cause ring disease on plant leaves. Phytopathogens produce secretory effectors that regulate the host immune response and promote pathogenic infection. Effector proteins, as specialized secretions of host-infecting pathogens, play important roles in disrupting host defense systems. At present, the role of the effector secreted by A. solani during infection remains unclear. We report the identification and characterization of AsCEP112, an effector required for A. solani virulence. RESULT The AsCEP112 gene was screened from the transcriptome and genome of A. solani on the basis of typical effector signatures. Fluorescence quantification and transient expression analysis showed that the expression level of AsCEP112 continued to increase during infection. The protein localized to the cell membrane of Nicotiana benthamiana and regulated senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Moreover, comparative analysis of AsCEP112 mutant obtained by homologous recombination with wild-type and revertant strains indicated that AsCEP112 gene played an active role in regulating melanin formation and penetration in the pathogen. Deletion of AsCEP112 also reduced the pathogenicity of HWC-168. CONCLUSION Our findings demonstrate that AsCEP112 was an important effector protein that targeted host cell membranes. AsCEP112 regulateed host senescence-related genes to control host leaf senescence and chlorosis, and contribute to pathogen virulence.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianing Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| |
Collapse
|
58
|
Hu Y, He Z, Kang Y, Ye W, Cui L. Identification of a C2H2 Transcription Factor (PsCZF3) Associated with RxLR Effectors and Carbohydrate-Active Enzymes in Phytophthora sojae Based on WGCNA. J Fungi (Basel) 2022; 8:jof8100998. [PMID: 36294563 PMCID: PMC9605361 DOI: 10.3390/jof8100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Phytophthora sojae is a destructive soybean pathogen that orchestrates various secreted proteins (effectors) to modulate plant immunity and facilitate infection. Although a number of effectors have been identified and functionally studied in P. sojae, the way these molecules are regulated is marginally known. In this study, we performed a weighted gene correlation network analysis (WGCNA) based on digital RNA-seq, which enabled the identification of a transcription factor (PsCZF3) in P. sojae. This transcription factor is a C2H2-type zinc finger protein that regulates the transcription of 35 RxLR effectors during the early infection stage. Phylogenetic analysis revealed that PsCZF3 is a highly conserved protein across oomycetes, suggesting that this regulation mechanism may broadly exist in oomycete species. In addition, by building a subnetwork of PsCZF3 and correlated genes, we also found that PsCZF3 contributed to the transcriptional regulation of carbohydrate-active enzymes. Our findings suggest that the activation of PsCZF3 facilitates P. sojae infection by up-regulating RxLR effectors and carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Yanhong Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhihua He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Yebin Kang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.Y.); (L.C.)
| | - Linkai Cui
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
- Correspondence: (W.Y.); (L.C.)
| |
Collapse
|
59
|
Zhan Z, Liu H, Yang Y, Liu S, Li X, Piao Z. Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:881992. [PMID: 36204052 PMCID: PMC9530463 DOI: 10.3389/fpls.2022.881992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease of crucifers. Effector proteins are important virulence factors in host recognition of pathogens and the interactions between pathogens and hosts. Secretory proteins, as effector candidates, have been studied in the interaction between Plasmodiophora brassicae and its hosts. In this study, 518 secretary proteins were screened from the Plasmodiophora brassicae genome. A total of 63 candidate effectors that induce or suppress cell death were identified using agroinfiltration-mediated transient expression in Nicothiana benthamiana. The candidate effectors, Pb4_102097 and Pb4_108104 showed high expressing level in the stage of rest spore maturity, could induce cell death and were associated with H2O2 accumulation in N. benthamiana leaves. In addition, 55 candidate effectors that could suppress BAX (Bcl-2-associated X protein) induced cell death, and 21 out of which could suppress the immunity caused by bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in Arabidopsis. Based on the expression pattern in different stages, 28 candidate effectors showed high expression levels during the primary and secondary infection stage. Five candidate effectors containing the RXLR motif functioned in the cytoplasm and cell membrane.
Collapse
|
60
|
Yang LN, Ouyang H, Nkurikiyimfura O, Fang H, Waheed A, Li W, Wang YP, Zhan J. Genetic variation along an altitudinal gradient in the Phytophthora infestans effector gene Pi02860. Front Microbiol 2022; 13:972928. [PMID: 36160230 PMCID: PMC9492930 DOI: 10.3389/fmicb.2022.972928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Effector genes, together with climatic and other environmental factors, play multifaceted roles in the development of plant diseases. Understanding the role of environmental factors, particularly climate conditions affecting the evolution of effector genes, is important for predicting the long-term value of the genes in controlling agricultural diseases. Here, we collected Phytophthora infestans populations from five locations along a mountainous hill in China and sequenced the effector gene Pi02860 from >300 isolates. To minimize the influence of other ecological factors, isolates were sampled from the same potato cultivar on the same day. We also expressed the gene to visualise its cellular location, assayed its pathogenicity and evaluated its response to experimental temperatures. We found that Pi02860 exhibited moderate genetic variation at the nucleotide level which was mainly generated by point mutation. The mutations did not change the cellular location of the effector gene but significantly modified the fitness of P. infestans. Genetic variation and pathogenicity of the effector gene were positively associated with the altitude of sample sites, possibly due to increased mutation rate induced by the vertical distribution of environmental factors such as UV radiation and temperature. We further found that Pi02860 expression was regulated by experimental temperature with reduced expression as experimental temperature increased. Together, these results indicate that UV radiation and temperature are important environmental factors regulating the evolution of effector genes and provide us with considerable insight as to their future sustainable action under climate and other environmental change.
