51
|
Wang G, Xu J, Li L, Guo Z, Si Q, Zhu G, Wang X, Guo W. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:222-238. [PMID: 31207065 PMCID: PMC6920168 DOI: 10.1111/pbi.13190] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/06/2023]
Abstract
Suberin acts as stress-induced antipathogen barrier in the root cell wall. CYP86A1 encodes cytochrome P450 fatty acid ω-hydroxylase, which has been reported to be a key enzyme for suberin biosynthesis; however, its role in resistance to fungi and the mechanisms related to immune responses remain unknown. Here, we identified a disease resistance-related gene, GbCYP86A1-1, from Gossypium barbadense cv. Hai7124. There were three homologs of GbCYP86A1 in cotton, which are specifically expressed in roots and induced by Verticillium dahliae. Among them, GbCYP86A1-1 contributed the most significantly to resistance. Silencing of GbCYP86A1-1 in Hai7124 resulted in severely compromised resistance to V. dahliae, while heterologous overexpression of GbCYP86A1-1 in Arabidopsis improved tolerance. Tissue sections showed that the roots of GbCYP86A1-1 transgenic Arabidopsis had more suberin accumulation and significantly higher C16-C18 fatty acid content than control. Transcriptome analysis revealed that overexpression of GbCYP86A1-1 not only affected lipid biosynthesis in roots, but also activated the disease-resistant immune pathway; genes encoding the receptor-like kinases (RLKs), receptor-like proteins (RLPs), hormone-related transcription factors, and pathogenesis-related protein genes (PRs) were more highly expressed in the GbCYP86A1-1 transgenic line than control. Furthermore, we found that when comparing V. dahliae -inoculated and noninoculated plants, few differential genes related to disease immunity were detected in the GbCYP86A1-1 transgenic line; however, a large number of resistance genes were activated in the control. This study highlights the role of GbCYP86A1-1 in the defence against fungi and its underlying molecular immune mechanisms in this process.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lechen Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Qingxin Si
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
52
|
Zhang F, Zeng D, Huang L, Shi Y, Chen T, Zhang F, Zhou Y. Stress-Activated Protein Kinase OsSAPK9 Regulates Tolerance to Salt Stress and Resistance to Bacterial Blight in Rice. RICE (NEW YORK, N.Y.) 2019; 12:80. [PMID: 31712918 PMCID: PMC6848426 DOI: 10.1186/s12284-019-0338-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Salt stress and bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) are key limiting factors of rice (Oryza sativa L.) yields. Members of sucrose non-fermenting 1 (SNF1)-related protein kinase 2 (SnRK2), which is a family of plant-specific Ser/Thr kinases, are important components of signaling pathways involved in plant developmental processes and responses to stresses. There are 10 members of the SnRK2 family in rice; however, their functions are poorly understood, as are the underlying molecular mechanisms. RESULTS In this study, we found that OsSAPK9, which belongs to the SnRK2 family, positively regulated salt-stress tolerance and strain-specific resistance to bacterial blight in rice. RNA sequencing revealed that there were 404 and 1324 genes differentially expressed in OsSAPK9-RNAi in comparison with wild-type plants under salt-stress conditions and after Xoo inoculation, respectively, which participate in basic metabolic processes. In total, 65 common differentially expressed genes involved mainly in defense responses were detected both under salt-stress conditions and after Xoo inoculation. Moreover, in vivo and in vitro experiments demonstrated that OsSAPK9 forms a protein complex with the molecular chaperones OsSGT1 and OsHsp90, and transgenic plants overexpressing OsSGT1 exhibited decreased tolerances to salt stress and significantly increased resistance levels to bacterial blight. Thus, OsSAPK9 may function as a center node regulator of salt-stress responses and disease-resistance pathways through its interaction with OsSGT1 in rice. CONCLUSION This study confirms that OsSAPK9 functions as a positive regulator of salt-stress responses and disease resistance through its interaction with OsSGT1 in rice.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
- Graduate School of Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
| | - Dan Zeng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
- School of Agriculture, Yunnan University, Kunming, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Tengjun Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
| | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing, 100081 China
| |
Collapse
|
53
|
Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat Commun 2019; 10:4810. [PMID: 31641112 PMCID: PMC6805918 DOI: 10.1038/s41467-019-12781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana. Systemic signals allows plants to mount immune responses in sites that are distal from the local infection site. Here, the authors provide evidence that nicotinamide adenine dinucleotide (NAD + ) is a potential systemic signal that induces immunity via the lectin receptor kinase LecRK-VI.2 and BAK1.
