51
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
52
|
Zhang B, Yang H, Qu D, Zhu Z, Yang Y, Zhao Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1683-1700. [PMID: 35527510 PMCID: PMC9398380 DOI: 10.1111/pbi.13839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Hui‐Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Dong Qu
- Shaanxi Key Laboratory Bio‐resourcesCollege of Bioscience and EngineeringShaanxi University of TechnologyHanzhongShaanxiChina
| | - Zhen‐Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Ya‐Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Zheng‐Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| |
Collapse
|
53
|
Li T, Li H, Lian H, Song P, Wang Y, Duan J, Song Z, Cao Y, Xu D, Li J, Zhang H. SICKLE represses photomorphogenic development of Arabidopsis seedlings via HY5- and PIF4-mediated signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1706-1723. [PMID: 35848532 DOI: 10.1111/jipb.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and PHYTOCHROME INTERACTING FACTORs (PIFs) are negative regulators, and ELONGATED HYPOCOTYL5 (HY5) is a positive regulator of seedling photomorphogenic development. Here, we report that SICKLE (SIC), a proline rich protein, acts as a novel negative regulator of photomorphogenesis. HY5 directly binds the SIC promoter and activates SIC expression in response to light. In turn, SIC physically interacts with HY5 and interferes with its transcriptional regulation of downstream target genes. Moreover, SIC interacts with PIF4 and promotes PIF4-activated transcription of itself. Interestingly, SIC is targeted by COP1 for 26S proteasome-mediated degradation in the dark. Collectively, our data demonstrate that light-induced SIC functions as a brake to prevent exaggerated light response via mediating HY5 and PIF4 signaling, and its degradation by COP1 in the dark avoid too strong inhibition on photomorphogenesis at the beginning of light exposure.
Collapse
Affiliation(s)
- Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haojie Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Lian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengyu Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yulong Wang
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Jie Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiyong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
54
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
55
|
Liu Y, Ye Y, Wang Y, Jiang L, Yue M, Tang L, Jin M, Zhang Y, Lin Y, Tang H. B-Box Transcription Factor FaBBX22 Promotes Light-Induced Anthocyanin Accumulation in Strawberry (Fragaria × ananassa). Int J Mol Sci 2022; 23:ijms23147757. [PMID: 35887106 PMCID: PMC9316111 DOI: 10.3390/ijms23147757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
B-box transcription factors (TFs) play a vital role in light-induced anthocyanin accumulation. Here, the FaBBX22 gene encoding 287 amino acids B-box TF was isolated from the cultivated strawberry variety ‘Benihoppe’ and characterized functionally. The expression analysis showed that FaBBX22 was expressed in the roots, stems, leaves, flowers and fruits, and its transcription level was upregulated under the red- or blue-light irradiation. FaBBX22 was localized in the nucleus and showed trans-acting activity in yeast cells. Ectopic overexpression of FaBBX22 in Arabidopsis enhanced the accumulation of anthocyanin. Additionally, we obtained transgenic strawberry calli that overexpressed the FaBBX22 gene, and strawberry calli coloration assays showed that FaBBX22 increased anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes (FaPAL, FaANS, FaF3′H, FaUFGT1) and transport gene FaRAP in a light-dependent manner. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays indicated that FaBBX22 interacted with FaHY5. Furthermore, mutation of the 70th Asp residue in FaBBX22 protein to an Ala residue disrupted the interaction between FaBBX22 and FaHY5. Further, a transient expression assay demonstrated that the co-expression of FaBBX22 and FaHY5 could strongly promote anthocyanin accumulation in strawberry fruits. Collectively, these results revealed the positive regulatory role of FaBBX22 in light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Yongqiang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Yuntian Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Yiping Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Maolan Yue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Li Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Mingsongxue Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Y.); (Y.W.); (L.J.); (M.Y.); (L.T.); (M.J.); (Y.Z.); (Y.L.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
56
|
Liu B, Zhao F, Zhou H, Xia Y, Wang X. Photoprotection conferring plant tolerance to freezing stress through rescuing photosystem in evergreen Rhododendron. PLANT, CELL & ENVIRONMENT 2022; 45:2093-2108. [PMID: 35357711 DOI: 10.1111/pce.14322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Light stress is one of the important stresses for winter survival in evergreens, especially for plants with broad leaves, like evergreen rhododendrons. Photoprotection has been shown to upregulate dramatically in rhododendrons during winter, but whether it directly contributes to enhancing the freezing tolerance is still unknown. In this study, we found that the expression and circadian rhythm of an early light-induced protein (ELIP)-RhELIP3-which exerts photoprotection in Rhododendron 'Elsie Lee', could be impacted by both photoperiod and low temperature, with low temperature being the predominant inducer. Arabidopsis overexpressing RhELIP3 displayed significantly stronger freezing tolerance and better photosystem II function after a 3-day recovery from freezing treatment. Moreover, RhHY5 binds with the RhELIP3 promoter to activate its expression. Arabidopsis overexpressing RhHY5 exhibited stronger freezing tolerance and better photosystem II function. AtELIP1 and AtELIP2 were significantly induced in RhHY5-overexpressed Arabidopsis at low temperatures. We also discovered that RhBBX24 binds directly to RhELIP3 promoter and suppresses its expression. RhBBX24 can also interact with RhHY5 and inhibit the interaction of RhHY5-RhELIP3. RhELIP3, RhHY5, and RhBBX24 exhibited similar circadian rhythms under low temperature with short period. Overall, our investigation highlights that photoprotection is involved in improving the freezing tolerance of evergreen rhododendrons.