Collapse
Affiliation(s)
- Li-Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang,
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanmei Fang
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abdul Waheed
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyang Li
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Jiasui Zhan,
| |
Collapse
|
61
|
Shabbir A, Batool W, Yu D, Lin L, An Q, Xiaomin C, Guo H, Yuan S, Malota S, Wang Z, Norvienyeku J. Magnaporthe oryzae Chloroplast Targeting Endo-β-1,4-Xylanase I MoXYL1A Regulates Conidiation, Appressorium Maturation and Virulence of the Rice Blast Fungus. RICE (NEW YORK, N.Y.) 2022; 15:44. [PMID: 35960402 PMCID: PMC9374862 DOI: 10.1186/s12284-022-00584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Endo-β-1,4-Xylanases are a group of extracellular enzymes that catalyze the hydrolysis of xylan, a principal constituent of the plant primary cell wall. The contribution of Endo-β-1,4-Xylanase I to both physiology and pathogenesis of the rice blast fungus M. oryzae is unknown. Here, we characterized the biological function of two endoxylanase I (MoXYL1A and MoXYL1B) genes in the development of M. oryzae using targeted gene deletion, biochemical analysis, and fluorescence microscopy. Phenotypic analysis of ∆Moxyl1A strains showed that MoXYL1A is required for the full virulence of M. oryzae but is dispensable for the vegetative growth of the rice blast fungus. MoXYL1B, in contrast, did not have a clear role in the infectious cycle but has a critical function in asexual reproduction of the fungus. The double deletion mutant was severely impaired in pathogenicity and virulence as well as asexual development. We found that MoXYL1A deletion compromised appressorium morphogenesis and function, leading to failure to penetrate host cells. Fluorescently tagged MoXYL1A and MoXYL1B displayed cytoplasmic localization in M. oryzae, while analysis of MoXYL1A-GFP and MoXYL1B-GFP in-planta revealed translocation and accumulation of these effector proteins into host cells. Meanwhile, sequence feature analysis showed that MoXYL1A possesses a transient chloroplast targeting signal peptide, and results from an Agrobacterium infiltration assay confirmed co-localization of MoXYL1A-GFP with ChCPN10C-RFP in the chloroplasts of host cells. MoXYL1B, accumulated to the cytoplasm of the host. Taken together, we conclude that MoXYL1A is a secreted effector protein that likely promotes the virulence of M. oryzae by interfering in the proper functioning of the host chloroplast, while the related xylanase MoXYL1B does not have a major role in virulence of M. oryzae.
Collapse
Affiliation(s)
- Ammarah Shabbir
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wajjiha Batool
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dan Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Lili Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiuli An
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Xiaomin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shuangshuang Yuan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sekete Malota
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
62
|
Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang RJ, Yang J, Peng YL, Lu X. Comparative Secretome Analysis of Magnaporthe oryzae Identified Proteins Involved in Virulence and Cell Wall Integrity. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:728-746. [PMID: 34284133 PMCID: PMC9880818 DOI: 10.1016/j.gpb.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023]
Abstract
Plant fungal pathogens secrete numerous proteins into the apoplast at the plant-fungus contact sites to facilitate colonization. However, only a few secretory proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. Asparagine-linked glycosylation 3 (Alg3) is an α-1,3-mannosyltransferase functioning in the N-glycan synthesis of N-glycosylated secretory proteins. Fungal pathogenicity and cell wall integrity are impaired in Δalg3 mutants, but the secreted proteins affected in Δalg3 mutants are largely unknown. In this study, we compared the secretomes of the wild-type strain and the Δalg3 mutant and identified 51 proteins that require Alg3 for proper secretion. These proteins were predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. Nine proteins were selected for further validation. We found that these proteins were localized at the apoplastic region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of these proteins was significantly changed in the Δalg3 mutant, leading to the decreased protein secretion and abnormal protein localization. Furthermore, we tested the biological functions of two genes, INV1 (encoding invertase 1, a secreted invertase) and AMCase (encoding acid mammalian chinitase, a secreted chitinase). The fungal virulence was significantly reduced, and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Moreover, the N-glycosylation was essential for the function and secretion of AMCase. Taken together, our study provides new insight into the role of N-glycosylated secretory proteins in fungal virulence and cell wall integrity.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Linlu Qi
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Manna Huang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Yiying Zhang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Graduate School of China Agricultural University, Beijing 100193, China
| | - Rui-Jin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China,Corresponding author.
| |
Collapse
|
63
|
Sun X, Fang X, Wang D, Jones DA, Ma L. Transcriptome Analysis of Fusarium–Tomato Interaction Based on an Updated Genome Annotation of Fusarium oxysporum f. sp. lycopersici Identifies Novel Effector Candidates That Suppress or Induce Cell Death in Nicotiana benthamiana. J Fungi (Basel) 2022; 8:jof8070672. [PMID: 35887429 PMCID: PMC9316272 DOI: 10.3390/jof8070672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) causes vascular wilt disease in tomato. Upon colonization of the host, Fol secretes many small effector proteins into the xylem sap to facilitate infection. Besides known SIX (secreted in xylem) proteins, the identity of additional effectors that contribute to Fol pathogenicity remains largely unexplored. We performed a deep RNA-sequencing analysis of Fol race 2-infected tomato, used the sequence data to annotate a published genome assembly generated via PacBio SMRT sequencing of the Fol race 2 reference strain Fol4287, and analysed the resulting transcriptome to identify Fol effector candidates among the newly annotated genes. We examined the Fol-infection expression profiles of all 13 SIX genes present in Fol race 2 and identified 27 new candidate effector genes that were likewise significantly upregulated upon Fol infection. Using Agrobacterium-mediated transformation, we tested the ability of 22 of the new candidate effector genes to suppress or induce cell death in leaves of Nicotiana benthamiana. One effector candidate designated Fol-EC19, encoding a secreted guanyl-specific ribonuclease, was found to trigger cell death and two effector candidates designated Fol-EC14 and Fol-EC20, encoding a glucanase and a secreted trypsin, respectively, were identified that can suppress Bax-mediated cell death. Remarkably, Fol-EC14 and Fol-EC20 were also found to suppress I-2/Avr2- and I/Avr1-mediated cell death. Using the yeast secretion trap screening system, we showed that these three biologically-active effector candidates each contain a functional signal peptide for protein secretion. Our findings provide a basis for further understanding the virulence functions of Fol effectors.
Collapse
Affiliation(s)
- Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Science, Hebei Agricultural University, Baoding 071001, China
| | - David A. Jones
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- Correspondence: (D.A.J.); (L.M.)
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (X.S.); (D.W.)
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra 2601, Australia
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
- Correspondence: (D.A.J.); (L.M.)
| |
Collapse
|
64
|
Zhang Q, Chen S, Bao Y, Wang D, Wang W, Chen R, Li Y, Xu G, Feng X, Liang X, Dou D. Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. FRONTIERS IN PLANT SCIENCE 2022; 13:938876. [PMID: 35812924 PMCID: PMC9260666 DOI: 10.3389/fpls.2022.938876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plants have responded to microbial pathogens by evolving a two-tiered immune system, involving pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). Malectin/malectin-like domain-containing receptor-like kinases (MRLKs) have been reported to participate in many biological functions in plant including immunity and resistance. However, little is known regarding the role of MRLKs in soybean immunity. This is a crucial question to address because soybean is an important source of oil and plant proteins, and its production is threatened by various pathogens. Here, we systematically identified 72 Glycine max MRLKs (GmMRLKs) and demonstrated that many of them are transcriptionally induced or suppressed in response to infection with microbial pathogens. Next, we successfully cloned 60 GmMRLKs and subsequently characterized their roles in plant immunity by transiently expressing them in Nicotiana benthamiana, a model plant widely used to study host-pathogen interactions. Specifically, we examined the effect of GmMRLKs on PTI responses and noticed that a number of GmMRLKs negatively regulated the reactive oxygen species burst induced by flg22 and chitin, and cell death triggered by XEG1 and INF1. We also analyzed the microbial effectors AvrB- and XopQ-induced hypersensitivity response and identified several GmMRLKs that suppressed ETI activation. We further showed that GmMRLKs regulate immunity probably by coupling to the immune receptor complexes. Furthermore, transient expression of several selected GmMRLKs in soybean hairy roots conferred reduced resistance to soybean pathogen Phytophthora sojae. In summary, we revealed the common and specific roles of GmMRLKs in soybean immunity and identified a number of GmMRLKs as candidate susceptible genes that may be useful for improving soybean resistance.