Collapse
|
54
|
Chen J, Mohan R, Zhang Y, Li M, Chen H, Palmer IA, Chang M, Qi G, Spoel SH, Mengiste T, Wang D, Liu F, Fu ZQ. NPR1 Promotes Its Own and Target Gene Expression in Plant Defense by Recruiting CDK8. PLANT PHYSIOLOGY 2019; 181:289-304. [PMID: 31110139 PMCID: PMC6716257 DOI: 10.1104/pp.19.00124] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
NPR1 (NONEXPRESSER OF PR GENES1) functions as a master regulator of the plant hormone salicylic acid (SA) signaling and plays an essential role in plant immunity. In the nucleus, NPR1 interacts with transcription factors to induce the expression of PR (PATHOGENESIS-RELATED) genes and thereby promote defense responses. However, the underlying molecular mechanism of PR gene activation is poorly understood. Furthermore, despite the importance of NPR1 in plant immunity, the regulation of NPR1 expression has not been extensively studied. Here, we show that SA promotes the interaction of NPR1 with both CDK8 (CYCLIN-DEPENDENT KINASE8) and WRKY18 (WRKY DNA-BINDING PROTEIN18) in Arabidopsis (Arabidopsis thaliana). NPR1 recruits CDK8 and WRKY18 to the NPR1 promoter, facilitating its own expression. Intriguingly, CDK8 and its associated Mediator subunits positively regulate NPR1 and PR1 expression and play a pivotal role in local and systemic immunity. Moreover, CDK8 interacts with WRKY6, WRKY18, and TGA transcription factors and brings RNA polymerase II to NPR1 and PR1 promoters and coding regions to facilitate their expression. Our studies reveal a mechanism in which NPR1 recruits CDK8, WRKY18, and TGA transcription factors along with RNA polymerase II in the presence of SA and thereby facilitates its own and target gene expression for the establishment of plant immunity.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Rajinikanth Mohan
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Yuqiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ian Arthur Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Steven H Spoel
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, People's Republic of China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
55
|
Zhang Y, Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:29-36. [PMID: 30901692 DOI: 10.1016/j.pbi.2019.02.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
56
|
Wu J, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, Yamaguchi N, Ito T. Abscisic acid-dependent histone demethylation during postgermination growth arrest in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:2198-2214. [PMID: 30859592 DOI: 10.1111/pce.13547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/03/2019] [Indexed: 05/22/2023]
Abstract
After germination, seedlings undergo growth arrest in response to unfavourable conditions, a critical adaptation enabling plants to survive harsh environments. The plant hormone abscisic acid (ABA) plays a key role in this arrest. To arrest growth, ABA-dependent transcription factors change gene expression patterns in a flexible and reversible manner. Although the control of gene expression has important roles in growth arrest, the epigenetic mechanisms in the response to ABA are not fully understood. Here, we show that the histone demethylases JUMONJI-C domain-containing protein 30 (JMJ30) and JMJ32 control ABA-mediated growth arrest in Arabidopsis thaliana. During the postgermination stage (2-3 days after germination), the ABA-dependent transcription factor ABA-insensitive3 (ABI3) activates the expression of JMJ30 in response to ABA. JMJ30 then removes a repressive histone mark, H3 lysine 27 trimethylation (H3K27me3), from the SNF1-related protein kinase 2.8 (SnRK2.8) promoter, and hence activates SnRK2.8 expression. SnRK2.8 encodes a kinase that activates ABI3 and is responsible for JMJ30- and JMJ32-mediated growth arrest. A feed-forward loop involving the ABI3 transcription factor, JMJ histone demethylases, and the SnRK2.8 kinase fine-tunes ABA-dependent growth arrest in the postgermination phase. Our findings highlight the importance of the histone demethylases in mediating adaptation of plants to the environment.
