51
|
Gupta A, Bhardwaj M, Tran LSP. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. Int J Mol Sci 2020; 21:E7482. [PMID: 33050569 PMCID: PMC7589129 DOI: 10.3390/ijms21207482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Sensing of pathogen infection by plants elicits early signals that are transduced to affect defense mechanisms, such as effective blockage of pathogen entry by regulation of stomatal closure, cuticle, or callose deposition, change in water potential, and resource acquisition among many others. Pathogens, on the other hand, interfere with plant physiology and protein functioning to counteract plant defense responses. In plants, hormonal homeostasis and signaling are tightly regulated; thus, the phytohormones are qualified as a major group of signaling molecules controlling the most widely tinkered regulatory networks of defense and counter-defense strategies. Notably, the phytohormone jasmonic acid mediates plant defense responses to a wide array of pathogens. In this review, we present the synopsis on the jasmonic acid metabolism and signaling, and the regulatory roles of this hormone in plant defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae. We also elaborate on how this pathogen releases virulence factors and effectors to gain control over plant jasmonic acid signaling to effectively cause disease. The findings discussed in this review may lead to ideas for the development of crop cultivars with enhanced disease resistance by genetic manipulation.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India;
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
52
|
Schluttenhofer C. Origin and evolution of jasmonate signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110542. [PMID: 32771155 DOI: 10.1016/j.plantsci.2020.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) signaling is a key mediator of plant development and defense which arose during plants transition from an aqueous to terrestrial environment. Elucidating the evolution of JA signaling is important for understanding plant development, defense, and production of specialized metabolites. The lineage of key protein domains characterizing JA signaling factors was traced to identify the origins of CORONITINE INSENSITIVE 1 (COI1), JASMONATE ZIM-DOMAIN (JAZ), NOVEL INTERACTOR OF JAZ, MYC2, TOPLESS, and MEDIATOR SUBUNIT 25. Charophytes do not possess genes encoding key JA signaling components, including COI1, JAZ, MYC2, and the JAZ-interacting bHLH factors, yet their orthologs are present in bryophytes. TIFY family genes were found in charophyta and chlorophya algae. JAZs evolved from ZIM genes of the TIFY family through changes to several key amino acids. Dating placed the origin of JA signaling 515 to 473 million years ago during the middle Cambrian to early Ordovician periods. This time is known for rapid biodiversification and mass extinction events. An increased predation from the diversifying and changing fauna may have driven evolution of JA signaling and plant defense.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Agriculture Research and Development Program, 1400 Brush Row Road, Wilberforce OH, 45384, USA.
| |
Collapse
|
53
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
54
|
CUL3 BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc Natl Acad Sci U S A 2020; 117:6205-6215. [PMID: 32123086 DOI: 10.1073/pnas.1912199117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The jasmonate (JA)-pathway regulators MYC2, MYC3, and MYC4 are central nodes in plant signaling networks integrating environmental and developmental signals to fine-tune JA defenses and plant growth. Continuous activation of MYC activity is potentially lethal. Hence, MYCs need to be tightly regulated in order to optimize plant fitness. Among the increasing number of mechanisms regulating MYC activity, protein stability is arising as a major player. However, how the levels of MYC proteins are modulated is still poorly understood. Here, we report that MYC2, MYC3, and MYC4 are targets of BPM (BTB/POZ-MATH) proteins, which act as substrate adaptors of CUL3-based E3 ubiquitin ligases. Reduction of function of CUL3BPM in amiR-bpm lines, bpm235 triple mutants, and cul3ab double mutants enhances MYC2 and MYC3 stability and accumulation and potentiates plant responses to JA such as root-growth inhibition and MYC-regulated gene expression. Moreover, MYC3 polyubiquitination levels are reduced in amiR-bpm lines. BPM3 protein is stabilized by JA, suggesting a negative feedback regulatory mechanism to control MYC activity, avoiding harmful runaway responses. Our results uncover a layer for JA-pathway regulation by CUL3BPM-mediated degradation of MYC transcription factors.
Collapse
|
55
|
Salvaing J, Botella C, Albrieux C, Gros V, Block MA, Jouhet J. PUB11-Dependent Ubiquitination of the Phospholipid Flippase ALA10 Modifies ALA10 Localization and Affects the Pool of Linolenic Phosphatidylcholine. FRONTIERS IN PLANT SCIENCE 2020; 11:1070. [PMID: 32760418 PMCID: PMC7373794 DOI: 10.3389/fpls.2020.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 05/02/2023]
Abstract
Biogenesis of photosynthetic membranes depends on galactolipid synthesis, which relies on several cell compartments, notably the endoplasmic reticulum (ER) and the chloroplast envelope. Galactolipid synthesis involves lipid trafficking between both membrane compartments. In Arabidopsis, ALA10, a phospholipid flippase of the P4 type-ATPase family, counteracts the limitation of monogalactosyldiacylglycerol (MGDG) production and has a positive effect on leaf development. ALA10 locates in distinct domains of the ER depending on the ALIS (ALA interacting subunit) subunit it interacts with: close to the plasma membrane with ALIS1, or next to chloroplasts with ALIS5. It interacts with FAD2 (Fatty acid desaturase 2) and prevents accumulation of linolenic (18:3) containing phosphatidylcholine (PC) stimulating an increase of MGDG synthesis. Here we report that ALA10 interacts with PUB11 (plant U-box type 11), an E3 protein ubiquitin ligase, in vitro and in vivo. ALA10 is however ubiquitinated and degraded by the 26S proteasome in a PUB11-independent process. In pub11 null mutant, the proteasome-dependent degradation of ALA10 is retained and ALA10 is still subject to ubiquitination although its ubiquitination profile appears different. In the absence of PUB11, ALA10 is constrained to the ER close to chloroplasts, which is the usual location when ALA10 is overexpressed. Additionally, in this condition, the decrease of 18:3 containing PC is no longer observed. Taken together these results suggest, that ALA10 contributes in chloroplast-distal ER interacting domains, to reduce the 18:3 desaturation of PC and that PUB11 is involved in reconditioning of ALA10 from chloroplast-proximal to chloroplast-distal ER interacting domains.