Collapse
Affiliation(s)
- Qian Zhang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuxian Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yazhou Bao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Weijie Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Rubin Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yixin Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Xiangxiu Liang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
65
|
Zhao Y, Zhu X, Chen X, Zhou JM. From plant immunity to crop disease resistance. J Genet Genomics 2022; 49:693-703. [PMID: 35728759 DOI: 10.1016/j.jgg.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Plant diseases caused by diverse pathogens lead to serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly CRISPR/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainai 572025, China.
| |
Collapse
|
66
|
Helliwell EE, Lafayette P, Kronmiller BN, Arredondo F, Duquette M, Co A, Vega-Arreguin J, Porter SS, Borrego EJ, Kolomiets MV, Parrott WA, Tyler BM. Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora sojae. Front Microbiol 2022; 13:923281. [PMID: 35783378 PMCID: PMC9243418 DOI: 10.3389/fmicb.2022.923281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.
Collapse
Affiliation(s)
- Emily E. Helliwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
- *Correspondence: Emily E. Helliwell,
| | - Peter Lafayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brent N. Kronmiller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Madeleine Duquette
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Anna Co
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Julio Vega-Arreguin
- Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de México, León, Mexico
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Eli J. Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
67
|
Fan S, Zhang Z, Song Y, Zhang J, Wang P. CRISPR/Cas9-mediated targeted mutagenesis of GmTCP19L increasing susceptibility to Phytophthora sojae in soybean. PLoS One 2022; 17:e0267502. [PMID: 35679334 PMCID: PMC9182224 DOI: 10.1371/journal.pone.0267502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors is one of the superfamilies of plant-specific transcription factors involved in plant growth, development, and biotic and abiotic stress. However, there is no report on the research of the TCP transcription factors in soybean response to Phytophthora sojae. In this study, Agrobacterium-mediated transformation was used to introduce the CRISPR/Cas9 expression vector into soybean cultivar "Williams 82" and generated targeted mutants of GmTCP19L gene, which was previously related to involve in soybean responses to P. sojae. We obtained the tcp19l mutants with 2-bp deletion at GmTCP19L coding region, and the frameshift mutations produced premature translation termination codons and truncated GmTCP19L proteins, increasing susceptibility to P. sojae in the T2-generation. These results suggest that GmTCP19L encodes a TCP transcription factor that affects plant defense in soybean. The new soybean germplasm with homozygous tcp19l mutations but the BAR and Cas9 sequences were undetectable using strip and PCR methods, respectively, suggesting directions for the breeding or genetic engineering of disease-resistant soybean plants.
Collapse
Affiliation(s)
- Sujie Fan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
- Crop Science Post-doctoral Station, Jilin Agricultural University, Changchun, Jilin, People’s Republic of China
| | - Zhuo Zhang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Yang Song
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Jun Zhang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| | - Piwu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
68
|
Hu LJ, Wu XQ, Wen TY, Qiu YJ, Rui L, Zhang Y, Ye JR. A Bursaphelenchus xylophilus Effector, BxSCD3, Suppresses Plant Defense and Contributes to Virulence. Int J Mol Sci 2022; 23:ijms23126417. [PMID: 35742858 PMCID: PMC9223698 DOI: 10.3390/ijms23126417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.
Collapse
Affiliation(s)
- Long-Jiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
- Correspondence:
| | - Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.-J.H.); (T.-Y.W.); (Y.-J.Q.); (L.R.); (Y.Z.); (J.-R.Y.)
| |
Collapse
|
69
|
Tang C, Xu Q, Zhao J, Yue M, Wang J, Wang X, Kang Z, Wang X. A rust fungus effector directly binds plant pre-mRNA splice site to reprogram alternative splicing and suppress host immunity. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1167-1181. [PMID: 35247281 PMCID: PMC9129083 DOI: 10.1111/pbi.13800] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in plant resistance. However, whether and how plant pathogens target splicing in their host remains mostly unknown. For example, although infection by Puccinia striiformis f. sp. tritici (Pst), a pathogenic fungus that severely affects the yield of wheat worldwide, has been shown to significantly influence the levels of alternatively spliced transcripts in the host, the mechanisms that govern this process, and its functional consequence have not been examined. Here, we identified Pst_A23 as a new Pst arginine-rich effector that localizes to host nuclear speckles, nuclear regions enriched in splicing factors. We demonstrated that transient expression of Pst_A23 suppresses plant basal defence dependent on the Pst_A23 nuclear speckle localization and that this protein plays an important role in virulence, stable silencing of which improves wheat stripe rust resistance. Remarkably, RNA-Seq data revealed that AS patterns of 588 wheat genes are altered in Pst_A23-overexpressing lines compared to control plants. To further examine the direct relationship between Pst_A23 and AS, we confirmed direct binding between two RNA motifs predicted from these altered splicing sites and Pst_A23 in vitro. The two RNA motifs we chose occur in the cis-element of TaXa21-H and TaWRKY53, and we validated that Pst_A23 overexpression results in decreased functional transcripts of TaXa21-H and TaWRKY53 while silencing of TaXa21-H and TaWRKY53 impairs wheat resistance to Pst. Overall, this represents formal evidence that plant pathogens produce 'splicing' effectors, which regulate host pre-mRNA splicing by direct engagement of the splicing sites, thereby interfering with host immunity.
Collapse
Affiliation(s)
- Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Mingxing Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
70
|
A Putative Effector LtCSEP1 from Lasiodiplodia theobromae Inhibits BAX-Triggered Cell Death and Suppresses Immunity Responses in Nicotiana benthamiana. PLANTS 2022; 11:plants11111462. [PMID: 35684232 PMCID: PMC9182993 DOI: 10.3390/plants11111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Lasiodiplodia theobromae is a causal agent of grapevine trunk disease, and it poses a significant threat to the grape industry worldwide. Fungal effectors play an essential role in the interaction between plants and pathogens. However, few studies have been conducted to understand the functions of individual effectors in L. theobromae. In this study, we identified and characterized a candidate secreted effector protein, LtCSEP1, in L. theobromae. Gene expression analysis suggested that transcription of LtCSEP1 in L. theobromae was induced at the early infection stages in the grapevine. Yeast secretion assay revealed that LtCSEP1 contains a functional signal peptide. Transient expression of LtCSEP1 in Nicotiana benthamiana suppresses BAX-trigged cell death and significantly inhibits the flg22-induced PTI-associated gene expression. Furthermore, the ectopic expression of LtCSEP1 in N. benthamiana enhanced disease susceptibility to L. theobromae by downregulating the defense-related genes. These results demonstrated that LtCSEP1 is a potential effector of L. theobromae, which contributes to suppressing the plant’s defenses.