Collapse
Affiliation(s)
- Jinfeng Wu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, 332-0012, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, 332-0012, Japan
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
57
|
Belda-Palazon B, Julian J, Coego A, Wu Q, Zhang X, Batistic O, Alquraishi SA, Kudla J, An C, Rodriguez PL. ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:813-825. [PMID: 30730075 DOI: 10.1111/tpj.14274] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial role to determine the half-life of key negative regulators of hormone signaling. For ABA signaling, the degradation of clade-A PP2Cs, such as PP2CA or ABI1, is a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. ABA promotes the degradation of PP2CA through the RGLG1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG1 with PP2CA given that they are predominantly found in the plasma membrane and the nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG1 and promotes nuclear interaction with PP2CA. We found RGLG1 is myristoylated in vivo, which facilitates its attachment to the plasma membrane. ABA inhibits the myristoylation of RGLG1 through the downregulation of N-myristoyltransferase 1 (NMT1) and promotes nuclear translocation of RGLG1 in a cycloheximide-insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP2CA protein levels and the formation of RGLG1-receptor-phosphatase complexes. We show that RGLG1Gly2Ala mutated at the N-terminal myristoylation site shows constitutive nuclear localization and causes an enhanced response to ABA and salt or osmotic stress. RGLG1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG1-PP2CA-PYL8. In summary, we provide evidence that an E3 ligase can dynamically relocalize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG1-PP2CA interaction and hence PP2CA degradation.
Collapse
Affiliation(s)
- Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022, Valencia, Spain
| | - Jose Julian
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022, Valencia, Spain
| | - Qian Wu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing, 100871, China
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xu Zhang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing, 100871, China
- Department of Molecular Biology and Institute of Genetics and Genomics, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Oliver Batistic
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joerg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Chengcai An
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, School of Agriculture Science, Peking University, Beijing, 100871, China
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022, Valencia, Spain
| |
Collapse
|
58
|
Liu P, Guo J, Zhang R, Zhao J, Liu C, Qi T, Duan Y, Kang Z, Guo J. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:956-968. [PMID: 30451367 PMCID: PMC6587807 DOI: 10.1111/pbi.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 05/18/2023]
Abstract
Calcineurin B-like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant-pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in-depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis-relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiming Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiaxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
59
|
Jamsheer K M, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2239-2259. [PMID: 30870564 DOI: 10.1093/jxb/erz107] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
60
|
Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska KP, Dadlez M, Dobrowolska G. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. PLANT, CELL & ENVIRONMENT 2019; 42:931-946. [PMID: 30338858 DOI: 10.1111/pce.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 05/21/2023]
Abstract
SNF1-related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signalling that regulate plant acclimation to environmental stresses and ABA-dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA-non-activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S-segment is involved in the regulation of dehydrin subcellular localization in response to stress.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kistowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Klimecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
61
|
Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc Natl Acad Sci U S A 2019; 116:2364-2373. [PMID: 30674663 PMCID: PMC6369802 DOI: 10.1073/pnas.1817233116] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are exposed to conflicting stresses simultaneously in nature. As stress responses are costly, plants likely coordinate these responses to minimize fitness costs. The nature and extent to which plants employ inducible mechanisms to cope with combined physical and biological stresses remains unknown. We identify a genetic mechanism by which leaves of distinct ages differentially control stress-response cross-talk. At the organism level, this mechanism balances stress-response trade-offs to maintain plant growth and reproduction during combined stresses. We also show that this leaf age-dependent stress-response prioritization influences the establishment of plant-associated leaf bacterial communities. This study illustrates the importance of active balancing of stress-response trade-offs for plant fitness maintenance and for interaction with the plant microbiota. In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.
Collapse
|
62
|
Han SH, Park YJ, Park CM. Light priming of thermotolerance development in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1554469. [PMID: 30516434 PMCID: PMC6351087 DOI: 10.1080/15592324.2018.1554469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It is widely perceived that plant responses to environmental temperatures are profoundly influenced by light conditions. However, it is unknown how light signals modulate plant thermal responses and what photoreceptors are responsible for the light regulation of thermal adaptive process. We have recently reported that phytochrome B (phyB)-mediated red light signals prime the ASCORBATE PEROXIDASE 2 (APX2)-mediated detoxification reaction of reactive oxygen species (ROS), a well-known biochemical process that mediates the acquisition of thermotolerance under high temperature conditions. It is interesting that red light influences the HEAT SHOCK FACTOR A1 (HSFA1)-stimulated activation of the APX2 transcription, which is otherwise responsive primarily to stressful high temperatures. Blue light also efficiently primes the APX2-mediated induction of thermotolerance. In natural habitats, temperatures fluctuate according to the light/dark cycles with temperature peaks occurring during the daytime. It is thus apparent that plants utilize light information to prepare for upcoming high temperature spells.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- CONTACT Chung-Mo Park Department of Chemistry, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
63
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
64
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
65
|
Shi Q, Shi Y, Chang K, Chen J, Zhao Z, Zhu W, Xu Y, Li B, Qian X. 3(2H)-pyridazinone derivatives: a new scaffold for novel plant activators. RSC Adv 2019; 9:36204-36207. [PMID: 35540577 PMCID: PMC9074948 DOI: 10.1039/c9ra06892a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
Due to the emergence of drug resistance, pesticide residue and environmental contamination, it is important to develop novel eco-friendly strategies to protect plants.