Collapse
Affiliation(s)
- Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Fangmeng Zhao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
57
|
Podolec R, Wagnon TB, Leonardelli M, Johansson H, Ulm R. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:422-439. [PMID: 35555928 PMCID: PMC9541035 DOI: 10.1111/tpj.15806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which binds to substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through the cooperative binding of its own VP motif and photosensing core to COP1, thereby preventing COP1 binding to substrates, including the basic leucine zipper (bZIP) transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 requires coregulators for its function. The B-box family transcription factors BBX20-BBX22 were recently described as HY5 rate-limiting coactivators under red light, but their role in UVR8 signaling was unknown. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, carrying a proline-to-leucine mutation at position 314 in the VP motif that impairs the interaction with and regulation by COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation and the expression of several HY5-dependent genes under continuous UV-B, but the immediate induction of marker genes after exposure to UV-B remains surprisingly rather unaffected. We conclude that BBX20-BBX22 contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown, coactivators for HY5 are functional in early UVR8 signaling.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| | - Timothée B. Wagnon
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Manuela Leonardelli
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Henrik Johansson
- Institute of Biology/Applied GeneticsDahlem Centre of Plant Sciences (DCPS), Freie Universität BerlinBerlinGermany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
58
|
Zhou H, Zhu W, Wang X, Bian Y, Jiang Y, Li J, Wang L, Yin P, Deng XW, Xu D. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. THE NEW PHYTOLOGIST 2022; 235:111-125. [PMID: 34935148 DOI: 10.1111/nph.17932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32P409L promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis. Loss of WRKY32 function mutant seedlings display elongated hypocotyls, whereas overexpression of WRKY32 leads to shortened hypocotyls. WRKY32 directly associates with the promoter regions of HY5 to activate its transcription. COP1 interacts with and targets WRKY32 for ubiquitination and degradation in darkness. WRKY32P409L exhibits enhanced DNA binding ability and affects the expression of more genes compared with WRKY32 in Arabidopsis. Our results not only reveal the basic role for WRKY32 in promoting photomorphogenesis, but also provide insights into manipulating plant growth by engineering key components of light signaling.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Wang Deng
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
59
|
Ouyang Y, Pan X, Wei Y, Wang J, Xu X, He Y, Zhang X, Li Z, Zhang H. Genome-wide identification and characterization of the BBX gene family in pineapple reveals that candidate genes are involved in floral induction and flowering. Genomics 2022; 114:110397. [DOI: 10.1016/j.ygeno.2022.110397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
60
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
61
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
62
|
Liu Y, Zhang XW, Liu X, Zheng PF, Su L, Wang GL, Wang XF, Li YY, You CX, An JP. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. PLANT PHYSIOLOGY 2022; 188:2342-2363. [PMID: 34983053 PMCID: PMC8968312 DOI: 10.1093/plphys/kiab605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 06/10/2023]
Abstract
Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.
Collapse
Affiliation(s)
- Yankai Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Ling Su
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
63
|
Huang CK, Lin WD, Wu SH. An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biol 2022; 23:50. [PMID: 35139889 PMCID: PMC8827149 DOI: 10.1186/s13059-022-02620-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2022] [Indexed: 01/03/2023] Open
Abstract
Background Light switches on the photomorphogenic development of young plant seedlings, allowing young seedlings to acquire photosynthetic capacities and gain survival fitness. Light regulates gene expression at all levels of the central dogma, including alternative splicing (AS) during the photomorphogenic development. However, accurate determination of full-length (FL) splicing variants has been greatly hampered by short-read RNA sequencing technologies. Result In this study, we adopt PacBio isoform sequencing (Iso-seq) to overcome the limitation of the short-read RNA-seq technologies. Normalized cDNA libraries used for Iso-seq allows for comprehensive and effective identification of FL AS variants. Our analyses reveal more than 30,000 splicing variant models from approximately 16,500 gene loci and additionally identify approximately 700 previously unannotated genes. Among the variants, approximately 12,000 represent new gene models. Intron retention (IR) is the most frequently observed form of variants, and many IR-containing AS variants show evidence of engagement in translation. Our study reveals the formation of heterodimers of transcription factors composed of annotated and IR-containing AS variants. Moreover, transgenic plants overexpressing the IR forms of two B-BOX DOMAIN PROTEINs exhibits light-hypersensitive phenotypes, suggesting their regulatory roles in modulating optimal light responses. Conclusions This study provides an accurate and comprehensive portrait of full-length transcript isoforms and experimentally confirms the presence of de novo synthesized AS variants that impose regulatory functions in photomorphogenic development in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02620-2.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Wen-Dar Lin
- The Bioinformatics Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
64
|
Dai Y, Lu Y, Zhou Z, Wang X, Ge H, Sun Q. B-box containing protein 1 from Malus domestica (MdBBX1) is involved in the abiotic stress response. PeerJ 2022; 10:e12852. [PMID: 35178298 PMCID: PMC8815370 DOI: 10.7717/peerj.12852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
B-box proteins (BBXs), which act as transcription factors, mainly regulate photomorphogenesis. However, the molecular functions underlying the activity of plant BBXs in response to abiotic stress remain largely unclear. In this investigation, we found that a BBX from Malus domestica (MdBBX1) was involved in the response to various abiotic stresses. The expression of MdBBX1 was significantly upregulated in response to abiotic stresses and abscisic acid (ABA). Recombinant MdBBX1 increased stress tolerance in Escherichia coli cells. In addition, overexpression of MdBBX1 in Arabidopsis decreased sensitivity to exogenous ABA, resulting in a germination rate and root length that were greater and longer, respectively, than those of wild-type (WT) plants. Moreover, the expression of ABI5 was decreased in MdBBX1-overexpressing lines under ABA treatment. After salt and drought treatments, compared with the WT plants, the MdBBX1 transgenic plants displayed enhanced tolerance and had a higher survival rate. Furthermore, under salt stress, increased proline (PRO) contents, decreased levels of malondialdehyde (MDA), increased activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) and decreased accumulation of reactive oxygen species (ROS) were observed in the MdBBX1-overexpressing plants. Overall, our results provide evidence that MdBBX1 might play a critical role in the regulation of abiotic stress tolerance by reducing the generation of ROS.