Collapse
|
71
|
Wang J, Ma C, Ma S, Zheng H, Feng H, Wang Y, Wang J, Liu C, Xin D, Chen Q, Yang M. GmARP is Related to the Type III Effector NopAA to Promote Nodulation in Soybean (Glycine max). Front Genet 2022; 13:889795. [PMID: 35692823 PMCID: PMC9184740 DOI: 10.3389/fgene.2022.889795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Type III effectors secreted by rhizobia regulate nodulation in the host plant and are important modulators of symbiosis between rhizobia and soybean (Glycine max), although the underlying mechanisms are poorly understood. Here, we studied the type III effector NopAA in Sinorhizobium fredii HH103, confirming its secretion into the extracellular environment under the action of genistein. The enzyme activity of NopAA was investigated in vitro, using xyloglucan and β-glucan as substrates. NopAA functions were investigated by the generation of a NopAA mutant and the effects of NopAA deficiency on symbiosis were analyzed. Soybean genes associated with NopAA were identified in a recombinant inbred line (RIL) population and their functions were verified. NopAA was confirmed to be a type III effector with glycosyl hydrolase activity, and its mutant did not promote nodulation. Quantitative trait locus (QTL) analysis identified 10 QTLs with one, Glyma.19g074200 (GmARP), found to be associated with NopAA and to positively regulate the establishment of symbiosis. All these results support the hypothesis that type III effectors interact with host proteins to regulate the establishment of symbiosis and suggest the possibility of manipulating the symbiotic soybean–rhizobia interaction to promote efficient nitrogen fixation.
Collapse
Affiliation(s)
- Jinhui Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chao Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Shengnan Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haiyang Zheng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haojie Feng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| |
Collapse
|
72
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
73
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
74
|
Zhang Z, Lin L, Chen H, Ye W, Dong S, Zheng X, Wang Y. ATAC-Seq Reveals the Landscape of Open Chromatin and cis-Regulatory Elements in the Phytophthora sojae Genome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:301-310. [PMID: 35037783 DOI: 10.1094/mpmi-11-21-0291-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| |
Collapse
|
75
|
Jin J, McCorkle KL, Cornish V, Carbone I, Lewis RS, Shew HD. Adaptation of Phytophthora nicotianae to Multiple Sources of Partial Resistance in Tobacco. PLANT DISEASE 2022; 106:906-917. [PMID: 34735283 DOI: 10.1094/pdis-06-21-1241-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Host resistance is an important tool in the management of black shank disease of tobacco. Race development leads to rapid loss of single-gene resistance, but the adaptation by Phytophthora nicotianae to sources of partial resistance from Beinhart 1000, Florida 301, and the Wz gene region introgressed from Nicotiana rustica is poorly characterized. In greenhouse environments, host genotypes with quantitative trait loci (QTLs) conferring resistance from multiple sources were initially inoculated with an aggressive isolate of race 0 or race 1 of P. nicotianae. The most aggressive isolate was selected after each of six host generations to inoculate the next generation of plants. The race 0 isolate demonstrated a continuous gradual increase in disease severity and percentage root rot on all sources of resistance except the genotype K 326 Wz/-, where a large increase in both was observed between generations 2 and 3. Adaptation by the race 0 isolate on Beinhart 1000 represents the first report of adaptation to this genotype by P. nicotianae. The race 1 isolate did not exhibit significant increases in aggressiveness over generations but exhibited a large increase in aggressiveness on K 326 Wz/- between generations 3 and 4. Molecular characterization of isolates recovered during selection was completed via double digest restriction-site associated DNA sequencing, but no polymorphisms were associated with the observed changes in aggressiveness. The rapid adaptation to Wz resistance and the gradual adaptation to other QTLs highlights the need to study the nature of Wz resistance and to conduct field studies on the efficacy of resistance gene rotation for disease management.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kestrel L McCorkle
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Vicki Cornish
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
76
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
77
|
Xu Z, Xiong D, Han Z, Tian C. A Putative Effector CcSp84 of Cytospora chrysosperma Localizes to the Plant Nucleus to Trigger Plant Immunity. Int J Mol Sci 2022; 23:1614. [PMID: 35163540 PMCID: PMC8835870 DOI: 10.3390/ijms23031614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cytospora chrysosperma is the main causal agent of poplar canker disease in China, especially in some areas with poor site conditions. Pathogens secrete a large number of effectors to interfere the plant immunity and promote their infection and colonization. Nevertheless, the roles of effectors in C. chrysosperma remain poorly understood. In this study, we identified and functionally characterized a candidate effector CcSp84 from C. chrysosperma, which contained a nuclear localization signal motif at the C-terminal and was highly induced during infection stages. Transient expression of CcSp84 in Nicotiana benthamiana leaves could trigger cell death. Additionally, deletion of CcSp84 significantly reduced fungal virulence to the polar twigs, while no obvious defects were observed in fungal growth and sensitivity to H2O2. Confocal microscopy revealed that CcSp84 labeled with a green fluorescent protein (GFP) was mainly accumulated in the plant nucleus. Further analysis revealed that the plant nucleus localization of CcSp84 was necessary to trigger plant immune responses, including ROS accumulation, callose deposition, and induced expression of jasmonic acid and ethylene defense-related genes. Collectively, our results suggest that CcSp84 is a virulence-related effector, and plant nucleus localization is required for its functions.