Collapse
Affiliation(s)
- Qinjie Shi
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Yanxia Shi
- Institute of Vegetables and Flowers
- Chinese Academy of Agricultural Science
- Beijing 100081
- China
| | - Kang Chang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Jianqin Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Zhenjiang Zhao
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - BaoJu Li
- Institute of Vegetables and Flowers
- Chinese Academy of Agricultural Science
- Beijing 100081
- China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
66
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
67
|
Wang Z, Chen M, Zhang Y, Huang L, Wang S, Tao Y, Qian P, Mijiti A, Gu A, Zhang H, Shi S, Cheng H, Wu Y, Xiao L, Ma H. A cupin domain is involved in α-amylase inhibitory activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:285-295. [PMID: 30466594 DOI: 10.1016/j.plantsci.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Proteinaceous α-amylase inhibitors have specialized activities that make some strong inhibition of α-amylases. New α-amylase inhibitors continue to be discovered so far. A proteinaceous α-amylase inhibitor CL-AI was isolated and identified from chickpea seeds. CL-AI, encoded by Q9SMJ4, was a storage legumin precursor containing one α-chain and one β-chain, and each chain possessed a same conserved cupin domain. Amino acid mutation and deficiency of cupin domain would lead to loss of α-amylase inhibitory activity, indicating that it was essential for inhibitory activity. CL-AI(α + β) in its single stranded state in vivo had inhibitory activity. After it was processed into one α-chain and one β-chain, the two chains were connected to each other via disulfide bond, which would cover the cupin domains and lead to the loss of inhibitory activity. The CL-AI(α + β), α-chain and β-chain could inhibit various α-amylases and delay the seed germination of wheat, rice and maize as well as the growth and development of potato beetle larva. Two cupin proteins, Glycinin G1 in soybean and Glutelinin in rice were also found to have inhibitory activity. Our results indicated that the cupin domain is involved in α-amylase inhibitory activity and the proteins with a cupin domain may be a new kind of proteinaceous α-amylase inhibitor.
Collapse
Affiliation(s)
- Zhankui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaqin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peipei Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Abudoukeyumu Mijiti
- Desert Research Institute in the Arid Region, Xinjiang Agricultural University, Urumqi 830052, China; College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Aixing Gu
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hua Zhang
- Desert Research Institute in the Arid Region, Xinjiang Agricultural University, Urumqi 830052, China; College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shubing Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hui Cheng
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yun Wu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Langtao Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Desert Research Institute in the Arid Region, Xinjiang Agricultural University, Urumqi 830052, China; Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
68
|
Vu LD, Gevaert K, De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. TRENDS IN PLANT SCIENCE 2018; 23:1068-1080. [PMID: 30279071 DOI: 10.1016/j.tplants.2018.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) are at the heart of many cellular signaling events. Apart from a single regulatory PTM, there are also PTMs that function in orchestrated manners. Such PTM crosstalk usually serves as a fine-tuning mechanism to adjust cellular responses to the slightest changes in the environment. While PTM crosstalk has been studied in depth in various species; in plants, this field is just emerging. In this review, we discuss recent studies on crosstalk between three of the most common protein PTMs in plant cells, being phosphorylation, ubiquitination, and sumoylation, and we highlight the diverse underlying mechanisms as well as signaling outputs of such crosstalk.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
69
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
70
|
Olate E, Jiménez-Gómez JM, Holuigue L, Salinas J. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. NATURE PLANTS 2018; 4:811-823. [PMID: 30250280 DOI: 10.1038/s41477-018-0254-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors. Our results demonstrate that, in response to low temperature, cytoplasmic NPR1 oligomers release monomers that translocate to the nucleus where they interact with heat shock transcription factor 1 (HSFA1) to promote the induction of HSFA1-regulated genes and cold acclimation. These findings unveil an unexpected function for NPR1 in plant response to low temperature, reveal a new regulatory pathway for cold acclimation mediated by NPR1 and HSFA1 factors, and place NPR1 as a central hub integrating cold and pathogen signalling for a better adaptation of plants to an ever-changing environment.