Collapse
Affiliation(s)
- Yaqing Dai
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Lu
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China,Institute of Shandong River Wetlands, Jinan, Shandong, China
| | - Zhou Zhou
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Hongjuan Ge
- Qingdao Academy of Agricultural Science, Qingdao, Shandong, China
| | - Qinghua Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
65
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
66
|
Liu Y, Cheng H, Cheng P, Wang C, Li J, Liu Y, Song A, Chen S, Chen F, Wang L, Jiang J. The BBX gene CmBBX22 negatively regulates drought stress tolerance in chrysanthemum. HORTICULTURE RESEARCH 2022; 9:uhac181. [PMID: 36338842 PMCID: PMC9630972 DOI: 10.1093/hr/uhac181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/07/2022] [Indexed: 05/13/2023]
Abstract
BBX transcription factors play vital roles in plant growth, development, and stress responses. Although BBX proteins have been studied in great detail in the model plant Arabidopsis, their roles in crop plants such as chrysanthemum are still largely uninvestigated. Here, we cloned CmBBX22 and further determined the function of CmBBX22 in response to drought treatment. Subcellular localization and transactivation assay analyses revealed that CmBBX22 was localized in the nucleus and possessed transactivation activity. Overexpression of CmBBX22 in chrysanthemum was found to reduce plant drought tolerance, whereas expression of the chimeric repressor CmBBX22-SRDX was found to promote a higher drought tolerance than that shown by wild-type plants, indicating that CmBBX22 negatively regulates drought tolerance in chrysanthemum. Transcriptome analysis and physiological measurements indicated the potential involvement of the CmBBX22-mediated ABA response, stomatal conductance, and antioxidant responses in the negative regulation of drought tolerance in chrysanthemum. Based on the findings of this study, we were thus able to establish the mechanisms whereby the transcriptional activator CmBBX22 negatively regulates drought tolerance in chrysanthemum via the regulation of the abscisic acid response, stomatal conductance, and antioxidant responses.
Collapse
Affiliation(s)
| | | | - Peilei Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmeng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
67
|
Yang J, Chen Y, Xiao Z, Shen H, Li Y, Wang Y. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1008829. [PMID: 36147236 PMCID: PMC9485867 DOI: 10.3389/fpls.2022.1008829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that confer red, blue, and purple colorations in plants and are highly desired by consumers for their visual appearance and nutritional quality. In the last two decades, the anthocyanin biosynthetic pathway and transcriptional regulation of anthocyanin biosynthetic genes (ABGs) have been well characterized in many plants. From numerous studies on model plants and horticultural crops, many signaling regulators have been found to control anthocyanin accumulation via regulation of anthocyanin-promoting R2R3-MYB transcription factors (so-called R2R3-MYB activators). The regulatory mechanism of R2R3-MYB activators is mediated by multiple environmental factors (e.g., light, temperature) and internal signals (e.g., sugar, ethylene, and JA) in complicated interactions at multiple levels. Here, we summarize the transcriptional control of R2R3-MYB activators as a result of natural variations in the promoter of their encoding genes, upstream transcription factors and epigenetics, and posttranslational modifications of R2R3-MYB that determine color variations of horticultural plants. In addition, we focus on progress in elucidating the integrated regulatory network of anthocyanin biosynthesis mediated by R2R3-MYB activators in response to multiple signals. We also highlight a few gene cascade modules involved in the regulation of anthocyanin-related R2R3-MYB to provide insights into anthocyanin production in horticultural plants.
Collapse
Affiliation(s)
- Jianfei Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Yuhua Li,
| | - Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Yu Wang,
| |
Collapse
|
68
|
IFP35 Is a Relevant Factor in Innate Immunity, Multiple Sclerosis, and Other Chronic Inflammatory Diseases: A Review. BIOLOGY 2021; 10:biology10121325. [PMID: 34943240 PMCID: PMC8698480 DOI: 10.3390/biology10121325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Simple Summary In this review, we focused on the emerging role of IFP35, a highly conserved leucine zipper protein from fish to humans, with a still unknown biological function. The considered literature indicates this protein as a key-pleiotropic factor reflecting JAK-STAT and DAMPs pathways activation in innate immunity-dependent inflammation, as well as in the physiology and general pathology of a wide range of phylogenetically distant organisms. These findings also indicate IFP35 as a biologically relevant molecule in human demyelinating diseases of the central nervous system, including Multiple Sclerosis, and other organ-specific chronic inflammatory disorders. Abstract Discovered in 1993 by Bange et al., the 35-kDa interferon-induced protein (IFP35) is a highly conserved cytosolic interferon-induced leucine zipper protein with a 17q12-21 coding gene and unknown function. Belonging to interferon stimulated genes (ISG), the IFP35 reflects the type I interferon (IFN) activity induced through the JAK-STAT phosphorylation, and it can homodimerize with N-myc-interactor (NMI) and basic leucine zipper transcription factor (BATF), resulting in nuclear translocation and a functional expression. Casein kinase 2-interacting protein-1 (CKIP-1), retinoic acid-inducible gene I (RIG-I), and laboratory of genetics and physiology 2 Epinephelus coioides (EcLGP2) are thought to regulate IFP35, via the innate immunity pathway. Several in vitro and in vivo studies on fish and mammals have confirmed the IFP35 as an ISG factor with antiviral and antiproliferative functions. However, in a mice model of sepsis, IFP35 was found working as a damage associated molecular pattern (DAMP) molecule, which enhances inflammation by acting in the innate immune-mediated way. In human pathology, the IFP35 expression level predicts disease outcome and response to therapy in Multiple Sclerosis (MS), reflecting IFN activity. Specifically, IFP35 was upregulated in Lupus Nephritis (LN), Rheumatoid Arthritis (RA), and untreated MS. However, it normalized in the MS patients undergoing therapy. The considered data indicate IFP35 as a pleiotropic factor, suggesting it as biologically relevant in the innate immunity, general pathology, and human demyelinating diseases of the central nervous system.