Collapse
Affiliation(s)
- Zhiye Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhu Han
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
78
|
Huang Z, Li H, Zhou Y, Bao Y, Duan Z, Wang C, Powell CA, Chen B, Zhang M, Yao W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J Fungi (Basel) 2022; 8:jof8010059. [PMID: 35049998 PMCID: PMC8780550 DOI: 10.3390/jof8010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| |
Collapse
|
79
|
Wilson AC, Morgan WR. Functional analysis of a Phytophthora host-translocated effector using the yeast model system. PeerJ 2021; 9:e12576. [PMID: 34966585 PMCID: PMC8663620 DOI: 10.7717/peerj.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Phytophthora plant pathogens secrete effector proteins that are translocated into host plant cells during infection and collectively contribute to pathogenicity. A subset of these host-translocated effectors can be identified by the amino acid motif RXLR (arginine, any amino acid, leucine, arginine). Bioinformatics analysis has identified hundreds of putative RXLR effector genes in Phytophthora genomes, but the specific molecular function of most remains unknown. Methods Here we describe initial studies to investigate the use of Saccharomyces cerevisiae as a eukaryotic model to explore the function of Phytophthora RXLR effector proteins. Results and Conclusions Expression of individual RXLR effectors in yeast inhibited growth, consistent with perturbation of a highly conserved cellular process. Transcriptome analysis of yeast cells expressing the poorly characterized P. sojae RXLR effector Avh110 identified nearly a dozen yeast genes whose expression levels were altered greater than two-fold compared to control cells. All five of the most down-regulated yeast genes are normally induced under low phosphate conditions via the PHO4 transcription factor, indicating that PsAvh110 perturbs the yeast regulatory network essential for phosphate homeostasis and suggesting likely PsAvh110 targets during P. sojae infection of its soybean host.
Collapse
Affiliation(s)
- Avery C Wilson
- Department of Biology, The College of Wooster, Wooster, OH, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - William R Morgan
- Department of Biology, The College of Wooster, Wooster, OH, United States
| |
Collapse
|
80
|
Wang X, Zhai T, Zhang X, Tang C, Zhuang R, Zhao H, Xu Q, Cheng Y, Wang J, Duplessis S, Kang Z, Wang X. Two stripe rust effectors impair wheat resistance by suppressing import of host Fe-S protein into chloroplasts. PLANT PHYSIOLOGY 2021; 187:2530-2543. [PMID: 34890460 PMCID: PMC8644677 DOI: 10.1093/plphys/kiab434] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6-f complex iron-sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingmin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, Champenoux 54280, France
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
81
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
82
|
Wang H, Guo B, Yang B, Li H, Xu Y, Zhu J, Wang Y, Ye W, Duan K, Zheng X, Wang Y. An atypical Phytophthora sojae RxLR effector manipulates host vesicle trafficking to promote infection. PLoS Pathog 2021; 17:e1010104. [PMID: 34843607 PMCID: PMC8659694 DOI: 10.1371/journal.ppat.1010104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jinyi Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
83
|
Huang H, Huang S, Li J, Wang H, Zhao Y, Feng M, Dai J, Wang T, Zhu M, Tao X. Stepwise artificial evolution of an Sw-5b immune receptor extends its resistance spectrum against resistance-breaking isolates of Tomato spotted wilt virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2164-2176. [PMID: 34036713 PMCID: PMC8541788 DOI: 10.1111/pbi.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 05/20/2023]
Abstract
Plants use intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) to recognize pathogen-encoded effectors and initiate immune responses. Tomato spotted wilt virus (TSWV), which has been found to infect >1000 plant species, is among the most destructive plant viruses worldwide. The Sw-5b is the most effective and widely used resistance gene in tomato breeding to control TSWV. However, broad application of tomato cultivars carrying Sw-5b has resulted in an emergence of resistance-breaking (RB) TSWV. Therefore, new effective genes are urgently needed to prevent further RB TSWV outbreaks. In this study, we conducted artificial evolution to select Sw-5b mutants that could extend the resistance spectrum against TSWV RB isolates. Unlike regular NLRs, Sw-5b detects viral elicitor NSm using both the N-terminal Solanaceae-specific domain (SD) and the C-terminal LRR domain in a two-step recognition process. Our attempts to select gain-of-function mutants by random mutagenesis involving either the SD or the LRR of Sw-5b failed; therefore, we adopted a stepwise strategy, first introducing a NSmRB -responsive mutation at the R927 residue in the LRR, followed by random mutagenesis involving the Sw-5b SD domain. Using this strategy, we obtained Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q mutants, which are effective against TSWV RB carrying the NSmC118Y or NSmT120N mutation, and against other American-type tospoviruses. Thus, we were able to extend the resistance spectrum of Sw-5b; the selected Sw-5b mutants will provide new gene resources to control RB TSWV.
Collapse
Affiliation(s)
- Haining Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Shen Huang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jia Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Huiyuan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yaqian Zhao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Mingfeng Feng
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jing Dai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Tongkai Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Min Zhu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
84
|
Wen T, Wu X, Hu L, Qiu Y, Rui L, Zhang Y, Ding X, Ye J. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine. MOLECULAR PLANT PATHOLOGY 2021; 22:1399-1412. [PMID: 34396673 PMCID: PMC8518578 DOI: 10.1111/mpp.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
The plant-parasitic nematode Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), causes enormous economic loss every year. Currently, little is known about the pathogenic mechanisms of PWD. Several effectors have been identified in B. xylophilus, but their functions and host targets have yet to be elucidated. Here, we demonstrated that BxSCD1 suppresses cell death and inhibits B. xylophilus PAMP BxCDP1-triggered immunity in Nicotiana benthamiana and Pinus thunbergii. BxSCD1 was transcriptionally upregulated in the early stage of B. xylophilus infection. In situ hybridization experiments showed that BxSCD1 was specifically expressed in the dorsal glands and intestine. Cysteine residues are essential for the function of BxSCD1. Transient expression of BxSCD1 in N. benthamiana revealed that it was primarily targeted to the cytoplasm and nucleus. The morbidity was significantly reduced in P. thunbergii infected with B. xylophilus when BxSCD1 was silenced. We identified 1-aminocyclopropane-1-carboxylate oxidase 1, the actual ethylene-forming enzyme, as a host target of BxSCD1 by yeast two-hybrid and coimmunoprecipitation. Overall, this study illustrated that BxSCD1 played a critical role in the B. xylophilus-plant interaction.
Collapse
Affiliation(s)
- Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Lei Ding
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
85
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
86
|
Li S, Hanlon R, Wise H, Pal N, Brar H, Liao C, Gao H, Perez E, Zhou L, Tyler BM, Bhattacharyya MK. Interaction of Phytophthora sojae Effector Avr1b With E3 Ubiquitin Ligase GmPUB1 Is Required for Recognition by Soybeans Carrying Phytophthora Resistance Rps1-b and Rps1-k Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:725571. [PMID: 34691104 PMCID: PMC8526854 DOI: 10.3389/fpls.2021.725571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 05/27/2023]
Abstract
Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.