Collapse
Affiliation(s)
- Ema Olate
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay , Versailles Cedex, France
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
71
|
Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:871-888. [PMID: 29781762 DOI: 10.1094/mpmi-03-18-0067-cr] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
Collapse
Affiliation(s)
| | - Hyong Woo Choi
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
| | | |
Collapse
|
72
|
Ramšak Ž, Coll A, Stare T, Tzfadia O, Baebler Š, Van de Peer Y, Gruden K. Network Modeling Unravels Mechanisms of Crosstalk between Ethylene and Salicylate Signaling in Potato. PLANT PHYSIOLOGY 2018; 178:488-499. [PMID: 29934298 PMCID: PMC6130022 DOI: 10.1104/pp.18.00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
To develop novel crop breeding strategies, it is crucial to understand the mechanisms underlying the interaction between plants and their pathogens. Network modeling represents a powerful tool that can unravel properties of complex biological systems. In this study, we aimed to use network modeling to better understand immune signaling in potato (Solanum tuberosum). For this, we first built on a reliable Arabidopsis (Arabidopsis thaliana) immune signaling model, extending it with the information from diverse publicly available resources. Next, we translated the resulting prior knowledge network (20,012 nodes and 70,091 connections) to potato and superimposed it with an ensemble network inferred from time-resolved transcriptomics data for potato. We used different network modeling approaches to generate specific hypotheses of potato immune signaling mechanisms. An interesting finding was the identification of a string of molecular events illuminating the ethylene pathway modulation of the salicylic acid pathway through Nonexpressor of PR Genes1 gene expression. Functional validations confirmed this modulation, thus supporting the potential of our integrative network modeling approach for unraveling molecular mechanisms in complex systems. In addition, this approach can ultimately result in improved breeding strategies for potato and other sensitive crops.
Collapse
Affiliation(s)
- Živa Ramšak
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Anna Coll
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Tjaša Stare
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Oren Tzfadia
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Špela Baebler
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
73
|
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4529-4537. [PMID: 29873762 DOI: 10.1093/jxb/ery216] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 05/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has been shown to play vital roles in diverse plant developmental and stress responses. The UPS post-translationally modifies cellular proteins with the small molecule ubiquitin, resulting in their regulated degradation by the proteasome. Of particular importance is the role of the UPS in regulating hormone-responsive gene expression profiles, including those triggered by the immune hormone salicylic acid (SA). SA utilizes components of the UPS pathway to reprogram the transcriptome for establishment of local and systemic immunity. Emerging evidence has shown that SA induces the activity of Cullin-RING ligases (CRLs) that fuse chains of ubiquitin to downstream transcriptional regulators and consequently target them for degradation by the proteasome. Here we review how CRL-mediated degradation of transcriptional regulators may control SA-responsive immune gene expression programmes and discuss how the UPS can be modulated by both endogenous and foreign exogenous signals. The highlighted research findings paint a clear picture of the UPS as a central hub for immune activation as well as a battle ground for hijacking by pathogens.
Collapse
Affiliation(s)
- Eleanor H G Adams
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
74
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
75
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
76
|
Banday ZZ, Nandi AK. Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:464-475. [PMID: 28093893 PMCID: PMC6638090 DOI: 10.1111/mpp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE-S-TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen-inoculated as well as pathogen-free distal tissues. The loss-of-function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR-associated epigenetic modifications.