Collapse
|
69
|
Han H, Xu F, Li Y, Yu L, Fu M, Liao Y, Yang X, Zhang W, Ye J. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Sci Rep 2021; 11:23420. [PMID: 34862430 PMCID: PMC8642526 DOI: 10.1038/s41598-021-02839-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Ginkgo biloba L. is an ancient relict plant with rich pharmacological activity and nutritional value, and its main physiologically active components are flavonoids and terpene lactones. The bZIP gene family is one of the largest gene families in plants and regulates many processes including pathogen defense, secondary metabolism, stress response, seed maturation, and flower development. In this study, genome-wide distribution of the bZIP transcription factors was screened from G. biloba database in silico analysis. A total of 40 bZIP genes were identified in G. biloba and were divided into 10 subclasses. GbbZIP members in the same group share a similar gene structure, number of introns and exons, and motif distribution. Analysis of tissue expression pattern based on transcriptome indicated that GbbZIP08 and GbbZIP15 were most highly expressed in mature leaf. And the expression level of GbbZIP13 was high in all eight tissues. Correlation analysis and phylogenetic tree analysis suggested that GbbZIP08 and GbbZIP15 might be involved in the flavonoid biosynthesis. The transcriptional levels of 20 GbbZIP genes after SA, MeJA, and low temperature treatment were analyzed by qRT-PCR. The expression level of GbbZIP08 was significantly upregulated under 4°C. Protein–protein interaction network analysis indicated that GbbZIP09 might participate in seed germination by interacting with GbbZIP32. Based on transcriptome and degradome data, we found that 32 out of 117 miRNAs were annotated to 17 miRNA families. The results of this study may provide a theoretical foundation for the functional validation of GbbZIP genes in the future.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yuting Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, Hubei, China.
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
70
|
Lin F, Cao J, Yuan J, Liang Y, Li J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int J Mol Sci 2021; 22:12971. [PMID: 34884771 PMCID: PMC8657978 DOI: 10.3390/ijms222312971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.
Collapse
Affiliation(s)
- Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (J.Y.); (Y.L.); (J.L.)
| | | | | | | | | |
Collapse
|
71
|
Li Y, Shi Y, Li M, Fu D, Wu S, Li J, Gong Z, Liu H, Yang S. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. THE PLANT CELL 2021; 33:3555-3573. [PMID: 34427646 PMCID: PMC8566302 DOI: 10.1093/plcell/koab215] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/19/2021] [Indexed: 05/20/2023]
Abstract
Light and temperature are two key environmental factors that coordinately regulate plant growth and development. Although the mechanisms that integrate signaling mediated by cold and red light have been unraveled, the roles of the blue light photoreceptors cryptochromes in plant responses to cold remain unclear. In this study, we demonstrate that the CRYPTOCHROME2 (CRY2)-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis thaliana. We show that phosphorylated forms of CRY2 induced by blue light are stabilized by cold stress and that cold-stabilized CRY2 competes with the transcription factor HY5 to attenuate the HY5-COP1 interaction, thereby allowing HY5 to accumulate at cold temperatures. Furthermore, our data demonstrate that B-BOX DOMAIN PROTEIN7 (BBX7) and BBX8 function as direct HY5 targets that positively regulate freezing tolerance by modulating the expression of a set of cold-responsive genes, which mainly occurs independently of the C-repeat-binding factor pathway. Our study uncovers a mechanistic framework by which CRY2-mediated blue-light signaling enhances freezing tolerance, shedding light on the molecular mechanisms underlying the crosstalk between cold and light signaling pathways in plants.
Collapse
Affiliation(s)
- Youping Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minze Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
72
|
Shi C, Liu H. How plants protect themselves from ultraviolet-B radiation stress. PLANT PHYSIOLOGY 2021; 187:1096-1103. [PMID: 34734275 PMCID: PMC8566272 DOI: 10.1093/plphys/kiab245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a wavelength range of 280-315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved "sunscreen" flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.
Collapse
Affiliation(s)
- Chen Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
73
|
Huang S, Chen C, Xu M, Wang G, Xu LA, Wu Y. Overexpression of Ginkgo BBX25 enhances salt tolerance in Transgenic Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:946-954. [PMID: 34555668 DOI: 10.1016/j.plaphy.2021.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
B-box (BBX) genes play important roles in plant growth, light morphogenesis, and environmental stress responses. Ginkgo (Ginkgo biloba L.) is known as a living fossil species that has a strong ability to adapt to environmental changes and tolerate harsh conditions. In this study, we chose this species to investigate the function of the GbBBX25 gene. We isolated the BBX gene from ginkgo and named it GbBBX25; this gene consists of an 819 bp open reading frame (ORF) that encodes 273 amino acids with two B-box domains but no CCT domain. GbBBX25 was localized in only the nucleus. The expression of GbBBX25 transcripts was observed in the leaves and was significantly enhanced under salt stress conditions. To further verify its function, we overexpressed the GbBBX25 gene in Populus davidiana × Populus bolleana and found that the transgenic Populus had greater soluble sugar levels and higher peroxidase (POD) activity in response to salt stress than nontransgenic (NT) Populus. Five genes related to salt stress were induced in transgenic plants with significantly higher expression levels than those in NT plants. This finding suggests that GbBBX25 improves the salt adaptation abilities of transgenic Populus and provides a scientific basis for related research.
Collapse
Affiliation(s)
- Shujing Huang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Caihui Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Biological Resources, Jiangxi Academy of Science, Nanchang 330096, China.
| | - Mengxuan Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Guibin Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Li-An Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yaqiong Wu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No. 1, Nanjing 210014, China; Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
74
|
Yu B, Pan Y, Liu Y, Chen Q, Guo X, Tang Z. A comprehensive analysis of transcriptome and phenolic compound profiles suggests the role of flavonoids in cotyledon greening in Catharanthus roseus seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:185-197. [PMID: 34365289 DOI: 10.1016/j.plaphy.2021.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
During seedling photo-morphogenesis, cotyledon greening is a vital developmental process and a moment of responding to light stress. An increasing number of reports suggest the function of natural antioxidant protection of phenolic compounds in plant growth and development processes. Due to the antioxidant functions, flavonoids allow plants to respond to abiotic or biotic stresses. As one of the plants rich in secondary metabolites, Catharanthus roseus has drawn great academic interest due to its richness of diverse secondary metabolites with medicinal values. To assess the distribution and function of phenolic compounds during cotyledon greening, combined phenolic profiling and transcriptome were applied in C. roseus seedling through ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF/MS) and high throughput RNA sequencing, respectively. Results herein showed that light-exposed greening cotyledon accumulated large amounts of C6C3C6-type flavonoids, suggesting the function in repressing reactive oxygen species (ROS) generation to improve light adaptation and seedling survival. Moreover, synergistic up-regulation of relevant genes involved in flavonoids pathway, including PAL, C4H, CHS, FLS, and F3'H, was monitored in response to light. Several crucial candidate transcription factors including bHLH, MYB, and B-box families were likely to function, and thereinto, CrHY5 (CRO_T122304) and CRO_T137938 revealed a prompt response to light, supposing to induce flavonoids accumulation by targeting CHS and FLS. Therefore, this study provided new insight into the potential regulation and underlying roles of flavonoids to improve light acclimation during cotyledon greening.