Collapse
Affiliation(s)
- Shan Li
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Regina Hanlon
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hua Wise
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Narinder Pal
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hargeet Brar
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chunyu Liao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hongyu Gao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Eli Perez
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Lecong Zhou
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Brett M. Tyler
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
87
|
Zhao X, Chen Z, Wu Q, Cai Y, Zhang Y, Zhao R, Yan J, Qian X, Li J, Zhu M, Hong L, Xing J, Khan NU, Ji Y, Wu P, Huang C, Ding XS, Zhang H, Tao X. The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6581-6595. [PMID: 34115862 DOI: 10.1093/jxb/erab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Plant and animal intracellular nucleotide-binding and leucine-rich repeat (NLR) receptors play important roles in sensing pathogens and activating defense signaling. However, the molecular mechanisms underlying the activation of host defense signaling by NLR proteins remain largely unknown. Many studies have determined that the coil-coil (CC) or Toll and interleukin-1 receptor/resistance protein (TIR) domain of NLR proteins and their dimerization/oligomerization are critical for activating downstream defense signaling. In this study, we demonstrated that, in tomato, the nucleotide-binding (NB) domain Sw-5b NLR alone can activate downstream defense signaling, leading to elicitor-independent cell death. Sw-5b NB domains can self-associate, and this self-association is crucial for activating cell death signaling. The self-association was strongly compromised after the introduction of a K568R mutation into the P-loop of the NB domain. Consequently, the NBK568R mutant induced cell death very weakly. The NBCΔ20 mutant lacking the C-terminal 20 amino acids can self-associate but cannot activate cell death signaling. The NBCΔ20 mutant also interfered with wild-type NB domain self-association, leading to compromised cell death induction. By contrast, the NBK568R mutant did not interfere with wild-type NB domain self-association and its ability to induce cell death. Structural modeling of Sw-5b suggests that NB domains associate with one another and likely participate in oligomerization. As Sw-5b-triggered cell death is dependent on helper NLR proteins, we propose that the Sw-5b NB domain acts as a nucleation point for the assembly of an oligomeric resistosome, probably by recruiting downstream helper partners, to trigger defense signaling.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Zhengqiang Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qian Wu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yazhen Cai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ruizhen Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, China
| | - Nasr Ullah Khan
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Institute of Horticulture Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
88
|
Yuan H, Jin C, Pei H, Zhao L, Li X, Li J, Huang W, Fan R, Liu W, Shen QH. The Powdery Mildew Effector CSEP0027 Interacts With Barley Catalase to Regulate Host Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:733237. [PMID: 34567043 PMCID: PMC8458882 DOI: 10.3389/fpls.2021.733237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 06/01/2023]
Abstract
Powdery mildew is one of the most important fungal pathogen diseases. The genome of barley mildew fungus, Blumeria graminis f. sp. hordei (Bgh), encodes a large number of candidate secreted effector proteins (CSEPs). So far, the function and mechanism of most CSEPs remain largely unknown. Here, we identify a Bgh effector CSEP0027, a member of family 41, triggering cell death in Nicotiana benthamiana. CSEP0027 contains a functional signal peptide (SP), verified by yeast secretion assay. We show that CSEP0027 promotes Bgh virulence in barley infection using transient gene expression and host-induced gene silencing (HIGS). Barley catalase HvCAT1 is identified as a CSEP0027 interactor by yeast two-hybrid (Y2H) screening, and the interaction is verified in yeast, in vitro and in vivo. The coexpression of CSEP0027 and HvCAT1 in barley cells results in altered localization of HvCAT1 from the peroxisome to the nucleus. Barley stripe mosaic virus (BSMV)-silencing and transiently-induced gene silencing (TIGS) assays reveal that HvCAT1 is required for barley immunity against Bgh. We propose that CSEP0027 interacts with barley HvCAT1 to regulate the host immunity and likely reactive oxygen species (ROS) homeostasis to promote fungal virulence during barley infection.
Collapse
Affiliation(s)
- Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongcui Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wanting Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences (CAS), Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
89
|
Joubert M, Backer R, Engelbrecht J, van den Berg N. Expression of several Phytophthora cinnamomi putative RxLRs provides evidence for virulence roles in avocado. PLoS One 2021; 16:e0254645. [PMID: 34260624 PMCID: PMC8279351 DOI: 10.1371/journal.pone.0254645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
Phytophthora cinnamomi is a plant pathogenic oomycete that causes Phytophthora root rot of avocado (PRR). Currently, there is a limited understanding of the molecular interactions underlying this disease. Other Phytophthora species employ an arsenal of effector proteins to manipulate host physiology, of which the RxLR effectors contribute to virulence by interfering with host immune responses. The aim of this study was to identify candidate RxLR effectors in P. cinnamomi that play a role in establishing PRR, and to infer possible functions for these effectors. We identified 61 candidate RxLR genes which were expressed during infection of a susceptible avocado rootstock. Several of these genes were present in multiple copies in the P. cinnamomi genome, suggesting that they may contribute to pathogen fitness. Phylogenetic analysis of the manually predicted RxLR protein sequences revealed 12 P. cinnamomi RxLRs that were related to characterised effectors in other Phytophthora spp., providing clues to their functions in planta. Expression profiles of nine more RxLRs point to possible virulence roles in avocado-highlighting a way forward for studies of this interaction. This study represents the first investigation of the expression of P. cinnamomi RxLR genes during the course of avocado infection, and puts forward a pipeline to pinpoint effector genes with potential as virulence determinants, providing a foundation for the future functional characterization of RxLRs that contribute to P. cinnamomi virulence in avocado.
Collapse
Affiliation(s)
- Melissa Joubert
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita Engelbrecht
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
90
|
Nellist CF, Armitage AD, Bates HJ, Sobczyk MK, Luberti M, Lewis LA, Harrison RJ. Comparative Analysis of Host-Associated Variation in Phytophthora cactorum. Front Microbiol 2021; 12:679936. [PMID: 34276614 PMCID: PMC8285097 DOI: 10.3389/fmicb.2021.679936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
Phytophthora cactorum is often described as a generalist pathogen, with isolates causing disease in a range of plant species. It is the causative agent of two diseases in the cultivated strawberry, crown rot (CR; causing whole plant collapse) and leather rot (LR; affecting the fruit). In the cultivated apple, P. cactorum causes girdling bark rots on the scion (collar rot) and rootstock (crown rot), as well as necrosis of the fine root system (root rot) and fruit rots. We investigated evidence for host specialisation within P. cactorum through comparative genomic analysis of 18 isolates. Whole genome phylogenetic analysis provided genomic support for discrete lineages within P. cactorum, with well-supported non-recombining clades for strawberry CR and apple infecting isolates specialised to strawberry crowns and apple tissue. Isolates of strawberry CR are genetically similar globally, while there is more diversity in apple-infecting isolates. We sought to identify the genetic basis of host specialisation, demonstrating gain and loss of effector complements within the P. cactorum phylogeny, representing putative determinants of host boundaries. Transcriptomic analysis highlighted that those effectors found to be specific to a single host or expanded in the strawberry lineage are amongst those most highly expressed during infection of strawberry and give a wider insight into the key effectors active during strawberry infection. Many effectors that had homologues in other Phytophthoras that have been characterised as avirulence genes were present but not expressed in our tested isolate. Our results highlight several RxLR-containing effectors that warrant further investigation to determine whether they are indeed virulence factors and host-specificity determinants for strawberry and apple. Furthermore, additional work is required to determine whether these effectors are suitable targets to focus attention on for future resistance breeding efforts.