Collapse
|
56
|
Zhuo M, Sakuraba Y, Yanagisawa S. A Jasmonate-Activated MYC2-Dof2.1-MYC2 Transcriptional Loop Promotes Leaf Senescence in Arabidopsis. THE PLANT CELL 2020; 32:242-262. [PMID: 31641025 PMCID: PMC6961620 DOI: 10.1105/tpc.19.00297] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
DNA binding-with-one-finger (Dof) proteins are plant-specific transcription factors closely associated with a variety of physiological processes. Here, we show that the Dof protein family in Arabidopsis (Arabidopsis thaliana) functions in leaf senescence. Disruption of Dof2 1, a jasmonate (JA)-inducible gene, led to a marked reduction in promotion of leaf senescence and inhibition of root development as well as dark-induced and age-dependent leaf senescence, while overexpression of Dof2 1 promoted these processes. Additionally, the dof2 1 knockout mutant showed almost no change in the transcriptome in the absence of JA; in the presence of JA, expression of many senescence-associated genes, including MYC2, which encodes a central regulator of JA responses, was induced to a lesser extent in the dof2 1 mutant than in the wild type. Furthermore, direct activation of the MYC2 promoter by Dof2.1, along with the results of epistasis analysis, indicated that Dof2.1 enhances leaf senescence mainly by promoting MYC2 expression. Interestingly, MYC2 was also identified as a transcriptional activator responsible for JA-inducible expression of Dof2 1 Based on these results, we propose that Dof2.1 acts as an enhancer of JA-induced leaf senescence through the MYC2-Dof2.1-MYC2 feedforward transcriptional loop.
Collapse
Affiliation(s)
- Mengna Zhuo
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
57
|
Zhang Z, Xu M, Guo Y. Ring/U-Box Protein AtUSR1 Functions in Promoting Leaf Senescence Through JA Signaling Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608589. [PMID: 33391323 PMCID: PMC7772223 DOI: 10.3389/fpls.2020.608589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 05/10/2023]
Abstract
Leaf senescence is regulated by a large number of internal and environmental factors. Here, we report that AtUSR1 (U-box Senescence Related 1) which encodes a plant Ring/U-box protein, is involved in age-dependent and dark-induced leaf senescence in Arabidopsis. Expression of AtUSR1 gene in leaves was up-regulated in darkness and during aging. Plants of usr1, an AtUSR1 gene knock-down mutant, showed a significant delay in age-dependent and dark-induced leaf senescence and the delayed senescence phenotype was rescued when the AtUSR1 gene was transferred back to the mutant plants. Meanwhile, overexpression of AtUSR1 caused accelerated leaf senescence. Furthermore, the role of AtUSR1 in regulating leaf senescence is related to MYC2-mediuated jasmonic acid (JA) signaling pathway. MeJA treatments promoted the accumulation of AtUSR1 transcripts and this expression activation was dependent on the function of MYC2, a key transcription factor in JA signaling. Dual-luciferase assay results indicated that MYC2 promoted the expression of AtUSR1. Overexpression of AtUSR1 in myc2 mutant plants showed precocious senescence, while myc2 mutation alone caused a delay in leaf senescence, suggesting that AtUSR1 functions downstream to MYC2 in the JA signaling pathway in promoting leaf senescence.