Collapse
Affiliation(s)
- Bofan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yajie Pan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
75
|
Singh S, Chhapekar SS, Ma Y, Rameneni JJ, Oh SH, Kim J, Lim YP, Choi SR. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in Brassica rapa, B. oleracea, and B. napus and Their Expression Profiling in B. rapa in Response to Multiple Hormones and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms221910367. [PMID: 34638707 PMCID: PMC8509055 DOI: 10.3390/ijms221910367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
The B-box zinc-finger transcription factors are important for plant growth, development, and various physiological processes such as photomorphogenesis, light signaling, and flowering, as well as for several biotic and abiotic stress responses. However, there is relatively little information available regarding Brassica B-box genes and their expression. In this study, we identified 51, 52, and 101 non-redundant genes encoding B-box proteins in Brassica rapa (BrBBX genes), B. oleracea (BoBBX genes), and B. napus (BnBBX genes), respectively. A whole-genome identification, characterization, and evolutionary analysis (synteny and orthology) of the B-box gene families in the diploid species B. rapa (A genome) and B. oleracea (C genome) and in the allotetraploid species B. napus (AC genome) revealed segmental duplications were the major contributors to the expansion of the BrassicaBBX gene families. The BrassicaBBX genes were classified into five subgroups according to phylogenetic relationships, gene structures, and conserved domains. Light-responsive cis-regulatory elements were detected in many of the BBX gene promoters. Additionally, BrBBX expression profiles in different tissues and in response to various abiotic stresses (heat, cold, salt, and drought) or hormones (abscisic acid, methyl jasmonate, and gibberellic acid) were analyzed by qRT-PCR. The data indicated that many B-box genes (e.g., BrBBX13, BrBBX15, and BrBBX17) may contribute to plant development and growth as well as abiotic stress tolerance. Overall, the identified BBX genes may be useful as functional genetic markers for multiple stress responses and plant developmental processes.
Collapse
Affiliation(s)
- Sonam Singh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sushil Satish Chhapekar
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Yinbo Ma
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jana Jeevan Rameneni
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sang Heon Oh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jusang Kim
- Breeding Research Institute, Dayi International Seed Co., Ltd., 16-35 Ssiat-gil, Baeksan-myeon, Gimje 54324, Jeollabuk-do, Korea;
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| | - Su Ryun Choi
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| |
Collapse
|
76
|
Xu Y, Zhu Z. PIF4 and PIF4-Interacting Proteins: At the Nexus of Plant Light, Temperature and Hormone Signal Integrations. Int J Mol Sci 2021; 22:10304. [PMID: 34638641 PMCID: PMC8509071 DOI: 10.3390/ijms221910304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Basic helix-loop-helix (bHLH) family transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is necessary for plant adaption to light or high ambient temperature. PIF4 directly associates with plenty of its target genes and modulates the global transcriptome to induce or reduce gene expression levels. However, PIF4 activity is tightly controlled by its interacting proteins. Until now, twenty-five individual proteins have been reported to physically interact with PIF4. These PIF4-interacting proteins act together with PIF4 and form a unique nexus for plant adaption to light or temperature change. In this review, we will discuss the different categories of PIF4-interacting proteins, including photoreceptors, circadian clock regulators, hormone signaling components, and transcription factors. These distinct PIF4-interacting proteins either integrate light and/or temperature cues with endogenous hormone signaling, or control PIF4 abundances and transcriptional activities. Taken together, PIF4 and PIF4-interacting proteins play major roles for exogenous and endogenous signal integrations, and therefore establish a robust network for plants to cope with their surrounding environmental alterations.
Collapse
Affiliation(s)
- Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
77
|
Ravindran N, Ramachandran H, Job N, Yadav A, Vaishak K, Datta S. B-box protein BBX32 integrates light and brassinosteroid signals to inhibit cotyledon opening. PLANT PHYSIOLOGY 2021; 187:446-461. [PMID: 34618149 PMCID: PMC8418414 DOI: 10.1093/plphys/kiab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/31/2021] [Indexed: 05/20/2023]
Abstract
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.
Collapse
Affiliation(s)
- Nevedha Ravindran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Harshil Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - K.P. Vaishak
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
- Author for communication:
| |
Collapse
|
78
|
Bhagat PK, Verma D, Sharma D, Sinha AK. HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:117-127. [PMID: 34490593 DOI: 10.1007/s11103-021-01187-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 05/25/2023]
Abstract
Cross-talk between light and ABA signaling is mediated by physical interaction between HY5 and ABI5 Arabidopsis. Plants undergo numerous transitions during their life-cycle and have developed a very complex network of signaling to integrate information from their surroundings to effectively survive in the ever-changing environment. Light signaling is one of the crucial factors that govern the plant growth and development from the very first step of that is from seedling germination to the flowering. Similarly, Abscisic acid (ABA) signaling transduces the signals from external unfavorable condition to the internal developmental pathways and is crucial for regulation of seed maturation, dormancy germination and early seedling development. These two fundamental factors coordinately regulate plant wellbeing, but the underlying molecular mechanisms that drive this regulation are poorly understood. Here, we identified that two bZIP transcription factors, ELONGATED HYPOCOTYLE 5 (HY5), a positive regulator of light signaling and ABA-INSENSITIVE 5 (ABI5), a positive regulator of ABA signaling interacts and integrates the two pathways together. Our phenotypic data suggest that ABI5 may act as a negative regulator during photomorphogenesis in contrast, HY5 acts as a positive regulator of ABA signaling in an ABA dependent manner. We further showed that over-expression of HY5 leads to ABA-hypersensitive phenotype and late flowering phenotype. Taken together, our data provides key insights regarding the mechanism of interaction between ABI5-HY5 that fine tunes the stress and developmental response in Arabidopsis.