Collapse
Affiliation(s)
| | - Andrew D. Armitage
- NIAB EMR, East Malling, United Kingdom
- National Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Helen J. Bates
- NIAB EMR, East Malling, United Kingdom
- NIAB, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
91
|
Yang B, Yang S, Guo B, Wang Y, Zheng W, Tian M, Dai K, Liu Z, Wang H, Ma Z, Wang Y, Ye W, Dong S, Wang Y. The Phytophthora effector Avh241 interacts with host NDR1-like proteins to manipulate plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1382-1396. [PMID: 33586843 DOI: 10.1111/jipb.13082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixin Dai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zehan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
92
|
Hong H, Wang C, Huang Y, Xu M, Yan J, Feng M, Li J, Shi Y, Zhu M, Shen D, Wu P, Kormelink R, Tao X. Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus. PLoS Pathog 2021; 17:e1009757. [PMID: 34320034 PMCID: PMC8351926 DOI: 10.1371/journal.ppat.1009757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.
Collapse
Affiliation(s)
- Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Chunli Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ying Huang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jiaoling Yan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jia Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yajie Shi
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Peijun Wu
- Financial Department, Nanjing Agricultural University, Nanjing, P. R. China
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
93
|
Shi J, Ye W, Ma D, Yin J, Zhang Z, Wang Y, Qiao Y. Improved Whole-Genome Sequence of Phytophthora capsici Generated by Long-Read Sequencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:866-869. [PMID: 33720746 DOI: 10.1094/mpmi-12-20-0356-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The soilborne oomycete Phytophthora capsici is the most destructive pathogen of vegetable crops and is responsible for substantial economic losses worldwide. Here, we present an improved genome assembly of P. capsici generated by Oxford Nanopore long-read sequencing (for de novo assembly) and Illumina short-read sequencing (for polishing). The genome of P. capsici is 100.5 Mb in length (GC content = 50.8%) and contains 26,069 predicted protein-coding genes. The whole genome of P. capsici is assembled into 194 scaffolds, 90% of which are larger than 300 kb. The N50 scaffold length and maximum scaffold length are 1.0 and 4.1 Mb, respectively. The whole-genome sequence of P. capsici will broaden our knowledge of this pathogen and enhance our understanding of the molecular basis of its pathogenicity, which will facilitate the development of effective management strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dongfang Ma
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
94
|
Hu LJ, Wu XQ, Ding XL, Ye JR. Comparative transcriptomic analysis of candidate effectors to explore the infection and survival strategy of Bursaphelenchus xylophilus during different interaction stages with pine trees. BMC PLANT BIOLOGY 2021; 21:224. [PMID: 34011295 PMCID: PMC8132355 DOI: 10.1186/s12870-021-02993-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/27/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a devastating pathogen of many Pinus species in China. The aim of this study was to understand the interactive molecular mechanism of PWN and its host by comparing differentially expressed genes and candidate effectors from three transcriptomes of B. xylophilus at different infection stages. RESULTS In total, 62, 69 and 46 candidate effectors were identified in three transcriptomes (2.5 h postinfection, 6, 12 and 24 h postinoculation and 6 and 15 d postinfection, respectively). In addition to uncharacterized pioneers, other candidate effectors were involved in the degradation of host tissues, suppression of host defenses, targeting plant signaling pathways, feeding and detoxification, which helped B. xylophilus survive successfully in the host. Seven candidate effectors were identified in both our study and the B. xylophilus transcriptome at 2.5 h postinfection, and one candidate effector was identified in all three transcriptomes. These common candidate effectors were upregulated at infection stages, and one of them suppressed pathogen-associated molecular pattern (PAMP) PsXEG1-triggered cell death in Nicotiana benthamiana. CONCLUSIONS The results indicated that B. xylophilus secreted various candidate effectors, and some of them continued to function throughout all infection stages. These various candidate effectors were important to B. xylophilus infection and survival, and they functioned in different ways (such as breaking down host cell walls, suppressing host defenses, promoting feeding efficiency, promoting detoxification and playing virulence functions). The present results provide valuable resources for in-depth research on the pathogenesis of B. xylophilus from the perspective of effectors.
Collapse
Affiliation(s)
- Long-Jiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiao-Lei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
95
|
Zhu J, Jeong JS, Khang CH. Tandem DNA repeats contain cis-regulatory sequences that activate biotrophy-specific expression of Magnaporthe effector gene PWL2. MOLECULAR PLANT PATHOLOGY 2021; 22:508-521. [PMID: 33694285 PMCID: PMC8035637 DOI: 10.1111/mpp.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
During plant infection, fungi secrete effector proteins in coordination with distinct infection stages. Thus, the success of plant infection is determined by precise control of effector gene expression. We analysed the PWL2 effector gene of the rice blast fungus Magnaporthe oryzae to understand how effector genes are activated specifically during the early biotrophic stages of rice infection. Here, we used confocal live-cell imaging of M. oryzae transformants with various PWL2 promoter fragments fused to sensitive green fluorescent protein reporter genes to determine the expression patterns of PWL2 at the cellular level, together with quantitative reverse transcription PCR analyses at the tissue level. We found PWL2 expression was coupled with sequential biotrophic invasion of rice cells. PWL2 expression was induced in the appressorium upon penetration into a living rice cell but greatly declined in the highly branched hyphae when the first-invaded rice cell was dead. PWL2 expression then increased again as the hyphae penetrate into living adjacent cells. The expression of PWL2 required fungal penetration into living plant cells of either host rice or nonhost onion. Deletion and mutagenesis experiments further revealed that the tandem repeats in the PWL2 promoter contain 12-base pair sequences required for expression. We conclude that PWL2 expression is (a) activated by an unknown signal commonly present in living plant cells, (b) specific to biotrophic stages of fungal infection, and (c) requires 12-base pair cis-regulatory sequences in the promoter.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Present address:
Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jun Seop Jeong
- Department of BiologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Chang Hyun Khang
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
96
|
Li J, Xu C, Yang S, Chen C, Tang S, Wang J, Xie H. A Venom Allergen-Like Protein, RsVAP, the First Discovered Effector Protein of Radopholus similis That Inhibits Plant Defense and Facilitates Parasitism. Int J Mol Sci 2021; 22:4782. [PMID: 33946385 PMCID: PMC8125365 DOI: 10.3390/ijms22094782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Radopholus similis is a migratory endoparasitic nematode that is extremely harmful to host plants. Venom allergen-like proteins (VAPs) are members of the cysteine-rich secretory protein family that are widely present in plants and animals. In this study, we cloned a VAP gene from R. similis, designated as RsVAP. RsVAP contains an open reading frame of 1089 bp encoding 362 amino acids. RsVAP is specifically expressed in the esophageal gland, and the expression levels of RsVAP are significantly higher in juveniles than in other life stages of R. similis. This expression pattern of RsVAP was consistent with the biological characteristics of juveniles of R. similis, which have the ability of infection and are the main infection stages of R. similis. The pathogenicity and reproduction rate of R. similis in tomato was significantly attenuated after RsVAP was silenced. In tobacco leaves transiently expressing RsVAP, the pathogen-associated molecular pattern-triggered immunity (PTI) induced by a bacterial flagellin fragment (flg22) was inhibited, while the cell death induced by two sets of immune elicitors (BAX and Gpa2/RBP-1) was repressed. The RsVAP-interacting, ras-related protein RABA1d (LeRabA1d) was identified in tomato hosts by yeast two-hybrid and co-immunoprecipitation assays. RsVAP may interact with LeRabA1d to affect the host defense response, which in turn facilitates nematode infection. This study provides the first evidence for the inhibition of plant defense response by a VAP from migratory plant-parasitic nematodes, and, for the first time, the target protein of R. similis in its host was identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xie
- Research Center of Nematodes of Plant Quarantine, Laboratory of Plant Nematology, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.X.); (S.Y.); (C.C.); (S.T.); (J.W.)