Collapse
|
58
|
Chen L, Deng R, Liu G, Jin J, Wu J, Liu X. Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice. BMC PLANT BIOLOGY 2019; 19:546. [PMID: 31823718 PMCID: PMC6902612 DOI: 10.1186/s12870-019-2175-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/29/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND As one of the main crops in the world, sterility of rice (Oryza sativa L.) significantly affects the production and leads to yield decrease. Our previous research showed that OsPUB73, which encodes U-box domain-containing protein 73, may be associated with male sterility. However, little information is available on this gene that is required for anther development. In the present study, we knocked out OsPUB73 by using the CRISPR/Cas9 system and studied the cytological and transcriptome of the gene-defect associated with pollen development and sterility in the rice variety (Taichung 65). RESULTS The sequence analysis indicated that OsPUB73 was comprised of 3 exons and 2 introns, of which CDS encoded 586 amino acids including a U-box domain. The expression pattern of OsPUB73 showed that it was highly expressed in the anther during meiosis stage. The ospub73 displayed low pollen fertility (19.45%), which was significantly lower than wild type (WT) (85.37%). Cytological observation showed tapetum vacuolated at the meiosis stage and pollen exine was abnormal at the bi-cellular pollen stage of ospub73. RNA-seq analysis detected 2240 down and 571 up-regulated genes in anther of ospub73 compared with WT during meiosis stage. Among of 2240 down-regulated genes, seven known genes were associated with tapetal cell death or pollen exine development, including CYP703A3 (Cytochrome P450 Hydroxylase703A3), CYP704B2 (Cytochrome P450 Hydroxylase704B2), DPW (Defective Pollen Wall), PTC1 (Persistant Tapetal Cell1), UDT1 (Undeveloped Tapetum1), OsAP37 (Aspartic protease37) and OsABCG15 (ATP binding cassette G15), which were validated by quantitative real-time polymerase chain reaction (qRT-PCR). These results suggested OsPUB73 may play an important role in tapetal or pollen exine development and resulted in pollen partial sterility. CONCLUSION Our results revealed that OsPUB73 plays an important role in rice male reproductive development, which provides valuable information about the molecular mechanisms of the U-box in rice male reproductive development.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640 China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Guoqiang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
59
|
Wu R, Zheng W, Tan J, Sammer R, Du L, Lu C. Protein partners of plant ubiquitin-specific proteases (UBPs). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:227-236. [PMID: 31630936 DOI: 10.1016/j.plaphy.2019.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
As one type of deubiquitinases (DUBs), ubiquitin-specific proteases (UBPs) play an extensive and significant role in plant life involving the regulation of plant development and stress responses. However, comprehensive studies are still needed to determine the functional mechanisms, which are largely unclear. Here, we summarized recent progress of plant UBPs' functional partners, particularly the molecular mechanisms by which UBPs work with their partners. We believe that functional analyses of UBPs and their partners will provide new insights into protein deubiquitination and lead to a better understanding of the physiological roles of UBPs in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqing Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinyi Tan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rana Sammer
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
60
|
Guo H, Yin Y. Measuring Protein Half-life in Arabidopsis thaliana. Bio Protoc 2019; 9:e3318. [PMID: 33654825 DOI: 10.21769/bioprotoc.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 06/24/2019] [Indexed: 11/02/2022] Open
Abstract
Post-translational modifications play important roles in controlling protein function and can lead to altered protein stability. Protein stability can be determined after treatment with the protein synthesis inhibitor Cycloheximide. Cycloheximide is a translational inhibitor that inhibits protein synthesis via cytoplasmic ribosomes. Here we describe how to measure the stability of MYC2 in the context of regulation by FERONIA receptor kinase. First, we describe how to measure MYC2 stability in wild-type and feronia mutant; then we describe similar assays in transgenic plants expressing MYC2-FLAG and MYC2A12-FLAG (12 FERONIA phosphorylation sites are mutated to Alanine and the mutant protein is stabilized). MYC2 can be induced by mechanical touch, which can be a confounding factor in protein level measurement. In this protocol, we take that into consideration and try to achieve more accurate measurement.
Collapse
Affiliation(s)
- Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
61
|
Wang J, Liu S, Liu H, Chen K, Zhang P. PnSAG1, an E3 ubiquitin ligase of the Antarctic moss Pohlia nutans, enhanced sensitivity to salt stress and ABA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:343-352. [PMID: 31207495 DOI: 10.1016/j.plaphy.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Plant U-box (PUB) E3 ubiquitin ligases play crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA) signaling, but little is known about them in bryophytes. Here, a representative U-box armadillo repeat (PUB-ARM) ubiquitin E3 ligase from Antarctic moss Pohlia nutans (PnSAG1), was explored for its role in abiotic stress response in Arabidopsis thaliana and Physcomitrella patens. The expression of PnSAG1 was rapidly induced by exogenous abscisic acid (ABA), salt, cold and drought stresses. PnSAG1 was localized to the cytoplasm and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. The PnSAG1-overexpressing Arabidopsis enhanced the sensitivity with respect to ABA and salt stress during seed germination and early root growth. Similarly, heterogeneous overexpression of PnSAG1 in P. patens was more sensitive to the salinity and ABA in their gametophyte growth. The analysis by RT-qPCR revealed that the expression of salt stress/ABA-related genes were downregulated in PnSAG1-overexpressing plants after salt treatment. Taken together, our results indicated that PnSAG1 plays a negative role in plant response to ABA and salt stress.