Collapse
Affiliation(s)
| | - Deepanjali Verma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Deepika Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | | |
Collapse
|
79
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
80
|
Yuan L, Yu Y, Liu M, Song Y, Li H, Sun J, Wang Q, Xie Q, Wang L, Xu X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. THE PLANT CELL 2021; 33:2602-2617. [PMID: 34164694 PMCID: PMC8408442 DOI: 10.1093/plcell/koab133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
The core plant circadian oscillator is composed of multiple interlocked transcriptional-translational feedback loops, which synchronize endogenous diel physiological rhythms to the cyclic changes of environmental cues. PSEUDO-RESPONSE REGULATORS (PRRs) have been identified as negative components in the circadian clock, though their underlying molecular mechanisms remain largely unknown. Here, we found that a subfamily of zinc finger transcription factors, B-box (BBX)-containing proteins, have a critical role in fine-tuning circadian rhythm. We demonstrated that overexpressing Arabidopsis thaliana BBX19 and BBX18 significantly lengthened the circadian period, while the null mutation of BBX19 accelerated the circadian speed. Moreover, BBX19 and BBX18, which are expressed during the day, physically interacted with PRR9, PRR7, and PRR5 in the nucleus in precise temporal ordering from dawn to dusk, consistent with the respective protein accumulation pattern of PRRs. Our transcriptomic and genetic analysis indicated that BBX19 and PRR9, PRR7, and PRR5 cooperatively inhibited the expression of morning-phased clock genes. PRR proteins affected BBX19 recruitment to the CCA1, LHY, and RVE8 promoters. Collectively, our findings show that BBX19 interacts with PRRs to orchestrate circadian rhythms, and suggest the indispensable role of transcriptional regulators in fine-tuning the circadian clock.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongmin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junqiu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| |
Collapse
|
81
|
Zhao J, Li H, Huang J, Shi T, Meng Z, Chen Q, Deng J. Genome-wide analysis of BBX gene family in Tartary buckwheat ( Fagopyrum tataricum). PeerJ 2021; 9:e11939. [PMID: 34447629 PMCID: PMC8364324 DOI: 10.7717/peerj.11939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Hongyou Li
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Juan Huang
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Ziye Meng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Qingfu Chen
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Jiao Deng
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
82
|
Ma R, Chen J, Huang B, Huang Z, Zhang Z. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. BMC Genomics 2021; 22:533. [PMID: 34256690 PMCID: PMC8276415 DOI: 10.1186/s12864-021-07821-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The BBX (B-box) family are zinc finger protein (ZFP) transcription factors that play an essential role in plant growth, development and response to abiotic stresses. Although BBX genes have been characterized in many model organisms, genome-wide identification of the BBX family genes have not yet been reported in Moso bamboo (Phyllostachys edulis), and the biological functions of this family remain unknown. RESULT In the present study, we identified 27 BBX genes in the genome of Moso bamboo, and analysis of their conserved motifs and multiple sequence alignments revealed that they all shared highly similar structures. Additionally, phylogenetic and homology analyses indicated that PeBBX genes were divided into three clusters, with whole-genome duplication (WGD) events having facilitated the expansion of this gene family. Light-responsive and stress-related cis-elements were identified by analyzing cis-elements in the promoters of all PeBBX genes. Short time-series expression miner (STEM) analysis revealed that the PeBBX genes had spatiotemporal-specific expression patterns and were likely involved in the growth and development of bamboo shoots. We further explored the downstream target genes of PeBBXs, and GO/KEGG enrichment analysis predicted multiple functions of BBX target genes, including those encoding enzymes involved in plant photosynthesis, pyruvate metabolism and glycolysis/gluconeogenesis. CONCLUSIONS In conclusion, we analyzed the PeBBX genes at multiple different levels, which will contribute to further studies of the BBX family and provide valuable information for the functional validation of this family.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
83
|
Luo D, Xiong C, Lin A, Zhang C, Sun W, Zhang J, Yang C, Lu Y, Li H, Ye Z, He P, Wang T. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. HORTICULTURE RESEARCH 2021; 8:163. [PMID: 34193855 PMCID: PMC8245592 DOI: 10.1038/s41438-021-00595-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins play vital roles in plant stress tolerance and growth regulation. Previously, we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato. However, the underlying mechanism remains unclear. Here, we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR, suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes. Furthermore, we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2, and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots, and SlCSN5-2 overexpression decreased anthocyanin accumulation, suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo. Consistently, silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein. Since SlBBX20 is a vital regulator of photomorphogenesis, the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Cheng Xiong
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Aihua Lin
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Chunli Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Yongen Lu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, 430070, Wuhan, China.
| |
Collapse
|
84
|
Zheng LW, Ma SJ, Zhou T, Yue CP, Hua YP, Huang JY. Genome-wide identification of Brassicaceae B-BOX genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed. BMC PLANT BIOLOGY 2021; 21:288. [PMID: 34167468 PMCID: PMC8223294 DOI: 10.1186/s12870-021-03043-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND B-box (BBX) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. RESULTS In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs, 66 BnaBBXs, 41 BoBBXs, 43 BrBBXs, 26 CrBBXs, 81 CsBBXs, 52 BnBBXs, 93 BjBBXs, and 102 BcBBXs. Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis-element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. CONCLUSIONS Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.