Collapse
Affiliation(s)
| | - Ashis Kumar Nandi
- School of Life SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
77
|
Zhang Q, Gao X, Ren Y, Ding X, Qiu J, Li N, Zeng F, Chu Z. Improvement of Verticillium Wilt Resistance by Applying Arbuscular Mycorrhizal Fungi to a Cotton Variety with High Symbiotic Efficiency under Field Conditions. Int J Mol Sci 2018; 19:E241. [PMID: 29342876 PMCID: PMC5796189 DOI: 10.3390/ijms19010241] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) play an important role in nutrient cycling processes and plant stress resistance. To evaluate the effect of Rhizophagus irregularis CD1 on plant growth promotion (PGP) and Verticillium wilt disease, the symbiotic efficiency of AMF (SEA) was first investigated over a range of 3% to 94% in 17 cotton varieties. The high-SEA subgroup had significant PGP effects in a greenhouse. From these results, the highest-SEA variety of Lumian 1 was selected for a two-year field assay. Consistent with the performance from the greenhouse, the AMF-mediated PGP of Lumian 1 also produced significant results, including an increased plant height, stem diameter, number of petioles, and phosphorus content. Compared with the mock treatment, AMF colonization obviously inhibited the symptom development of Verticillium dahliae and more strongly elevated the expression of pathogenesis-related genes and lignin synthesis-related genes. These results suggest that AMF colonization could lead to the mycorrhiza-induced resistance (MIR) of Lumian 1 to V. dahliae. Interestingly, our results indicated that the AMF endosymbiont could directly inhibit the growth of phytopathogenic fungi including V. dahliae by releasing undefined volatiles. In summary, our results suggest that stronger effects of AMF application result from the high-SEA.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinpeng Gao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yanyun Ren
- Jining Academy of Agricultural Sciences, Jining 272031, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Jiajia Qiu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
78
|
Sarkar S, Das A, Khandagale P, Maiti IB, Chattopadhyay S, Dey N. Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta. PLANTA 2018; 247:181-199. [PMID: 28913593 DOI: 10.1007/s00425-017-2769-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 05/08/2023]
Abstract
This paper highlighted a salicylic acid-inducible Caulimoviral promoter fragment from Cestrum yellow leaf curling virus (CmYLCV). Interaction of Arabidopsis transcription factors TGA3 and WRKY53 on CmYLCV promoter resulted in the enhancement of the promoter activity via NPR1-dependent salicylic acid signaling. Several transcriptional promoters isolated from plant-infecting Caulimoviruses are being presently used worldwide as efficient tools for plant gene expression. The CmYLCV promoter has been isolated from the Cestrum yellow leaf curling virus (Caulimoviruses) and characterized more than 12 years ago; also we have earlier reported a near-constitutive, pathogen-inducible CmYLCV promoter fragment (-329 to +137 from transcription start site; TSS) that enhances stronger (3×) expression than the previously reported fragments; all these fragments are highly efficient in monocot and dicot plants (Sahoo et al. Planta 240: 855-875, 2014). Here, we have shown that the full-length CmYLCV promoter fragment (-729 to +137 from TSS) is salicylic acid (SA) inducible. In this context, we have performed an in-depth study to elucidate the factors responsible for SA-inducibility of the CmYLCV promoter. We found that the as-1 1 and W-box1 elements (located at -649 and -640 from the TSS) of the CmYLCV promoter are required for SA-induced activation by recruiting Arabidopsis TGA3 and WRKY53 transcription factors. Consequently, as a nascent observation, we established the physical interaction between TGA3 and WYKY53; also demonstrated that the N-terminal domain of TGA3 is sufficient for the interaction with the full-length WRKY53. Such interaction synergistically activates the CmYLCV promoter activity in planta. Further, we found that activation of the CmYLCV promoter by SA through TGA3 and WRKY53 interaction depends on NPR1. Finally, the findings presented here provide strong support for the direct regulatory roles of TGA3 and WRKY53 in the SA and NPR1-dependent activation of a Caulimoviral promoter (CmYLCV).
Collapse
Affiliation(s)
- Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Abhimanyu Das
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Prashant Khandagale
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
79
|
Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He S. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 2017; 39:1779-1791. [DOI: 10.1007/s10529-017-2431-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
80
|
Birkenbihl RP, Liu S, Somssich IE. Transcriptional events defining plant immune responses. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:1-9. [PMID: 28458046 DOI: 10.1016/j.pbi.2017.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 05/20/2023]
Abstract
Rapid and massive transcriptional reprogramming upon pathogen recognition is the decisive step in plant-phytopathogen interactions. Plant transcription factors (TFs) are key players in this process but they require a suite of other context-specific co-regulators to establish sensory transcription regulatory networks to bring about host immunity. Molecular, genetic and biochemical studies, particularly in the model plants Arabidopsis and rice, are continuously uncovering new components of the transcriptional machinery that can selectively impact host resistance toward a diverse range of pathogens. Moreover, detailed studies on key immune regulators, such as WRKY TFs and NPR1, are beginning to reveal the underlying mechanisms by which defense hormones influence the function of these factors. Here we provide a short update on such recent developments.
Collapse
Affiliation(s)
- Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Koeln, Germany.
| | - Shouan Liu
- College of Plant Sciences, Jilin University, 130062 Changchun, China.