Collapse
Affiliation(s)
- Jing Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China; Key Laboratory of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Shenghao Liu
- Marine Ecology Research Center, The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Hongwei Liu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Kaoshan Chen
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
62
|
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. THE PLANT CELL 2019; 31:1788-1806. [PMID: 31126980 PMCID: PMC6713308 DOI: 10.1105/tpc.18.00918] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Collapse
Affiliation(s)
- Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
63
|
Lian X, Zeng J, Zhang H, Converse R, Wang Y, Bai X, Zhu L. PUB7, a pollen expression gene induced by self-pollination, negatively regulates pollen germination. Acta Biochim Biophys Sin (Shanghai) 2019; 51:548-551. [PMID: 31131862 DOI: 10.1093/abbs/gmz026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/25/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoping Lian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400700, China
| | - Jing Zeng
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hecui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
| | - Richard Converse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45267-0524, USA
| | - Yukui Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
| | - Xiaojing Bai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
| | - Liquan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
| |
Collapse
|
64
|
Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, Robson F, Radhakrishnan GV, Roy S, Bone C, Stacey N, Rogers C, Trick M, Niebel A, Oldroyd GED, de Carvalho-Niebel F, Murray JD. NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. PLANT PHYSIOLOGY 2019; 179:1704-1722. [PMID: 30710053 PMCID: PMC6446755 DOI: 10.1104/pp.18.01572] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 05/22/2023]
Abstract
The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include Rhizobium Polar Growth and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in nin suggests the involvement of NIN in the resolution of growth versus defense outcomes. We find that the regulation of the growth module component Nodulation Pectate Lyase by NIN, and its function in rhizobial infection, are conserved in hologalegina legumes, highlighting its recruitment as a major event in the evolution of nodulation. We find that Nodulation Pectate Lyase is secreted to the infection chamber and the lumen of the infection thread. Gene network analysis using the transcription factor mutants for ERF Required for Nodulation1 and Nuclear Factor-Y Subunit A1 confirms hierarchical control of NIN over Nuclear Factor-Y Subunit A1 and shows that ERF Required for Nodulation1 acts independently to control infection. We conclude that while NIN shares functions with other NIN-Like Proteins, the conscription of key infection genes to NIN's control has made it a central regulatory hub for rhizobial infection.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Dian Guan
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marion R Cerri
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Kirsty Jackson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Suyu Jiang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Centre of Excellence for Plant and Microbial Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fran Robson
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Guru V Radhakrishnan
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Sonali Roy
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Caitlin Bone
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Christian Rogers
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andreas Niebel
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Giles E D Oldroyd
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Centre of Excellence for Plant and Microbial Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
65
|
Jewell JB, Sowders JM, He R, Willis MA, Gang DR, Tanaka K. Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways. PLANT PHYSIOLOGY 2019; 179:1144-1158. [PMID: 30630869 PMCID: PMC6393801 DOI: 10.1104/pp.18.01301] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
ATP is not only an essential metabolite of cellular biochemistry but also acts as a signal in the extracellular milieu. In plants, extracellular ATP is monitored by the purinergic receptor P2K1. Recent studies have revealed that extracellular ATP acts as a damage-associated molecular pattern in plants, and its signaling through P2K1 is important for mounting an effective defense response against various pathogenic microorganisms. Biotrophic and necrotrophic pathogens attack plants using different strategies, to which plants respond accordingly with salicylate-based or jasmonate/ethylene-based defensive signaling, respectively. Interestingly, defense mediated by P2K1 is effective against pathogens of both lifestyles, raising the question of the level of interplay between extracellular ATP signaling and that of jasmonate, ethylene, and salicylate. To address this issue, we analyzed ATP-induced transcriptomes in wild-type Arabidopsis (Arabidopsis thaliana) seedlings and mutant seedlings defective in essential components in the signaling pathways of jasmonate, ethylene, and salicylate (classic defense hormones) as well as a mutant and an overexpression line of the P2K1 receptor. We found that P2K1 function is crucial for faithful ATP-induced transcriptional changes and that a subset of genes is more responsive in the P2K1 overexpression line. We also found that more than half of the ATP-responsive genes required signaling by one or more of the pathways for the classical defense hormones, with the jasmonate-based signaling being more critical than others. By contrast, the other ATP-responsive genes were unaffected by deficiencies in signaling for any of the classical defense hormones. These ATP-responsive genes were highly enriched for defense-related Gene Ontology terms. We further tested the ATP-induced genes in knockout mutants of transcription factors, demonstrating that MYCs acting downstream of the jasmonate receptor complex and calmodulin-binding transcription activators are nuclear transducers of P2K1-mediated extracellular ATP signaling.
Collapse
Affiliation(s)
- Jeremy B Jewell
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Joel M Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Mark A Willis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - David R Gang
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
66
|
Peng L, Wan X, Huang K, Pei L, Xiong J, Li X, Wang J. AtPUB48 E3 ligase plays a crucial role in the thermotolerance of Arabidopsis. Biochem Biophys Res Commun 2018; 509:281-286. [PMID: 30591216 DOI: 10.1016/j.bbrc.2018.12.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
As the global temperature gradually increases, thermotolerance is vital to the growth and survival for plants. Ubiquitin-mediated protein degradation is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. E3 Ubiquitin-ligases, as the major components in the ubiquitination pathway, confer specificity of substrate recognition. Herein, we report that AtPUB48 expression was induced by heat stress, including basal and acquired thermotolerance. AtPUB48-overexpressing lines (OEs) of plants were generated to detect the functions of AtPUB48 in the heat response signaling pathway in Arabidopsis. Seeds of Atpub48-2 mutant had a lower germination rate than those of wild-type (WT) and OE plants when suffered from high temperatures. On the contrary, overexpression of AtPUB48 in Arabidopsis enhanced basal and acquired thermotolerance in seed germination and seedling growth. Moreover, the transcript expression levels of several heat-related downstream genes were highly improved in the OE lines under heat stress, although there were lower levels in the Atpub48-2 mutant compared with that of WT. An in vitro ubiquitination assay confirmed that AtPUB48 with U-box and ARM-repeats functioned as an E3 ubiquitin ligase. The subcellular localization showed that AtPUB48 localized to the nucleus. Collectively, these data imply that AtPUB48 acts as a novel regulator in the heat response signaling pathway. AtPUB48 may target the unknown substrate receptor to 26S proteasome proteolysis.