Collapse
Affiliation(s)
- Li-wei Zheng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Sheng-jie Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
85
|
Hong J, Gunasekara C, He C, Liu S, Huang J, Wei H. Identification of biological pathway and process regulators using sparse partial least squares and triple-gene mutual interaction. Sci Rep 2021; 11:13174. [PMID: 34162988 PMCID: PMC8222328 DOI: 10.1038/s41598-021-92610-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of biological process- and pathway-specific regulators is essential for advancing our understanding of regulation and formation of various phenotypic and complex traits. In this study, we applied two methods, triple-gene mutual interaction (TGMI) and Sparse Partial Least Squares (SPLS), to identify the regulators of multiple metabolic pathways in Arabidopsis thaliana and Populus trichocarpa using high-throughput gene expression data. We analyzed four pathways: (1) lignin biosynthesis pathway in A. thaliana and P. trichocarpa; (2) flavanones, flavonol and anthocyannin biosynthesis in A. thaliana; (3) light reaction pathway and Calvin cycle in A. thaliana. (4) light reaction pathway alone in A. thaliana. The efficiencies of two methods were evaluated by examining the positive known regulators captured, the receiver operating characteristic (ROC) curves and the area under ROC curves (AUROC). Our results showed that TGMI is in general more efficient than SPLS in identifying true pathway regulators and ranks them to the top of candidate regulatory gene lists, but the two methods are to some degree complementary because they could identify some different pathway regulators. This study identified many regulators that potentially regulate the above pathways in plants and are valuable for genetic engineering of these pathways.
Collapse
Affiliation(s)
- Junyan Hong
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China.,State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China
| | - Chathura Gunasekara
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX, 77030, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianqin Huang
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China.,State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Linan, Zhejiang, 311300, People's Republic of China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
86
|
Balcerowicz M, Mahjoub M, Nguyen D, Lan H, Stoeckle D, Conde S, Jaeger KE, Wigge PA, Ezer D. An early-morning gene network controlled by phytochromes and cryptochromes regulates photomorphogenesis pathways in Arabidopsis. MOLECULAR PLANT 2021; 14:983-996. [PMID: 33766657 DOI: 10.1016/j.molp.2021.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Light perception at dawn plays a key role in coordinating multiple molecular processes and in entraining the plant circadian clock. The Arabidopsis mutant lacking the main photoreceptors, however, still shows clock entrainment, indicating that the integration of light into the morning transcriptome is not well understood. In this study, we performed a high-resolution RNA-sequencing time-series experiment, sampling every 2 min beginning at dawn. In parallel experiments, we perturbed temperature, the circadian clock, photoreceptor signaling, and chloroplast-derived light signaling. We used these data to infer a gene network that describes the gene expression dynamics after light stimulus in the morning, and then validated key edges. By sampling time points at high density, we are able to identify three light- and temperature-sensitive bursts of transcription factor activity, one of which lasts for only about 8 min. Phytochrome and cryptochrome mutants cause a delay in the transcriptional bursts at dawn, and completely remove a burst of expression in key photomorphogenesis genes (HY5 and BBX family). Our complete network is available online (http://www-users.york.ac.uk/∼de656/dawnBurst/dawnBurst.html). Taken together, our results show that phytochrome and cryptochrome signaling is required for fine-tuning the dawn transcriptional response to light, but separate pathways can robustly activate much of the program in their absence.
Collapse
Affiliation(s)
| | - Mahiar Mahjoub
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Duy Nguyen
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Susana Conde
- Department of Statistics, University of Warwick, Coventry, UK; Alan Turing Institute, London, UK
| | - Katja E Jaeger
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Philip A Wigge
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daphne Ezer
- Alan Turing Institute, London, UK; Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
87
|
BBX11 promotes red light-mediated photomorphogenic development by modulating phyB-PIF4 signaling. ABIOTECH 2021; 2:117-130. [PMID: 36304757 PMCID: PMC9590482 DOI: 10.1007/s42994-021-00037-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022]
Abstract
phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4. BBX11 negatively regulates PIF4 accumulation as well as its biochemical activity, consequently leading to the repression of PIF4-controlled genes' expression and promotion of photomorphogenesis in the prolonged red light. This study reveals a regulatory mechanism that mediates red light signal transduction and sheds a light on phyB-PIF4 module in promoting red light-dependent photomorphognenesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00037-2.
Collapse
|
88
|
Liu Y, Jafari F, Wang H. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH 2021; 2:131-145. [PMID: 36304753 PMCID: PMC9590540 DOI: 10.1007/s42994-021-00038-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
As sessile organisms, plants are unable to move or escape from their neighboring competitors under high-density planting conditions. Instead, they have evolved the ability to sense changes in light quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios) and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome (SAS). Over the past few decades, much progress has been made in identifying the various photoreceptor systems and light signaling components implicated in regulating SAS, and in elucidating the underlying molecular mechanisms, based on extensive molecular genetic studies with the model dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light signaling integrates with the signaling pathways of various phytohormones to coordinately regulate different aspects of SAS. In this review, we present a brief summary of the various cross-talks between light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to tailor crop architecture for breeding high-density tolerant crop cultivars.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
89
|
Wang MJ, Ding L, Liu XH, Liu JX. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 106:21-32. [PMID: 33554307 DOI: 10.1007/s11103-021-01123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
This paper demonstrates that BBX28 and BBX29 proteins in Arabidopsis promote flowering in association with the CO-FT regulatory module at low ambient temperature under LD conditions. Flowering plants integrate internal developmental signals with external environmental stimuli for precise flowering time control. The expression of BBX29 is up-regulated by low temperature treatment, but the biological function of BBX29 in low temperature response is unknown. In the current study, we examined the biological role of BBX29 and its close-related protein BBX28 in flowering time control under long-day conditions. Although neither BBX28 single mutant nor BBX29 single mutant has a flowering-associated phenotype, the bbx28 bbx29 double mutant plants have an obvious delayed flowering phenotype grown at low ambient temperature (16°C) compared to the wild-type (WT) plants. The expression of FT and TSF was lower in bbx28 bbx29 double mutant plants than in wild-type plants at 16°C. Both BBX28 and BBX29 interact with CONSTANS (CO), an important flowering integrator that directly binds to the FLOWERING LOCUS T (FT) promoter. In the effector-reporter assays, transcriptional activation activity of CO on the FT promoter was reduced in bbx28 bbx29 double mutant plants compared to that in WT plants. Taken together, our results reveal that BBX28 and BBX29 are promoters of flowering in Arabidopsis, especially at low ambient temperature.