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Koeln, Germany.
| |
Collapse
|
81
|
Expression of pathogenesis-related genes in cotton roots in response to Verticillium dahliae PAMP molecules. SCIENCE CHINA-LIFE SCIENCES 2017; 60:852-860. [DOI: 10.1007/s11427-017-9071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
82
|
Park YJ, Lee HJ, Ha JH, Kim JY, Park CM. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. THE NEW PHYTOLOGIST 2017; 215:269-280. [PMID: 28418582 DOI: 10.1111/nph.14581] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/21/2017] [Indexed: 05/19/2023]
Abstract
Plants adjust their architecture to optimize growth and reproductive success under changing climates. Hypocotyl elongation is a pivotal morphogenic trait that is profoundly influenced by light and temperature conditions. While hypocotyl photomorphogenesis has been well characterized at the molecular level, molecular mechanisms underlying hypocotyl thermomorphogenesis remains elusive. Here, we demonstrate that the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) conveys warm temperature signals to hypocotyl thermomorphogenesis. To investigate the roles of COP1 and its target ELONGATED HYPOCOTYL 5 (HY5) during hypocotyl thermomorphogenesis, we employed Arabidopsis mutants that are defective in their genes. Transgenic plants overexpressing the genes were also produced. We examined hypocotyl growth and thermoresponsive turnover rate of HY5 protein at warm temperatures under both light and dark conditions. Elevated temperatures trigger the nuclear import of COP1, thereby alleviating the suppression of hypocotyl growth by HY5. While the thermal induction of hypocotyl growth is circadian-gated, the degradation of HY5 by COP1 is uncoupled from light responses and timing information. We propose that thermal activation of COP1 enables coincidence between warm temperature signaling and circadian rhythms, which allows plants to gate hypocotyl thermomorphogenesis at the most profitable time at warm temperatures.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
83
|
Singh A, Lim GH, Kachroo P. Transport of chemical signals in systemic acquired resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:336-344. [PMID: 28304135 DOI: 10.1111/jipb.12537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Systemic acquired resistance (SAR) is a form of broad-spectrum resistance induced in response to local infections that protects uninfected parts against subsequent secondary infections by related or unrelated pathogens. SAR signaling requires two parallel branches, one regulated by salicylic acid (SA), and the other by azelaic acid (AzA) and glycerol-3-phosphate (G3P). AzA and G3P function downstream of the free radicals nitric oxide (NO) and reactive oxygen species (ROS). During SAR, SA, AzA and G3P accumulate in the infected leaves, but only a small portion of these is transported to distal uninfected leaves. SA is preferentially transported via the apoplast, whereas phloem loading of AzA and G3P occurs via the symplast. The symplastic transport of AzA and G3P is regulated by gating of the plasmodesmata (PD). The PD localizing proteins, PDLP1 and PDLP5, regulate SAR by regulating PD gating as well as the subcellular partitioning of a SAR-associated protein.
Collapse
Affiliation(s)
- Archana Singh
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
84
|
Kim JH, Lee HJ, Jung JH, Lee S, Park CM. HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. MOLECULAR PLANT 2017; 10:274-284. [PMID: 27890635 DOI: 10.1016/j.molp.2016.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 05/06/2023]
Abstract
Upon exposure to light, developing seedlings undergo photomorphogenesis, as illustrated by inhibition of hypocotyl elongation, cotyledon opening, and leaf greening. During hypocotyl photomorphogenesis, light signals are sensed by multiple photoreceptors, among which the red/far-red light-sensing phytochromes have been extensively studied. However, it is not fully understood how the phytochromes modulate hypocotyl growth. Here, we demonstrated that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which is known to either act as E3 ubiquitin ligase or affect chromatin organization, inhibits the transcriptional activation activity of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a key transcription factor that promotes hypocotyl growth. Consistent with the negative regulatory role of HOS1 in hypocotyl growth, HOS1-defective mutants exhibited elongated hypocotyls in the light. Notably, phyB induces HOS1 activity in inhibiting PIF4 function. Taken together, these observations provide a molecular basis for the phyB-mediated suppression of hypocotyl growth in Arabidopsis.