Collapse
Affiliation(s)
- Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xia Wan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kui Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linsen Pei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jie Xiong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Janmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
67
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
68
|
Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y. FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr Biol 2018; 28:3316-3324.e6. [PMID: 30270181 DOI: 10.1016/j.cub.2018.07.078] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens use effectors and phytotoxins to facilitate infection of host plants. Coronatine (COR) is one of the phytotoxins produced in bacterial pathogens, such as Pseudomonas syringae pv. tomato DC3000 (pst DC3000). COR structurally and functionally mimics the active form of the plant hormone jasmonic acid (JA), JA-isoleucine (JA-Ile), and can hijack the host JA-signaling pathway to achieve host disease susceptibility [1]. COR utilizes the transcription factor MYC2, a master regulator of JA signaling, to activate NAC transcription factors, which functions to inhibit accumulation of salicylic acid (SA) and thus compromise host immunity [2]. It has been demonstrated that SA can antagonize JA signaling through NONEXPRESSOR of PATHOGENESIS-RELATED GENE1 (NPR1) [3] and downstream transcription factors TGAs [4] and WRKYs [5, 6]. However, the detailed mechanism by which host plants counteract COR-mediated susceptibility is largely unknown. Here, we show that the receptor kinase FERONIA (FER) functions to inhibit JA and COR signaling by phosphorylating and destabilizing MYC2, thereby positively regulating immunity. Conversely, the peptide ligand RALF23 acts through FER to stabilize MYC2 and elevate JA signaling, negatively contributing to plant immunity. Our results establish the RALF23-FER-MYC2 signaling module and provide a previously unknown mechanism by which host plants utilize FER signaling to counteract COR-mediated host disease susceptibility.
Collapse
Affiliation(s)
- Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA; Data2Bio, Ames, IA 50011-3650, USA
| | - Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, USA; Data2Bio, Ames, IA 50011-3650, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
69
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
70
|
Cui H, Qiu J, Zhou Y, Bhandari DD, Zhao C, Bautor J, Parker JE. Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity. MOLECULAR PLANT 2018; 11:1053-1066. [PMID: 29842929 DOI: 10.1016/j.molp.2018.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disease susceptibility 1 (EDS1) controls transcriptional reprogramming in resistance triggered by Toll-Interleukin1-Receptor domain (TIR)-family NLRs (TNLs). Transcriptional induction of the salicylic acid (SA) hormone defense sector provides one crucial barrier against biotrophic pathogens. Here, we present genetic and molecular evidence that in Arabidopsis an EDS1 complex with its partner PAD4 inhibits MYC2, a master regulator of SA-antagonizing jasmonic acid (JA) hormone pathways. In the TNL immune response, EDS1/PAD4 interference with MYC2 boosts the SA defense sector independently of EDS1-induced SA synthesis, thereby effectively blocking actions of a potent bacterial JA mimic, coronatine (COR). We show that antagonism of MYC2 occurs after COR has been sensed inside the nucleús but before or coincident with MYC2 binding to a target promoter, pANAC019. The stable interaction of PAD4 with MYC2 in planta is competed by EDS1-PAD4 complexes. However, suppression of MYC2-promoted genes requires EDS1 together with PAD4, pointing to an essential EDS1-PAD4 heterodimer activity in MYC2 inhibition. Taken together, these results uncover an immune receptor signaling circuit that intersects with hormone pathway crosstalk to reduce bacterial pathogen growth.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture University, Fuzhou 350002, China
| | - Jingde Qiu
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Yue Zhou
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Chunhui Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture University, Fuzhou 350002, China
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
71
|
Zhang C, Song L, Choudhary MK, Zhou B, Sun G, Broderick K, Giesler L, Zeng L. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode. BMC PLANT BIOLOGY 2018; 18:149. [PMID: 30021519 PMCID: PMC6052599 DOI: 10.1186/s12870-018-1365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/09/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ubiquitination is a major post-translational protein modification that regulates essentially all cellular and physiological pathways in eukaryotes. The ubiquitination process typically involves three distinct classes of enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). To date, a comprehensive identification and analysis of core components comprising of the whole soybean (Glycine max) ubiquitin system (UBS) has not been reported. RESULTS We performed a systematic, genome-wide analysis of genes that encode core members of the soybean UBS in this study. A total of 1431 genes were identified with high confidence to encode putative soybean UBS components, including 4 genes encoding E1s, 71 genes that encode the E2s, and 1356 genes encoding the E3-related components. Among the E3-encoding genes, 760 encode RING-type E3s, 124 encode U-box domain-containing E3s, and 472 encode F-box proteins. To find out whether the identified soybean UBS genes encode active enzymes, a set of genes were randomly selected and the enzymatic activities of their recombinant proteins were tested. Thioester assays indicated proteins encoded by the soybean E1 gene GmUBA1 and the majority of selected E2 genes are active E1 or E2 enzymes, respectively. Meanwhile, most of the purified RING and U-box domain-containing proteins displayed E3 activity in the in vitro ubiquitination assay. In addition, 1034 of the identified soybean UBS genes were found to express in at least one of 14 soybean tissues examined and the transcript level of 338 soybean USB genes were significantly changed after abiotic or biotic (Fusarium oxysporum and Rhizobium strains) stress treatment. Finally, the expression level of a large number of the identified soybean UBS-related genes was found significantly altered after soybean cyst nematode (SCN) treatment, suggesting the soybean UBS potentially plays an important role in soybean immunity against SCN. CONCLUSIONS Our findings indicate the presence of a large and diverse number of core UBS proteins in the soybean genome, which suggests that target-specific modification by ubiquitin is a complex and important part of cellular and physiological regulation in soybean. We also revealed certain members of the soybean UBS may be involved in immunity against soybean cyst nematode (SCN). This study sets up an essential foundation for further functional characterization of the soybean UBS in various physiological processes, such as host immunity against SCN.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Li Song
- Department of Information Science, University of Arkansas, Little Rock, AR 72204 USA
| | - Mani Kant Choudhary
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Bangjun Zhou
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Guangchao Sun
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583 USA
| | - Kyle Broderick
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Loren Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Lirong Zeng
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| |
Collapse
|
72
|
Kelley DR. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants. Mol Cell Proteomics 2018; 17:1047-1054. [PMID: 29514858 PMCID: PMC5986243 DOI: 10.1074/mcp.mr117.000476] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. Although E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered.