Collapse
Affiliation(s)
- Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Lan Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Xue-Huan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
90
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
91
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
92
|
Job N, Datta S. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. THE NEW PHYTOLOGIST 2021; 230:190-204. [PMID: 33330975 DOI: 10.1111/nph.17149] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Greening of cotyledons during de-etiolation is critical for harvesting light energy and sustaining plant growth. PIF3 and HY5 antagonistically regulate protochlorophyllide synthesis in the dark. However, the mechanism by which the PIF3/HY5 module regulates genes involved in protochlorophyllide synthesis is not clear. Using genetic, molecular and biochemical techniques we identified that the B-BOX protein BBX11 acts directly downstream of PIF3 and HY5 to transcriptionally modulate genes involved in protochlorophyllide synthesis. Dark-grown bbx11 and 35S:BBX11 seedlings exhibit an enhanced and reduced ability to green, respectively, when exposed to light. Transcript levels of HEMA1 and CHLH are upregulated in 35S:BBX11 seedlings that accumulate high levels of protochlorophyllide in the dark and undergo photobleaching upon illumination. PIF3 inhibits BBX11 in the dark by directly binding to its promoter. bbx11 suppresses the cotyledon greening defect of pif3 after prolonged dark, indicating that the PIF3-mediated regulation of greening is dependent on BBX11. The enhanced greening of hy5 is also suppressed in hy5 lines overexpressing BBX11. In light, HY5 directly binds to the promoter of BBX11 and activates its expression to regulate BBX11-mediated hypocotyl inhibition. We show that a PIF3/HY5 module regulates BBX11 expression in opposite ways to optimise protochlorophyllide accumulation in the dark and promote photomorphogenesis in light.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
93
|
BrLETM2 Protein Modulates Anthocyanin Accumulation by Promoting ROS Production in Turnip ( Brassica rapa subsp. rapa). Int J Mol Sci 2021; 22:ijms22073538. [PMID: 33805479 PMCID: PMC8036442 DOI: 10.3390/ijms22073538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
In ‘Tsuda’ turnip, the swollen root peel accumulates anthocyanin pigments in a light-dependent manner, but the mechanism is unclear. Here, mutant g120w which accumulated extremely low levels of anthocyanin after light exposure was identified. Segregation analysis showed that the anthocyanin-deficient phenotype was controlled by a single recessive gene. By using bulked-segregant analysis sequencing and CAPS marker-based genetic mapping analyses, a 21.6-kb region on chromosome A07 was mapped, in which a calcium-binding EF hand family protein named BrLETM2 was identified as the causal gene. RNA sequencing analysis showed that differentially expressed genes (DEGs) between wild type and g120w in light-exposed swollen root peels were enriched in anthocyanin biosynthetic process and reactive oxygen species (ROS) biosynthetic process GO term. Furthermore, nitroblue tetrazolium (NBT) staining showed that the ROS level decreased in g120w mutant. Anthocyanins induced by UV-A were abolished by the pre-treatment of seedlings with DPI (an inhibitor of nicotinamide adenine nucleoside phosphorylase (NADPH) oxidase) and decreased in g120w mutant. These results indicate that BrLETM2 modulates ROS signaling to promote anthocyanin accumulation in turnip under UV-A and provides new insight into the mechanism of how ROS and light regulate anthocyanin production.
Collapse
|
94
|
Talar U, Kiełbowicz-Matuk A. Beyond Arabidopsis: BBX Regulators in Crop Plants. Int J Mol Sci 2021; 22:ijms22062906. [PMID: 33809370 PMCID: PMC7999331 DOI: 10.3390/ijms22062906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.
Collapse
|
95
|
An JP, Wang XF, Zhang XW, You CX, Hao YJ. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. THE NEW PHYTOLOGIST 2021; 229:2707-2729. [PMID: 33119890 DOI: 10.1111/nph.17050] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
96
|
An JP, Zhang XW, Liu YJ, Zhang JC, Wang XF, You CX, Hao YJ. MdABI5 works with its interaction partners to regulate abscisic acid-mediated leaf senescence in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1566-1581. [PMID: 33314379 DOI: 10.1111/tpj.15132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
97
|
Wang Y, Zhai Z, Sun Y, Feng C, Peng X, Zhang X, Xiao Y, Zhou X, Wang W, Jiao J, Li T. Genome-Wide Identification of the B- BOX Genes that Respond to Multiple Ripening Related Signals in Sweet Cherry Fruit. Int J Mol Sci 2021; 22:ijms22041622. [PMID: 33562756 PMCID: PMC7914455 DOI: 10.3390/ijms22041622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.
Collapse
|
98
|
Chai J, Zhu S, Li C, Wang C, Cai M, Zheng X, Zhou L, Zhang H, Sheng P, Wu M, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Zhou S, Guo X, Wang J, Zhao Z, Wan J. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:300-310. [PMID: 32757315 PMCID: PMC7868965 DOI: 10.1111/pbi.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Heading date is a key agronomic trait affecting crop yield. In rice, Early heading date 1 (Ehd1) is an important B-type response regulator in determination of heading date. Although many regulatory factors of Ehd1 expression have been functionally characterized, the direct regulators of Ehd1 largely remain to be identified. Here, we identified a new regulator of Ehd1, OsRE1, that directly binds to the A-box motif in the Ehd1 promoter. Osre1 confers an early heading phenotype due to elevated expression levels of Ehd1. OsRE1 is a nucleus-localized bZIP transcription factor with a diurnal rhythmic expression pattern. Furthermore, we identified an OsRE1-interacting protein, OsRIP1, and demonstrated that OsRIP1 can repress the transcript expression of Ehd1 in an OsRE1-dependent manner. Our genetic data showed that OsRE1 and OsRIP1 may function upstream of Ehd1 in regulating heading date. Together, our results suggest that OsRE1 functions cooperatively with OsRIP1 to regulate heading date through finely modulating the expression of Ehd1. In addition, OsRE1 and OsRIP1 are two minor heading date regulators, which are more desirable for fine-tuning heading date to improve rice regional adaptability.
Collapse
Affiliation(s)
- Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
99
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
100
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|