Collapse
Affiliation(s)
- Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
85
|
Holappa LD, Ronald PC, Kramer EM. Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:395. [PMID: 28424709 PMCID: PMC5381359 DOI: 10.3389/fpls.2017.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 05/14/2023]
Abstract
Members of the sucrose non-fermenting related kinase Group2 (SnRK2) subclasses are implicated in both direct and indirect abscisic acid (ABA) response pathways. We have used phylogenetic, biochemical, and transient in vivo approaches to examine interactions between Triticum tauschii protein kinase 1 (TtPK1) and an interacting protein, Oryza sativa SnRK2-calcium sensor (OsSCS1). Given that TtPK1 has 100% identity with its rice ortholog, osmotic stress/ABA-activated protein kinase (OsSAPK2), we hypothesized that the SCS and TtPK1 interactions are present in both wheat and rice. Here, we show that SnRK2s are clearly divided into four pan-angiosperm clades with those in the traditionally defined Subclass II encompassing two distinct clades (OsSAPK1/2 and OsSAPK3), although OsSAPK3 lacks an Arabidopsis ortholog. We also show that SCSs are distinct from a second lineage, that we term SCSsister, and while both clades pre-date land plants, the SCSsister clade lacks Poales representatives. Our Y2H assays revealed that the removal of the OsSCS1 C-terminal region along with its N-terminal EF-hand abolished its interaction with the kinase. Using transient in planta bimolecular fluorescence complementation experiments, we demonstrate that TtPK1/OsSCS1 dimerization co-localizes with DAPI-stained nuclei and with FM4-64-stained membranes. Finally, OsSCS1- and OsSAPK2-hybridizing transcripts co-accumulate in shoots/coleoptile of drying seedlings, consistent with up-regulated kinase transcripts of PKABA1 and TtPK1. Our studies suggest that interactions between homologs of the SnRK2 and SCS lineages are broadly conserved across angiosperms and offer new directions for investigations of related proteins.
Collapse
Affiliation(s)
- Lynn D. Holappa
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
- *Correspondence: Lynn D. Holappa
| | - Pamela C. Ronald
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
86
|
Skelly MJ, Frungillo L, Spoel SH. Transcriptional regulation by complex interplay between post-translational modifications. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:126-132. [PMID: 27450430 DOI: 10.1016/j.pbi.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 05/25/2023]
Abstract
Transcriptional reprogramming in response to developmental changes or environmental inputs is regulated by a wide variety of transcription factors and cofactors. In plants, the stability of many transcriptional regulators is mediated by the ubiquitin-mediated proteasome. Recent reports suggest that additional post-translational modifications modulate the ubiquitination and thus stability of transcriptional regulators. In addition to well-recognized phosphorylative control, particularly conjugation to the ubiquitin-like protein SUMO as well as thiol modification by nitric oxide to yield S-nitrosothiols, are emerging as key regulatory steps for governing protein ubiquitination in the nucleus. Complex interplay between these different post-translational modifications may provide robust control mechanisms to fine tune developmental and stress-responsive transcriptional programs.
Collapse
Affiliation(s)
- Michael J Skelly
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Lucas Frungillo
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
87
|
Ahn CS, Cho HK, Lee DH, Sim HJ, Kim SG, Pai HS. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5217-32. [PMID: 27440937 PMCID: PMC5014167 DOI: 10.1093/jxb/erw288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
88
|
Posttranslational Modifications of NPR1: A Single Protein Playing Multiple Roles in Plant Immunity and Physiology. PLoS Pathog 2016; 12:e1005707. [PMID: 27513560 PMCID: PMC4981451 DOI: 10.1371/journal.ppat.1005707] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
89
|
Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 Energy Sensor in Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:648-661. [PMID: 27156455 DOI: 10.1016/j.tplants.2016.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 05/20/2023]
Abstract
Our understanding of plant biotic interactions has grown significantly in recent years with the identification of the mechanisms involved in innate immunity, hormone signaling, and secondary metabolism. The impact of such interactions on primary metabolism and the role of metabolic signals in the response of the plants, however, remain far less explored. The SnRK1 (SNF1-related kinase 1) kinases act as metabolic sensors, integrating very diverse stress conditions, and are key in maintaining energy homeostasis for growth and survival. Consistently, an important role is emerging for these kinases as regulators of biotic stress responses triggered by viral, bacterial, fungal, and oomycete infections as well as by herbivory. While this identifies SnRK1 as a promising target for directed modification or selection for more quantitative and sustainable resistance, its central function also increases the chances of unwanted side effects on growth and fitness, stressing the need for identification and in-depth characterization of the mechanisms and target processes involved. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Microbial and Molecular Systems Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee-Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), Department of Plant Systems Biology, Technologiepark 927, 9052 Gent, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
90
|
Mach J. Phosphorylation and Nuclear Localization of NPR1 in Systemic Acquired Resistance. THE PLANT CELL 2015; 27:3291. [PMID: 26672072 PMCID: PMC4707459 DOI: 10.1105/tpc.15.01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|