Collapse
Affiliation(s)
- Dior R Kelley
- From the ‡Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
73
|
Howe GA, Major IT, Koo AJ. Modularity in Jasmonate Signaling for Multistress Resilience. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:387-415. [PMID: 29539269 DOI: 10.1146/annurev-arplant-042817-040047] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate coordinates immune and growth responses to increase plant survival in unpredictable environments. The core jasmonate signaling pathway comprises several functional modules, including a repertoire of COI1-JAZ (CORONATINE INSENSITIVE1-JASMONATE-ZIM DOMAIN) coreceptors that couple jasmonoyl-l-isoleucine perception to the degradation of JAZ repressors, JAZ-interacting transcription factors that execute physiological responses, and multiple negative feedback loops to ensure timely termination of these responses. Here, we review the jasmonate signaling pathway with an emphasis on understanding how transcriptional responses are specific, tunable, and evolvable. We explore emerging evidence that JAZ proteins integrate multiple informational cues and mediate crosstalk by propagating changes in protein-protein interaction networks. We also discuss recent insights into the evolution of jasmonate signaling and highlight how plant-associated organisms manipulate the pathway to subvert host immunity. Finally, we consider how this mechanistic foundation can accelerate the rational design of jasmonate signaling for improving crop resilience and harnessing the wellspring of specialized plant metabolites.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
- Department of Biochemistry and Molecular Biology, and Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA; ,
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
74
|
Serrano I, Campos L, Rivas S. Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:139. [PMID: 29472944 PMCID: PMC5809434 DOI: 10.3389/fpls.2018.00139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
Ubiquitination, the reversible protein conjugation with ubiquitin (Ub), is a post-translational modification that enables rapid and specific cellular responses to stimuli without requirement of de novo protein synthesis. Although ubiquitination also displays non-proteolytic functions, it often acts as a signal for selective protein degradation through the ubiquitin-proteasome system (UPS). In plants, it has become increasingly apparent that the UPS is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. In the nucleus, protein regulation via the UPS orchestrates gene expression, genome maintenance, and signal transduction. Here, we focus on E3 Ub-ligase proteins as major components of the ubiquitination cascade that confer specificity of substrate recognition. We provide an overview on how they contribute to nuclear proteome plasticity during plant responses to environmental stress signals.
Collapse
|
75
|
Trujillo M. News from the PUB: plant U-box type E3 ubiquitin ligases. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:371-384. [PMID: 29237060 DOI: 10.1093/jxb/erx411] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/25/2017] [Indexed: 05/05/2023]
Abstract
Plant U-box type E3 ubiquitin ligases (PUBs) are well known for their functions in a variety of stress responses, including immune responses and the adaptation to abiotic stresses. First linked to pollen self-incompatibility, their repertoire of roles has grown to encompass also the regulation of developmental processes. Notably, new studies provide clues to their mode of action, underline the existence of conserved PUB-kinase modules, and suggest new links to G-protein signalling, placing PUBs at the crossroads of major signalling hubs. The frequent association with membranes, by interacting and/or targeting membrane proteins, as well as through a recently reported direct interaction with phospholipids, indicates a general function in the control of vesicle transport and their cargoes. This review aims to give an overview of the most significant advances in the field, while also trying to identify common themes of PUB function.