| |
Collapse
|
97
|
Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W, Masrati G, Sharon A. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat Commun 2021; 12:2166. [PMID: 33846308 PMCID: PMC8042016 DOI: 10.1038/s41467-021-22436-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Kai Bi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Loredana Scalschi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, Castellón, Spain
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Renana Fried
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Belén Sanz
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Javier Arroyo
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Wenjun Zhu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Gal Masrati
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
98
|
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2021; 230:720-736. [PMID: 33423301 PMCID: PMC8048681 DOI: 10.1111/nph.17181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae. We found that MoSwa2 functions as an uncoating factor of the coat protein complex II (COPII) via an interaction with the COPII subunit MoSec24-2. Loss of MoSwa2 led to a deficiency in the secretion of extracellular proteins, resulting in both restricted growth of invasive hyphae and reduced inhibition of host immunity. Additionally, extracellular fluid (ECF) proteome analysis revealed that MoSwa2-regulated extracellular proteins include many redox proteins such as the berberine bridge enzyme-like (BBE-like) protein MoSef1. We further found that MoSef1 functions as an apoplastic virulent factor that inhibits the host immune response. Our studies revealed a novel function of a COPII uncoating factor in vesicular transport that is critical in the suppression of host immunity and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Jiexiong Hu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ao Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ying Dai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Weizhong Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Yanglan He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
99
|
" Candidatus Liberibacter asiaticus" Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins. Appl Environ Microbiol 2021; 87:AEM.00019-21. [PMID: 33579681 PMCID: PMC8091116 DOI: 10.1128/aem.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although emerging evidence indicates that bacteria extracellularly export many cytoplasmic proteins referred to as non-classically secreted proteins (ncSecPs) for their own benefit, the mechanisms and functional significance of the ncSecPs in extracellular milieu remain elusive. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious Gram-negative bacterium that causes Huanglongbing (HLB), the most globally devastating citrus disease. In this study, using the SecretomeP program coupled with an Escherichia coli alkaline phosphatase assay, we identified 27 ncSecPs from the CLas genome. Further, we demonstrated that 10 of these exhibited significantly higher levels of gene expression in citrus than in psyllid hosts, and particularly suppressed hypersensitive response (HR)-based cell death and H2O2 overaccumulation in Nicotiana benthamiana, indicating their opposing effects on early plant defenses. However, these proteins also dramatically enhanced the gene expression of pathogenesis-related 1 protein (PR-1), PR-2, and PR-5, essential components of plant defense mechanisms. Additional experiments disclosed that the increased expression of these PR genes, in particular PR-1 and PR-5, could negatively regulate HR-based cell death development and H2O2 accumulation. Remarkably, CLas infection clearly induced gene expression of PR-1, PR-2, and PR-5 in both HLB-tolerant and HLB-susceptible species of citrus plants. Taken together, we hypothesized that CLas has evolved an arsenal of ncSecPs that function cooperatively to overwhelm the early plant defenses by inducing host PR genes.IMPORTANCE In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu. More importantly, these ncSecPs were found to suppress cell death presumably by utilizing host PR proteins. The data overall provide a novel clue to understand the CLas pathogenesis and also suggest a new way by which phytopathogens manipulate host cellular machinery to establish infection.
Collapse
|
100
|
Gu B, Shao G, Gao W, Miao J, Wang Q, Liu X, Tyler BM. Transcriptional Variability Associated With CRISPR-Mediated Gene Replacements at the Phytophthora sojae Avr1b-1 Locus. Front Microbiol 2021; 12:645331. [PMID: 33815332 PMCID: PMC8012851 DOI: 10.3389/fmicb.2021.645331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/02/2022] Open
Abstract
Transcriptional plasticity enables oomycetes to rapidly adapt to environmental challenges including emerging host resistance. For example, the soybean pathogen Phytophthora sojae can overcome resistance conferred by the host resistance gene Rps1b through natural silencing of its corresponding effector gene, Avr1b-1. With the Phytophthora CRISPR/Cas9 genome editing system, it is possible to generate site-specific knock-out (KO) and knock-in (KI) mutants and to investigate the biological functions of target genes. In this study, the Avr1b-1 gene was deleted from the P. sojae genome using a homology-directed recombination strategy that replaced Avr1b-1 with a gene encoding the fluorescent protein mCherry. As expected, all selected KO transformants gained virulence on Rps1b plants, while infection of plants lacking Rps1b was not compromised. When a sgRNA-resistant version of Avr1b-1 was reintroduced into the Avr1b-1 locus of an Avr1b KO transformant, KI transformants with a well-transcribed Avr1b-1 gene were unable to infect Rps1b-containing soybeans. However, loss of expression of the incoming Avr1b-1 gene was frequently observed in KI transformants, which resulted in these transformants readily infecting Rps1b soybeans. A similar variability in the expression levels of the incoming gene was observed with AVI- or mCherry-tagged Avr1b-1 constructs. Our results suggest that Avr1b-1 may be unusually susceptible to transcriptional variation.
Collapse
Affiliation(s)
- Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guangda Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenxin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brett M Tyler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|