Collapse
Affiliation(s)
- Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Germany
| |
Collapse
|
76
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
77
|
Zhang M, Zhao J, Li L, Gao Y, Zhao L, Patil SB, Fang J, Zhang W, Yang Y, Li M, Li X. The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. PLANT, CELL & ENVIRONMENT 2017; 40:2831-2843. [PMID: 28865087 DOI: 10.1111/pce.13064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
The Arabidopsis U-box E3 ubiquitin ligases play an important role in the ubiquitin/26S proteasome-mediated protein degradation pathway. Recently, PUB30 has been reported to participate in the salt stress response during seed germination stage in abscisic acid (ABA)-independent manner, but the molecular mechanism remains to be elucidated. Here, we displayed that the pub30 mutant was more tolerant to salt stress during seed germination, whereas the mutant of its closest homologue PUB31 showed mild sensitivity to salt stress. PUB30 exhibited E3 ubiquitin ligase activity in vitro. PUB30 specifically interacted with BRI1 kinase inhibitor 1 (BKI1), a regulator playing dual roles in brassinosteroids signaling, in vitro and in vivo. We found that BKI1 protein was ubiquitinated and degraded by the 26S proteasome. The degradation of BKI1 was slowed down in the pub30-1 mutant compared with that in the wild type. The bki1 mutant was sensitive to salt, whereas the transgenic plants overexpressing BKI1 showed salt tolerant phenotype. All these results indicate that PUB30 negatively regulates salt tolerance probably through regulating the degradation of BKI1 and brassinosteroids signaling in Arabidopsis.
Collapse
Affiliation(s)
- Ming Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Li
- College of Life Sciences, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yanan Gao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Linlin Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Suyash Bhimgonda Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhui Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Yuhong Yang
- College of Life Sciences, Shenyang Agricultural University, Shenyang, 110161, China
| | - Ming Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
78
|
Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD. Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 2017; 7:10212. [PMID: 28860478 PMCID: PMC5579306 DOI: 10.1038/s41598-017-10634-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem. These observations suggested that the JA response promotes xylem development. To understand the mechanism, we examined the regulatory interaction between JA and cytokinin, a negative regulator of xylem development. JA treatment reduced cytokinin responses in the vasculature, and exogenous cytokinin nullified the effect of JA on formation of extra xylem. A time-course experiment showed that suppression of cytokinin responses by JA does not occur rapidly, but the JA-mediated xylem phenotype is tightly linked to the suppression of the cytokinin response. Further analysis of arabidopsis histidine phosphotransfer protein6-1 and myc2-3 mutants revealed that the JA-responsive transcription factor MYC2 regulates the expression of AHP6 in response to JA and expression of AHP6 is involved in the JA-mediated xylem phenotype.
Collapse
Affiliation(s)
- Geupil Jang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sun Hyun Chang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Tae Young Um
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sangyool Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
79
|
Arabidopsis E3 Ubiquitin Ligases PUB22 and PUB23 Negatively Regulate Drought Tolerance by Targeting ABA Receptor PYL9 for Degradation. Int J Mol Sci 2017; 18:ijms18091841. [PMID: 28837065 PMCID: PMC5618490 DOI: 10.3390/ijms18091841] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022] Open
Abstract
Drought causes osmotic stress and rapidly triggers abscisic acid (ABA) accumulation in plants. The roles of various ABA receptors in drought tolerance and molecular mechanisms regulating ABA receptor stability needs to be elucidated. Here, we report that Arabidopsis plants overexpressing PYL9, one of the 14 pyrabactin resistance (PYR)/pyrabactin resistance-like (PYL)/regulatory component of ABA receptors (RCAR) family ABA receptors, gained drought tolerance trait. Osmotic stress induced accumulation of the PYL9 protein, which was regulated by the 26S proteasome. PYL9 interacted with two highly homologous plant U-box E3 ubiquitin ligases PUB22 and PUB23. In the cell-free degradation assay, the degradation of GST-PYL9 was accelerated in protein extract from plants overexpressing PUB22 but slowed down in protein extract from the pub22 pub23 double mutant. The in vivo decay of Myc-PYL9 was significantly reduced in the pub22 pub23 double mutant as compared with the wild-type. Additionally, PUB22 also interacted with other ABA receptors such as PYL5, PYL7 and PYL8. Considering the improved drought tolerance in the pub22 pub23 double mutant in previous studies, our results suggest that PUB22 and PUB23 negatively regulate drought tolerance in part by facilitating ABA receptors degradation.
Collapse
|
80
|
Jeong JS, Jung C, Seo JS, Kim JK, Chua NH. The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses. THE PLANT CELL 2017; 29:1406-1424. [PMID: 28536144 PMCID: PMC5502463 DOI: 10.1105/tpc.17.00216] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 05/08/2023]
Abstract
The transcription factor MYC2 has emerged as a master regulator of jasmonate (JA)-mediated responses as well as crosstalk among different signaling pathways. The instability of MYC2 is in part due to the action of PUB10 E3 ligase, which can polyubiquitinate this protein. Here, we show that polyubiquitinated MYC2 can be deubiquitinated by UBP12 and UBP13 in vitro, suggesting that the two deubiquitinating enzymes can counteract the effect of PUB10 in vivo. Consistent with this view, UBP12 and UBP13 associate with MYC2 in the nucleus. Transgenic Arabidopsis thaliana plants deficient in UBP12 and UBP13 show accelerated decay of MYC2 and are hyposensitive to JA, whereas plants overexpressing UBP12 or UBP13 have prolonged MYC2 half-life and are hypersensitive to JA Our results suggest that there is a genetic link between UBP12, UBP13, and MYC2. Our results identify UBP12 and UBP13 as additional positive regulators of JA responses and suggest that these enzymes likely act by stabilizing MYC2.
Collapse
Affiliation(s)
- Jin Seo Jeong
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Choonkyun Jung
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Jun Sung Seo
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10065
| |
Collapse
|
81
|
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2933-2949. [PMID: 28486617 DOI: 10.1093/jxb/erx136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitination system plays important roles in the degradation and modification of substrate proteins. In this study, we characterize a putative U-box type E3 ubiquitin ligase gene, VpPUB24 (plant U-box protein 24), from Chinese wild grapevine, Vitis pseudoreticulata accession Baihe-35-1. We show that VpPUB24 is induced by a number of stresses, especially cold treatment. Real-time PCR analysis indicated that the PUB24 transcripts were increased after cold stress in different grapevine species, although the relative expression level was different. In grapevine protoplasts, we found that VpPUB24 was expressed at a low level at 22 °C but accumulated rapidly following cold treatment. A yeast two-hybrid assay revealed that VpPUB24 interacted physically with VpICE1. Further experiments indicated that VpICE1 is targeted for degradation via the 26S proteasome and that the degradation is accelerated by VpHOS1, and not by VpPUB24. Immunoblot analyses indicated that VpPUB24 promotes the accumulation of VpICE1 and suppresses the expression of VpHOS1 to regulate the abundance of VpICE1. Furthermore, VpICE1 promotes transcription of VpPUB24 at low temperatures. We also found that VpPUB24 interacts with VpHOS1 in a yeast two-hybrid assay. Additionally, over-expression of VpPUB24 in Arabidopsis thaliana enhanced cold tolerance. Collectively, our results suggest that VpPUB24 interacts with VpICE1 to play a role in cold stress.
Collapse
Affiliation(s)
- Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
82
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
83
|
Wang N, Xing Y, Lou Q, Feng P, Liu S, Zhu M, Yin W, Fang S, Lin Y, Zhang T, Sang X, He G. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:84-94. [PMID: 28013174 DOI: 10.1016/j.jplph.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation. In addition, the leaves of the dsg1 mutant were wider and curled. The DSG1 protein is nuclear- and cytoplasm-localized and does not show tissue specificity in terms of its expression, which occurs in roots, culms, leaves, sheaths, and spikelets. The dsg1 mutant is less sensitive to brassinosteroid treatment than the wild-type, and DSG1 expression is negatively regulated by brassinosteroids, ethylene, auxin, and salicylic acid. These results demonstrate that DSG1 positively regulates cell division and elongation and may be involved in multiple hormone pathways.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Qijin Lou
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Song Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Meidan Zhu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Wuzhong Yin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Shunran Fang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yan Lin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Tianquan Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
84
|
An JP, Li HH, Song LQ, Su L, Liu X, You CX, Wang XF, Hao YJ. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:24-31. [PMID: 27404131 DOI: 10.1016/j.plaphy.2016.06.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) Leu zipper transcription factor MYC2 is an important regulator in the Jasmonic acid (JA) signaling pathway. In this study, the apple MdMYC2 gene was isolated and cloned on the basis of its homology with Arabidopsis thaliana MYC2. Quantitative real time PCR (qRT-PCR) analysis demonstrated that MdMYC2 transcripts were induced by Methyl Jasmonate (MeJA) treatment and wounding. The MdMYC2 protein interacted with itself and bound the G-Box motif of the AtJAZ3 gene. MdMYC2 interacted with the MdJAZ2 protein, which is a repressor protein in the JA signaling pathway. Furthermore, we obtained transgenic apple calli that either overexpressed or suppressed the MdMYC2 gene. Expression analysis with qRT-PCR demonstrated that the transcript levels of JA-regulated anthocyanin biosynthetic genes, such as MdDFR, MdUF3GT, MdF3H and MdCHS, were markedly up-regulated in the MdMYC2 overexpressing calli and down-regulated in the suppressing calli compared with the WT control. As a result, the overexpressing calli produced more anthocyanin, and the suppressing calli produced less. Finally, the MdMYC2 gene was ectopically expressed in Arabidopsis. Both phenotypic investigation and expression analysis demonstrated that the MdMYC2 transgenic Arabidopsis lines were more sensitive to MeJA than the WT control. Together, these results indicate that the apple MdMYC2 gene plays a vital role in the JA response.
Collapse
Affiliation(s)
- Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Hao Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yan'tai, Shandong, 265599, China
| | - Ling Su
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
85
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
86
|
Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC PLANT BIOLOGY 2016; 16:86. [PMID: 27079791 PMCID: PMC4831116 DOI: 10.1186/s12870-016-0771-y] [Citation(s) in RCA: 1006] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. RESULTS Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. CONCLUSIONS The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk mechanisms among various hormones in coordinating growth under stress will be an important theme in the field of abiotic stress research. Such efforts will help to reveal important points of genetic control that can be useful to engineer stress tolerant crops.
Collapse
Affiliation(s)
- Vivek Verma
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
- />Present address: School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Pratibha Ravindran
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| | - Prakash P. Kumar
- />Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
87
|
Schmiesing A, Emonet A, Gouhier-Darimont C, Reymond P. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract. PLANT PHYSIOLOGY 2016; 170:2432-43. [PMID: 26884488 PMCID: PMC4825139 DOI: 10.1104/pp.16.00031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 05/04/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated.
Collapse
Affiliation(s)
- André Schmiesing
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Aurélia Emonet
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
88
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|